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Policy Algebraic Equation for the LQR and
the # ., Control Problems

Mario Sassano

Abstract—The Linear Quadratic Regulator (LQR) and
the 7~ control problems for linear systems are revisited
with the objective of deriving a novel algebraic (polyno-
mial) equation alternative to the standard Algebraic Riccati
Equation (ARE). Differently from the latter, the former is
envisioned to involve the policy alone, in place of the value
function as in the ARE. The resulting equation, referred to
as the Policy Algebraic Equation, contains nm variables
and equations, of order less than or equal to 2n, where n
and m denote the dimension of the state and the input,
respectively.

Index Terms—Optimal control, linear systems, robust
control.

[. INTRODUCTION

T IS not surprising that, since their origin in the middle
Iof the previous century, the LQR and the #», control
problems have been among the most studied topics in control
theory (see e.g., [1], [2], [3]). Such a well-deserved attention
stems from their importance in practice, as such techniques
enable one to design control strategies that ensure particularly
desirable properties to the resulting closed-loop plant. These
encompass optimality with respect to prescribed criteria as
well as robustness with respect to exogenous disturbances.
Interestingly, their practical relevance is matched, if not even
overshadowed, by the theoretical challenges originating from
the abstract characterization of the underlying solution, which
has proved to be an intriguing and interesting mathematical
problem, see e.g., [4], [5], [6], [7]. Most of the existing
approaches aim at characterizing first the value function,
namely the cost of the optimal trajectory from a certain initial
condition, and subsequently compute the policy that attains
such a performance on the basis of the knowledge of its
cost. Policies have recently regained a central role within the
context of Reinforcement Learning (RL) [8], specifically in
the framework of direct policy optimization.

The main contribution of this letter is twofold. First, the
optimal policy and value function are simultaneously related
by means of the observability matrix of the (state/costate)
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Hamiltonian system via measurements of the state alone.
Similar constructions are discussed in [7], [9]. Differently
from the latter, herein the conditions are extended to the
setting of matched disturbance attenuation. Second, such an
abstract property, which is interesting per se as it remains
linear in the value function, is instrumental for deriving an
algebraic equation that revolves around the policy alone. This
equation, referred to as the Policy Algebraic Equation (PAE),
permits the direct computation of the policy without any
knowledge whatsoever of the corresponding cost, as it has been
instead pursued hitherto in the literature involving dynamic
optimization problems. The PAE may possess appealing com-
putational features, since its dimension grows only linearly
with the dimension of the state, whereas the standard ARE
grows quadratically. The PAE contains nm equations of order
2n, hence typically involving fewer unknown variables than
the corresponding ARE. Moreover, while the ARE requires the
underlying variable to be symmetric and positive definite, the
PAE is such that its solution should then enforce asymptotic
stability to the closed-loop system. While the latter is indeed
a challenging constraint, the property may be verified a
posteriori on the set of solutions to PAE (see Example 4).
More importantly, the possibility of computing (or estimating
and manipulating) the policy without resorting to the solution
of any standard condition requiring the knowledge of the
cost may be particularly valuable for strategies that aim at
optimizing directly in the policy space rather than in the space
of value functions. These methods have recently acquired a
central role in the framework of RL.

The rest of this letter is organized as follows. First the
(slightly more convoluted) #, control problem is discussed in
Section II. This choice allows to then immediately specialize
similar claims to the LQR (sub-)case, which is tackled in
Section V. The main objective of Section III consists in
establishing an identity satisfied by the optimal actor/critic
pair, i.e., policy and value function, respectively, which are
simultaneously related via the observability matrix of the
Hamiltonian dynamics. The latter identity is then shown in
Section IV to be instrumental for deriving the Policy Algebraic
Equation in terms of the policy alone.

I[I. PROBLEM STATEMENT AND PRELIMINARIES
Consider a perturbed LTI system described by

{ x(t) = Ax(t) + Biw(1) + Bou(t), x(0) = xo

Wt = Cx(1), M
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fort € Ryp, withx : R - R", y, : R - R%, w: R — R
and u : R — R™ denoting the state, (performance) output,
(exogenous) disturbance and (controlled) input, respectively.
To avoid trivialities, the matrices B;, i = 1, 2 have full column
rank. Moreover, w € £3(R>¢), where the latter denotes the
space of functions w : R>9 — RP with the property that
(fo. Iw@IPd ) < oo (see [10]).

Definition 1: Fix y € R.o. The (sub-optimal) #, control
problem consists in determining, if it exists, a linear feedback
control law u = K3x such that the L>-gain! of the closed-loop
system from w to col(yp, u) is smaller than y.

The classic solution to the #, control problem revolves
around the Algebraic Riccati Equation (see e.g., [2], [11])

0=CTC+ATP+PA+P(yBIB] —B2B] )P (2)

with respect to the unknown variable P = PT e R™",
Furthermore, let the matrix H € R?"*2"_ defined as

o [ A y7BiB| - BngT}

-Cc'c —AT ’
denote the Hamiltonian matrix naturally associated with (2).
As it has been elegantly established the solvability of the
#H oo control problem hinges upon certain properties of the
Hamiltonian matrix (3). More precisely, H is said to belong
to dom(Ric) (see [2, Ch. 13.2]) if (i) it does not possess
eigenvalues on the imaginary axis and (ii) the subspaces
¥~ (H) and im [0 I]T are complementary, where ¢~ (H) C
R2" denotes the (n-dimensional) stable invariant subspace of
H. If H € dom(Ric), then the matrix P £ P2P_1, with P; such
that im [P;r, P;'—]T = {7 (H), is uniquely determined from H,

hence H +> P defines a function Ric : dom(Ric) — R"*".

Assumption 1: The pairs (A, By) and (A, C) are reachable
and observable, respectively. The Hamiltonian matrix H in (3)
belongs to dom(Ric) and Ric(H) > 0.

Thus, provided Assumption 1 is satisfied, the ARE (2)
admits a unique positive semi-definite solution, denoted by
P* := Ric(H). Furthermore, the feedback policy solving the
H oo control problem is obtained as

ut = —BZTP*x = K>x, )

3)

whereas the worst-case disturbance, as a function of the
current value of the state, is defined (as a by-product) by

W = y_zB—er*x = Kix (5)

provided that 0 (A+B1 K} +B2K3) C C™. A further ingredient
towards the characterization of the #, control problem is
represented by the Hamiltonian dynamics associated with (3).
Letting A : R>o — R” denote the costate, the time history
of the underlying solution may be equivalently obtained
by selecting u*(f) = —B2T A*(f) and, similarly, w*(r) =
y 2B A*(1), for all t > 0, where A* describes the solution to
the Hamiltonian dynamics

k(1) = Ax(1) + (y~2Bi1B| — B2B; )A(1) ©)
AE) = —CTCx() —ATA()
IConsider ¥ = Ax 4+ Bu, y = Cx, with 6(A) C C~. The L,-gain
from u to y is defined as SUPy () Ly (Rsg),u() 0 [I¥ll2/llull2, where Ivily =
(foOO Hv(r)llzd 7) denotes the norm on L3 (R>(), see e.g., [10].

initialized according to col(x(0), A(0)) = col(xp, P*xp).
Finally, as it is instrumental for providing concise statements
of the subsequent results, some terminology is borrowed, and
slightly extended, from the theory of RL (see e.g., [8]). To
this end, the matrices (K7}, K3, P*) are referred to as the
actors/critic triplet. The latter (compact) notation permits to
denote the policies adopted by the decision makers involved
in the underlying dynamic optimization problem together with
the cost of the resulting trajectory. The former (cumulatively
referred to as the actors) are in charge of selecting the worst
disturbance and the corresponding best response, respectively,
while the associated cost is encoded into the matrix P* (namely
the critic). In fact, the identity

1 oo
Sl = [ (1601 + e 01 = 7w 0 )ar, )
0

holds for all xy € R".

[1I. SOLUTION VIA OBSERVABILITY MATRIX

The aim of this section is to provide an alternative char-
acterization of the solution to the #, control problem that
relies upon certain observability properties of the Hamiltonian
dynamics, rather than on the standard ARE (2). Towards this
end, a relevant role is played by the (virtual) output Y :=
Mcol(x, A) = x, which is obtained by letting IT = [I,, O],
associated with the Hamiltonian system (6). First, a technical
lemma is stated and proved.

Lemma 1: Suppose that Assumption 1 holds. Then the pair
(H, IT) is observable.

Proof: The observability properties of the pair (H, IT) are
equivalent to those of the pair (H + GII, 1) for any matrix
G € R*"_Thus, selecting G = [O CTC]—r yields

A y2BiB] — BQBZT] ®

weon=[s v

Furthermore, observability of (8) via Il can be studied
by interpreting the former as the cascade interconnection
of two subsystems described by the triplets X; =
(—AT,0,y?B\B] — B:B)) and ¥, = (A,I,,I,). Since
3, is (trivially) observable via the identity matrix, standard
arguments concerning structural properties of interconnected
systems ensure that the cascade of ¥; and X, is observable
provided the pair (—AT, y’zBlBlT — BzB;) is observable or,
via duality, that the pair (A, y—zng;I' — BgB;— ) is reachable,
hence proving the claim since the latter is implied by reacha-
bility of (A, B2) and the rank properties of B;. [ |

Lemma 1 entails that the Hamiltonian dynamics (6) is
observable via y, namely whenever the state variable alone
is measured. To provide a concise statement of the following
result, let O(H, IT) € R27*X2n denote the observability matrix
associated to the pair (H, IT), namely

17
OH, IT) = [HT MH)T ... (A ] : ©9)
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Let the matrix-valued operator & : RP*" x R™*" — R27%n
be defined according to

A+ B1K1 + B2K>
(A + BiK| + B2K»)?

(K1, K) = §(K1, K) = . (10)

(A + B1K| + B2K»)*"

Theorem 1: Fix y € R.o and consider the #, control
problem for system (1). Suppose that Assumption 1 holds.
The matrices (K7}, K3, P*), P* = (P*)T > 0, constitute the
actors/critic triplet if and only if

1 oA+ BlKIr—i- BK3) c C7;
(i) Ky —y 2B/ P*=0;
(iii) K%+ B, P*=0;
(iv) the algebraic equation
0=O©H,TI1H) [}f*:| —cS’( ‘I*Kg) an
holds.

Proof: The claim is proved by borrowing arguments similar
to those employed in the proof of [7, Th. 4] and of [9, Th. 1]
and [9, Th. 3]. Towards this end, uniqueness of the actors/critic
triplet, together with the property that the latter may be
characterized via (2), (4), (5) as well as, equivalently, in terms
of a certain trajectory of the Hamiltonian dynamics (6), ensure
that the matrices (K7}, K3, P*) satisfy

f HeHI[I{*} _ JAFBIKI BRI — (12)
(see [7, Eq. (34)]). Since (12) is analytic, this implies, by
Cayley-Hamilton Theorem, necessity of item (iv), whereas
necessity of items (i)-(iii) follows by the properties of the
underlying solution to the #, control problem. Sufficiency of
items (i)-(iv) is obtained by relying on constructions similar
to those in the proof of [9, Th. 1], although with the (full
column) rank condition on [B 1 B2] of [9, Th. 1] replaced by
reachability of the pair (A, B»), and hence of (A, y‘zBlBlT —
BszT), to ensure observability of the Hamiltonian dynam-
ics, as guaranteed by Lemma 1. Finally, by observing that
O(H,TIH) = O(H,)H, equivalence of actors K7, Kg
satisfying items (i) and (iv) with those defined in (4), (5) is
implied by items (ii) and (iii), along ideas inspired by item
@iv) in [9, Th. 3]. |

The aim of the following three remarks consists in
discussing the consequences of violating a few of the
previous assumptions required for the applicability of
Theorem 1.

Remark 1: Ttems (i)-(iii) individually possess an obvious
counterpart in the set of classical conditions provided in
Section II. Therefore, the conclusions of Theorem 1 reveal
that (11) essentially replaces the ARE (2) by providing
equivalent conditions, although by involving simultaneously
the matrices P and K;, i = 1, 2. These are jointly related via
the observability matrix of the Hamiltonian dynamics (6). As a
consequence, differently from (2), the algebraic equations (11)
remain /inear in the variable P — on which further constraints
are imposed — although polynomial in the entries of the

actors K;, i = 1,2. Furthermore, the identity (12) suggests
an insightful interpretation of the actors/critic triplet that
is revealed when Dynamic Programming and Pontryagin’s
Principle are combined: such a triplet is characterized by the
property that the trajectories of the closed-loop system (1) are
immersed into stable (output) trajectories of the Hamiltonian
dynamics (6) for any initial condition.

Remark 2: Within the framework of #{~, control, the distur-
bance is said to be unmatched whenever it affects the state of
the plant (1) via input directions that are linearly independent
from those along which the controlled input may influence the
state, namely whenever rank ([Bi Bz]) = p 4+ m. In such a
class of problems, the latter rank condition implies items (ii)
and (iii) of Theorem 1, provided item (iv) holds. In fact, the
first block equation appearing in (11) yields

(5 Bz]|:y_ZBlT:|P = [Bi B2]|:K1:|’

-B; K,

so that items (ii) and (iii) can be immediately obtained by
relying on the full column-rank property of the input matrices.
As a side effect, inspecting (13) permits visualizing the conse-
quence of enforcing items (i) and (iv) (hence including (13)),
although without items (ii) and (iii), when the disturbance is
matched by the controlled input. In fact, the stability (i) and
the immersion (iv) conditions alone identify an affine set of
solutions described by K; = K + W;I", i = 1, 2, for arbitrary
I' € R"*" and where the matrices Wi € RP*Y and W, € R™*"
are defined by the property

.| W 1
lm[W;i| = [Bl Bz] ,

withv=m+p — rank([B1 Bz]).

Remark 3: Whenever the pair (H, IT) is not observable,
items (i)-(iv) of Theorem 1 are not enough to ensure that any
solution (Kj, K>, P) of (11) is the actors/critic triplet. In fact,
by inspecting the identity (12), one has that the latter holds
for any P with the property that

|1 T
1m[Pi| C 1m[P*i| + 7,

where .# C R?" denotes the unobservable subspace of (H, IT).
Therefore, to identify a unique triplet, the item

(V) 0=CTC+ATP+ P + BiK;| + B:K3)

must be added to the requirements of Theorem 1. This ensures
that precisely n modes of the Hamiltonian matrix H are excited
via the input matrix [1 P]T (see also [9, Th. 4] for a similar
condition in the case of dynamic games)

13)

(14)

15)

IV. PoLicY ALGEBRAIC EQUATION

By further building on the characterization of the
actors/critic triplet in terms of the observability matrix asso-
ciated with the underlying Hamiltonian dynamics, illustrated
in Section III, the purpose of this section is to envision an
algebraic equation that involves the actors K;, i = 1,2 alone.
This reverses all the existing strategies that rely upon (2),
which depends instead on the critic, i.e., P, alone. To provide
a concise statement of the following result, let ¢ € R27*x2n
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be defined as G = O(H, [1H) and partitioned according to
[Ql Qz] = @G, with G; € RZ"ZX", namely containing the first
and last n columns, respectively, of G.

Lemma 2: Fix y € R.¢ and consider the #~ control
problem for system (1). Suppose that Assumption 1 holds. Let
K, i = 1,2, denote the actors pair. Then the corresponding
critic P* is obtained as

P* = Gy (S(K}. K3) — G1)
with G = (G G2)~'G) and S(-, ) defined in (10).
Proof: The claim is obtained immediately by relying on
the partition of ¢ and by observing that (11) may be written
as @1 + GoP = §(K1, K>). Lemma 1 ensures that O(H, IT)
is full column-rank, while an identical property is possessed
by G since H € dom(Ric), and hence it is nonsingular.
Therefore, the columns of (> are linearly independent and (16)
is established via standard pseudo-inversion. |
Remark 4: The statement of Lemma 2 suggests that the
critic P* may be obtained as a polynomial function of the
actors K¥, i = 1,2. It is worth observing that the standard
strategy for computing the cost of a pair of stabilizing control
policies consists in solving the Lyapunov equation

(16)

PAa+ALP=—CTC— (K3)"K; +y2(K})'K: (17)

with A¢ = A + B1K} + B2K3. Note that (17) provides a
characterization of P* as a matrix containing rational functions
of the entries of the actors Ki*, i = 1,2. The key difference
is that, while (17) relates any feedback to its cost by solving
a linear system (policy evaluation), (16) relates directly the
actor to the structure of the optimal critic.

Example 1: To illustrate the intuition behind the comments

in Remark 4, consider the scalar differential equation
x(t) = ax(t) + byw(t) + bou(t), (18)

with a € R, b; € R, i = 1,2 and with ¢* > 0. Provided y is
such that y? # b2b, %, G € R?*? is defined as

19)

and hence (j; = [yz(b% — yzb%)_l O]. Therefore, while the
Lyapunov equation (17) yields the rational function

) _ —c? - k% + )/zk%
(U7 = 2(a + bik; + boka)’

the formula (16) leads instead to the linear function

2 2
- y<bi . Yba N
p =|5——= |k +|5—5 |5 21
. <b% - Vzb%> (b% - Vzb%>
Theorem 2: Fix y € R.o and consider the #, control

problem for system (1). Suppose that Assumption 1 holds.
Consider the Policy Algebraic Equation (PAE)

(20)

(22a)
(22b)

0= y2K — B] GI(S(K1, K2) — G1),
0 =K+ B) GJ (S(K1, K2) — G).

Then the actors K}, K3 solve (22). Moreover, if (22) admits
a unique stabilizing solution, then this is the pair of optimal
actors (K7, K3).

Proof: To begin with, replacing (16) into the definitions of
the matrices K} and K3 provided in (5) and (4), respectively,
yields (22). As a consequence, the equations (22) constitute
an identity satisfied by the actors K}, i = 1,2. Conversely,
provided (22) admit only one solution, denoted (K7}, K3), that
is stabilizing for the closed-loop system, then it follows that
(K}, K3) = (K7, K3), as the latter is stabilizing and belongs to
the set of roots of (22). [ |

It may be possible to replace the solution of (17) into (4), (5)
to obtain a rational system of equations, each of which
could be then multiplied by its denominator. Nonetheless,
since Ac] depends on K;, i = 1,2, solving (the vectorized
version of) (17) would require the symbolic inversion of a
n?> x n® matrix, which could be a daunting computational
obstacle. Computing P* as a function of K;, i = 1,2
as in (16) instead requires only basic symbolic operations,
such as sum and product. In fact, the inversion in Q;
involves only matrices of (known) numbers obtained from
the problem data. Furthermore, (16) reveals an interesting
structure, showing how the matrix P* depends on the observ-
ability matrix of the Hamiltonian dynamics and on powers of
the closed-loop plant, which would be destroyed by matrix
inversion.

Example 2: To illustrate the results of this section, consider
the perturbed linear system

(23)

X =—x1+x+w
p=x1+x2+u

with u(t) € R, w() € R and y, = x;. Suppose that
y = 1. By inspecting the equations in (23) it is immediate
to observe that the control input and the disturbance are not
matched. As a consequence, the coefficient of the quadratic
term in (2), namely y ~>BiB] — B,B,, consists of a sign-
indefinite matrix. The Policy Algebraic Equation (22) instead
comprises 4 polynomial equations, in the entries of the
matrices K| = [k],l k],z] and K, = [kzy] kzyz], without
any further structural constraint. More precisely, the closed-
loop dynamic matrix is described by

k1,1 —1

kyi+1 24)

k 1
A+B1K1+32K2=[ 12+ ]

kpo+1

from which the computation of & in (10) is straightforward.
The corresponding equations (22) then admit only two solu-
tions, which are in fact in one-to-one correspondence with the
positive and negative solutions, respectively, of the underlying
ARE (2) associated with (23).

V. THE CASE OF THE LQR PROBLEM

The purpose of this section consists in discussing how
the Linear Quadratic Regulator problem can be approached
as a specially-structured setting of the above results, hence
extending the conclusions of Theorems 1 and 2. To this
end, suppose that w = 0 in (1) or — to avoid cumbersome



374

IEEE CONTROL SYSTEMS LETTERS, VOL. 8, 2024

notation in this section — consider instead the differential
equation

x(t) = Ax(t) + Bu(z), x(0) = xp. (25)
Moreover the associated cost functional (7) becomes
o0
Ty (u()) = fo (O + 1 ), (26)

with Q.= CTCand R=R" > 0.

Assumption 2: The pairs (A, B) and (A, Q) are reachable
and observable, respectively.

As it has been elegantly established (see e.g., [2]), the
solution to the optimal control problem described by (25)
and the minimization of (26) is obtained by relying on (2)
and (3) without any further requirement related to disturbance
attenuation guarantees, namely (intuitively) considering the
limiting case of y that tends to infinity. Therefore, consider

0=Q+A"P,+P,A—P,BR™'BTP, (27)
P, € R™", together with the Hamiltonian matrix
A —BR'BT
H, = [—Q AT } (28)

respectively. Then the optimal policy is defined in terms of
the feedback control law

u* = —R7'BTPx = Klx, (29)

where P4 = (P%)T > 0 denotes the unique positive definite
solution of (27). The existence of such special solution is
ensured by the structural requirements of Assumption 2. The
notation introduced in Sections III and IV may be inherited,
within the optimal control framework, by letting

Z =% Z1] = O(H,, IH,), (30)
with Z; € R2*n_j = 1,2, together with
A+ BK
(A + BK)?
K Sy(K) = _ (31)
(A + BK)>

Note that the counterpart of Theorem 1 in Section III is stated
in [7, Th. 2] (although with slightly different notation). Thus,
the following statements specialize the claims of the results in
Sections III and IV to the case of the LQR problem.

Lemma 3: Consider the LQR problem described by (25)
and (26). Suppose that Assumption 2 holds. Let K} denote the
optimal actor. Then the critic P} is obtained as
Py = Z](So(K2) — Z1)

(o]

(32)
with ;z;’;' = (Z, Z5)~'Z] and 8,(-) defined in (31).

Proof: By [7, Th. 2] one has that

Z[I Po]" = Z1 + ZoPy = So(KZ) (33)

which is the optimal control counterpart of (11), while Z, is
full column rank by Assumption 2 and [7, Prop. 1]. |

Theorem 3: Consider the LQR problem described by (25)
and (26). Suppose that Assumption 2 holds. Consider the
Policy Algebraic Equation (PAE)

0=RK + B Z](So(K) — Z1). (34)

Then K solves (34). Moreover, if (34) admits a unique
stabilizing solution, then this is the optimal actor K.

Remark 5: A few comments are in order about the Policy
Algebraic Equation (34) (note that similar discussions may be
immediately adapted to the case of (22)). The equation (34)
provides a novel characterization of the optimal feedback gain
alternative to the standard ARE (27). The former comprises mn
variables and an equal number of equations of order less than
or equal to 2n in the entries of the matrix K. This is different
from the ARE (27), which contains n(n + 1)/2 variables and
equations of order 2 in the entries of the critic P,. Since
both (34) and (27) consist of polynomial equations, one of
the most computationally efficient approaches to address them
relies upon the computation of Grobner bases. According
to [12, Th. 6.2], whenever the equations admit a finite
number of solutions, the computational complexity generically
grows polynomially in the (maximal) order of the polynomials
while exponentially with respect to the number of variables.
Therefore, although several elegant and efficient techniques
have been developed to tackle (27), reducing the number of
unknowns, as in (34), may prove to be a desirable feature.

Example 3: Consider a LTI system described by the fol-
lowing chain of integrators

{x, =xi+1,i=1,2,3 (35)
X4 = U

together with the cost functional (26) with Q =1 and R = 1.
The standard Algebraic Riccati Equation (27) in this case
contains 10 quadratic equations in the entries of the matrix
P, (10 variables), which must be positive definite. Conversely,
the PAE comprises only 4 variables and equations, reported
in (36), shown at the bottom of the page (at the bottom of this
page). Note that, despite n = 4, the highest order appearing
in (36) is 5. The latter system of equations admits 6 distinct
solutions, only one of which is stabilizing, namely

Ky =[-1—-3.0777 —4.2361 —3.0777] (37)

which constitutes the optimal policy of the underlying control
problem, i.e., the unique stabilizing solution of (27).

The statement of Theorem 3 implicitly suggests that the
PAE (34) is not equivalent to (33), which is instead equivalent

T

(=N el Ne)

k% + klkg + 3k1k3k3 — kiks + klki - klk?; + 2kok1kg + k1 + 1
ko + 2kika — kiks — kaks + kak} + kik3 — kok? + 2kZka + kok?} + 2kikska + 3koksk?
k3 — ki + 2kiks — koky + kik3 + kok — k3ki + ksky + k3 — k3 + k3 + 3k3k3 + dkoksks — 1
ks — ko + 2kiky + 2koks — 2ksky + 3koky + 3k3ky + 4k3ky — ki + k;

(36)
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to the standard ARE (27). In fact, the set of solutions of (33),
as far as the variable K is concerned, is contained in that
of (34). The key difference consists in the property that the
latter is defined in terms of the feedback gain K alone, while
the former jointly relates K and P,. Nonetheless, by further
manipulating (33) it may be possible to derive an algebraic
equation whose solutions are in one-fo-one correspondence
with those of (33), hence of (27), while still involving only
the variable K, although at the price of larger dimension. This
is discussed in the following remark.

Remark 6: Let i = 2n*>—n and Zj‘ € R*27 e a full row
rank matrix with the property that Zj‘%z = 0. Then, since

T
the matrix [(Zﬁ-)T (Z;)T] is nonsingular by construction,
one has that the equation

1
[Z :|(52§1 + Z2Po) = [

5  [Z580(Ko)
z;

- [z; So(Ko)
is equivalent to (33), and hence to (27). Since the lower block
is solved by selecting P, as in (32), it follows that

0=Z3(Z1 — So(K))

Z+Z, ]

ZIZ1 + P, ](38)

(39)

constitutes an algebraic equation, in the variable K alone,
whose set of solutions is in one-to-one correspondence with
that of the standard ARE (27).

Remark 7: The algebraic equation (39) may be employed
to provide a straightforward optimality certificate. Namely,
if one is given a candidate stabilizing policy described by
K., verifying whether K, is indeed the optimal policy or not
tantamounts to simply plugging K. into (39) and checking
that the equality holds. This avoids the need for explicitly
computing the cost of K, that should be then, in turn, employed
to verify (27). The use of (39) envisioned herein may prove
useful, for instance, in iterative methods akin to those currently
developed within the RL framework.

Example 4: Consider the LTI system described by

)'cl = —X2 — X3
X2 =X — X2 (40)
X3=—x1—x+u

and the cost functional (26) with Q = [ and R = 1.
The PAE (34) admits isolated (finitely many) solutions,
one of which is indeed the optimal feedback gain K} =
[2.3034 —0.0256 — 2.3679]. Nonetheless, it is interesting
to observe that (34) admits 6 distinct solutions, among which
one can find a further stabilizing solution in addition to K3,
namely K = [3.9334 0.5522 — 2.3806]. More precisely,
while the solution K7 of (34) assigns the eigenvalues such that
0(A + BK}) = {—1.3662, —1.0009 =+ 0.9669j}, consistently
with the spectrum of the Hamiltonian matrix H,, i.e., 0 (Hy) =
{—1.3662, —1.0009 +£ 0.9669j, 1.3662, 1.0009 % 0.9669j}, the
solution K is such that o (A + BK) = {—1.3662, —1.0072 +
1.5961;}, so that only one eigenvalue simultaneously belongs
to o (H,). However, the right-hand side of (32) with K in place

of K* (which should have been the critic associated with K)
is not symmetric, let alone positive semi-definite, hence ruling
out K as a candidate solution. Finally, it is immediate to verify
that instead the equation (39) specialized to (40) admits only
4 solutions, similarly to the ARE (27), which include K7,
whereas K is such that z;(;zzl — So(k)) #0.

VI. CONCLUSION AND FURTHER DISCUSSIONS

The optimal policy and value function of the LQR and
H o control problems have been related via the observability
matrix of the Hamiltonian dynamics. The arising algebraic
equation, equivalent to the underlying ARE, remains linear in
the value function, although polynomial in the control policy.
Furthermore, such a condition is instrumental for deriving
an algebraic equation which involves the policy alone, i.e.,
deriving a Policy Algebraic Equation. As future work, it
may be of interest to further investigate the nature (and the
properties) of the set of solutions to (34) in comparison with
that of (33). Moreover, envisioning an iterative and, possibly,
data-driven strategy to address (22) or (34) may prove relevant
in practice. This could be achieved for instance by adapting the
certainty equivalence arguments of [13] to the PAE. Finally,
the polynomial structure of (32) could be further leveraged,
apart from its use in the construction of (34), e.g., for direct
policy optimization.
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