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Minimum Energy Density Steering of Linear
Systems With Gromov-Wasserstein

Terminal Cost
Kohei Morimoto and Kenji Kashima ,Senior Member, IEEE

Abstract—In this letter, we newly formulate and solve the
optimal density control problem with Gromov-Wasserstein
(GW) terminal cost in discrete-time linear Gaussian
systems. Differently from the Wasserstein or Kullback-
Leibler distances employed in the existing works, the GW
distance quantifies the difference in shapes of the distri-
bution, which is invariant under translation and rotation.
Consequently, our formulation allows us to find small
energy inputs that achieve the desired shape of the terminal
distribution, which has practical applications, e.g., robotic
swarms. We demonstrate that the problem can be reduced
to a Difference of Convex (DC) programming, which is
efficiently solvable through the DC algorithm. Through
numerical experiments, we confirm that the state distribu-
tion reaches the terminal distribution that can be realized
with the minimum control energy among those having the
specified shape.

Index Terms—Optimal density control, optimal transport,
Gromov-Wasserstein distance.

I. INTRODUCTION

OPTIMAL density control is defined as the problem of
controlling the probability distribution of state variables

to the desired distribution in a dynamic system. Promising
applications of optimal density control include systems in
which it is important to manage errors in the state, such as
quality control and aircraft control, as well as quantum systems
in which the distribution of the state itself is the object of
control [1].

The problem addressed in this letter is a variant of the
(finite-time) covariance steering problem for discrete-time
linear Gaussian systems. Among the long history of this line
of research [2], [3], the most related recent works are as
follows: hard constraint formulations, as seen in [4], [5],
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[6], [7], where the terminal state distribution is enforced
as a constraint; and soft constraint formulations, as seen
in [8], [9], [10], where the Wasserstein distance between the
terminal distribution and the target distribution is incorporated
as a cost. In particular, Balci and Bakolas [10] presented
an optimal density control problem for discrete-time linear
Gaussian systems using Wasserstein distance as the terminal
cost, formulated as semidefinite programming (SDP), a form
of convex programming, to derive globally optimal control
policies.

To motivate the present work, let us consider the state
distribution as an ensemble of particles or a multi-robotic
swarm [11]. In such applications, a particular shape of the
formation is required to be achieved, but its location and
orientation are often irrelevant. For example, they may seek
to align in a single row in a two-dimensional region (See
Fig. 3 below), or only the configuration may be specified based
on inter-agent distance [12]. The aforementioned formulations
can address the realization of the configuration with a fixed
orientation but cannot address the optimization with respect
to the rotation. To tackle this issue, we propose a novel den-
sity control problem incorporating the Gromov-Wasserstein
distance (GW distance) as the terminal cost [13]. The GW
distance is the distance between probability distributions and
can measure the closeness of the shape of the probability
distributions. By integrating the GW distance between the state
and target distributions into the terminal cost, we can formulate
the problem of controlling the shape of the state distribution.
This problem can be viewed as a simultaneous optimization
of the dynamical steering and the rotation of the target shape,
which clearly contrasts the existing formulations.

In this letter, we focus on scenarios where the initial
and target distributions are Gaussian and seek the optimal
control policy among linear feedback control laws. While
computing the GW distance between arbitrary distributions
is challenging, it has recently been shown that the Gaussian
Gromov-Wasserstein (GGW) distance, which is a relaxation of
the GW distance for normal distributions, can be easily calcu-
lated [14]. We show that the optimal density control problem
with GW terminal cost can be formulated as a difference of
convex (DC) programming problem. We solve the problem by
the DC algorithm (DCA) [15], a technique for solving DC

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0006-0146-5717
https://orcid.org/0000-0002-2963-2584


MORIMOTO AND KASHIMA: MINIMUM ENERGY DENSITY STEERING OF LINEAR SYSTEMS 587

programming problems through iterative convex relaxation.
Remarkably, the convexified problem is transformed into a
SDP form, which can be efficiently solved using standard
convex programming solvers.

The rest of this letter is organized as follows. In Section II,
we introduce the concept of the GW distance and present
the optimal density steering problem with the GW distance
as the terminal cost. Section III discusses the formulation
of the problem as a DC programming problem, highlighting
the objective function’s nature as a difference of convex
function and deriving the convexified sub-problem used in
the DC algorithm. The numerical simulations are presented in
Section IV. Finally, we conclude our paper in Section V.

Notation: Let S+
n and S

++
n denote the sets of n-dimensional

positive semidefinite matrices and positive definite matrices,
respectively. Let O(n) denote the set of n-dimensional orthog-
onal matrices. For matrices, ‖·‖F denotes the Frobenius norm.
For a convex function f , ∂f (x) denotes the set of subgradients
of f at x. Let P(X ) denote the set of all probability distri-
butions over X . Let Nn(ξ,�) denote the multivariate normal
distribution with mean ξ ∈ R

n and covariance � ∈ S
+
n . Let

N n denote the set of all n-dimensional multivariate normal
distributions.

II. PROBLEM SETTING

A. Gromov-Wasserstein Distance

The optimal transport distance is generally defined as the
minimized transport cost of transporting one probability dis-
tribution to another probability distribution. The GW distance
is the distance between probability distributions and is a
variant of optimal transport distance, similar to the Wasserstein
distance. Given two metric spaces X ,Y , the set of transports
� between probability distributions μ ∈ P(X ) and ν ∈ P(Y)

is defined by

�(μ, ν) := {π(x, y) |π(x, y) dx = ν(y),

π(x, y) dy = μ(x)}. (1)

Each element π(x, y) in �(μ, ν) represents how the weight
μ(x) at x is transported to y, with the condition that
π(x, y) dx = ν(y) ensuring that the transported destination
becomes ν(y). The GW distance is defined by

GW2(μ, ν) := inf
π∈�(μ,ν)

∫ ∫ (∥∥x − x′∥∥X − ∥∥y − y′∥∥Y
)2

π(x, y)π
(
x′, y′)dxdydx′dy′, (2)

where
∥∥x − x′∥∥X and

∥∥y − y′∥∥Y represent the norms in the
spaces X and Y , respectively. The GW distance is small
when points that are close (resp. farther apart) before trans-
portation are brought closer together (resp. farther apart)
after transportation. Conversely, the GW distance increases
when points that were initially close are moved farther apart
after transportation. Therefore, this definition quantifies the
shape difference between two probabilistic distributions. For
comparison, recall that the Wasserstein distance is defined as

W2(μ, ν) := inf
π∈�(μ,ν)

∫ ∫
d(x, y)2π(x, y)dxdy, (3)

where X = Y and d(·, ·) is a suitable distance on X . While
the Wasserstein distance is sensitive to the absolute positions
or orientations of the distributions, the GW distance is invari-
ant under isometric transformations such as translations and
rotations.

The GW distance involves a non-convex quadratic program
over transport π , making it challenging to compute the GW
distance between arbitrary probability distributions. Recently,
it has been shown that the Gaussian Gromov-Wasserstein
(GGW) distance, where the transport is constrained to be
Gaussian distribution only, can be explicitly expressed in terms
of the parameters of the normal distributions [14]. Specifically,
the GGW between Gaussian distributions μ ∈ N m and ν ∈
N n is defined by

GGW2(μ, ν) := inf
π∈�(μ,ν)∩N m+n

∫ ∫ (∥∥x − x′∥∥ − ∥∥y − y′∥∥)2

π(x, y)π
(
x′, y′)dxdydx′dy′ (4)

where �(μ, ν) ∩ N m+n represents the restriction of the
transport to the (m + n)-dimensional Gaussian distribution
N m+n. For μ = Nm(ξ0, �0), ν = Nn(ξ1, �1), it holds that

GGW2(μ, ν) = 4(tr(�0) − tr(�1))
2 + 8 ‖ D0 − D1 ‖2, (5)

where D0, D1 are the diagonal matrices with the eigenvalues of
�0, �1 sorted in descending order, and if m �= n, the missing
elements are filled with zeros.

B. Optimal Density Steering With Gromov-Wasserstein
Terminal Cost

Let nx be the dimension of the state space and nu the
dimension of the input, and consider the following discrete-
time linear Gaussian system.

xk+1 = Axk + Buk + wk (6a)

x0 = N (0, �0) (6b)

wk ∼ N (0, Wk) (6c)

Here, the covariance matrix of the initial Gaussian distribution
is �0 ∈ S

++
nx

and that of the noise is Wk ∈ S
+
nx

. For control
input uk, We use a stochastic linear control policy as

uk(x) = N (Kkx, Qk), (7)

where Kk is feedback gain and Qk 	 O is covariance of
Gaussian distribution. We consider the problem of minimizing
the sum of the control costs and the Gromov-Wasserstein
distance between the terminal distribution ρN = N (ξN, �N)

(�N ∈ S
++
nx

) and the target distribution ρr = N (0, �r) (�r ∈
S

+
nx

). The objective function is represented as

min
Kk,Qk

J(Kk, Qk) (8a)

J(Kk, Qk): = λE

[
N−1∑
k=0

uT
k Rkuk

]
+ GGW2(ρN, ρr), (8b)

where Rk ∈ S
++
nx

denotes the weights for control cost.
Using the control policy (7) in system (6a), the probability
distribution of the state xN at the terminal time N will also be
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the Gaussian distribution. Thus, by substituting equations (5)
and (7) into equation (8b), we obtain

J(Kk, Qk) = λ

N−1∑
k=0

tr
(
Rk

(
Kk�kKT

k + Qk
))

+ 4(tr(�N) − tr(�r))
2

+ 8 ‖ �N ‖2 −16 tr (DNDr), (9)

where �k is the covariance matrix of the state xk, and DN , Dr

are diagonal matrices with the eigenvalues of �N , �r arranged
in descending order. The dynamics of �k is given by

�k+1 = A�kAT + BKk�kAT + A�kKT
k BT

+ BKk�kKT
k BT + BQkBT + Wk. (10)

Here, we introduce the variable transformations Mk :=
Pk�

−1
k PT

k + Qk and Pk := Kk�k as in the Ref. [10], [16]. To
guarantee the invertibility of the variable transformation, we
need Mk 	 O and Mk − Pk�

−1
k PT

k 	 O, which implies that
the following condition must be satisfied:[

Mk Pk

PT
k �k

]
	 O. (11)

This condition is added to the optimization problem to ensure
the feasibility of the solution. Finally, from the (9), (10)
and (11), we can write the optimization problem to be solved
as follows:

min
�k,Mk,Pk

J(�N, Mk) (12a)

J(�N, Mk) = λ

N−1∑
k=0

tr(RkMk)

+ 4(tr(�N) − tr(�r))
2

+ 8 ‖ �N
2 − 16 tr (DNDr) (12b)

s.t. �k+1 = Ak�kAT
k + AkPT

k BT
k

+ BkPkAT
k + BkMkBT

k + Wk (12c)[
Mk Pk

PT
k �k

]
	 O (12d)

Although we assumed a stochastic strategy as a control law
in (7), the optimal solution turns out to be a deterministic
strategy.

Theorem 1: Suppose {Ak}N−1
k=0 are invertible. Then, the

optimal policy in problem (12) is deterministic, that is, the
optimal solution satisfies Qk = Mk − Kk�kKT

k = O.
Proof: The proof is provided using the same arguments in

the [10]. We utilize the Karush-Kuhn-Tucker conditions. Let
Ek denote the Lagrange multiplier for constraint (12c), and
let Fk denote the Lagrange multiplier for constraint (12d),
represented as

Fk =
[

F00
k F01

k
F10

k F11
k

]
.

From the stationarity condition, we obtain

BT
k EkAk + F01

k = 0 (13)

Rk − BT
k EkBk + F00

k = 0. (14)

The complementary slackness condition yields[
F00

k F01
k

F10
k F11

k

][
Mk Pk

PT
k �k

]
= O, (15)

implying[
F00

k F01
k

F10
k F11

k

][
I Pk�

−1
k

O I

][
Mk − Pk�

−1
k PT

k O
O �k

]
= O

from the definiteness of �k. Thus, we obtain

F00

(
Mk − Pk�

−1
k PT

k

)
= O (16)

FT
01

(
Mk − Pk�

−1
k PT

k

)
= O. (17)

Subsequently, by combining (13), (17), and the invertibility of
Ak, we derive

EkBk

(
Mk − Pk�

−1
k PT

k

)
= O. (18)

Finally, from (14), (16), and (18), we conclude that
(
Rk − BT

k EkBk
)(

Mk − Pk�
−1
k PT

k

)

= Rk

(
Mk − Pk�

−1
k PT

k

)
= O.

Then, due to the positive definiteness of Rk, we have Mk −
Pk�

−1
k PT

k = O.

III. FORMULATION AS DIFFERENCE OF CONVEX

PROGRAMMING

In this section, we show that problem (12) is a DC program-
ming problem and solve it using the DCA, an optimization
method for DC programming. The DC programming problem
is an optimization problem whose objective function is a DC
function, which is expressed as the difference between two
convex functions. Since the DC programming problem is a
non-convex optimization problem, finding a global optimum is
generally challenging. However, several optimization methods
that efficiently find solutions by exploiting the properties
of DC functions have been proposed. These include global
optimization techniques using branch and bound methods [17],
and methods for finding sub-optimal solutions, such as the
DCA [15] and the Concave-Convex Procedure (CCCP) [18].

The DCA iteratively constructs a convex upper bound for
the objective function, minimizes this upper bound, and then
updates the upper bound using the minimizer of the previous
iteration. Assume the objective function h to be optimized is
expressed as h(z) = f (z) − g(z) by convex functions f (z) and
g(z) defined on a convex set 
. The DCA iterates the following
steps until convergence:

1) Construct the upper bound ĥ(z) of h(z) as

ĥ(z) = f (z) − sT
n (z − zn),

where sn ∈ ∂g(zn).
2) Set zn+1 = minz∈
 ĥ(z).

Because ĥ(z) is a convex function over the convex set, we
are able to minimize this convex subproblem efficiently. It is
known [15] that when the optimal value of the problem is
finite and the sequences zn, sn are bounded, any accumulation
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Fig. 1. Visualization for the algorithm of DCA.

points z∞ of zn are critical points of f − g, which implies
0 ∈ ∂(f − g)(z∞). In Figure 1, we show the visualization of
the DCA algorithm.

In the next proposition and theorem, we show that
problem (12) is a DC programming problem.

Proposition 1 (Anstreicher and Wolkowicz [19]): Let A and
B be n × n symmetric matrices decomposed into their eigen-
values as A = V�VT and B = W�WT , respectively. Assume
the eigenvalues in W and V are arranged in descending order.
Then,

max
U∈O(n)

tr
(
UAUTB

)

has an optimal solution U∗ = WVT , and the optimal value is
tr(��).

Theorem 2: J(�N, Mk) in (12b) is a DC function.
Proof: Since λ

∑N−1
k=0 (tr(RkMk))+4(tr(�N)− tr(�r))

2 +8 ‖
�N ‖2 is clearly a convex function, it suffices to show that

g(�N) := tr(DNDr) (19)

is a convex function. From Proposition 1, we have

tr(DNDr) = max
U∈O(n)

tr
(
U�NUT�r

)
.

Thus, tr(DNDr) is the maximum of linear functions, making it
a convex function with respect to �N . Precisely, let us consider
a scalar α ∈ [0, 1] and two positive definite matrices � and
�′. Then, the convex combination α� + (1 − α)�′ satisfies
the following inequality:

max
U∈O(n)

tr
(
U

(
α� + (1 − α)�′)UT�r

)

≤ max
U∈O(n)

α tr
(
U�UT�r

) + (1 − α) tr
(
U�′UT�r

)

≤ α max
U∈O(n)

tr
(
U�UT�r

)

+ (1 − α) max
U′∈O(n)

tr
(

U′�′U′T�r

)
.

Furthermore, in the next theorem, we derive a subgradient
of the concave part of J(Mk, �k) to construct the upper bound
in DCA.

Theorem 3: Assume the eigenvalue decompositions: �N =
VNDNVT

N and �r is �r = VrDrVT
r . Then, VNDrVT

N ∈ S
+
nx

is a
subgradient of g(�N) in (19).

Proof: From Proposition 1, we have

U∗ := arg max
U∈O(n)

tr
(
U�NUT�r

) = VrVT
N .

Therefore, by Danskin’s theorem [20], a subgradient can
be obtained by differentiating the function inside the max
operation with respect to �N and then substituting U∗. Hence,

U∗T
�rU∗ = VNVT

r �rVrVT
N = VNDrVT

N ∈ ∂g(�N).

Therefore, the convex subproblem in DCA is formulated as

min
�k,Mk,Pk

λ

N−1∑
k=0

tr(RkMk)

+ 4(tr(�N) − tr(�r))
2

+ 8 ‖ �N ‖2 −16 tr
(
�NV(n)T

N DrV(n)
N

)
(20a)

s.t. �k+1 = Ak�kAT
k + AkPT

k BT
k + BkPkAT

k

+ BkMkBT
k + Wk(20b)[

Mk Pk

PT
k �k

]
	 0 (20c)

where V(n)
N is the matrix obtained by decomposing the optimal

�N in the n-th iteration of DCA. The term tr (�NV(n)T
N DrV(n)

N )

represents linear lower bound of convex function l(�N) using
a subgradient obtained in Theorem 3. The subproblem is
a semidefinite programming problem (SDP), which can be
efficiently solved. We use the solution from each optimization
step to update the value of VN . By iteratively applying the
optimization process, the solution progressively approaches a
sub-optimal solution for the original problem (12).

In Theorem 1, we showed that the optimal policy for
Problem (12) is deterministic. The following theorem shows
that the proposed algorithm generates a sequence of determin-
istic control policies:

Theorem 4: When {Ak}N−1
k=0 are invertible, the optimal pol-

icy of the subproblem (20a) is also deterministic.
Proof: The KKT conditions used in the proof of Theorem 1

also hold in the subproblem (20a).

IV. NUMERICAL EXPERIMENTS

In this section, we perform numerical optimization for
problem (12) using DCA. We set the parameters in this
experiment as

Ak =
[

1.0 0.1
−0.3 1.0

]
, Bk =

[
0.7
0.4

]

�0 =
[

3 0
0 3

]
, Wk = 0.5I2,

Rk = 1.0, N = 10.

Figure 2 shows the time evolution of state covariance of the
uncontrolled system. For the implementation of the convex
subproblem in DCA, we used the MOSEK solver [21] and the
CVXPY modeler [22].

1) Line Alignment: First, we consider the case where the
desired density is Gaussian ρr = N (0, 10), which is not on
R

2, but on R. The problem seeks the optimal policy to align
the terminal distribution into one line. Note that W(ρN, ρr)
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Fig. 2. The snapshots of the covariance matrices of uncontrolled
system. The colored lines indicate the 2σ range of �k , while the black
line represents �r in (22).

Fig. 3. One hundred sample paths of the systems controlled by the
optimal policy for λ = 1. The blue circle denotes 2σ range of �0 and �N
and the black line denotes the degenerated target distribution �r in (21).

in (3) does not make sense1 because X �= Y . In contrast, the
GW distance GW(ρN, ρr) in (2) is well-defined and, thanks
to (5), equivalent to take

�r =
[

10 0
0 0

]
. (21)

Figure 3 presents the trajectories of one hundred samples
from the controlled process when the target distribution is
degenerate distribution. It can be seen that the distribution
of states actually stretches vertically to achieve a one-line
alignment.

2) Comparison With the Wasserstein Formulation: Let us
consider

�r =
[

2 0
0 0.5

]
(22)

for which

GGW2(ρN, ρr) = 6711.44 (23)

for the uncontrolled system. Figure 4 shows the snapshots
of state covariance under the optimal control input obtained
by DCA. It can be observed that the shape of the terminal
distribution approaches that of the target distribution as λ

1One may think we can embed it onto R
2 (e.g., by (21)) and consider the

Wasserstein distance. However, there is a rotational degree of freedom, which
affects the resulting distance. We can interpret that our formulation optimizes
this rotation in the sense of the required control energy; See Fig. 3.

Fig. 5. Relationship between the optimized control cost term and GW
cost term in Eq. (8b) for each λ.

decreases. As shown below, the terminal distribution is the one
requiring the least energy among the rotated distributions of
the target due to the rotational invariance of the GW distance.

Figure 5 shows the relationship between the optimized
control cost term and GW cost term in Eq. (8b) for each λ.
As the value of λ increases, the control cost rises, while the
GW cost decreases. Conversely, as the value of λ decreases,
the control cost diminishes, and the GW cost increases. Also,
as λ becomes smaller, the GW cost is almost close to zero. It
is noteworthy that, in comparison to the uncontrolled system
in (23), our algorithm achieves a significant reduction in the
GW cost.

Finally, we clarify the advantage of our approach over
the Wasserstein terminal cost problem [10]. In Fig. 4(a), the
obtained terminal distribution is ρN ≈ N (0, �̂r(θGW)) with
θGW = 1.20 [rad] where �̂r(θ) is obtained by rotating �r by
an angle θ , i.e.,

�̂r(θ) := R(θ)T�rR(θ), R(θ) :=
[

cos θ − sin θ

sin θ cos θ

]
.

It is shown in [10] that we can solve

minKk,Qk λE
[∑N−1

k=0 uT
k Rkuk

]
+ W2(ρN,N

(
0, �̂r(θ)

)
(24)

by an SDP. Then, we solved this problem for a sufficiently
small λ (i.e., large terminal cost). The required control energy
for the obtained optimal control input (i.e., the first term
without λ in (24)) is denoted by Wopt(θ), which is shown
in Fig. 6. It is noteworthy that the function exhibits a non-
convexity. We can also observe

θGW ≈ θ∗ := arg min
θ

Wopt(θ),

which implies that the rotation angle obtained by the GW
terminal cost problem minimizes the resulting control energy
needed to realize the required shape (specified by �r). From
a computation cost point of view, while finding θ∗ using
the Wasserstein terminal cost approach requires perform-
ing optimization to compute Wopt(θ) for each θ , our GW
terminal cost framework only necessitates solving a single
optimization problem. Moreover, our approach remains com-
putationally tractable even in high-dimensional settings, where
the Wasserstein terminal cost approach becomes computation-
ally intractable due to the exponential growth of the search
space of the rotation matrix.
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Fig. 4. The snapshots of the covariance matrices under the optimized policy for different values of λ. The colored lines indicate the 2σ range of
�k , while the black line represents �r in (22).

Fig. 6. The required control energy Wopt(θ ) of the optimal input for the
Wasserstein terminal cost problem in (24). The green line and the red
dot represent θGW and θ∗, respectively.

V. CONCLUSION

In this letter, we addressed the optimal density control
problem with the Gromov-Wasserstein distance as the terminal
cost. We showed that the problem is a DC programming
problem and proposed an optimization method based on the
DC algorithm. Numerical experiments confirmed that the
state distribution reaches the terminal distribution that can be
realized with the minimum control energy among those having
the specified shape.

Future work includes the application of the proposed GW
framework to the transport between spaces equipped with
different Riemannian metric structures or point clouds. Model
predictive formation control based on a fast algorithm for
optimal transport [23] is also a promising direction [24]. The
convergence and computation complexity of the proposed DC
algorithm should also be investigated.
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