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Abstract—This letter introduces a distributed state esti-
mation scheme for linear time-invariant (LTI) discrete-time
systems, where observers, with partial observation of the
system, communicate with each other over a directed and
strongly connected (but not necessarily balanced) graph
topology and execute a predefined number of average
consensus steps in-between estimation steps. Our method-
ology departs from previous works in the literature in that it
does not require any degree of centralized design nor relies
on procedures that might be prone to numerical instability.
By leveraging ratio consensus and matrix perturbation
theory, we establish a convergence-guaranteeing condition
for the number of consensus iterations needed between the
steps of the distributed estimation process. This condition
becomes the blueprint for a distributed initialization pro-
cedure, which allows the agents to collectively select an
adequate number of ratio consensus steps.

Index Terms—Distributed estimation, ratio consensus,
matrix perturbation analysis, LTI systems.

I. INTRODUCTION

IN RECENT years, the distributed estimation problem has
gained significant attention in the context of multi-agent

systems [1], [2], due to its importance in several applications
of networked systems, such as communication, networked
control, monitoring, and surveillance.

Several innovative solutions have been proposed, especially
in the case of linear observers [3], [4], [5], [6], [7], [8], [9],
[10]. Studies such as [4], where Kalman’s decomposition has
been applied to ease the estimation task for the agents, or [7],
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which focuses on switching networks, represent important
examples in this sense. Furthermore, works like those by
Wang et al. [5], [6] and Savas et al. [8] have made significant
contributions to both discrete and continuous-time distributed
estimation theory. In particular, in [5], following the same
path as the pioneering algorithm in [3], agents are allowed to
perform a specified number of distributed agreement rounds
between state updates, and the distributed estimators are
designed so that the estimation error converges exponentially
to zero at a fixed rate that is arbitrarily chosen, under
the condition that the graph is always strongly connected.
Interestingly, in [3] time-varying measurements and graph
topologies are considered, although it is assumed that there
is a subset of core measurements and that the agents are
provided with global meta-information regarding such core
measurements. Moreover, in [8] it is shown that, if the
agents are allowed to execute a given number of average
consensus steps in between estimation steps, then the overall
performance of the distributed estimation scheme is greatly
improved. Also, in [10] a bound on the number of steps
required for stability is given, although the bound is based on
knowledge of the second largest eigenvalues of the consensus
dynamical matrix. However, the approaches in [3], [8], [10]
assume that the agents interact over an undirected graph
topology; furthermore, the schemes in [5], [8] assume that
the linear estimators (gains) and the number of steps require
knowledge of global information. In [11] we overcome these
limitations by relying on minimum-time ratio consensus,
which guarantees that agents reach an exact agreement in-
between estimation steps. Moreover, we develop a distributed
initialization procedure that allows the agents to distributively
compute the gains. The approach in [11], although effective,
relies on the construction of large Hankel matrices and on
the identification of characteristic polynomials, a process that
might be affected by numerical instability.

In this letter, we address the following question: is it
possible to agree on a number of consensus steps in-between
estimation steps such that the convergence of the distributed
estimation process is guaranteed in a fully distributed fashion?
Towards this end, we develop a distributed state estimation
scheme for LTI discrete-time system where, between estima-
tions, the agents execute a given number of asymptotic ratio
consensus steps over a directed and strongly connected (but not
necessarily balanced) graph. The main idea of this letter is that
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the dynamics of the estimation error can be represented as the
sum of two terms: (i) a nominal term where the agents achieve
perfect agreement in between estimation steps and (ii) a
residual term that is due to the actual imperfect agreement.
By handling the second term as a perturbation and resorting
to matrix perturbation theory, we identify a condition on the
number of ratio-consensus steps that guarantees convergence
of the overall distributed estimation process. Interestingly, the
identified condition translates into a distributed initialization
procedure that allows the agents to collectively select an
adequate number of ratio consensus steps.

The outline of this letter is as follows: Section II intro-
duces the necessary notation and mathematical machinery;
Section III states the problem at hand in this letter; Section IV
develops a sufficient condition for stability; Section V provides
a distributed initialization procedure that allows the agents
to fulfill the necessary stability condition; Section VI pro-
vides some simulations to corroborate the theoretical findings;
finally, Section VII collects some conclusive remarks and
future work directions.

II. PRELIMINARIES

A. Notation and Graph Theory
We denote vectors with boldface lowercase letters and

matrices with uppercase letters. The transpose of matrix A and
vector x are denoted as A�, x�, respectively. We refer to the
(i, j)-th entry of a matrix A by Aij. We represent by 0n and 1n
vectors with n entries, all equal to zero and to one, respectively.
Given two matrices A ∈ R

n×m and B ∈ R
p×q, we use A ⊗ B

to denote their Kronecker product.
Let G = {V, E} be a directed graph (digraph) with N nodes

V = {v1, v2, . . . , vN} and e edges E ⊆ V ×V , where (vi, vj) ∈
E captures the existence of a link from node vi to node vj.
A directed graph is strongly connected if each node can be
reached by every other node via the edges, respecting their
orientation. Let the in-neighborhood N in

i of a node vi ∈ V be
the set of nodes vj ∈ V such that (vj, vi) ∈ E ; similarly, the
out-neighborhood N out

i of a node vi ∈ V is the set of nodes
vj ∈ V such that (vi, vj) ∈ E . The in-degree dini of a node
vi is the number of its incoming edges, i.e., dini = |N in

i |;
similarly, the out-degree douti of a node vi is the number of its
outgoing edges, i.e., douti = |N out

i |. The minimum distance
from node vi to vj for vi, vj ∈ V, i �= j, is the shortest path from
node vi to vj and is denoted dmin(i, j), while in the absence
of a directed path then dmin(i, j) = ∞. The diameter of G is
defined as the longest shortest path between any two nodes
i.e., D = maxi,j∈V,i �=j dmin(i, j). We use ‖ · ‖2, ‖ · ‖1, and
‖ · ‖∞ to denote the Euclidean, one-, and infinity- norms,
respectively.

B. Perturbation Theory
In the context of matrix analysis, perturbation theory aims

to locate the eigenvalues of a perturbed matrix based on
knowledge of both the unperturbed and perturbation matrix.
Among several other results, the Bauer-Fike Theorem is
particularly useful, since it applies to non-symmetric matrices
and does not require the perturbation to be small.

Theorem 1 (Bauer and Fike [12]): Let M be an n × n
diagonalizable matrix satisfying M = V�V−1 and let E be

an arbitrary n × n matrix. Every eigenvalue μ of M + E
satisfies the inequality |μ− λ| ≤ ‖V‖‖V−1‖‖E‖, where λ is
some eigenvalue of M, and ‖ · ‖ is any operator norm.

C. Ratio Consensus
In this section we introduce the distributed ratio consensus

algorithm [13], [14] to achieve average consensus over a set of
N agents (associated with sensor measurements) exchanging
information through a possibly unbalanced directed network.
In particular, each agent vi ∈ V maintains a local state
variable χi[ · ] ∈ R

d and an auxiliary variable ψi[ · ] ∈
R that compensates for the unbalanced directed network
topology. At the beginning of the procedure, each agent vi
initializes χi[0] = χi0 and its auxiliary variable at ψi[0] = 1.
Subsequently, at each iteration m ≥ 0, each agent vi ∈ V
assigns a weight to its variables and transmits the weighted
variables pliχi[m] and pliψi[m] to its out-neighbors vl ∈ N out

i
over the links (vi, vl) ∈ E . The weight pli can be assigned
using the equal-neighbor model,1 i.e., pli = 1/douti if vl ∈
N out

i and pli = 0 otherwise. Placing each weight pli on the
l-th row and i-th column of a matrix P ∈ R

N×N
≥0 , we obtain a

column-stochastic matrix. At each consensus iteration m, each
node vi ∈ V receives the state variables transmitted by its in-
neighbors pijχj[m] and pijψj[m], and updates its own variables
as follows:

χi[m + 1] =
∑

j∈N in
i

pijχj[m], χi[0] = χi0, (1a)

ψi[m + 1] =
∑

j∈N in
i

pijψj[m], ψi[0] = 1. (1b)

To further analyze the ratio consensus algorithm, we con-
catenate the agents’ individual variables into global network
variables χ [m] = (χ1[m] · · ·χN[m])� ∈ R

N×d and
ψ[m] = (ψ1[m] · · ·ψN[m])� ∈ R

N , and thus we can rewrite
the above distributed algorithm in its equivalent network
matrix form:

χ [m + 1] = Pχ [m] = �P(m)χ [0], (2a)

ψ[m + 1] = Pψ[m] = �P(m)ψ[0], (2b)

where �P(m) := Pm+1. Now, rewriting the above iterations at
node vi in a equivalent way that was first presented in [15]
(in which the weights involved in the update of the ratio are
independent of χ [m], and they are instead based on ψ[m]), we
obtain the ratio zi[m+1] = χi[m+1]/ψi[m+1]. For simplicity
of exposition, assuming d = 1, we have that

zi[m + 1] =
∑

j∈N in
i

pijχj[m]
∑

j∈N in
i

pijψj[m]
=

∑

j∈N in
i

(
pijχj[m]∑

l∈N in
i

pilψl[m]

)

=
∑

j∈N in
i

(
pijψj[m]∑

l∈N in
i

pilψl[m]

)
zj[m]

=
∑

j∈N in
i

sij[m]zj[m]. (3)

1This strategy ensures that the total mass of the variables is equally
allocated to the out-neighbors of vi, and that

∑
l∈Nout

i
pli = 1.
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Interestingly the time-varying matrix S[m] ∈ R
N×N collecting

the terms sij[m] is nonnegative and row-stochastic [15]. Hence,
one can also express the ratio consensus algorithm in its matrix
form as

z[m + 1] = S[m]z[m] = �S(m)χ [0], (4)

where �S(m) is the backward product of the row-stochastic
matrices �S(m) = S[m] · · · S[1]S[0], for m ≥ 0. Notice that,
in the general case where d > 1, it can be easily shown that
�S(m) in Eq. (4), can be replaced by �̄S(m) = �S(m)⊗ Id.

III. PROBLEM FORMULATION

Consider the following system dynamics with state
x[k] ∈ R

d, and yi[k] ∈ R
q, which evolve with time as follows:

x[k + 1] = Ax[k], yi[k] = Cix[k], (5)

where yi[k] and Ci denote the observations and observation
matrix of node vi ∈ V , respectively. In the following, we
assume that the system is jointly observable, i.e., the pair
(A,C) with C = (

C�
1 . . . C�

N

)�
is observable. The state

estimate of node vi is given by

x̂i[k + 1] = Ax̃i[k] + Li

(
yi[k] − Cix̃i[k]

)
, (6)

where x̃i[k] is the result of m-steps of ratio consensus over
the strongly connected digraph G, using x̂i[k] as the initial
conditions, i.e.,

x̃i[k] =
N∑

j=1

(
�S(m)

)

ij
x̂j[k]

is the resulting fused consensus estimate after m iterations of
consensus.2 In a compact form, defining x̃[k] and x̂[k] as the
stack of the vectors x̃i[k] and x̂j[k], respectively, we have that

x̃[k] =
(
�S(m)⊗ Id

)

︸ ︷︷ ︸
�̄S(m)

x̂[k].

In the remainder of this section, we define the dynamics of the
error between the actual state of the system and the estimated
one. In particular, the error dynamics can be seen as the result
of two contributions, i.e., the dynamics obtained assuming
exact consensus among the agents at each estimation step and
a term that accounts for the fact that perfect consensus is not
reached. This will be beneficial for our convergence analysis,
where we will interpret the second term as a perturbation.

A. Error Dynamics
Let us now define the local estimation error at node vi as

ei[k] = x[k]−x̂i[k], and let e[k] denote the stack of the vectors
ei[k]. Based on the above definition, the local estimation error
evolves with time as follows:

ei[k + 1] = x[k + 1] − x̂i[k + 1]

= Ax[k] − Ax̃[k] − LiCi

(
x[k] − x̃i[k]

)

= (A − LiCi)
(

x[k] − x̃i[k]
)

2Notice that the iterator k represents the estimation iterations and thus it
does not change while computing x̃i[k].

which, in stacked form, reads as follows

e[k + 1] =
⎛

⎜⎝
A − L1C1 0

. . .

0 A − LNCN

⎞

⎟⎠

︸ ︷︷ ︸
Ā

⎛

⎜⎝
x[k] − x̃1[k]

...

x[k] − x̃N[k]

⎞

⎟⎠.

(7)

Notably, since by construction �S(m)1N = 1N, we have that
�̄S(m)(1N ⊗ x[k]) = 1N ⊗ x[k], and thus
⎛

⎜⎝
x[k] − x̃1[k]

...

x[k] − x̃N[k]

⎞

⎟⎠ =
⎛

⎜⎝
x[k]
...

x[k]

⎞

⎟⎠− �̄S(m)

⎛

⎜⎝
x̂1[k]
...

x̂N[k]

⎞

⎟⎠

= �̄S(m)

⎛

⎜⎝
x[k] − x̂1[k]

...

x[k] − x̂N[k]

⎞

⎟⎠ = �̄S(m)e[k],

which, plugged in Eq. (7), yields

e[k + 1] = Ā �̄S(m) e[k]. (8)

Notice that, in the limit of m approaching infinity, the aver-
age consensus yields the exact average for all agents; in other
words, we have that �S(∞) = limm→∞�S(m) = 1

N 1N1�
N .

In general, for a finite value of m we have
�S(m) = �S(∞)+�(m), where �(m) �= 0 accounts for
the error of the coefficients (�S(m))ij with respect to the
asymptotic coefficients 1/N. Based on the above definition,
we have that

�̄S(m) := �S(m)⊗ Id = (
�S(∞)−�(m)

)⊗ Id

= �S(∞)⊗ Id −�(m)⊗ Id

and we can express Eq. (8) as

e[k + 1] = Ā
(
�S(∞)⊗ Id −�(m)⊗ Id

)
e[k] (9a)

=
⎛

⎜⎝Ā�S(∞)⊗ Id︸ ︷︷ ︸
�∞

− Ā�(m)⊗ Id︸ ︷︷ ︸
��(m)

⎞

⎟⎠e[k]. (9b)

IV. CONVERGENCE ANALYSIS

In this section, we prove that, for a sufficiently large number
of consensus steps, the error dynamics is asymptotically
convergent. In doing so, we develop a distributed initialization
procedure that guarantees the selection of an adequate number
of consensus steps.

A. Ideal Error Dynamics
The following lemma characterizes the stability of the ideal

error dynamical matrix �∞, which corresponds to an exact
consensus among agents in-between estimation steps.

Lemma 1: Assume the system in Eq. (5) is jointly observ-
able and let the local observer gains Li be such that the spectral
radius ρ satisfies ρ(A†) < 1, where A† := A − 1

N

∑N
i=1 LiCi.

Then, �∞ is Schur stable.
Proof: In order to prove the statement, we observe that

�∞ = 1

N

⎛

⎜⎝
A − L1C1 · · · A − L1C1

...
. . .

...

A − LNCN · · · A − LNCN

⎞

⎟⎠.
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At this point, let us consider the Nd × Nd matrix T , reported
next, along with its inverse T−1, i.e.,

T =

⎛

⎜⎜⎜⎝

Id −Id · · · −Id

0 Id · · · 0
...

...
. . .

...

0 0 · · · Id

⎞

⎟⎟⎟⎠, T−1 =

⎛

⎜⎜⎜⎝

Id Id · · · Id

0 Id · · · 0
...

...
. . .

...

0 0 · · · Id

⎞

⎟⎟⎟⎠.

By some algebra, it can be noted that �∞ is similar to

�̃∞ = T−1 �∞ T =

⎛

⎜⎜⎜⎝

A† 0 · · · 0
1
N (A − L2C2) 0 · · · 0

...
...

. . .
...

1
N (A − LNCN) 0 · · · 0

⎞

⎟⎟⎟⎠.

Hence, the eigenvalues of �∞ are either zero or coincide
with the eigenvalues of A†. Since we assumed ρ(A†) < 1,
we conclude that �∞ is Schur stable. This completes our
proof.

Remark 1: In the above lemma, we assume that the gains
are such that A† is Schur stable. A possible distributed
approach to select these gains is to resort to the token-passing
procedure discussed in [11].

In view of the later developments in this section, it is
convenient to explicitly identify the transform matrices that
put �∞ in diagonal form. These matrices will be essential in
order to prove stability of the error dynamics.

Lemma 2: Assume A† is diagonalizable and nonsingular3

and let 
j = (A − LjCj)(A†)−1. Moreover, let Q be the matrix
that diagonalizes A†, i.e., such that Q−1A†Q is diagonal.
Matrix �∞ is diagonalizable, i.e., �∞ = V−1�∞V is diagonal
with

V−1 =

⎛

⎜⎜⎜⎝

(Id − 1
N

∑N
i=2
i)Q−1 −Id · · · −Id

1
N
2Q−1 Id · · · 0

...
...
. . .

...
1
N
NQ−1 0 · · · Id

⎞

⎟⎟⎟⎠,

and

V =

⎛

⎜⎜⎜⎝

Q Q · · · · · · Q
− 1

N
2 Id − 1
N
2 − 1

N
2 · · · − 1
N
2

...
...

. . .
. . .

...

− 1
N
N · · · · · · − 1

N
N Id − 1
N
N

⎞

⎟⎟⎟⎠.

Proof: Let us consider

W =

⎛

⎜⎜⎜⎝

Q−1 0 · · · 0
1
N
2Q−1 Id · · · 0

...
...

. . .
...

1
N
NQ−1 0 · · · Id

⎞

⎟⎟⎟⎠,

which is block triangular and, thus, nonsingular. We have that

W−1 =

⎛

⎜⎜⎜⎝

Q 0 · · · 0
− 1

N
2 Id · · · 0
...

...
. . .

...

− 1
N
N 0 · · · Id

⎞

⎟⎟⎟⎠.

3These assumptions are not restrictive. In fact, since we assumed joint
observability, we have that the eigenvalues of A† can be arbitrarily selected
(e.g., via the token passing approach in [11]). Thus, by selecting distinct and
nonzero eigenvalues for A†, we are guaranteed that it is diagonalizable and
nonsingular.

By some algebraic manipulation, we obtain

W−1�̃∞W = W−1T−1�∞TW = �∞,

with �∞ diagonal. Noting that V = TW, the proof is
complete.

B. Perturbation Analysis
In order to model the effect of the imperfect agreement

among the agents in terms of a perturbation, we will resort
on Bauer-Fike Theorem. To this end, let us now provide some
ancillary results.

Lemma 3: Let the assumptions of Lemma 2 hold true. Then
it holds ‖V‖1 ≤ ξ and ‖V−1‖1 ≤ θ , where

ξ = 1 + ‖Q‖1 + N − 1

N
max

i=1,...,N
‖
i‖1

and

θ = max

{
2, (1 + 2

N − 1

N
max

i=1,...,N
‖
i‖1)‖Q−1‖1

}
.

Proof: The proof follows noting that, given the structure of
V and V−1 given in Lemma 2,

‖V‖1 ≤ ‖Q‖1 + ‖Id‖1 + 1

N

N∑

i=2

‖
i‖1

≤ 1 + ‖Q‖1 + N − 1

N
max

i=1,...,N
‖
i‖1

and that ‖V−1‖1 ≤ max{2, ζ }, with

ζ =
∥∥∥∥∥

(
Id − 1

N

N∑

i=2


i

)
Q−1

∥∥∥∥∥
1

+ 1

N

N∑

i=2

‖
i‖1‖Q−1‖1

≤
(

1 + 2
N − 1

N
max

i=1,...,N
‖
i‖1

)
‖Q−1‖1.

This completes our proof.
As a last ancillary result, let us now characterize an upper

bound on the one-norm of �(m). Such a result will be
the cornerstone for a distributed initialization procedure for
choosing an adequately large m ∈ N.

Lemma 4: It holds ‖�(m)‖1 ≤ maxi=1,...,N ‖�S(m)ηi‖∞,
where

ηi = ei − 1

N
1N, (10)

with ei being the i-th vector in the canonical basis in R
N .

Proof: In order to prove the statement we observe that, being
�S(m) row stochastic, it holds

1

N
1N1�

N = �S(m)

(
1

N
1N1�

N

)
;

hence, we have that

�(m) = �S(m)− 1

N
1N1�

N = �S(m)

(
IN − 1

N
1N1�

N

)
.

At this point we observe that ηi is the i-th column of

IN − 1

N
1N1�

N . Noting that the 1-norm of a matrix is the largest

among the ∞-norms of its columns, we conclude that
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‖�(m)‖1 = ∥∥�S(m)
(
η1 . . . ηN

)∥∥
1

= ∥∥(�S(m)η1 . . . �S(m)ηN
)∥∥

1

= max
i=1,...,N

‖�S(m)ηi‖1.,

This completes our proof.

C. Proof of Convergence
We are now in position to prove convergence of the

proposed distributed state estimation scheme.
Theorem 2: Let the assumptions of Lemma 2 hold true. The

error dynamics is asymptotically stable if there is a number
of ratio consensus steps m∗ ∈ N such that

max
i=1,...,N

‖�S(m
∗)ηi‖1 <

1

c

(
1 − ρ

(
A†
))
, (11)

with ηi defined in Eq. (10) and c = ξ θ maxi{‖A − LiCi‖1}.
Proof: In order to prove the result we observe that, by using

the Bauer-Fike theorem, the eigenvalue μ of Ā �̄P(m∗) with
largest magnitude satisfies

|μ− λ| ≤ ‖V‖1‖V−1‖1‖��(m∗)‖1

≤ ‖V‖1‖V−1‖1‖Ā‖1‖�(m∗)⊗ Id‖1

≤ ‖V‖1‖V−1‖1 max
i

{‖A − LiCi‖1}‖�(m∗)‖1,

where λ is one of the eigenvalues of �∞ and V is
the matrix of all eigenvectors of �∞. Moreover, by
Lemma 3, we have that ‖V‖1‖V−1‖1 ≤ ξ θ , hence
‖V‖1‖V−1‖1 maxi{‖A − LiCi‖1} ≤ c. Therefore, by Lemma 4,
we have that

|μ− λ| ≤ c max
i=1,...,N

‖�S(m
∗)ηi‖1 < 1 − ρ(A†).

Since A† is Hurwitz stable, we have that |λ| < 1; hence, we
conclude that |μ| < 1, hence the real system is Schur stable.
The proof is complete.

V. A DISTRIBUTED INITIALIZATION PROCEDURE

Theorem 2 guarantees asymptotic stability of the proposed
distributed estimation scheme as long as a suitably large m∗
is identified. This section presents a distributed initialization
procedure to select such an m∗.

Let us now show how to identify m∗
i such that

‖�S(m∗
i )ηi‖1 < ε for a given ε > 0. In order to accomplish

this task, let us assume that the agents execute a ratio consen-
sus procedure with initial condition4 z[0] = ηi. Whenever k
is an integer multiple of D we execute a max-consensus with
initial conditions r[k] = |z[k]|, where |·| is the component-wise
absolute value, so that at time k + D all agents know

max
i

|zi[k]| = ‖z[k]‖∞ = ‖�S(k)ηi‖∞ ≥ 1

n
‖�S(k)ηi‖1.

Based on this knowledge, the agents stop the ratio
consensus procedure at time hD, with h integer,
if maxj |zj[(h − 1)]| < 1

cn (1 − ρ(A†)); then, it holds
‖�S(k)ηi‖1 <

1
c (1 − ρ(A†)), and the procedure returns m∗

i =
(h−1)D. Let us now assume that the agents execute the above
procedure for all i ∈ {1, . . . ,N}, thus obtaining m∗

1, . . . ,m∗
N .

4The agents need to know N to set their initial conditions to ηi; to this
end, they could resort to max-consensus [16].

By setting m∗ = maxi{m∗
i }, the agents are guaranteed that

m∗ satisfies the condition in Theorem 2 and that the error
dynamics is asymptotically convergent.

Remark 2: The constant c can be computed in a distributed
fashion during the initialization. In fact, assuming all agents
know A† (e.g., by accumulating information in a token as
done in [11]), A − LiCi (as they compute it locally), and 
i
(also computed locally if the agents know A†), they can run
max-consensus procedures [16] to compute maxi=1,...,N ‖
i‖1,
maxi{‖A − LiCi‖1} and N, while they can compute Q locally.

VI. SIMULATIONS

Consider a directed network G = {V, E} comprised of four
nodes, i.e., N = 4, associated with the column-stochastic
matrix P where the weights pli are assigned by each node
vi ∈ V as described in Section II-C. Moreover, each node
has access to an LTI system of d = 8 states, modeled by
the dynamical matrix A ∈ R

d×d. Within this setup, the nodes
aim at cooperatively estimating the state of the LTI system
by exchanging and coordinating their local state estimates
through m�-rounds of the ratio consensus algorithm. The local
estimates are computed using (6) where the local estimation
gains for node vi is given by the i-th column of matrix L.
Here it is important to note that, each node can determine the
rounds of ratio consensus m� that guarantee stability, through
the distributed initialization procedure presented in Section V.

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.94 0.5 0 0 0.39 0 0 0
1.1 0 0 0 1 0 0 0
0 0 2.3 0.5 0 0 0 0
0 0 0.9 0.9 0 0 0 0
1.1 0 0 0 −0.1 0.3 0 0
1.1 0 0 0 −0.1 0.2 0 0
−0.1 0 0 0 0 0 1.1 0.2
−2 0 0 0 0 0 2.99 0.2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

L =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.4 0 0 0
4 0 0 0
0 8.4 0 0
0 4 0 0
4.4 0 0 0
4 0 0 0
−0.4 0 0 4
−8 0 0 12

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

P =
⎛

⎜⎝

1/2 0 1/3 1/3
0 1/2 1/3 0
0 1/2 0 1/3
1/2 0 1/3 1/3

⎞

⎟⎠.

Furthermore, each node vi in the network is associated with
sensors and it has computational capability to run the ratio
consensus algorithm and compute its local state estimates. In
this particular example, each node is assumed to observe only
one state of the system, i.e., the local measurement matrices
Ci are C1 = (

1 0 0 0 0 0 0 0
)
,C2 = (

0 0 1 0 0 0 0 0
)
,C3 =(

0 0 0 0 1 0 0 0
)
, and C4 = (

0 0 0 0 0 0 1 0
)
.

In Fig. 1 we present the coordinated number of rounds
of ratio consensus m�, that guarantees convergence of the
estimation error to 0 as k → ∞, for different predefined
consensus errors maxi=1,...,N ‖�P(m)ηi‖1.

Fig. 2 depicts the convergence rate of our proposed dis-
tributed estimation algorithm with respect to the Euclidean
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Fig. 1. Number of sufficient ratio consensus iterations m� for differ-
ent predefined consensus errors maxi=1,...,N ‖�P(m)ηi‖1. The dashed
vertical line provides an upper bound on maxi=1,...,N ‖�S(m)ηi‖1 asso-
ciated to the minimum number of consensus iterations that satisfies the
sufficient stability condition in Theorem 2.

Fig. 2. Convergence of the proposed distributed estimation algorithm
within network G for m� = {2,5, 10, 25}.

norm of the estimation error e[k], for different lengths of
consensus iterations m� = {2, 5, 10, 25}. According to the
upper bound maxi=1,...,N ‖�P(m)ηi‖1 shown in Fig. 1, with
m� ≥ 24 ratio consensus iterations, it is guaranteed that
the estimation error will converge to 0 asymptotically, as
depicted in Fig. 2. Notably, the distributed estimators achieve
asymptotic convergence also for smaller values of m∗, e.g.,
for m� = 10; in fact, although allowing the agents to choose
m� that guarantees convergence, Theorem 2 provides only a
sufficient condition. When m becomes too small (e.g., m� ∈
{2, 5}) we observe that the overall estimation process becomes
unstable, and thus the estimation error grows unbounded.

VII. CONCLUSION AND FUTURE DIRECTIONS

This letter presents a scheme for distributed state estimation
for LTI discrete-time systems, enabling agents to perform
a specified number of average consensus steps between
estimations across a directed and strongly connected graph
topology, which may not necessarily be balanced. Unlike prior
works, our approach eliminates the need for any centralized
design and addresses numerical instabilities, tackling the
issue of imperfect agreement’s impact on estimation accuracy.
Utilizing matrix perturbation theory, we define a condition
that ensures the convergence of the estimation process. This
condition serves as a foundation for a distributed initialization
procedure, facilitating the collective determination by agents
of an adequate number of consensus steps.

We envisage three main directions for future work: (i) char-
acterizing the effect of the topology on the number of
consensus steps, (ii) extending the approach to nonlinear
estimation problems and to systems affected by noises and,
(iii) handling delays and packet losses in the underlying
consensus process, characterizing the overall effect on the
estimation.
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