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Exact Model Reduction for Discrete-Time
Conditional Quantum Dynamics

Tommaso Grigoletto , Member, IEEE , and Francesco Ticozzi

Abstract—Leveraging an algebraic approach built on
minimal realizations and conditional expectations in quan-
tum probability, we propose a method to reduce the
dimension of quantum filters in discrete-time, while
maintaining the correct distributions on the measure-
ment outcomes and the expectations of some relevant
observable. The method is presented for general quan-
tum systems whose dynamics depend on measurement
outcomes, hinges on a system-theoretic observability anal-
ysis, and is tested on prototypical examples.

Index Terms—Quantum information and control,
model/controller reduction, filtering.

I. INTRODUCTION

QUANTUM stochastic dynamical models are key to the
theory and practice of real-time feedback in quantum

experiments [1], and at the same time represent one of its key
limitations. In fact, despite their successful implementation in
(relatively) small systems, the real-time integration of filtering
equations poses significant limits to the effective bandwidth of
the control. For these reasons, various methods have been con-
sidered to reduce the computational burden of these models,
including projection filters and approximate reductions based
on adiabatic-type limits [2], [3]. In this letter, we construct
stochastic quantum models in discrete time that are able to
exactly reproduce the output and measurement statistics for
a wide class of quantum systems, including discrete-time
filtering and feedback equations [4], [5], [6], quantum trajec-
tories [7], quantum walks including measurements [8], [9]
and partially observed quantum Markov process [10], while
allowing for imperfect measurements and/or un-monitored
environments.

Our approach builds on the ideas of [11], (see [12] for
a generalization to quantum walks), where stochastic ana-
logues of reachable and non-observable spaces are used to
characterize equivalent hidden-Markov processes. Exploiting
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the ideas developed in [13], [14] for unconditional dynamics,
the method leverages algebraic quantum probability tools,
in particular conditional expectations, to allow for reduced
conditional models that generate the same measurement dis-
tribution, reproduce the average of observables of interest,
and do so while maintaining the same structure and physical
constraints as the original model. In general, existing reduc-
tion approaches cannot guarantee that the reduced evolution
is completely positive (CP) and trace-preserving (TP) [15].
Therefore, we show that the algebraic framework introduced
in [14] is general and can be adapted to many cases of interest.
Comparing the reduced models with and without conditioning,
we highlight some key differences between classical and
quantum processes: in some cases quantum conditioning can
further reduce the minimal realization, while in the classical
case this is never possible. It is worth remarking that the
same approach can be adapted to derive reduced models from
known initial conditions of interest, i.e., exploiting reachable
reductions. This problem is less natural for filtering dynamics
and requires the introduction and use of modified algebraic
structures that go beyond the scope of the present work [14].

In Section II we introduce the class of models of interest.
Note that some of the assumptions introduced in Section II for
simplicity can be relaxed. For example, one could consider the
case of multiple measurement apparatuses and evolution maps,
among which one can choose which one to measure or apply.
Section III introduces the non-observable subspace and the
optimal linear reduction. Similar ideas have been introduced,
with different objectives in [16]. Section IV illustrates how to
extend a minimal observable representation of the dynamics
to a CPTP one. Section V is devoted to examples.

II. MODEL AND PROBLEM DEFINITION

In this letter, we consider finite-dimensional Hilbert spaces
H � C

n. The algebra of linear operators (closed with respect
to the standard matrix product) acting on H is denoted by
B(H) � C

n×n, and the set of density operators by D(H) =
{ρ|ρ ≥ 0, tr(ρ) = 1}.

A. Dynamics of Interest

Let us assume that we are able to perform a generalized
measurement [17] with outcomes k ∈ � described by the
operators {Mk} such that

∑
k M†

k Mk = 1. Some of the
scenarios of interest for this letter include:
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• CPTP dynamics followed by generalized measurement:
assume that the system evolves through a CPTP dynamical
map E(·) (e.g., evolution in contact with a Markov bath)
and after each evolution the generalized measurement is
performed. In this case, the effects of conditioning, given the
measurement outcome k, are described by a set of CP maps
{MkE(·)M†

k }.
• Imperfect measurement [6]: Assume now that the

measurement apparatus correctly registers the measurement
outcome k with (known) probability pk,k, while with proba-
bility pk,j the actual outcome was j, with

∑
j pk,j = 1. Then

the conditioning of the state given the registered outcome k is
given by a set of CP maps {∑j pk,jMj · M†

j }.
• Dynamics conditioned on the measurement outcome:

Assume to have a set of CPTP {Ek}, one per outcome in �

and assume that, after observing the measurement outcome
k, the dynamical map Ek is applied (e.g., feedback unitary
operations [4]). In this case, the effects of conditioning are
described by a set of CP maps {Ek(Mk · M†

k )}.
In the following, we propose a general framework capable of

describing the presented cases in a compact form: conditional
dynamics.

Let us consider a quantum system defined over a Hilbert
space H. Let us assume to be able to perform a measurement
on the system at hand (either projective, generalized, or
imperfect). Let � denote the set of measurement outcomes and
let Pρ[M = k] be the probability of observing the outcome
k ∈ � when performing the measurement on the system in
the state ρ. A quantum instrument [17] is a set of CP super
operators {Mk}k∈�, one per every outcome in �, such that∑

k∈� M†
k(1) = 1. Assume that the system is prepared in a

state ρ. The outcome k ∈ �, is observed with probability

Pρ[M = k] = tr[Mk(ρ)]. (1)

After the observation of the outcome, the system state needs
to be conditioned on the observed outcome k, resulting in the
state:

ρ|M=k = Mk(ρ)

tr[Mk(ρ)]
. (2)

Notice that the normalization factor at the denominator of
the state update (2) makes the dynamics of the process non-
linear. Linear dynamics can be recovered by considering the
un-normalized state ρ̃|M=k = Mk(ρ). We can further notice
that the probability of the outcome coincides with the trace of
the un-normalized state, i.e., Pρ[M = k] = tr[ρ̃|M=k], and
that the normalized state ρ|M=k can still be retrieved by a
posterior re-normalization, i.e., ρ|M=k = ρ̃|M=k/tr[Mk(ρ)].

B. Quantum Conditional Evolutions

We now introduce a class of discrete-time quantum
dynamical models that includes the effects of conditioning.
In the following, we assume: 1) To have a quantum instru-
ment, described by a set of CP maps {Mk}k∈� such that∑

k∈� M†
k(1) = 1, where � is the set of possible outcomes;

2) That a measurement is performed at each time step t =
0, 1, 2, . . . . Therefore, we will indicate the outcome observed
at time t with the subscript t, i.e., M(t) = kt indicates the

measurement at time t leads to the outcome kt ∈ �. Moreover,
we denote an ordered sequence of conditional dynamics as
Mk0:t and of outcomes as k0:t := k0, k1, . . . , kk and thus

Pρ[M(0:t) = k0:t] := Pρ[M(0) = k0, . . . ,M(t) = kt].

3) We further assume to only be interested in reproducing
the expectation value of a set of observables {Oj} containing
the identity, i.e., 1 ∈ {Oj}. We compactly represent the
set of observables of interest {Oj} via a linear output map
C : B(H) → Y where Y is a vector space of dimension
dim(Y ) = |{Oj}|. This map is constructed by fixing a basis
{Ej} for Y and imposing C(·) = ∑

i Eitr[Oj · ].
In the rest of the manuscript, we write ρ̃(t) to denote

ρ̃(t,M(0 : t − 1) = k0 : t−1), leaving the dependence on the
outcomes implicit when the meaning of the symbols is clear
from the context. We shall consider a sequence of repeated
quantum instruments, a conditional dynamics, for the un-
normalized density, described by

ρ̃(t + 1) = Mkt+1

[
ρ̃(t)

]
(3)

so that ρ̃(t + 1) = Mk0 : t+1(ρ0) where

Mk0 : t+1 := Mkt+1 ◦ Mkt ◦ · · · ◦ Mk1 ◦ Mk0 .

Notice that the evolution described by equation (3) is that of
a switching model with linear dynamics, where the switching
action depends on the outcome of the measurement kt ∈ �.

As noted before, the un-normalized state also allows for
direct computation of the joint probabilities of trajectories,
as Pρ0 [M(0:t) = k0 : t] = tr[ρ̃(t + 1,M(0 : t) = k0:t)] and
the corresponding actual density operator at any time t can
be computed by re-normalization with the probability of the
trajectory:

ρ(t + 1|M(0 : t) = k0:t) = ρ̃(t + 1,M(0 : t) = k0:t)

Pρ0 [M(0 : t) = k0:t]
.

In exactly the same manner, it is possible to retrieve the evo-
lution of the expectation value of an observable O conditioned
on the outcomes k0 : t, i.e., 〈O(t + 1|M(0 : t) = k0 : t)〉,
starting from the un-normalized state via a posterior
re-normalization, tr[Oρ(t + 1|M(0 : t) = k0 : t))] =
tr[Oρ̃(t + 1,M(0 : t) = k0 : t))]/Pρ0 [M(0 : t) = k0 : t].
Thus, in order to reproduce the evolution of the expectation
value of an observable O we simply need to keep track of the
evolution of the two quantities tr[Oρ̃(t)] and tr[ρ̃(t)].

The dynamic of interest in this letter is captured in the
following definition.

Definition 1: Let us consider a set of conditional dynamic
{Mk}k∈� and let C be a linear output map. We define a
quantum conditional evolution (CE) as:

{
ρ̃(t + 1) = Mkt

[
ρ̃(t)

]

y(t) = C[
ρ̃(t)

]
ρ̃(0) = ρ(0) ∈ D(H)

(4)

We compactly denote a CE as the couple ({Mk}, C).
With this definition, we can formally define the problem

that is going to be tackled in this letter.
Problem 1: Given a model as in (4), find a linear map �

and another CE ({M̌k}, Č), of smaller dimension, and with
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initial condition τ̃ (0) = �[ρ(0)] such that, for every initial
state ρ(0) ∈ D(H) and every sequence of outcomes k0:t,
the two models provide the same outputs conditioned on the
measured outcomes k0:t, i.e., C[ρ̃(t + 1,M0:t = k0:t)] =
Č[τ̃ (t + 1,M0:t = k0:t)].

Remark 1: Notice that, because we assumed that 1 ∈
{Oi} the above problem ensures that the reduced model is
also capable of reproducing the probabilities of sequences of
outcomes:

Pρ0 [M(0:t) = k0:t] = P�(ρ0)

[
M̌(0:t) = k0:t

]

tr
[
ρ̃(t + 1)

] = tr
[
τ̃ (t + 1)

]
.

This can be considered as the zero-th order problem where
the only observable we are interested in is the identity and
we thus aim to find a reduced CE capable of reproducing the
probability of the trajectories.

III. OBSERVABILITY AND LINEAR REDUCTION

In this section, we will extend the work of [11] to the
quantum framework. We shall start by defining the minimal
subspace that supports the dynamics. This is done by adapting
well-known results of control system theory [18] to the case
of switching systems.

Intuitively, to reduce the model, we can remove from the
model description the states associated with indistinguishable
states, i.e., states that provide identical output trajectories.
These states are characterized through the non-observable
subspace.

Definition 2 (Non-Observable Subspace): Given a CE we
define the non-observable subspace as

N = {X ∈ B(H)| C[X] = 0

and C[Mk0:t [X]
] = 0, ∀k0:t, t ≥ 0

}

A few key properties of this space are given.
Proposition 1: N is Mk-invariant for all k ∈ �, and it is

contained in ker C.
Proof: From the definition, we have that X ∈ N if

C[Mk0:l[X]] = 0 for any l > 0. Then, for any k ∈ � we have
that Mk[X] satisfies CMk0:lMk[X] = CMk0:l,k[X] = 0, and
thus Mk[X] ∈ N . From the definition of N , we have that
N ⊆ ker C.

Notice that the orthogonal subspace to N (w.r.t the standard
Hilbert-Schmidt inner product 〈·, ·〉HS) takes the form

N ⊥ = span
{

Oj,M†
k0:t

(
Oj

)
, ∀k0:t, t ≥ 0, ∀j

}
. (5)

This can be derived from the definition by writing
C(Mk0:t(X)) = ∑

i Eitr[OjMk0:t(X)], interpreting the trace as
the HS inner product and switching to the dual dynamics
M†

k0:t
(Oj). It is then sufficient to notice that the latter operators

are orthogonal to all the X ∈ N . Moreover, one can also
extend the results of [11, Lemma 3] to prove that the sequences
k0:t can be limited to sequences of length less or equal to
dim(H)2. Finally, we can notice that, because we assumed that
1 ∈ {Oj}, we have that 1 ∈ N ⊥.

A. Linear Model Reduction

If one is not interested in having a quantum (CPTP) reduced
model, the model can be reduced simply using the projector
�N ⊥ obtaining a linear model that reproduces the conditioned
output of the quantum system. The following Proposition
formalizes and extends this fact.

Proposition 2: Let V be an operator subspace that contains
N ⊥, i.e., N ⊥ ⊆ V and let �V be a projector onto V . Then
we have

CMk0:t [ρ(0)] = C�VMkt�V . . . �VMk0�V [ρ(0)]

for all sequences k0:t and for all ρ(0) ∈ D(H).
The proof of this follows from [13, Th. 4] on the reducibility

of switching dynamics. This can be applied to Proposition 2 by
vectorizing the state and obtaining the corresponding matrix
form of the superoperators. To obtain the linear reduced model
one can then find two factors of �N ⊥ , RL : B(H) → C

q and
JL : Cq → N ⊥ with q = dim(N ⊥), such that �N ⊥ = JR
and RJ = 1q. With these, one can construct a set of q × q
matrices {Ak = RLMkJL} and an output matrix C = CJL

such that the reduced model
{

x(t + 1) = Akx(t)

y(t) = Cx(t), x(0) = RL(ρ0) ∈ C
q,

reproduces the outputs y(t) conditioned on the measurement
outcomes k0:t. Furthermore, by using known results from
control system theory, such a model is observable and thus
minimal. This result shows that the complex behaviors of
quantum multi-time probabilities can still be simulated with a
simpler linear model. This aspect might be particularly useful
for building minimal filters that can estimate the system state
on a classical computer and hence reduce the computational
overhead associated with feedback controls.

Note that the fact that the reduction onto any subspaces
containing N ⊥ provides the correct conditioned output, as
stated in Proposition 2, plays a central role in the following
section.

IV. QUANTUM MODEL REDUCTION

A. ∗-Algebras and Conditional Expectations

We here briefly review the main results from quantum
probability theory, finite-dimensional operator algebras, and
conditional expectations that are necessary for this letter. More
details on the matter can be found in [14], [19], [20].

We define a finite-dimensional ∗-algebra A ⊆ B(H) as an
operator subspace closed with respect to the standard matrix
product and the adjoint operator † (transposed and complex
conjugate), i.e., for all X, Y ∈ A and α, β ∈ C αX +βY ∈ A ,
X†, Y† ∈ A and XY ∈ A . An algebra A is said to be unital
if it contains the identity 1 ∈ A .

Given an unital algebra A there exists a decomposition of
the Hilbert space H = ⊕

k HS,k ⊗ HF,k and a unitary change
of basis U ∈ B(H) that puts the algebra into a block-diagonal
structure (called Wedderburn decomposition) of the form

U†A U =
⊕

k

B
(HS,k

) ⊗ 1F,k.
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Algorithm 1: Projection Onto the Output Algebra
Input : A CE (Mk, C).

1 Compute N ⊥;
2 Compute the output algebra A = alg(N ⊥);
3 Compute the factorization of E|A , R and J ;

Output : ({M̌k = RMkJ }, Č = CJ ), � = R

An algebra with such a structure is thus isomorphic to an
algebra Ǎ = ⊕

k B(HS,k), which admits representation in a
smaller Hilbert space. Furthermore, any unital algebra admits
a CPTP and unital orthogonal projector E|A : B(H) →
A , i.e., E|†A = E|A , E|A (1) = 1 (where the adjoint here
is taken w.r.t the inner product 〈·, ·〉HS). Such a map is a
conditional expectation (that preserves the completely mixed
state 1/n) [19]. Conditional expectations can be factorized into
two CP factors, which we denote with R : B(H) → Ǎ and
J : Ǎ → A such that RJ = I

Ǎ
the identity super operator

over the algebra Ǎ , and JR = E|A . Given the Wedderburn
decomposition of A , the conditional expectation and its CPTP
factorization can be easily constructed [14], [20]. In the case
of orthogonal conditional expectations E|A gets factorized as
E|A = J ◦ R where:

R(X) =
⊕

k

trHF,k

(
WkXW†

k

)
=

⊕

k

XS,k = X̌ (6)

J
(

X̌
)

= U

(
⊕

k

XS,k ⊗ 1F,k/ dim
(HF,k

)
)

U†. (7)

where we defined isometries W†
k : HS,k ⊗ HF,k → H.

B. Quantum Reduction

We can define an observable algebra for the conditional
system as follows.

Definition 3 (Output Algebra): Let us consider a CE and
let N be its non-observable subspace. Then we name A =
alg(N ⊥) the output algebra.

We are now ready to introduce the proposed solution of
Problem 1 which is compactly summarized in Algorithm 1.

We next prove that Algorithm 1 solves Problem 1.
Proposition 3: Let us consider a CE ({Mk}, C) with obser-

vation algebra A = alg(N ⊥). Let E|A be the conditional
expectation onto A and R and J its CPTP factorization. Then,
fixing � = R, the reduced CE defined over Ǎ := Im(R), of
conditional dynamics M̌k := RMkJ , output map Č := CJ
and initial condition τ(0) = R[ρ0] solves Problem 1, that is
for all sequences k0:t and for all t ≥ 0 and ρ0 ∈ D(H)

CMk0:t [ρ0] = ČM̌k0:tR[ρ0].

Proof: Let us start by noticing that A is unital since 1 ∈
N ⊥. This implies that A allows for a CPTP conditional
expectation E|A that can be factorized into two CPTP maps
E|A = JR. Since the maps J and R are CPTP, R[ρ0] is a
set of density operators, and {M̌k} is a set of CP maps such
that

∑
k∈� M̌†

k(1) = ∑
k J †M†

kR†(1) = 1, since R† and J †

are unital. Recalling then that RJ = I
Ǎ

the identity super

operator over Ǎ and E|A = JR the CPTP projector onto A ,
we have that

ČM̌k0:tR[ρ0] = C[
E|AMktE|A . . .E|AMk0E|A (ρ0)

]

for all ρ0 ∈ D(H) and sequences k0:t with t ≥ 0. By noticing
that N ⊥ ⊆ A and using Proposition 2 we can conclude the
proof.

Using the same arguments as in [14], one can prove that
the closure to an algebra of N ⊥, orthogonal to N with
respect to the Hilbert-Schmidt inner product 〈·, ·〉HS, provides
the smallest algebra containing N ⊥ that admits a CPTP
projection, even when one allows for alternative definitions of
operator product and orthogonality notions.

C. Reduction of Measurements and Dynamics,
Separately

In the previous sections, we presented how to reduce a
CE to a reduced-order one, obtaining a set of conditional
dynamics that are capable of reproducing the output of interest
conditioned on the outcome of the measurement. In many
cases of interest, the conditional dynamic emerges as the com-
position of an unconditional CPTP evolution and a generalized
measurement [6]. Under suitable assumptions, it is possible
to obtain reduced models for both the CPTP dynamical map
and the measurements, separately. In the following we thus
assume that the conditional dynamics Mk are composed of
a CPTP evolution map E following the conditioning induced
by the generalized measurement Kk(·) := Mk · M†

k with
∑

k∈� M†
k Mk = 1, i.e., Mk(·) = E ◦ Kk. This ordering

choice has been made to keep consistency with previous
works [11], [13] but similar results can be derived if the
evolution precedes the measurement.

Assumption 1: Assume one of the following:
1) ∃{λk} such that

∑
k λkMk(·) = E(·);

2) The subspace N is E-invariant;
3) The observation algebra A is Kk-invariant for all k;
4) The observation algebra A is E†-invariant.
Assumption 1 is satisfied in two natural cases: 1) when we

have non-zero probability of skipping the measurement, i.e.,
λ1 ∈ {Mk} for some λ ∈ (0, 1); 2) when the model is defined
on a commutative algebra C , e.g., Hidden Markov Models,
where we know that

∑
k Mk · M†

k = IC (·).
Notice that Assumption 1 implies Assumption 2: by def-

inition N is Mk-invariant for all k, hence for X ∈ N , we
have E[X] = ∑

k λkMk[X] ∈ N . This generalizes the results
presented in [11, eq. (3).3] and [13, Lemma 4] to the case
of stochastic output matrices (not only deterministic ones).
Assumption 2 however, does not imply 1.

Proposition 4: Under any of the assumptions 1-4, the
reduced CE ({M̌k}, Č) with conditional dynamics M̌k = ĚǨk

where Ǩk = RKkJ and Ě = REJ , Č = CJ and � = R
solves Problem 1.

Proof: We shall start by proving that 2 implies
�N ⊥E|A EKkE|A = �N ⊥E|A EE|AKkE|A . From the
fact that N is both Mk- and E-invariant we have
�N ⊥Mk = �N ⊥Mk�N ⊥ for all k and �N ⊥E =
�N ⊥E�N ⊥ . Moreover, from the fact that N ⊥ ⊆ A
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we have E|A �N ⊥ = �N ⊥ . Substituting these rela-
tions into the left and right side of the statement we
have, respectively �N ⊥E|A EKkE|A = �N ⊥EKk�N ⊥ and
�N ⊥E|A EE|AKkE|A = �N ⊥EKk�N ⊥ .

We can then observe that under Assumption 3 we have
KkE|A = E|AKkE|A , while, under Assumption 4 we have
E|A E = E|A EE|A . By simple substitutions, under these
conditions one obtains E|A EKkE|A = E|A EE|AKkE|A .

This, together with the proof of Proposition 3, shows
that the conditional dynamics of the reduced model can be
reduced separately into the reduced conditioning effects and
the reduced dynamical map.

V. APPLICATIONS

A. Measured Quantum Walks

Let us consider a finite-dimensional quantum system defined
over the algebra B(H) = C

n×n. Let O be an observable with
no degeneracies, i.e., O = ∑n−1

j=0 oj|j〉〈j| and oj �= ok for all
j �= k. The projective measurement of O can be modelled by
the set of superoperators{Kj(·) = |j〉〈j| · |j〉〈j|}. Let us then
assume that the system evolves through a unitary evolution
map E(·) = U · U† with U such that span{E t[|j〉〈j|],∀t ≥ 0} =
B(H), By standard controllability considerations, a generic U
will satisfy this condition [16]. This implies that there is no
unconditional model reduction for this model [14].

On the contrary, if we consider the effects of conditioning,
we have that N ⊥ = span{|j〉〈j|}, which is an abelian algebra.
Moreover, we can observe that N ⊥ is Kk invariant for all
k and hence Proposition 4 holds. This leads to a reduced
model defined over an abelian algebra of dimension n, which
is equivalent to classical Markov model defined over Rn with
evolution map P ∈ R

n×n such that [P]j,k = |〈j|U|k〉|2 and
1TP = 1T the vector of all ones, output map C = In and
reduction map R(·) = ∑

j|j〉〈j| · |j〉 = diag(·).
Situation like this, in which conditioning induces smaller

reduced models, are not possible in the classical case. In
fact [11] proves that the conditional observable space always
contains the unconditional one.

B. Measured Ising Spin Chain

The next model has been inspired by recent work on
continuously-measured spin chains, see, e.g., [21]. Let us con-
sider a quantum system composed of N ≥ 4 qubits disposed
on a line,1 i.e., H � (C2)⊗N . Let us also assume to be able to
perform projective measurement of the observable σz on the
last spin, i.e., σ

(N)
z and that, at each step, this measurement is

performed with probability 1 − p with p ∈ [0, 1] and it is left
untouched with probability p. Under these assumptions we can
model the measurement with three super operators K−1(·) =
p1 ·1, K0(·) = (1 − p)�0 · �0 with �0 := 12N−1 ⊗ |0〉〈0| and
K1(·) = (1 − p)�1 · �1 with �1 = 12N−1 ⊗ |1〉〈1|. Between
two measurements the system evolves with a unitary evolution

1We denote the operator living in B(H) and acting as the Pauli matrix σj
with j ∈ {0, x, y, z} on the k-th spin, with k = 1, . . . , N and as the identity on
the rest is denoted with σ

(k)
j , i.e., σ

(k)
j := ⊗k−1

i=1 σ0 ⊗ σj ⊗N−k
j=1 σ0 ∈ B(H).

E(·) = U ·U† with U = e−iH where H is an Ising Hamiltonian,
i.e.,

H = δ

N−1∑

j=1

σ (j)
x σ (j+1)

x

with coupling strength δ. For this example, we are interested
in reproducing the reduced state on the first qubit, i.e.,
τ(t) = tr1̄(ρ(t)), for all initial conditions ρ0 ∈ D(H). Here,
tr1̄(·) denotes the partial trace with respect to everything
but the first qubit of the chain, which can be reconstructed
from the expectation of {σ (1)

q , q = 0, x, y, z}, representing our
observables of interest. We next derive the reduced model in
two cases of interest: p = 0 and 0 < p < 1 and we denote
the spaces and maps of interest with the index 0 and p to
distinguish them.

Case p = 0. Assuming δ �= π
2 j + π

4 for some j ∈ N, on can
prove that

N ⊥
0 = span

{
σ (1)

q , σ (1)
y σ (2)

x , σ (1)
z σ (2)

x , σ (1)
q σ (N)

z ,

σ (1)
y σ (2)

x σ (N)
z , σ (1)

z σ (2)
x σ (N)

z , ∀q ∈ {0, x, y, z}
}

of dimension dim(N ⊥
0 ) = 12. Let us then define B 0 := C

2×2,
B 1 := span{σ0, σx} � C⊕C and B 2 = span{σ0, σz} � C⊕C.
One then finds,

A 0 := alg
(
N ⊥

0

)
= B 0 ⊗ B 1 ⊗ I2N−3 ⊗ B 2

which is isomorphic to alg(N ⊥
0 ) � ⊕3

k=0C
2×2 =: Ǎ 0

regardless of the number N of spins in the chain. One can
then verify that alg(N ⊥

0 ) is both K0- and K1-invariant, hence
Assumption 3 holds and we can separate the reduced dynamics
and reduced effects of conditioning. Let W0 be a unitary matrix
that provides the Wedderburn decomposition of alg(N ⊥

0 ), i.e.,
such that W†

0A 0W0 = ⊕3
k=0(C

2×2 ⊗ 12N−3). The reduction
super operator is then given by

3⊕

k=0

ωk(t) = R0(ρ(t)) =
3⊕

k=0

trHF,k

[
VkW†

0ρ(t)W†
0 V†

k

]

with V†
k : Hk → H isometries of the correct dimensions and

where Hk = HS,k⊗HF,k � C
2⊗C

2N−3
. The reduced evolution

map takes the form Ě0(·) = Ǔ0 · Ǔ†
0 with Ǔ0 = exp(−iδ[σz ⊗

σ0 ⊗ σx + σ0 ⊗ σy ⊗ σ0]) and the reduced state on the first
qubit is retrieved by τ(t) = ∑3

k=0 ωk(t). Moreover, the effects
of conditioning for the reduced model are given by Ǩ0(·) =
�̌0 · �̌0 and Ǩ1(·) = �̌1 · �̌1 with �̌0 = 12 ⊕ 2 ⊕ 12 ⊕ 2 and
�̌1 = 2 ⊕ 12 ⊕ 2 ⊕ 12.

Case p ∈ (0, 1). Once again, one can verify
that

N ⊥
p = span

{
σ (1)

q , σ (1)
y σ (2)

x , σ (1)
z σ (2)

x , σ (1)
q σ (N)

z ,

σ (1)
y σ (2)

x σ (N)
z , σ (1)

z σ (2)
x σ (N)

z ,

σ (1)
q σ (N−1)

x σ (N)
y , σ (1)

y σ (2)
x σ (N−1)

x σ (N)
y ,

σ (1)
z σ (2)

x σ (N−1)
x σ (N)

y , ∀q ∈ {0, x, y, z}
}
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of dimension dim(N ⊥
p ) = 18. Defining B 3 = span{σ0 ⊗

σ0, σ0 ⊗ σz, σx ⊗ σy, σx ⊗ σx} � C
2×2 one finds,

A p := alg
(
N ⊥

p

)
= B 0 ⊗ B 1 ⊗ I2N−4 ⊗ B 3

which is isomorphic to alg(N ⊥
p ) � C

4×4 ⊕ C
4×4 =: Ǎ p

regardless of the number N of spins in the chain. In this
case, both Assumptions 1 and 3 hold. Let Wp be a unitary
matrix that provides the Wedderburn decomposition, i.e., such
that W†

pA pWp = ⊕1
k=0(C

4×4 ⊗ 12N−3). The reduction super
operator is then given by

1⊕

k=0

ξk(t) = Rp(ρ(t)) =
1⊕

k=0

trHF,k

[
VkW†

pρ(t)W†
p V†

k

]

with V†
k : Hk → H isometries of the correct dimensions and

where Hk = HS,k⊗HF,k � C
4⊗C

2N−3
. The reduced evolution

map takes the form M̌p(·) = Ǔp · Ǔ†
p where,

Ǔp = exp

(

−iδ
1⊕

k=0

[
σ0 ⊗ σz + (−1)kσx ⊗ σ0

]
)

and the reduced state on the first qubit is retrieved by τ(t) =∑1
k=0 tr1̄[ξk(t)]. Moreover, conditioning for the reduced model

is associated to Ǩ0(·) = p18 · 18, Ǩ0(·) = (1 − p)�̂0 · �̌0
and Ǩ1(·) = (1 − p)�̌1 · �̌1 with �̌0 = 18+14⊗σx

2 and �̌1 =
18−14⊗σx

2 .
In both cases treated above, only the first two and last two

qubits of a chain (of arbitrary length) influence the dynamics
of the first one. Moreover, the relevant degrees of freedom in
the second spin are classical, associated to the eigenbasis of
σx. With this, we have that the useful information behaves like
the first qubit C2×2 coupled classical probabilistic mixture of
two qubits, i.e., C2×2 ⊕ C

2×2.

VI. CONCLUSION

We developed an algebraic method to reduce the dimension
of discrete-time quantum systems, subject to repeated (general-
ized, imperfect) measurement and conditional dynamics, when
only the expectations of certain observables have to be repro-
duced exactly. Possible applications of the results include:
(1) obtaining more intuitive and easier-to-study models; (2)
implementing more efficient simulations of quantum trajecto-
ries on both classical and quantum computers; (3) efficiently
producing output samples emerging from quantum repeated-
measurement models; (4) deriving reduced-state estimators to
increase the capability of feedback controllers for quantum
systems. Two applications models have been discussed in
details, highlighting interesting features and distinguishing the
quantum case from its classical analogues.

A similar approach can be developed to obtain reductions
leveraging knowledge of initial conditions, extending the
results of [14] to the present setting. Future developments will
be devoted to extending these ideas to the continuous-time
case, finding reduction bounds and symmetry-based interpre-
tations of the obtained models, and applying the methods to
concrete situations of interest.
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