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Value Iteration for Linear Quadratic Optimal
Control of Single-Input Single-Output

Systems via Output Feedback
Corrado Possieri

Abstract—A value iteration approach based solely on
input/output measurements is proposed to solve linear
quadratic (LQ) optimal control problems for single-input,
single-output (SISO) continuous-time systems. Such an
algorithm is designed by coupling an adaptive Luenberger
observer with an indirect value iteration architecture. The
continuous-time implementation of this controller requires
that the gathered estimates are strongly controllable. A
hybrid adaptation mechanism is envisioned to overcome
such a requirement. The effectiveness of the proposed
approach is validated via numerical simulations.

Index Terms—Reinforcement learning, linear systems,
optimal control.

I. INTRODUCTION

THANKS to their ease of use and adaptability in practical
settings, optimal control problems associated to linear

plants and quadratic cost functionals have received interest
from both scholars and practitioners [1]. The solution to such
linear quadratic (LQ) optimization problems is often described
in state feedback form and is based on an exact model of
the system dynamics [1]. A significant amount of research
effort has been expended to bypass these requirements by
using iterative, data-driven algorithms that may run online and
require little a priori knowledge of the system [2], [3], [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14].

The main goal of this letter is to propose an adaptive,
output feedback controller based on value iteration that is
able to determine the solution to an LQ problem just by
using input/output measurements [15], [16], [17]. Such an
objective is pursued by coupling an adaptive Luenberger
observer for the system in suitable coordinates [18] with the
value iteration algorithm given in [19]. Differently from the
methodologies given in [2], [3], [5], such a controller is built
using a value iteration paradigm rather than a policy iteration
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architecture, and hence it does not require an initial stabilizing
feedback gain. Further, differently from [6], [7], [19], it can
be implemented by using just measurements of the input
and of the output of the controlled plant, without having at
one’s disposal measurements of its state. Moreover, differently
from [6], the algorithm proposed in this letter does not rely on
delayed measurements of the state and the control input, but
just on the current value of the input and output of the plant.
Comparing the controller proposed in this letter with the one
given in [10], it is an on-policy (rather than off-policy) adaptive
control algorithm that, using value iteration (rather than policy
iteration), reconstructs the optimal control policy and the value
function for the considered LQ problem, without requiring
an initial stabilizing gain. Differently from the approaches
given in [13], [14] to deal with data-driven optimal control
using linear programming, the proposed scheme does not
require storing the trajectories of the system, but performs
the adaptation online while controlling the plant. Finally, the
proposed scheme has a reduced computational complexity
with respect to the ones given in [18, Ch. 7] since it does
not need to solve pole placement equations at running time,
by delegating these computationally intensive tasks either to
a boundary layer built using the forward-in-time differential
Riccati equation or requiring these computations just at the
sampling times.

The proposed controller can be framed as an on policy,
indirect reinforcement learning architecture built on value
iteration. In fact, it is based on value iteration since it
continuously updates the estimate of the value function to
determine the optimal feedback gain, it is indirect since the
estimate of the value function is built upon estimates of
the dynamical matrices of the system, and it is on policy
since the current estimate of the optimal gain is used to
control the plant. A preliminary version of this controller
has been given in [20]. The main contributions of this
letter with respect to [20] are: (i) herein all the proofs are
reported to demonstrate the effectiveness of the proposed value
iteration algorithms; (ii) a novel hybrid mechanism based on
the hybrid adaptive Luenberger observer [18, Sec. 5.3.2] is
provided to overcome the requirement made in [20] about
strong controllability of the estimated system; (iii) new sim-
ulations are reported to asses the effectiveness of this new
mechanism.
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Notation: The symbol I denotes the identity matrix of
suitable dimensions. Given x ∈ R

n and y ∈ R
m, let col(x, y) =

[ x� y� ]�. The symbol s denotes the differential operator and
1
s its inverse. Given n ∈ N, let αn−1 = [ sn−1 · · · s 1 ]�. Given
(â, b̂) ∈ R

n ×R
n, let ρ(â, b̂) be the resultant [21, Chap. 3, §6]

of the polynomials sn + â�αn−1 and b̂�αn−1, so that sn +
â�αn−1 and b̂�αn−1 have a common factor if and only if
ρ(â, b̂) = 0. The time-varying pair (â(t), b̂(t)) is strongly
controllable if there exists χ� > 0 such that ρ2(â(t), b̂(t)) ≥
χ�, ∀t ≥ 0, i.e., sn + â�(t)αn−1 and b̂�(t)αn−1 do not
have a common fact for all t ≥ 0 [18, Ch. 7]. Let | ·
|p denote the p-norm of the vector/matrix at argument. To
simplify the notation, let | · | denote the 2-norm of the
argument. The Lp norm of the continuous-time vector signal x

is ‖x‖p = (
∫ ∞

0 |x(τ )|pp dτ)
1
p , whereas its L∞ norm is ‖x‖∞ =

supt≥0 |x(t)|∞ A signal x is in Lp if ‖x‖p exists and is bounded,
whereas it is in L∞ if ‖x‖∞ exists and is bounded. The L2δ

norm of the signal x is ‖x‖2δ = (
∫ t

0 e−δ (t−τ)x�(τ )x(τ ) dτ)
1
2

where δ > 0 is a constant [18, Sec. 3.3.2]. Given a sequence

xk, k ∈ N, its �p norm is ‖xk‖p = (
∑∞

k=0 |xk|pp)
1
p , whereas

its �∞ norm is ‖xk‖∞ = supk≥0 |xk|∞. The sequence xk is
in �p (respectively, �∞) if ‖xk‖p (respectively, ‖xk‖∞) exists
and is bounded. A signal φ is persistently exciting if there
exist constants α0 > 0, α1 > 0, and T0 ≥ 0 such that α0 I ≤∫ t+T0

t φ(τ) φ�(τ ) dτ ≤ α1 I, ∀t ≥ 0. A signal d is stationary
if the limit 
d(t) = limT→+∞ 1

T

∫ t0+T
t0

d(τ )d�(t+τ) dτ exists
uniformly with respect to t0. A stationary signal is sufficiently
rich of order n if the support of the Fourier transform of

d(t) contains at least n points [18, Sec. 5.5.1], e.g., a signal
d obtained as the sum of n sinusoidal signals at different
frequencies is sufficiently rich of order 2n.

II. LQ OPTIMAL CONTROL VIA OUTPUT FEEDBACK

Consider the linear, time-invariant (LTI), single-input,
single-output (SISO) continuous-time system

ẋ = A x + b u, y = C x, (1)

where x(t) ∈ R
n is the state vector, u(t) ∈ R is the input, and

y(t) ∈ R is the output, and the cost functional

J(x0, u) =
∫ ∞

0

(
y2(τ, x0, u)+ r u2(τ )

)
dτ, (2)

where r > 0 is the input weight, x0 ∈ R
n is the initial condition

of system (1), and, with a slight abuse of notation, y(τ, x0, u)
is the output response of system (1) at time τ from the initial
condition x0 with input u. The next assumption is made all
throughout this letter.

Assumption 1: The pair (A, b) is controllable and the pair
(A,C) is observable.

Under Assumption 1, by classical results about LQ optimal
control [1], letting P� be the unique positive definite (PD)
solution to the algebraic Riccati equation (ARE) A� P+P A+
C�C − r−1 P b b�P = 0, and letting K� = −r−1 b�P�, the
input u that minimizes the cost (2) subject to the dynamics (1)
is u� = K� x. Furthermore, the optimal value function of the
LQ optimization problem given by system (1) and the cost (2)
is V(x0) = minu J(x0, u) = x�

0 P� x0.

Consider the following problem.
Problem 1: Suppose that the dimension n of the state of

system (1) is known, but its dynamical matrices A, b, and C
are unknown. Design an output feedback controller that recasts
the optimal control u� and the optimal value function just by
using input/output measurements.

It is worth pointing out that the minimal requirement [22]
about system (1) to guarantee that there exists a solution to
the LQ optimization problem given by (1) and (2) that makes
the closed loop asymptotically stable is that the pair (A, b)
is stabilizable and the pair (A,C) is detectable. The stronger
Assumption 1 is made here to guarantee that the system can be
rewritten in coordinates that are suitable for identification and
observer design and that no zero/pole cancellation occurs in
the closed-loop transfer function. In fact, under Assumption 1,
there exists a change of coordinates [23] x̄ = T x, with T ∈
R

n×n being a non-singular matrix, such that the dynamics of
system (1) in the x̄-coordinates read as

˙̄x = Ā x̄ + b̄ u, y = C̄ x̄, (3)

where b̄ = T b,

Ā =
[

−ā
I
0

]

, C̄ = [
1 0 · · · 0

]
,

and ā, b̄ ∈ R
n. The form (3) is usually referred to as the

observability canonical form of system (1). Let P̄� be the
unique PD solution to the ARE

Ā�P + P Ā + C̄�C̄ − r−1 P b̄ b̄�P = 0.

Since x = T−1 x̄, such a matrix satisfies P̄� = T−�P� T−1.
Further, the optimal control u� can be equivalently obtained
as u� = K̄� x̄, where K̄� = −r−1 b̄� P̄�. Similarly, the optimal
value function of the LQ optimization problem given by (1)
and (2) can be equivalently obtained as V̄(x̄0) = x̄�

0 P̄� x̄0,
where x̄0 = T x0 is the initial condition of the system in the
x̄-coordinates.

Problem 1 is tackled by coupling an adaptive Luenberger
observer for system (1) in the x̄-coordinates [18, Sec. 5.3.2]
with the value iteration algorithm presented in [19]. Namely,
consider the output feedback controller

φ1 = αn−1(s)

��(s)
u, φ2 = −αn−1(s)

��(s)
y, z = sn

��(s)
y, (4a)

˙̂b = γ
z − b̂� φ1 − â�φ2

1 + β
(
φ�

1 φ1 + φ�
2 φ2

) φ1, (4b)

˙̂a = γ
z − b̂� φ1 − â�φ2

1 + β
(
φ�

1 φ1 + φ�
2 φ2

) φ2, (4c)

Â =
[

−â
I
0

]

, (4d)

˙̂x = Â x̂ + b̂ u + (
a� − â

) (
y − C̄ x̂

)
, (4e)

ε Ṗ = Â�P + P Â + C̄�C̄ − r−1 P b̂ b̂�P, (4f)

û� = −r−1 b̂�P x̂, u = û� + d, (4g)

where a� ∈ R
n has to be designed so that

A� =
[

−a�
I
0

]
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Fig. 1. Schematic representation of the controller (4).

is Hurwitz (i.e., all its eigenvalues have negative real part),
��(s) = det(s I − A�), γ > 0 is the adaptation gain, β > 0 is
a normalizing constant, ε > 0 is a small parameter, φ1 ∈ R

n,
and φ2 ∈ R

n, z ∈ R are filtrations of the input and output of
system (1), respectively, â ∈ R

n, b̂ ∈ R
n, and P ∈ R

n×n are
estimates of ā, b̄, and P̄�, respectively, P(0) = P�(0) � 0, and
d is the probing input, to be used in order to guarantee that the
subsequent assumption about the persistence of excitation of
the signal φ = col(φ1, φ2) is met. Note that, by construction,
if the pair (â(t), b̂(t)) is strongly controllable, then the pair
(Â(t), b̂(t)) is controllable for all t ≥ 0. Figure 1 depicts a
schematic representation of the controller (4).

With reference to Figure 1, system (4a)–(4c) is a param-
eter estimator for (3) based on normalized gradient descent,
system (4e) is an adaptive Luenberger observer that estimates
the state x̄ of system (3) using the parameters estimated by
system (4a)–(4c), system (4f) is a value iteration algorithm
that builds estimates V̂ and K̂ of the value function V̄ and of
the optimal feedback gain K̄�, respectively, on the basis of the
current estimates Â and b̂ of Ā and b̄, respectively, and (4g) is a
controller that feeds back the optimal control corresponding to
the current estimates of the parameters ā, b̄ and of the state x̄,
provided by the parameter estimator and the adaptive observer,
respectively.

The next theorem states that the output feedback con-
troller (4) semi-globally solves Problem 1, provided that the
estimated pair (â(t), b̂(t)) is strongly controllable.

Theorem 1: Let Assumption 1 hold, consider the
interconnection of system (1) and the output feedback
controller (4), let d ∈ L∞, and suppose that the pair (â(t), b̂(t))
is strongly controllable. Then

1) for each � > 0, there exists ε�� > 0 such that if |â(0)−
ā| ≤ �, |b̂(0)−b̄| ≤ �, |x̂(0)− x̄(0)| < �, |P(0)−P̄�| <
� and P(0) = P�(0) � 0, then, for all ε ∈ (0, ε��), all
the signals in the closed-loop are in L∞;

2) if, additionally to the above conditions, the signal φ =
col(φ1, φ2) is persistently exciting, then

lim
t→+∞ â(t)− ā = 0, lim

t→+∞ b̂(t)− b̄ = 0, (5a)

lim
t→+∞ x̂(t)− x̄(t) = 0, lim

t→+∞ P(t)− P̄� = 0, (5b)

with exponential convergence rate.

Proof: Letting (Â, b̂) be a controllable estimate of (A, b),
let P̂ be the unique positive definite solution to the ARE

Â�P + P Â + C̄�C̄ − r−1 P b̂ b̂�P = 0. (6)

Hence, considering the dynamics of the boundary layer (4f)
and that, by (6), one has C̄�C̄ = −Â�P̂ − P̂ Â + r−1 P̂ b̂ b̂�P̂,
the dynamics of the error P̃ = P − P̂ are ε

˙̃P = (Â −
r−1b̂b̂�P̂)�P̃+P̃(Â−r−1b̂b̂�P̂)−r−1P̃b̂b̂�P̃. Therefore, since
the pair (Â, b̂) is controllable, the matrix Âcl = Â − r−1b̂ b̂�P̂
is Hurwitz, thus implying that P̃ = 0 is exponentially stable.
In fact, by classical results on the differential Riccati equation
[1, pp. 21–23], if P(0) � 0, then P(t) � 0, ∀t ≥ 0, and P
converges to P̂ exponentially.

Consider now the reduced system given by (4a)-(4e), with
the control input provided by (4g) with P = P̂. Since, by
assumption, the pair (â(t), b̂(t)) is strongly controllable, one
has that P̂(t) exists for all t ≥ 0 and is such that the
matrix Âcl(t) is Hurwitz at each frozen t ≥ 0 [1, p. 23]. By
[18, Th. 4.3.2], letting m2 = 1+β φ�φ, ã = ā− â, b̃ = b̄− b̂,
θ̃ = col(b̃, ã), and ψ = θ̃�φ

m2 , one has ψ,ψ m, b̂, â, ˙̂b, ˙̂a, Â, b̂ ∈
L∞ and ψ,ψ m, ˙̂b, ˙̂a, ˙̂A, ˙̂b ∈ L2, independently of the bound-
edness of φ. Thus, since P̂ solves (6) and Âcl = Â−r−1b̂ b̂�P̂,
one has that P̂, Âcl ∈ L∞ and ˙̂P, ˙̂Acl ∈ L2.

The dynamics of the estimate x̂ and of the estimation error
x̃ = x̄ − x̂ are given by

˙̂x = Âcl x̂ + b̂ d + (
a� − â

)
ỹ, (7a)

˙̃x = A� x̃ + b̃ u − ã y, (7b)

where ỹ = C̄ x̃. Since Âcl ∈ L∞, Âcl(t) is Hurwitz for each
t ≥ 0, and ˙̂Acl ∈ L2, by [18, Lemma 3.3.3, Th. 3.4.11],
∃δ0 > 0 such that, for all δ ∈ (0, δ0), one has ‖x̂‖2δ ≤
c1 + c1‖ỹ‖2δ , where c1 > 0 is a sufficiently large constant.
Thus, since y = C̄ x̂ + ỹ and B̂, P̂, d ∈ L∞, one has
‖y‖2δ ≤ ‖C̄‖ ‖x̂‖2δ + ‖ỹ‖2δ ≤ c2 + c2‖ỹ‖2δ and ‖u‖2δ ≤
‖B̂‖ ‖P‖ ‖x̂‖2δ + ‖d‖2δ ≤ c2 + c2‖ỹ‖2δ , where c2 > 0
is a sufficiently large constant. Inspecting (7b), one has
ỹ = ∑n

i=1(
sn−i

��(s) (b̃i u) − sn−i

��(s) (ãi y)) + ym, where ym is an
exponentially vanishing term. By [18, Lemmaa A.1], one has
that sn−i

��(s) (b̃i u) = b̃i(
sn−i

��(s)u) + Wci(s)((Wbi(s) u) ˙̃bi) and
sn−i

��(s) (ãi y) = ãi(
sn−i

��(s)y) + Wci(s)((Wbi(s) y) ˙̃ai) where

Wci = −C̄
(
s I − A�

)−1
, Wbi = (

s I − A�
)−1

ei, (8)

and ei is the ith column of the identity matrix. Therefore, since
φ1i = sn−i

��(s)u and φ2i = − sn−i

��(s)y, one has that ỹ = ψ m2 +
ν+ ym, where ν = ∑n

i=1 Wci(s)((Wbi(s) u) ˙̃bi − (Wbi(s) y) ˙̃ai).
Letting μ2(t) = 1 + ‖u‖2

2δ + ‖y‖2
2δ , by [18, Lemmaa 3.3.2],

one has φ
μ
, m
μ

∈ L∞. Thus, one has that ‖ỹ‖2δ ≤ c3 +
c3 ‖(ψ mμ)‖2δ + c3 ‖( ˙̃θ μ)‖2δ , where c3 > 0 is a sufficiently
large constant. Hence, it results that

μ2(t) ≤ c4 + c4 ‖(ψ mμ)‖2
2δ + ‖

( ˙̃
θ μ

)
‖2

2δ (9)

where c4 > 0 is a sufficiently large constant. Therefore,
since ψ m, | ˙̃θ | ∈ L2, by the Bellman-Gronwall Lemma
[18, Sec. 3.3.4], one has that μ ∈ L∞ and hence also φ ∈ L∞.



POSSIERI: VALUE ITERATION FOR LQ OPTIMAL CONTROL OF SISO SYSTEMS VIA OUTPUT FEEDBACK 415

Furthermore, by (7b) and [18, Lemmaa 3.3.3], one has that
x̃, ỹ ∈ L∞. Hence, by (7a), one has x̂, u, x, y, z ∈ L∞.
Therefore, item (1) follows by [24, Sec. 11.4].

By [18, Th. 4.3.2 ], if φ is persistently exciting, then â − a
and b̂−b converge exponentially to zero. Thus, since A� in (7b)
is Hurwitz and u, y ∈ L∞, one has limt→+∞ x̃(t) = 0. Hence,
item (2) follows by [24, Th. 11.4].

The assumption that the pair (â, b̂) is strongly controllable
is crucial in Theorem 1 to guarantee that the solution P̂(t) to
the ARE (6) exists for all times t ≥ 0. Such an assumption
is customary when dealing with schemes based on indirect
adaptive control [18, Ch. 7]. In fact, loss of stabilizability of
the pair (Â(t), b̂(t)) may lead to instability of the closed-loop
due to the fact that the state of the boundary layer (4f) may
grow unbounded.

The next corollary shows that if the initial estimation errors
â(0)− ā, b̂(0)− b̄, x̂(0)− x̄(0), and P(0)− P̄� are sufficiently
small and the probing input d is small and sufficiently rich of
order 2n, then (5) holds.

Corollary 1: Let Assumption 1 hold, suppose that the
pair (A − r−1 b b�P�,C) is observable, and consider the
interconnection of system (1) and the controller (4). There
exist �� > 0 and ε� > 0 such that if |â(0) − ā| ≤ ��,
|b̂(0) − b̄| ≤ ��, |x̂(0) − x̄(0)| < ��, |P(0) − P̄�| < ��,
ε ∈ (0, ε�), ‖d‖∞ < ��, and d is sufficiently rich of order 2n,
then (5) holds.

Proof: Letting � > 0 be such that the bounds given in
item (1) of Theorem 1 hold, by [18, Th. 4.3.2], one has that
|θ̃ (t) | ≤ c5�, for all t ≥ 0 and some c5 > 0. Therefore,
by (9), there exists �� > 0 such that if � < ��, then the pair
(â(t), b̂(t)) is strongly controllable and ‖μt‖2δ ≤ (1 + c6�+
c6 ‖dt‖2δ)ec6 (γ+γ 2β

− 1
2 )�2

, for some c6 > 0, thus implying
that ‖θ̃‖∞ and ‖x̃‖∞ can be made arbitrarily small by letting
� and ‖d‖∞ be sufficiently small. Since the pair (A, b) is
controllable and the pair (A,C) is observable, one has that
Ācl = Ā + b̄ K̄� is Hurwitz. Further, since the pair (Ācl, b̄) is
controllable and the pair (Ācl, C̄) is observable, the transfer
function C̄ (s I−Ācl)

−1 b̄ has no zero/pole cancellation. Hence,
by [18, Th. 5.2.4] and [25, Th. 6.3], if d is sufficiently rich of
order 2n, then the signal φ is persistently exciting.

III. STRONG STABILIZABILITY VIA HYBRID ADAPTATION

The main goal of this section is to modify the controller (4)
to remove the assumption about strong controllability of
the estimates (â, b̂) of the system parameters (ā, b̄). This
objective is pursued by updating (â, b̂) only at discrete time
instants rather than continuously in time using an adaptation
scheme based on the hybrid adaptive Luenberger observer
[18, Sec. 5.3.2]. Letting Ts > 0 be a sampling time, let tk =
kTs, k ∈ N. The main goal of this section is to adapt the
controller given in Section II to update the parameters just at
times tk enforcing that the pair (âk, b̂k) is strongly controllable.
To pursue this objective consider first the next lemma; for the
definition of an exponentially stable in the large equilibrium
see [18, Definition 3.4.15].

Lemma 1: Let A be a compact set such that all A ∈ A are
Hurwitz, let Ak ∈ A be a sequence of matrices, and consider

the hybrid system given by

ẋ(t) = Akx(t), (10)

for all t ∈ (tk, tk+1), k ∈ N. If Ak+1 − Ak ∈ �2, then the origin
is exponentially stable in the large for system (10).

Proof: Since the matrix Ak is Hurwitz, there exists a unique,
positive definite solution�k to the Lyapunov equation A�

k �k+
�kAk = −I. Therefore, it result that A�

k+1(�k+1 − �k) +
(�k+1−�k)Ak+1 = −(Ak+1−Ak)

��k−�k(Ak+1−Ak), which,
together with the fact that Ak ∈ A, implies that Pk ∈ �∞ and
|�k+1 −�k| ≤ c|Ak+1 −Ak|, for some c > 0. Therefore, since
by assumption |Ak+1−Ak| ∈ �2, one has that |�k+1−�k| ∈ �2.
Furthermore, since Ak ∈ A, there exist κ1,κ2 > 0 such that
κ1I ≺ �k ≺ κ2I, for all k ∈ N. Thus, letting V = x��kx, it
results that, for all,

V̇(t) ≤ −x�(t)x(t) ≤ −κ
−1
2 V(t), t ∈ (tk, tk+1),

V
(
t+k+1

) = V
(
t−k+1

) + x�(
t−k+1

)
(�k+1 −�k)x

(
t−k+1

)

≤
(

1 + κ
−1
1 |�k+1 −�k|

)
V

(
t−k+1

)
, k ∈ N.

Letting Vk = V(t+k ), this implies that, for all k ∈ N,

Vk+1 ≤ (1 + κ
−1
1 |�k+1 − �k|)e−κ

−1
2 TsVk. Thus, since∏τ

k=0(1 + ak) ≤ e
∑τ

k=0 ak , for ai > 0, i =
0, . . . , τ , and by the Sedrakyan’s inequality [26], one has
∏τ

k=0(1 + κ
−1
1 |�k+1 − �k|)e−κ

−1
2 Ts = e−κ

−1
2 τTs

∏τ
k=0(1 +

κ
−1
1 |�k+1 − �k|) ≤ e−κ

−1
2 τTs+κ

−1
1

∑τ
k=0 |�k+1−�k| ≤

e−κ
−1
2 τTs+κ

−1
1

√
τ
√∑τ

k=0 |�k+1−�k|2 . Therefore, since |�k+1 −
�k| ∈ �2, one has that limk→∞ Vk = 0, thus implying that x
tends to 0 exponentially fast.

Taking advantage of Lemma 1, consider the hybrid output
feedback controller with continuous-time dynamics

φ1 = αn−1(s)

��(s)
u, φ2 = −αn−1(s)

��(s)
y, z = sn

��(s)
y, (11a)

˙̂x = Âkx̂ + b̂ku + (
a∗ − âk

)(
y − C̄x̂

)
, (11b)

u = −r−1b̂kP̂kx̂ + d, (11c)

for all t ∈ (tk, tk+1), where d is a probing input, whose
parameters are updated using the discrete-time dynamics

âk+1 = âk + γ

∫ tk+1

tk

z(τ )− θ̂�
k φ(τ)

1 + βφ�(τ )φ(τ)
φ1(τ )dτ, (11d)

b̂k+1 = b̂k + γ

∫ tk+1

tk

z(τ )− θ̂�
k φ(τ)

1 + βφ�(τ )φ(τ)
φ2(τ )dτ, (11e)

where γ > 0 is the adaptation gain, φ = col(φ1, φ2),

Âk =
[

−âk
I
0

]

, (11f)

θ̂k = col(b̂k, âk), and P̂k is the solution to the ARE

Â�
k Pk + PkÂk + C̄�C − r−1Pkb̂kb̂�

k Pk = 0. (11g)

The next theorem shows that if the estimates (âk, b̂k) obtained
using the hybrid output feedback controller (11) are strongly
controllable, then it solves Problem 1.

Theorem 2: Let Assumption 1 hold and consider the
interconnection of (1) and (11). If |ρ(âk, b̂k)| > χ for all k ∈ N

and some χ > 0, and γTs < 2, then
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1) all the signals in the closed loop are in L∞;
If, additionally, the signal φ is persistently exciting, then

2) the estimates âk, b̂k, x̂, and P̂k are such that

lim
k→∞ âk − ā = 0, lim

k→∞ b̂k − b̄ = 0, (12a)

lim
t→∞ x̂(t)− x̄(t) = 0, lim

k→∞ P̂k − P̄� = 0. (12b)

Proof: The dynamics (11d) and (11e) implement the hybrid
adaptive law given in [18, Th. 4.6.1]. Thus, if γTs < 2, then
θ̂k ∈ �∞, |θ̂k+1 − θ̂k| ∈ �2 ∩ �∞, and ε, εm ∈ L2 ∩ L∞.

Since |ρ(âk, b̂k)| ≥ χ for all k ∈ N, there exists an unique
solution P̂k to the ARE (11g), which is such that the matrix
Âcl,k = Âk − r−1b̂kb̂�

k P̂k is Hurwitz. Since âk, b̂k ∈ �∞ and
|ρ(âk, b̂k)| ≥ χ for all k ∈ N, it results that P̂k ∈ L∞.
Additionally, since P̂k and P̂k+1 solve (11g), one has |P̂k+1 −
P̂k|, |Âcl,k+1 − Âcl,k| ∈ �2 ∩ �∞.

Consider the dynamics of x̂, which are given by

˙̂x = Âcl,kx̂ + b̂kd + (
a� − âk

)
ỹ, (13)

for all t ∈ (tk, tk+1). Thus, by Lemma 1 and
[18, Lemma 3.3.3], since d, âk, b̂k ∈ L∞, one has ‖x̂‖2δ ≤
c + c‖ỹ‖2δ , for some c > 0. Defining the identification errors
ãk = ā − âk and b̃k = b̄ − b̂k, the dynamics of x̃ = x̄ − x̂
are given by ˙̃x = A∗x̃ − ãky + b̃ku. By [18, Lemma 5.3.1],
there exist continuously differentiable signals ϑ̃a, ϑ̃b such that
|ϑ̃a − ãk|, |ϑ̃b − b̃k| ∈ L2 and ˙̃

ϑa,
˙̃
ϑb ∈ L2. Therefore, by [18,

Lemma A.1], one has ỹ = ϑ̃�φ+∑n
i=1 Wci(s)((Wbi(s)u)

˙̃
ϑbi−

(Wbi(s)y)
˙̃
ϑai)+C̄(sI−A�)−1e, where Wbi and Wci are defined

in (8), i = 1, . . . , n, and e = (b̃k − ϑ̃b)u − (ãk − ϑ̃a)y.
Therefore, letting μ be defined as in the proof of Theorem 1
and defining ϑ̃ = col(ϑ̃b, ϑ̃a), by [18, Lemma 3.3.3], one has
that ‖ỹ‖2δ ≤ c + c‖εmμ‖2δ + c‖|ϑ̃ − θ̃k|μ‖2δ + c‖| ˙̃ϑ |μ‖2δ ,
for some c ≥ 0. Hence, considering that u is given by (11c)
and that y = ỹ + C̄x̂, since εm, |ϑ̃ − θ̃k|, | ˙̃ϑ | ∈ L2 by the
Bellman-Gronwall lemma, one has that μ, φ ∈ L∞. Thus,
following the same construction already used in the proof of
Theorem 1, it can be derived that x, x̂, x̃, u, y ∈ L∞.

The proof of item (2) follows by reasoning similar to that
used to prove the corresponding item in Theorem 1.

As stated in Theorem 2, the hybrid controller (11) still
requires that the pair (âk, b̂k) is strongly controllable in order
to ensure that the signals in the closed-loop are bounded.
However, such a controller can be easily adapted to overcome
this requirement, provided that φ is persistently exciting.
Namely, given χ > 0, consider the modified controller

φ1 = αn−1(s)

��(s)
u, φ2 = −αn−1(s)

��(s)
y, z = sn

��(s)
y, (14a)

˙̂x = Ǎkx̂ + b̌ku + (
a∗ − ǎk

)(
y − C̄x̂

)
, (14b)

u = −r−1b̌kP̌kx̂ + d, (14c)

for all t ∈ (tk, tk+1), where d is a probing input, whose
parameters are updated using the discrete-time dynamics

âk+1 = âk + γ

∫ tk+1

tk

z(τ )− θ̂�
k φ(τ)

1 + βφ�(τ )φ(τ)
φ1(τ )dτ, (14d)

b̂k+1 = b̂k + γ

∫ tk+1

tk

z(τ )− θ̂�
k φ(τ)

1 + βφ�(τ )φ(τ)
φ2(τ )dτ, (14e)

where γ > 0 is the adaptation gain, φ = col(φ1, φ2), and

Ǎk+1 =
{[−âk+1

I
0

]
, if |ρ

(
âk+1, b̂k+1

)
| ≥ χ,

Ǎk, otherwise,
(14f)

b̌k+1 =
{

b̂k+1 if |ρ
(

âk+1, b̂k+1

)
| ≥ χ,

b̌k, otherwise,
(14g)

and P̌k is the solution to the following ARE

Ǎ�
k Pk + PkǍk + C̄�C − r−1Pkb̌kb̌�

k Pk = 0. (14h)

The following corollary shows that the output feedback,
hybrid controller (14) solves Problem 1.

Corollary 2: Let Assumption 1 hold and consider the
interconnection of (1) and (14). If |ρ(ā, b̄)| > χ ,
|ρ(â(0), b̂(0))| > χ , γTs < 2, and φ is persistently exciting,
then items (1) and (2) of Theorem 2 hold.

Proof: Since the dynamics (14d) and (14e) implement the
hybrid adaptive law given in [18, Th. 4.6.1], if φ is persistently
exciting, then (12) holds. Therefore, if |ρ(ā, b̄)| > χ , then
there exists K > 0 such that |ρ(âk, b̂k)| > χ for all k ≥ K,
and hence Ǎk = Âk and b̌k = b̂k for all k ≥ K. Hence, the
proof follows directly by the construction employed to prove
Theorem 2.

Remark 1: Algorithm (14) requires the solution to the
ARE (14h) at the update times tk. Therefore, it has a
slightly increased computational complexity with respect to
the scheme (4) wherein such a task is delegated to the
boundary layer (4f). Nonetheless, the hybrid updates allow
to overcome the requirement about strong controllability of
the pair (â, b̂). Comparing such a scheme with the one given
in [20, eq. (7)], note that it does not introduce time delays in
the closed loop, thus reducing the memory burden.

IV. NUMERICAL SIMULATIONS

Consider system (1) and the cost (2) with

A =
[

0 1
−1 0

]

, b =
[

0
1

]

, C = [
1 0

]
,

and r = 10, which is the same system considered in
[10, Sec. IV-A]. Numerical simulations have been carried out
to test the effectiveness of the hybrid controller (14) both in the
presence and in the absence of the probing input d. Namely,
letting γ = 0.2, Ts = 0.5, β = 0.01, a� = [ 1.412 1 ]�,
χ = 1, and initializing the states of system (1) and of the
controller (4) at random, a first simulation has been carried
out letting d = 0. A second simulation has been carried out
with the same parameters of above, but letting d be a band
limited withe noise signal with power 5 and sampling time
0.1. Figure 2 depicts the results of such simulations.

As shown by Figure 2, the proposed adaptive output feedback
controller guarantees that all the signals in the closed-loop are
bounded even if the probing input does not sufficiently excite
the plant. On the other hand, if the probing input guarantees that
the signal φ is persistently exciting, then the proposed adaptive
output feedback controller asymptotically estimates the state
of the system in the x̄-coordinates, its parameters, the optimal
control, and the value function of the considered LQ problem.
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Fig. 2. Results of the numerical simulations. The dashed lines represent
the true value of the parameters to be estimated.

Comparing the outcome of these simulations with those
reported in [10, Sec. IV-A], note that the convergence rate
of the proposed scheme is slower than the one given in
[10, Sec. IV-A]. However, the proposed adaptive scheme does
not require an initial stabilizing feedback. Further, it does not
exploit time delays in the closed loop since the state of the
system is reconstructed using a hybrid adaptive Luenberger
observer. Finally, even if the probing input is absent, the
proposed scheme guarantees boundedness of all the signals
in the closed-loop although, in this case, convergence to the
optimal feedback gain and value function is not guaranteed.

V. CONCLUDING REMARKS

An adaptive output feedback controller has been proposed
to solve LQ optimal control problems for SISO systems by
using just input/output measurements. Numerical simulations
confirm that the state of the closed-loop is uniformly bounded
even in the case that the regressor is not persistently exciting.
If, additionally, such a signal is persistently exciting, then it
further estimates the parameters, the optimal control, and the
optimal value function.
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