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Abstract—The aim of this research is to implement a precise Wi-Fi indoor positioning system (IPS) or localization system based upon
the IEEE 802.11mc fine-timing measurement (FTM) scheme also known as the Wi-Fi round trip time (RTT) ranging technique, where
ranging refers to a sub-process of positioning that determines the distance between a transmitter and receiver. Our system and its
algorithms were implemented using a COTS (Commercial-Off-The-Shelf) smartphone and Wi-Fi access points. Experiments were
conducted in several real-life indoor environments. This paper presents the detailed Wi-Fi RTT ranging performance of these devices in
different system configurations and characterizes the systematic biases and noise model to improve the ranging accuracy. A novel
three-step-positioning method is proposed to overcome the issues of no or multiple intersect points in trilateration due to ranging errors
to improve positioning accuracy. This consists of the following: 1) systematic bias determination and removal; 2) clustering-based
trilateration (CbT) supported by weighted concentric circle generation (WCCG), namely CbT & WCCG,; 3) positioning result and
trajectory optimization using a Kalman filter. As a result, the evaluation experiments gave a position accuracy of +1.2 m in 2D static
positioning and +1.3 m for dynamic motion tracking. Also, our CbT & WCCG method demonstrate good tolerance against ranging
errors. Moreover, the computational cost and positioning accuracy of CbT & WCCG methods are compared with least square (LS) and
recursive least square (RLS) methods and the accuracy standard deviation of our algorithm is the closest to the Cramer—Rao bound

(CRB).

Index Terms—Indoor positioning system (IPS), Indoor localization, Wi-Fi-based positioning system (WPS), trilateration, tracking,

Wi-Fi fine-timing measurements (FTM), Wi-Fi round-trip time (RTT)

1 INTRODUCTION

NDOOR Positioning Systems (IPS) are increasingly needed
Ias we spend more time indoors (at least in urban areas)
and as indoor spaces become far more complex. IPS applica-
tions include navigating to find a physical asset in unfamil-
iar spaces such as a book, a shopping item, a person or exit.

There is no standard positioning system for indoors
unlike for outdoors (Global Positioning System, GPS). There
are further challenges for IPS, compared to outdoors, as we
need a better accuracy, e.g., 1.7 m (a typical adult arm span)
to enable us to find and reach to get things in indoor spaces
that are more densely cluttered than outdoor spaces. There
are no global maps, indoor spaces also often tend to be
more 3D rather than 2D and furniture and objects are often
moved around changing the free path for navigation.

A common infrastructure found in most indoor environ-
ments, IEEE 802.11, that is used for local area network com-
munication can also be used for positioning — a Wi-Fi-based
positioning system (WPS), which is the focus of this paper.
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Classic WPSs are based on three methods. The first is the tra-
ditional path loss model-based method. This uses the
Received Signal Strength Indicator (RSSI) to calculate distan-
ces between an Access Point (AP) and a Mobile Terminal
(MT). Then, trilateration is applied to estimate the terminal’s
location [1]. However, this method suffers from the issue of
instability of RSSI, caused by path interference, small scale
fading and shadowing, which are easily affected by different
surroundings [2]. The second method is known as a finger-
printing-based technique [3], [4] which is generally consid-
ered to be more accurate than the path loss model based
method [5]. This method typically includes two phases. The
first phase, called the offline survey phase, is to build a fin-
gerprint database or a radio map consisting of RSSI informa-
tion from multiple APs collected at known locations. The
second online localization phase determines user positions
via matching radio knowledge of their current position with
the pre-established radio map. The third method makes use
of Wi-Fi Channel State Information (CSI) (e.g., amplitude
and phase) to realize localization [6]. Compared to RSSI
which only provides signal strength level, the CSI of each
channel is a multi-dimensional vector containing the infor-
mation from all subcarriers (usually over 30 subcarriers in
each channel), which has many more features [7]. CSI-based
positioning methods include CSI fingerprinting, Angle of
Arrival (AOA) and Time of Flight (ToF) or Roundtrip Time
of Flight (RToF). They are all sensitive to environmental
changes and surrounding movements, which influence the
positioning accuracy. Also, ToF requires highly accurate syn-
chronization between all parts of the system while RToF is
free of such a requirement. CSI fingerprinting also faces the
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Fig. 1. RTT measurement illustration [13].

problem of intensive computational workload for building
and maintaining the fingerprint database as well as the chal-
lenge of managing substantial amounts of storage securely.
These three WPS methods have been researched and devel-
oped extensively [8], [9], [10], [11], [12]. The second of these
three methods based upon fingerprinting seems to be the
most accurate and widely used. However, fingerprinting is
not scalable because it requires a radio-map to be built in each
new scenario and even its location accuracy is affected by
dynamic object occlusion such as people moving in that space.

In this paper, we focus on one of the latest techniques
called the Fine-Timing Measurement (FTM) [13] scheme
based ranging and localization. The FTM scheme has been
supported by the IEEE 802.11mc standard since 2016 [13],
[14]. FTM can be understood as a RToF measurement app-
roach, also called Wi-Fi Round-Trip Time (RTT), which allows
a MT to determine its distance from an AP by measuring the
duration of a radio wave transmission time frame traveling
back and forth between the transmitter and receiver, which
are generally called the initiator and responder. This method
can give even more accurate measurements by including the
timestamp recorded at both the initiator and responder with
nanosecond resolution [14].

Fig. 1 shows the RTT measurement approach overview
(Detailed descriptions of the initiator, Google Pixel 2 [15],
and responder, WILD fit2 [16], are given in Section 3.1). The
process begins when an Initial FTM Request is broadcast
from the initiator. The system records the timepoint,¢;, when
the Fine-Timing Measurement, FTM signal is emitted from
the responder and the timepoint, ¢;, when the signal arrives
at the initiator. After the internal processing at the initiator,
an acknowledgement (ACK) is sent at timepoint, 3, from the
initiator which reaches the responder at timepoint, t;. To
improve the measurement accuracy, the round-trip time,
RTT is determined by an average of, 1, round trips [14].

RIT :% (iu(m—itl(m)
K=1 K=1
_%(Z t5(K) — Z @(K)). ()

K=1 K=1

Then, the distance between the initiator and the res-
ponder, d, can be calculated using d = RIT - ¢/2, where, ¢,

is the speed of electromagnetic wave propagation. The initia-
tor and responder clocks do not need to be synchronized as
time differences between readings taken by the same clock
are calculated. However, if the clocks are not stable and are
subject to drift, reference [13] describes a correction includ-
ing clock offset, eq. (2), to further reduce the ranging errors.

v (t;) = v(ti) +0- (6 — tic1), @)

where v(t;) is the clock offset relative to the true signal
arrival time at current timepoint, ¢;. v is the clock skew or
the rate of change of the clock offset. In this paper, we do
not apply this time offset cancelation as we analyzed the
raw data characteristics from the initiator (mobile phone).
We will consider this in future work.

FIM is considered to be the next generation of Wi-Fi
based IPS [17]. The FTM protocol is supported by state-of-
the-art Wi-Fi chipsets [18] and all Android OSs later than
Android Pie (version 9.0) also support Wi-Fi RTT signal
processing functions. It means that commercial off-the-shelf
(COTS) MTs can be used in a Wi-Fi RTT based positioning
system without any extra hardware (on the receiver side).
Although the fundamental principle of Wi-Fi RTT measure-
ment has been deeply investigated [19], as far as we are
aware, there has been little research focusing on applying
this technology to realize a positioning system.

Investigation of the performance of Wi-Fi RTT devices in
real-life environments is extremely helpful to gain a better
understanding of this technology and to motivate a variety
of potential applications. Hence, in this research, our main
contributions are:

1. Quantifying the detailed Wi-Fi RTT ranging perfor-
mance in a variety of working modes and environ-
ments, which includes determination of Systematic
Bias, the Minimum Ranging Interval Limitation and
Maximum Stable Working Range. Note such RTT
performance data is not currently part of (AP and
smartphone) device manufacturer’s data sheets; we
recommend that it will be useful to include these in
future. (see Section 3.3)

2. Proposing, demonstrating and proving the benefits
of a new systematic bias removal process by apply-
ing it with existing least-square positioning methods
(see Section 3.4).

3. Proposing a novel Weighted Concentric Circle Gen-
eration (WCCG) method to overcome issues of no or
multiple intersect points in trilateration when using
Wi-Fi RTT to implement an IPS. (see Section 4.2)

4. Developing a new Clustering-based Trilateration
(CbT) method for the Wi-Fi RTT based IPS to improve
its accuracy and reproducibility. This method can be
applied for static positioning for the case when
enough ranging measurements exist. It can also be
applied along with WCCG for dynamic motion track-
ing. (see Section 4.3)

5. Implementing and demonstrating an IPS based on
Wi-Fi RTT using commercial devices (APs and
smartphones) with the above new techniques. (See
Section 5)

This paper is structured as follows: Section 2 surveys

ranging technologies, positioning methods and issues in
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traditional IPSs. Section 3 presents our first main contribu-
tion which is the detailed Wi-Fi RTT ranging performance
in an indoor office-type room and the systematic bias
removal process. Section 4 introduces our new WCCG &
CbT positioning algorithms. Section 5 presents the results of
static positioning and dynamic motion tracking to demon-
strate the performance of our design of Wi-Fi RTT-based
IPS and compares these with the best existing positioning
methods and with Cramer-Rao Bound (CRB). Finally, the
last Section 6 gives the conclusions and future work.

2 RELATED WORK

Position determination or localization involves several sub-
processes. Ranging is the process that determines the dis-
tance between two things, e.g., a transmitter and receiver.
There are different ranging methods but two of the most
common are RSSI (e.g., traditional Wi-Fi and Bluetooth Low
Energy, BLE) and Time of Flight (ToF) or Roundtrip Time of
Flight (RToF) (e.g., Global Positioning System, GPS, Wi-Fi
Round-Trip Time, RTT). To determine the 2D or 3D position
in space usually requires comparing distance measurements
from 1 receiver with respect to 3 or more transmitters. Tri-
lateration often uses 3 transmitters to calculate a position in
a 2D space (the focus of this paper). Multilateration can be
regarded as a more general case of trilateration. A further
distinction can be made between these terms, when the ToF
is multiplied by the propagation speed, it is termed a
pseudo-range [20] (as used by multilateration) in contrast to
the true range (as used in trilateration).

2.1 Types of IPS
Many indoor positioning systems have been developed
based on different technologies such as Wi-Fi [21], Blue-
tooth Low Energy (BLE) [22], Magnetic Field (MF) [23],
Pedestrian Dead Reckoning (PDR) [3], Radio Frequency
Identification (RFID), Ultra-wideband (UWB), Light Detec-
tion and Ranging (Lidar) [24], [25], [26], [27], [28], visible
light [29], computer vision [30], acoustic base systems [31]
and Li-Fi [32], etc. Visible light and Lidar technology have a
particularly high ranging accuracy (millimeter level). How-
ever, they are not suitable for an IPS when the surroundings
are changing often or with crowds of moving people. The
main reason is that the ranging process requires a Line-of-
sight (LOS) between transmitter and receiver. MF and PDR
based IPS, are both based on micro-electromechanical sys-
tems (MEMSs). The MF IPS faces the same issue as finger-
printing system requiring the establishment of a radio map,
while PDR has the problem of error accumulation over time
due to a drift in the accuracy of the sensors. The acoustic
IPS, gives accurate positioning, but the short range of acous-
tic signals and the effect of background sound noise make it
unsuitable for a ubiquitous localization system. Thus, we
will discuss other radio frequency (RF) based IPSs (Wi-Fi,
RFID, BLE and UWB) in detail, which are more practical.
When implementing an IPS, positioning accuracy, appli-
cable environments, and hardware costs are three principal
factors to be considered. So, we present in Table 1, a review
and comparison of the most popular IPSs based on different
technologies.

TABLE 1
IPSs Based on Different Technologies

IPS accuracy Signal range Hardware cost

(plusand  (Indoor, LOS) (minimum
minus) requirement)

Wi-Fi 1.8-6m 100 m £30 - 50
[33], [31]

RFID <10 cm 1-2m £10-30
[31]

BLE40 Im-25m 70-100 m £20 - 40
[31]

UWB <10 cm 10m £40 - 60
[31]

In Table 1, each of these technologies has different
strengths and weaknesses. An important point is that for
almost all of these technologies additional hardware has to
be installed in the environment with additional costs, except
for Wi-Fi for which access points are already widely
installed in most buildings for local wireless network serv-
ices. As for the user side, BLE and Wi-Fi are integrated into
smartphones whereas RFID and UWB are currently not but
will need to be if they are to be used for positioning. Due to
the small signal ranges indoors, RFID and UWB are not suit-
able for large indoor spaces although they have much
higher accuracy. Consequently, Wi-Fi RTT as the latest tech-
nology in Wi-Fi devices seems to be a promising choice for
more accurate IPS without additional hardware installation
costs.

2.2 Position Estimation
2.2.1 Trilateration

Trilateration positioning [34] uses three distance measure-
ments to transponders whose positions are known, to deter-
mine the two-dimensional (x, y) coordinates of an unknown
position. It is necessary to obtain the distances between the
Access Points, APs and the Mobile Terminal, MT (carried by a
user) to determine the location of users.

Fig. 2, shows the two-dimensional (z,y) plane. The posi-
tions, O; at (z;, y;) are the locations of the AP;s, where i is
the AP index. P is the position of the MT at the intersection
of three ranging circles with radii, 7, rs, 73 being the
respective distances to the three APs calculated according
to eq. (3). The position of P(x,y) can be calculated by eq. (4).

\/(l‘ — 1)’ + (y— )’

= @)+ - )
= (o -2+ (- )

r%—r%ﬁ—mg—x%—i—yg—yq :2{:15271'1
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Trilateration [35] can be based on different ranging prin-
ciples, e.g., RSSI, ToF and RToF.

The free-space path-loss model is widely used to esti-
mate the distance between a receiver and a transmitter,
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Fig. 2. Trilateration principle.

which is known as the log-distance path loss model [12].
The RSSI-based positioning system is popular in wireless
sensor network (WSN) node localization research [36].
However, in Wi-Fi RSSI based applications, due to the com-
plexity of 3D surroundings, the value of RSSI can be
affected easily by nearby static or moving objects made
from different materials, shadowing effects and multipath
effects [2]. All these lead to inaccurate ranging results and
poor positioning accuracy. Consequently, RSSI based WPS
tends to be fingerprinting-based positioning systems.

Time of Flight, ToF means the time taken for a signal to
travel from a transmitter to a receiver. In the ToF and RToF
methods 7,7, and 73 are measured and eq. (4) is used to
find the (z,y) coordinates. The distance is calculated by
multiplying the speed of light by the time difference
between the time when a signal transmitted arrives at a
receiver. Wi-Fi device based ToF [19] requires special hard-
ware calibration and synchronization to give accurate range
measurements, which makes it costly. Wi-Fi RTT intro-
duced in Section 1, directly obtains ranges, and can be easily
implemented in standard commercial Wi-Fi APs.

2.2.2 Trilateration Issues

In ideal trilateration, all ranging circles should intersect at a
single point. However, because of ranging errors, they can
either have more than one intersection point or no intersec-
tion point. In practical use, there can be more than three
APs to obtain multiple ranging circles which will result in
more complicated intersection cases. Many methods [10],
[371, [38], [39], [40], [41] have been proposed to calculate the
optimal estimate of position from three ranging circles. In
the case when multiple intersection points are calculated,
statistical models can be used to quantify the uncertainty of
the position estimation [37]. If an area intersected by multi-
ple circles can be calculated, the most common way is to cal-
culate the centroid as an estimation of the position [10].

For some special situations with multiple intersecting
points, [38], [39], [40] proposed specific solutions. [38] pro-
posed a method called a Line Intersection Algorithm. It
deals with a situation where three lines determined by three
pairs of circles can intersect at a single point and this point
is considered to be the estimated result. [39] directly took
the middle point of the shortest line formed by each pair of
intersection points as the estimation result. The Closest
Point Algorithm proposed in [40] chose a point from the
smallest circle as the estimation result. [41] recommended

to use a circular annulus (radius = r,q, & error) based on a
raw ranging measurement and its positive and negative
error. Three circular annuli are more likely to have an inter-
section area. Then, the centroid of all points intersected by
six circles (each circular ring has two circles) is viewed as
the estimation value.

Although all these methods proposed solutions to improve
the trilateration performance, they can only deal with specific
intersection situations. A more general intersection method is
required. Thus, we propose a novel method called Clustering-
based Trilateration (CbT) to deal with the trilateration inter-
section issues to improve the positioning accuracy.

2.2.3 Least Square Estimation

The traditional positioning estimation method for trilatera-
tion is a Least Squares (LS) [42] estimation, which minimizes
the sum of the squares of the residuals of each calculation.
The aim of the LS method is to estimate, ®, depending on
¥ = ®0O.The matrix form can be expressed as,

¥ o1 ] [61
=L ®)
wk, ¢{ 9“

where O is the parameter vector to be estimated, represent-
ing coordinates in the positioning (can be 2D or 3D). ¢! =
[of ... o] is the i-th coefficient of @, y; is the i-th corre-
sponding result. Eq. (4) is an example of eq. (5), e.g., 6, =
z, 02 = yand W is the left sidAe of eq. (4). According to LS,
the estimation of ® (noted by ©) has a solution:

6= (@) ' o, (6)

The above solution is applied when ®” ® is not singular.
If not, singular value decomposition (SVD) should be used
to calculate O [43].

2.2.4 Recursive Least Square Estimation

Other than research focused on finding the intersections of
ranging circles, an efficient and well-known method to esti-
mate the MT location is called Recursive Least Square (RLS)
estimation [44]. RLS is a popular and practical algorithm
used extensively in signal processing, communications, and
automatic control systems [45], [46]. Compared to the LS
method, the RLS algorithm minimizes the sum of the
squares of the residuals in an online and efficient manner
without repeating the least squares estimation at each step.

Based on egs. (5) and (6), let, ®;, be the position estima-
tion at current step, k. As the RLS method recursively esti-
mates the parameter, ©), is deduced from the previous step,
k—1, ®;_1, namely, O, = f (@k,l). The recursive equations
for RLS are:

0,=0,, + Ko )
_ T @

&=V — .01 (®)
Ky = Py, ¢y, 9)
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Here, @0, ®, should be given.

Numerous publications on the solution of the trilatera-
tion range equations have been published. [45] presented a
good example of RLS for trilateration positioning with low
computational complexity. The algorithm is applied to real
measurement data of a UWB indoor positioning system in
3D space.

2.3 Geometry Impact on Positioning Accuracy
Geometry impact is the deployment of AP nodes at known
locations impacts the localization performance [47]. The
positions of AP nodes are also known as landmarks. Two
main factors influence the positioning performance namely,
the deployment geometry and the number of landmarks.
An optimized placement design can efficiently minimize
the localization error. It is better to avoid the error caused
by geometry impact, rather than try to compensate for this
later.

According to [47], it claims that for landmark deploy-
ment, a square shape (4 landmarks) plus one node at the
center of the mass has been found to be an optimal deploy-
ment. As regards the quantity of nodes, a small number of
nodes can achieve a good positioning result when there is
enough coverage of the environment. In [48], optimal 3D
landmark placement research is presented using the Fisher
information matrix to find the best positions to place sen-
sors to give the best localization result.

2.4 System Performance Evaluation

We assessed the performance of our new algorithm in terms
of average error, standard deviation, statistical analysis and
compared our performance with the best existing well-
known methods and with the Cramer-Rao Bound (CRB)
[36] also known as Cramer-Rao lower Bound (CRLB).

To calculate the CRB, let A be the estimation parameter;
x,0 be the estimation and standard deviation of unbiased
methods. As multiple unbiased estimators are employed,
the likelihood function is the product of individual proba-
bility distribution functions, pdfs as shown in equation (12)

. B n ; _L B 2
p (2 A)_gx/ﬁoie}(p[ 20?(35 A)], (12)

Where, n, is the number of unbiased estimators. o; is the
standard deviation of the i-th estimator. According to the
CRB definition, for any unbiased estimators, the variance of
A should satisfy the condition,

1 1 1
A) > = - = R
V&I'( ) = I(A) _E |:32 lnal‘ig;v: A)i| ZZL:O :12

(13)

where I(A) is the Fisher information criterion [49]. When
the variance of an unbiased estimator equals var(A), it
has the lowest mean squared error among all unbiased
methods [50].

CRB is widely used in wireless sensor network (WSN)
node localization performance evaluation [51], [52]. In an
application of a RSSI based ranging measurement localiza-
tion system [36], the authors proposed a novel iterative tree
search algorithm (I-TSA) in comparison with the maximum
likelihood estimator (MLE) and multidimensional scaling
(MDS) and proposed CRB as a performance reference to
show the advantages and limitations of proposed new algo-
rithms and systems. Similarly, [52] introduced a Quantized
Cramer Rao Bound (Q-CRB) method to adapt the CRB, to
characterize the behavior of location errors of the LS posi-
tion estimation for various system parameters, e.g., granu-
larity levels, measurement accuracies, and localization
boundaries.

3 WiI-FI RTT RANGING PERFORMANCE ANALYSIS
AND RANGING CORRECTION

3.1 Wi-Fi RTT Initiators and Responders

RTT ranging technology requires an initiator, also called a
sender, to initiate RTT ranging callbacks and a responder to
act as ranging target (Fig. 1). A MT with a RTT supported
wireless card was programmed as an initiator and a Wi-Fi
AP that supports the IEEE 802.11mc protocol was config-
ured as a responder. In our experiments, the Google Pixel 2
[15] smartphone was chosen as the testbed for the initiator
and the Wi-Fi Indoor Location Device (WILD) fit2 [16] was
chosen as the responder, because they fully support the
RTT technique.

If an Android smartphone is programmed as an initiator,
the Android Operating System (OS) has currently a mini-
mum requirement of version 9.0 (Android Pie) of the OS
together with a SDK version greater than 28. Note that for
all OSs later than Android Pie, Google has currently limited
the scanning rate for Wi-Fi APs broadcasting probe requests
to 4 times every 2 minutes in active scanning mode and
only 1 time every 30 minutes in passive scanning mode,
which is called ‘scan throttling’ [53], [54]. Due to this limita-
tion on scanning frequency, it is difficult to realize a precise
IPS using Wi-Fi RSSI based IPSs. Fortunately, the RTT rang-
ing approach is an independent callback between the MT
and AP, which has no such limitation.

WILD fit2 [16] is a ready-to-use Wi-Fi RTT gateway
released by Compulab,' supporting the IEEE 802.11mc pro-
tocol. A WILD fit2 AP can be configured as a responder to
work in both 2.4 GHz and 5 GHz bands with three different
channel bandwidths (20 MHz, 40 MHz, and 80 MHz). Our
experiments show that the RTT ranging result and signal
characteristics can be quite different for different channel
bandwidths. If multiple responders set up ranging callbacks
with the same initiator simultaneously, the initiator can only
process ranging callbacks in a serial manner. It means that it
will take at least m times the callback processing interval to
obtain all ranges, where m is the number of connected res-
ponders. Also, it is important to assign responders different
channel numbers to avoid RTT processing conflicts. In this
paper, we used four WILD fit2 APs (with knowledge of
their position coordinates) to implement our positioning
system which could be extended to higher numbers of APs

1. https:/ /www.compulab.com/
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Fig. 3. RTT data package structure.

to investigate if the system performance can be improved in
future work.

3.2 Wi-Fi RTT Ranging Data

The RTT Ranging data package is used at the initiator and
each package includes 7 parts in the Android OS. The data
package structure is shown in Fig. 3.

The MAC address is the identity of the responder. The
ranging result is the average distance between the initiator
and responder in units of millimeters calculated by the MT
OS. It is calculated from 7 successful ranging attempts and

the standard deviation is calculated from these results as
well. The RSSI in units of dBm is the signal level of the rang-
ing callbacks. The number of range calculation trials and the
number of range calculations are recorded as well. Finally,
the time stamp (generated from the Android OS) records
the time at which the data package was generated, which is
recorded with an accuracy of milliseconds.

We conducted tests to find the basic RTT ranging accu-
racy and characteristics. Both initiator and responder were
placed at fixed positions and there was a clear line-of-sight
between them. The test environment was a normal office-
type indoor environment, where both MT and AP were
placed at a 1.4 m height supported by plastic tripods.

Fig. 4 shows typical examples of the basic characteristics of
the RTT ranging results and RSSI obtained. Fig. 4a is a histo-
gram of the RTT ranging results, where 2700 data package
were recorded over 180 seconds giving a normal distribution.
Fig. 4b shows the RTT ranging results chronologically during
the 180 seconds of data collection, showing that the ranging
results did not drift with time. A glitch appears after a few
seconds which is caused by manual operation of the MT. The
corresponding RSSI results are shown in Figs. 4c and 4d
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Fig. 4. Example of basic characteristics of RTT ranging results and
RSSI. (a) Ranging results histogram, (b) Chronological ranging results
within 180 seconds testing time, (c) RSSI histogram, (d) Chronological
RSSI within 180 seconds testing time.

TABLE 2
RTT Ranging Performance Indicator in Different Bandwidths
Bandwidths 20 MHz 40 MHz 80 MHz
Mini R ing | |
Limitation (Maximum Scanning | 4175 | 38ms | 3sms
€ | (24Hz) | (26H2) | (29H2)
Frequency)

Maximum Stable Working Range 25m 20m 14 m
Linear Fitted Slope, s 1.007 0.976 1.079
Systematic Bias, €55 -1.949m | 1.776m | -4.501m

RMS Error of Ranging Results 1.018 0.821 0517
(without systematic bias), egys : m : m ' m
Error Probability | Mean, it | 4e-16m | 1.7e-15m | 8.3e-17m
Distribution Function
(Ranging Noise Stapd_ard
Model) N, Deviation, | 1.073 m 0.651m 0.273 m
o

showing that the signal level is very stable and with no inter-
ference or environmental change. The noisy head and tail in
Fig. 4d are caused by manual operation of the initiator. It
shows very stable RSSI values during the test, but it is sensi-
tive to interference for example slightly touching the screen
of the MT.

3.3 Wi-Fi RTT Ranging Performance for Different
Channel Bandwidths

In tests of ranging performance using different channel
bandwidths, we defined and tested two important charac-
teristics of Wi-Fi RTT ranging: The Minimum Ranging Inter-
val Limitation and the Maximum Stable Working Range.
First, the minimum ranging interval limitation is the short-
est interval between RTT ranging requests that the initiator
can achieve in our testbed. ‘Ranging failed” reports are auto-
matically generated by the Android OS if the ranging
request is sent sooner than this limitation. Second, the maxi-
mum stable working range means that, within a certain dis-
tance, the callback link can be established and the rate of
‘ranging failed’ reports is less than 20 percent (experimental
based empirical value). If the initiator and responder are
placed apart further than the stable working range, it is
hard for the responder to be detected by the initiator. When
the callback link is established successfully and then the ini-
tiator and responder are moved further apart than the stable
working range, the RTT responder is still capable of provid-
ing ranging results but ‘ranging failed” is constantly
reported. Both characteristics depend on the bandwidths
used. Detailed test results are listed in Table 2.

A Wi-Fi AP can be configured to work in one of three chan-
nel bandwidths: 20, 40, 80 MHz. This is the same for RTT sup-
ported APs. The official document from Android gives a
statement [55] about the ranging accuracy in different channel
bandwidths as “a range estimate is expected to have the following
tolerances: 80 MHz: 2 meters, 40 MHz: 4 meters, 20 MHz: 8
meters”. To investigate the ranging performance, we designed
experiments to place the initiator at fixed spacings every 0.5
meter from 0 to 20 meters along a straight line between the ini-
tiator and responder. Three groups of tests were conducted
for 20, 40 and 80 MHz channel bandwidths, respectively. At
each test position, the initiator collected data for 5 minutes
with the maximum scanning frequency listed in Table 2.
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Fig. 5. RTT ranging test results in different bandwidths, (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz.

Figs. 5a, 5b and 5c shows the ranging performance of the
20, 40 and 80 MHz channel bandwidths, respectively. The x-
axis is the true distance and the y-axis shows the measure-
ment results. In each of these figures, the red points are the
average of ranging results at one test position while the red
shaded regions show the standard deviations. The small
purple dots are the raw ranging data. The dashed green line
is the ground truth and the blue line is the linear fit to the
average ranging results. All the lines of linear fit are almost
parallel to the dashed lines of ground truth, which means
that the differences between the blue line and dashed green
line can be identified as a systematic bias. The equation of
the linear fit is

Tm = 8- T¢+ €sys, (14)

where 7, is the measured ranging result, r; is the ground
truth, s is the slope of the linear fit line and e,y is the

systematic bias. The calculated parameters in eq. (14):
slope, s, and systematic bias, e, are listed in Table 2. The
systematic bias can be removed using eq. (15) derived from
eq. (14)

- esys

r="T= s )

(15)
where 7, is the ranging result, and r is the optimal estimate
of range without systematic bias. After removal of the sys-
tematic bias, the Root Mean Square (RMS) error of ranging
results,egyg, in different bandwidths has been calculated
(as shown in Table 2), which indicates the accuracy of the
ranging without systematic bias.

We also plotted histograms of the errors at all test points
after removal of the systematic biases, then fit normal distri-
butions to them as shown in Figs. 6a, 6b and 6c for 20, 40
and 80 MHz bandwidths, respectively. All histogram bars

1 1
=20 MHz Error Histogram =40 MHz Error Histogram =80 MHz Error Histogram
""" Fitted Normal Distribution =-===Fitted Normal Distribution —=-===Fitted Normal Distribution
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Fig. 6. Error probability distribution function after removal of systematic biases in (a) 20 MHz, (b) 40 MHz, and (c) 80 MHz bandwidths.



MA ET AL.: WI-FI RTT RANGING PERFORMANCE CHARACTERIZATION AND POSITIONING SYSTEM DESIGN 747

1 .

——RLS Error without System Bias ||

0.8
—*—RLS Error with System Bias
—=—LS Error without System Bias
™ 061 —v—LS Error with System Bias I
(m] ¥
5 ¥
0.4r s 4 A 1
02t & ¥ :
O &« L ! I L ! 1 1
0 1 2 3 4 5 6 7 8

Error Distance(m)

Fig. 7. Error CDF comparison between with and without systematic bias.

are set to have the same width in meters. The fitted result,
red dashed curve, gives a distribution of n, ~ N(u,0?),
where n,, is the error, u is the mean,o is the standard devia-
tion. Detailed data for these three distributions is listed in
Table 2. In Fig. 6, the fitted normal distribution is the Gauss-
ian noise model of ranging. So, eq. (14) can be rewritten as

T =8 T+ €sys + M- (16)

It can be concluded that the ranging performance for dif-
ferent channel bandwidths is quite different from each
other. For different types of environment and conditions,
the responders should be configured to have the most suit-
able channel bandwidth. For example, 20 MHz is best for
large indoor open spaces because it has the largest stable
working range; In the case of large numbers of responders
in small environments, 80 MHz is more suitable because the
small ranging interval limitation can give high ranging data
collection rate. 40 MHz is best as a default setting. There-
fore, the authors selected the 40 MHz channel bandwidth as
the configuration for all the following experiments.

3.4 Systematic Bias Removal Test

The systematic bias removal process was demonstrated and
validated by applying it to a positioning system based on
the trilateration principle of egs. (3) and (4). The positioning
algorithms were chosen to be two well-known methods
Least Square (LS) and the Recursive Least Square (RLS) as
described in Sections 2.2.3 and 2.2.4. We compared the posi-
tioning results estimated from the raw ranging data and the
results estimated from ranging results after the systematic
bias removal process.

In this validation test, 4 APs were placed in a square pat-
tern in a 12 m x 8 m room and the test was repeated 48
times at each of 12 different test positions. At each test posi-
tion, the MT was oriented horizontally in each of four direc-
tions for each of four individual tests. Fig. 7 shows the
Cumulative Distribution Function, CDF of errors to com-
pare the effect of systematic bias removal with the LS and
RLS methods, respectively. The blue thick curve and green
‘x” marked curve are the RLS positioning result without
and with systematic bias, respectively. The orange ‘[’
marked curve and red ‘A’ marked curve represent the LS
result without and with systematic bias, respectively. The
CDF curves directly show that our bias removal process is
highly effective in reducing positioning error.

TABLE 3
Effect of Systematic Bias Removal
Average Standard 90% 60%
Error Deviation CDF CDF

Recursive Least  1.165m 0.881 m 1.975m 1.113 m
Square
Recursive Least  1.744 m 1.302 m 2.389 m 1.622 m
Square with
bias
Least Square 1494m  0881m  2436m 1.600 m
Least Square 2.284 m 1.238 m 3451 m 2.395 m

with bias

We also calculated the average error, standard deviation,
90 percent CDF and 60 percent CDF for each test, as shown
in Table 3. With systematic bias removal, the average error
is reduced from 1.744 m to 1.165 m for RLS; and is reduced
from 2.284 m to 1.494 m for LS. The standard deviation for
both methods decreases to 0.881 m. Also, the accuracy is
improved for both algorithms at 60 percent CDF (RLS: by
0.509 m, LS: by 0.795 m) and at 90 percent CDF (RLS: by
0.414 m, LS: by 1.015 m).

Consequently, we conclude that our new systematic bias
removal process is highly effective in improving the posi-
tioning accuracy when it is applied with two existing well-
known positioning methods. In the following Section 4, the
ranging performance indicators, ey, ermg, 4 and o in
Table 2 will be used to compare with our new positioning
WCCG and CbT algorithms.

4 WI-FI RTT POSITIONING SYSTEM AND CORE
ALGORITHMS

4.1 System Framework
Many characteristics of Wi-Fi RTT ranging were measured
in real-life experiments in the last section. In this section,
the authors present a design for a new positioning system.
We designed a three-step positioning approach as shown
in Fig. 8. Step one is a data collection and pre-processing
step, where raw data is recorded, and the systematic bias is
removed. According to the data in Table 2, the systematic
bias can be removed if the working bandwidth of the APs
are known to the initiator (the working bandwidth informa-
tion can be obtained from the normal broadcasting Wi-Fi
probe request package). Then, step two is the positioning
approach. This step combines a process of Weighted Con-
centric Circle Generation (WCCG) to deal with the issue of

— Original Data AyStEmEGE B Step One
Removal
Weighted Mean Shift
— Concentric Circle Clustering Based |— Step Two
Generation (WCCG) Trilateration (CbT)
Filtering / Map : :
Matching Final Trajectory Step Three

Fig. 8. New positioning system flow chart.
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Fig. 9. lllustration of Weighted Concentric Circle Generation (WCCG) to
solve the no intersection issue.

no or insufficient intersection points with the following pro-
cess of mean shift CbT. Step three is the process of position-
ing result optimization. A digital filter, for example, a
Kalman filter, or another algorithm such as map matching
is applied to improve the positioning results, especially for
dynamic motion trajectory tracking.

4.2 Weighted Concentric Circle Generation (WCCG)
In a two-dimensional Euclidian geometry, the location can
be found by using trilateration to calculate the intersection
points of circles using the known positions of the circle cen-
ters with the corresponding measured ranges as radii. Two
circles have three cases of intersection, which are: no actual
intersection, one single degenerate point and two distinct
points. Assuming we have A number of ranging results
from different responders to one initiator, then the number
of intersection points should be 2 # Cy = M(M — 1) which
includes both actual and imaginary points. In our case, as
we have four responders, M = 4, so twelve (six pairs of)
intersection points can be determined from a single ranging
data package.

In an ideal situation, when the range measurements are
stable and sufficiently accurate, each pair of ranging circles
give at least one actual intersection point. However, due to
ranging errors, the intersection points can be calculated
either at wrong positions or as no actual intersection point.
In our case, the no intersection case can often happen after
removal of the systematic bias (1.776 m in the 40 MHz band-
width case), which leads to lack of intersection points for the
following positioning process. Furthermore, in the 20 and 80
MHZz cases, the negative systematic biases (if there is no bias
removal process) can make the ranging result always shorter
than the true distance. This may lead to a problem that even
with systematic bias removal, there is still no intersection
that can be found. To deal with this issue, we proposed the
WCCG method to generate a group of concentric circles to
increase the chance of finding intersection points.

Assuming the ranging result without systematic bias is r,
and the ranging error is ¢;, then the radius of a concentric
circle should be r; = 7+ ¢;. In Fig. 6 and Table 2, we have
a known error probability distribution n,,, ~ N(u, 0?) which
to determine the setof e = [e1,€9, -+,&i,-*, €1 -

Fig. 9 shows how the concentric circle method can solve
the problem of no intersection. Both thick circles are two
ranging results and all dashed thin circles are concentric
circles to the two blue circles. The two thick circles have
no intersection, but the dashed thin circles can supply

1
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Fig. 10. Example of importance sampling.

intersection points. In this way, the issue of no intersection
points can be fixed.

Hence, we need to generate a concentric circle group
C = [C1,Cy,...,Ci,...,Cy] to create intersections for the
situation in Fig. 9. All circles in C have the same center
which is the coordinate of the responder and each of C; cor-
responds to a radius, r;. Then we use importance sampling
[56] to generate the set €. According to the basic importance
sampling principle,

(17

5 (=5 LI xing

i

where E,(-) denotes the expectation value for X; ~ ¢, m is
the number of samples in €. f(-) is a function of X;. p(-) is
a probability density function which is the desired distribu-
tion; ¢( - ) is the probability density function of the proposal
distribution, n,, ~ N(u,0?), which we found in Section 3.3.
Here, w = p/qis a weight of samples from ¢. This converts
a uniformly distributed random sample distribution to the
normal distribution fitting the error histogram.

Fig. 10 is an example of an importance sampling result,
where the (blue) dashed curve is the proposal distribution,
the (purple) bars are the sampling result histogram. The
(green) impulses are randomly generated uniformly distrib-
uted values. After the process of importance sampling, the
red curve, which is the sampling result fitted normal distri-
bution, is matched with the distribution we wanted. With
the methods of importance sampling, there should be no
limitation to the shapes of proposal distributions that can be
achieved. In future development of € generation, the pro-
posal distribution can be a more complicated model or man-
ually adjusted to get a better positioning result.

In this way, each single ranging result can generate a
group of concentric circles, which can be considered as a
simulation of multiple noisy measurements recorded at a
fixed position. After the WCCG process, all intersection
positions will be calculated for the next process of Mean
shift clustering.

4.3 Clustering Based Trilateration (CbT)
Trilateration requires at least three range measurements
corresponding to different circles to determine a location.
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Fig. 11. Schematic diagram intersections of concentric circle groups.

Theoretically, four intersection points can be calculated
from two pairs of circles and two of them should appear at
or congregate at the same location which should be the esti-
mated result. Fig. 11 shows the intersections between three
concentric circle groups (each group has 3 circles), where
group A and B have two groups of intersection points and
the same for groups B and C and; groups A and C. There is
a total of 27 intersection points assembled in the dashed cir-
cled area where the optimal estimate of the position of the
initiator should be.

In position estimation, the mobile terminal can be esti-
mated to be within the area with the highest point density.
So, we propose a method to automatically cluster all calcu-
lated intersection points and find the highest density cluster
area, as a practical solution to estimate the position of the
initiator.

We used the clustering-based algorithm in two different
types of positioning scenario. In a static positioning sce-
nario, both MT and APs are placed at fixed positions. In this
case, all ranging results during a certain time are processed
together to calculate all intersection points and then mean
shift clustering is used to determine the MT’s location. In a
dynamic positioning scenario, this method is used along
with WCCG we proposed in Section 4.2. The WCCG can
supply enough ranging circles based on a single range read-
ing. It makes this process more like a simulation of multiple
measurements at fixed positions.

4.3.1  The Principle of Mean Shift Clustering

The mean shift clustering algorithm is a non-parametric
iterative algorithm that is widely used in mode recognition,
clustering, etc. [57]. Both the shape and the scale of a cluster
can be identified based on different kernels, neighborhood
functions and mean shift clustering bandwidths. It also has
an especially important feature that there is no requirement
for the number of clusters and cluster centers to be known a
priori, which suits our case as we do not know how many
clusters we want and where they are.

Several parameters and functions should be known or
pre-set before applying the mean shift clustering algorithm.
First, a kernel K (-) function which is normally set to be a
Gaussian Kernel [58].

1 .
efon(d/B)2

V2B '

where d is the distance determined by the neighborhood
function, Nyeighpor(-). B is called the mean shift clustering

K (d) = (18)

bandwidth which is a pre-set parameter to determine the
scale of the cluster. Second, sample set II; includes all inter-
section points, p, calculated from the ranging results. We
have Nycignbor(-) which is the neighborhood function to
determine the neighbor points around a sample position p,
where p € II;. Here, we define N, ignpor( - ) to be the Euclid-
ean distance threshold to select nearby points, so that for
p = (x,y) we have

Nucigir®) = (0 —p) =/ (e =2 + (y—9). (19

For the first time of clustering, a sample point is ran-
domly selected. Then the mean m(p), which is also called
the mean shift, of the intersection points near the randomly
selected intersection point, is calculated using [57]

1.pt K(p' —p))p!
piEPi ( 2 _ ﬁ _ pl+1 ) (20)
Ypep K (' —p))

m(p’ =

The cluster center, p', at iteration, [, is moved to the newly
calculated position, p, and is used as the input position for
the next iteration, m(p'™!). Iterations of, p, and updating
continue until p =p when the position no longer moves,
to finally find the cluster center, which is the end of the iter-
ations for the first cluster.

All points in found clusters are excluded from the follow-
ing iterations to find the next cluster and a new first sample
point is randomly selected from amongst the remaining
points. This is repeated several times until all samples are
classified to different clusters.

4.3.2 Mean Shift Clustering-Based Positioning

After the clustering process, the cluster with the highest
density of points is identified as the main cluster with the
cluster center C,, = (zy,,y,). However, due to the ranging
errors, the intersection area we want can be broken into a
few different clusters close to each other. Hence, we identi-
fied sub-clusters with cluster centers C!, = (z,,y.,),
where 7 is the index number of the sub-cluster, which must
also be considered as including points contributing to the
optimal estimate. The distance between all clusters and the
main cluster (center to center) is calculated and if the dis-
tance is shorter than a threshold, T;..., the cluster will be
named as a sub-cluster.

The execution of sub-clusters selection requires two
parameters to be specified, which are the mean shift band-
width, B, and the threshold, Ti.... First, we set the mean
shift bandwidth, B, to be the RMS Error of Ranging Results
(without systematic bias), epus, where eppygs is listed in
Table 2. It is reasonable to believe that intersection points
representing the position of the initiator should be assem-
bled within a circle cluster with a radius of epys. Another
option for B is to use the standard deviation of the Error
Probability Distribution function, o in Table 2. However, in
our case, the tests for eryg and o showed that eryg gives a
better clustering result. Second, the threshold for sub-clus-
ter, choice Ty is set to be twice the maximum error in the
Error Probability Distribution function histogram from
Fig. 6 (respectively for different working bandwidths). It
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Fig. 12. Example of mean shift clustering.

means that if the detected cluster center is further than the
maximum of the ranging error from the main cluster, then
the points in these clusters are unlikely to represent the initi-
ator position.

Fig. 12 is an example of a mean shift clustering and posi-
tioning result. In this figure, the (green) square is the ground
truth of the MT and the (red) ‘x’ symbol is the estimated
position by our method. The (blue) thick circle is the main
cluster, the (red - green) dashed-line circles are the sub-clus-
ters and the (green) thin dotted-line circles are the rest of
the detected clusters which are all identified as false inter-
section point clusters.

The final estimated position is the average coordinate of
all points included in main cluster and all sub-clusters. The
reason we do not calculate the average position of cluster
centers as the estimation is that the sub-cluster has fewer
points than the main cluster. The inclusion of all selected
points in the calculation means that the greater the number
of points a cluster has, the greater contribution it has to the
final estimation.

4.3.3 Algorithm Pseudo-Code

In Step Two of our system shown in Fig. 8, CbT and WCCG
are combined for a complete positioning approach. We
called this combination CbT & WCCG. Fig. 13 shows the
pseudo-code that implements the entire approach. Note
that when there is enough ranging data for a static position,
the WCCG part can be skipped and we can directly calcu-
late the intersection point group P.

4.4 CbT and WCCG Configuration Test and
Computational Cost Evaluation and
Comparison

Our Clustering-based Trilateration (CbT) method requires

enough data packages (ranging measurements) to find the

main cluster clearly and accurately. On the other hand, the
quantity of concentric circles is strongly associated with the
computational cost in the combination of algorithms CbT &

WCCG. Thus, it is important to find an optimized quantity

of concentric circles to achieve a reliable result at a minimal

computational cost.

- |
input ranging data (continually received or imported as an entire
dataset); APs coordinates; Systematic bias, ey, s
output MT_position coordinates

[initialize] Parameter initialization for WCCG and CbT.

WCCG: number of circles k; proposal distribution n,,~N (i, a2);
CbT: Mean shift clustering bandwidth B(egys), for sub-cluster se-
lection T,pect; kernel identification (eq. (18))

loop until no import ranging data

[weighted concentric circles generation]
for each concentric circle
w = p/q calculate importance weight refers to eq. (17)
end for
resampling according to weight set w
get concentric circle group €
calculate all intersection points set P

[clustering]
loop until no points remain in P
randomly select a cluster center p
loop until p = p convergence
NpH =@ -p'™)
p'*! = m(p") = Pp mean shift refers to eq. (20)
loop end
saving C; and count number of points in it
exclude all points in this cluster from P
loop end

[main and sub-cluster selection]

sort clusters, the cluster with the largest number of points is the
main cluster Cy,, saving C,,, = (X, Ym)-

for all j clusters

If |C; - le| < Tsetect

saving Cg,p, = C;

end for

calculate MT_position = mean (C,, + Y.Cl,;)

return MT_position

end loop

Fig. 13. Pseudo-code for the CbT and WCCG algorithm.

We ran evaluation tests in this section based on datasets
collected from the real experiments. Each dataset has 300
readings recorded in a 50 s collection time and each reading
has ranging results from 4 APs. All tests are offline running
in MATLAB (CORE i7, 6 processors; 16 GB RAM), to find
the relationship between critical parameters and calculation
time in our algorithms. Also, we ran LS and RLS algorithms
for the same dataset to compare the computational cost.

Fig. 14 is a typical example of the positioning error
results as a function of data collection time. Each red aver-
age error distance data point is calculated by repeatedly
applying our CbT method 50 times while the shaded region
shows the standard deviation of the results. At first, due to
the brief time for data collection (a small number of data
packages), the positioning results are very unstable, but
both the results and uncertainty reduce to a stable low level
after a certain number of data collection packets. Through
multiple tests, we found that it takes about 7 seconds,
around 40 recordings, on average, to keep the standard
deviation at a stable low level to give a stable positioning
result. This fact shows that the positioning at a fixed
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Fig. 14. Example of positioning error results versus data collection time.

position using mean shift clustering requires about 40 data
readings to give an accurate and robust positioning result
and a longer data collection duration contributes little to
further improving the estimation result.

On the other hand, the computational cost of CbT &
WCCG is strongly affected by the parameter settings in
WCCG and the most important parameter affecting the
computational cost is the number of concentric circles, &, in
the initialization step of the pseudo-code in Fig. 13. Fig. 15
shows the test results of the relationship between the num-
ber of concentric circles and the calculation time. The calcu-
lation time shows a linear increase with a very shallow
slope when we increase the number of circles by 5 circles
for each test. It means that even if k was set as a large quan-
tity, e.g., 100, circles for WCCG, the overall computational
cost is still extremely low.

We also compared the computational cost between our
algorithm and existing well-known algorithms. We did
not use the computational complexity (e.g., the number of
multiplications) as a way to compare the computational
costs because the clustering calculation is based on ran-
domly selecting an initial sample for finding each cluster,
so that it is hard to know how many calculations will be
executed and how many clusters will be found. Thus, we
ran a test to compare the CbT, CbT & WCCG, LS, and
RLS algorithms on the same computational device to
compare the time cost, and the results are shown in

Linear Fitted
—©&— Calculation Time

Calculation Time (s)
N w

-

0 20 40 60 80 100
Number of Concentic Circles

Fig. 15 Relationship between calculation time and number of concentric
circles.

TABLE 4
Calculation Time Using Different Algorithms
CbT CbT & LS RLS
WCCG

Average Time for 0.107 s 1.503s 102.335s 0.273s
300-reading Datasets
Standard Deviation 0.125s 0.217 s 0.594s 0.007 s
Minimum Report - 0.074 s 1.396s 0.033s

Interval

Table 4. We programmed the LS trilateration method in
MATLAB to solve eq. (4) and used publicly available
MATLAB code for the RLS method [45]. We performed
48 different tests with each test using 300-readings and
calculated the average and standard deviations of the
ranges. The ranging time in this test was 0.16 s per read-
ing. Also, the time required to calculate a single reading
data point was recorded to find the minimum report
interval which shows how long our algorithm should
take to report the positioning result. The results are
shown in Table 4. Note that this calculation time does not
include the systematic bias removal process which can be
used with any of these algorithms.

In Table 4, CbT takes the shortest time (0.107 s) to fin-
ish the estimation for the entire dataset being more than
twice as fast as the second fastest algorithm RLS. How-
ever, a single reading is not available to calculate a result
for CbT as it requires multiple readings for clustering.
The minimum time required for CbT should be deter-
mined by the ranging frequency, which means that it
requires time to collect around 40 ranging data to give a
reliable result. To note, both CbT and CbT & WCCG have
larger standard deviations than RLS because the cluster-
ing process is based on randomly selecting the initial
sample for cluster detection. It means that for each ran-
dom choice of first sample, the calculation time will be
different. An important point is that CbT & WCCG, LS
and RLS have minimum report intervals which are less
than the ranging frequency sampling time of 0.16s for 4
APs, so all are complete before the next reading is taken
and, therefore, none incur a penalty in speed which is
limited by the ranging frequency sampling time.

4.5 Kalman Filter Implementation

In step three of our designed system flow chart in Fig. 8, a
digital filter is used to increase our position accuracy for
dynamic motion estimation. In this work, we uses a Kal-
man filter [59]. The Kalman filter is recursive, using the
present input measurements and the previously calcu-
lated state and its uncertainty matrix; no additional past
information is needed. First, we define a state vector at
time t to be:

state (t) = [p (*) } @1)

ve(t)

Where the location p (t) = [2(t) y(t)]" and the velocity
ve (t) = [v.(t) wv,(t)]" in our 2D scenario which assumes
that the object is moving at a constant speed. Thus,
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Fig. 16 lllustration of the experimental environment.

according to [59], to predict the position and velocity, we
must solve the five equations:

&y = Ady
P, = AP, AT +Q
K,=P; H'(HP,H + R)"'
& =&, + Ki(z — HEy)
P.= (1- K.H)P;,

(22)

where, £, is the state estimation, and £, is the updated state
estimation. A is the transfer matrix between states at conse-
cutive time steps, At, which can be expressed as

1 0 At 0
o1 0 At
A=1o0 0 10 | (23)
00 01

B is the control-input model which is applied to the control
vector uy, since we do not have a control-input, u;, = 0. P
is the estimated covariance matrix of the state vector at time
step k based on the output at time step k — 1. Q is the covari-
ance matrix of the Gaussian noise in finding the priori esti-
mation from the transfer matrix A. R is the covariance
matrix of the Gaussian noise in the measurements of the
user’s states. K, is the Kalman gain which describes the
influence of the measurement on the final posteriori estima-
tion. z; is the measurement of the user’s position from the
Wi-Fi RTT positioning system. H is the observation matrix
which can be set as

(24)

5 EXPERIMENTAL RESULTS AND ANALYSIS

5.1 Experimental Configuration
In our experiments for both static and dynamic positioning
accuracy tests, we used APs (WILD fit2) [48] at four known
positions which all use the 40 MHz bandwidths and one
MT (Google Pixel 2) [15]. The test environmentisa 12 m x 8
m office room with 12 test positions as shown in Fig. 16 to
test the static positioning accuracy. Wi-Fi APs (responders)
are placed at fixed positions whose locations in x and y
were measured using a laser rangefinder. To minimize any
error contributions due to geometry impact, our APs were
deployed in a square shape [41].

All experiments were conducted without any people
being present (only two experimenters were in the room

Empirical CDF
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Fig. 17 CDF of static positioning error distance (system bias has been
removed from all curves except where indicated.)

during the experiment). Line-of-sight is guaranteed
between all APs and the MT, and the MT is held horizon-
tally on a plastic tripod for all static point positioning tests
and carried by a remotely controlled robot for the dynamic
tests. Also, because we only present the positioning perfor-
mance in a 2D plane, the MT and APs are placed at the
same altitude, 1.4 m from the floor. As the MT may have dif-
ferent performance in different directions, at each test point
we placed the MT oriented horizontally in four directions
and carried out four individual tests.

5.2 Static Positioning Experimental Results

The static positioning tests were carried out with both Wi-Fi
APs (responders) and MT (initiator) placed at fixed posi-
tions. The overall test accuracy calculated by different proc-
essing approaches is shown in Fig. 17 as a Cumulative
Distribution Function (CDF). In addition, statistical analysis
results e.g., average errors, Root Mean Square (RMS) [60]
errors, standard deviations, 90 percent CDF and 60 percent
CDF are listed in Table 5. We also included LS and RLS for
comparison with our algorithms. Note that the LS and RLS
results in Fig. 17 and Table 5 have the systematic bias
removed which was already shown to be beneficial in Fig. 7
and Table 3. The positioning result of our new clustering-
based method, CbT, varies from one run to another using
the same input data because the first point to initiate mean
shift clustering is randomly selected as explained in
Section 4.3.1. This results in the accuracy calculation having
a slight variation so that the accuracy we used for statistical
analysis was calculated from the average of three indepen-
dent runs of the CbT algorithm.

In Fig. 17, the (orange) curve with ‘A” symbol shows the
CDF of the positioning results estimated by CbT and the
result with systematic bias is shown by the (pink) curve
with ‘4’ symbols. The (blue) curve with ‘o’ symbols shows
the CbT & WCCG positioning results and the (red) curve
with “x” symbol shows the results with systematic bias. The
(green) curve with “+” symbol shows the positioning results
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Static Positioning Accuracy Experiment;ﬁ:?cle_iﬁs (Using a 40-MHz Working Bandwidth)
CbT CbT CbT & WCCG  CbT & WCCG  RLS (with bias LS (with bias CRB
with Bias with Bias removal) removal)
Average Error 1.246 m 1.916 m 1.200 m 1.299 m 1.165 m 1.494 m -
RMS Error 1.405 m 2.149m 1.372 m 1491 m 1.455 m 1.730 m -
Standard Deviation  0.657 m 0.983 m 0.673 m 0.741 m 0.881 m 0.881 m 0.236 m
90% CDF 2.063 m 3.467 m 2.012m 2.136 m 1.975 m 2436 m -
60% CDF 1.452 m 1.93 m 1.326 m 1.373 m 1.113 m 1.600 m -

using the RLS method while the (light blue) curve with .’
symbol shows the results using LS.

From Table 5, in terms of average error, the RLS algo-
rithm using our method for systematic bias removal has the
best result giving a 1.165 m accuracy while CBT & WCCG
with our method of bias removal gives a close second best
accuracy with 1.200 m accuracy differing by only 35 mm.
These results are better than all previous Wi-Fi based sys-
tems reported in [33], [61].

A particularly important advantage of our CbT & WCCG
method we discovered is that when the systematic bias is
not removed, we still achieve a 1.299 m accuracy which is
only 99 mm worse than the accuracy with bias removal.
These results show that the CbT & WCCG method has a bet-
ter tolerance for systematic error than all other methods.
Our new systematic bias removal procedure improves the
CBT average error in Table 5 by 0.67 m and the CbT &
WCCG average error by 99 mm. Looking back to Table 3
our new systematic bias removal procedure improves the
LS average error by 0.790 m and the RLS average error by
0.579 m.

In terms of the robustness of positioning methods, the
CbT & WCCG method with systematic bias removal shows
advantages compared to all other methods in terms of RMS
error (1.372 m) and CbT with systematic bias removal shows
advantages compared to all other methods for standard
deviation (0.657m). The standard deviation values of CbT
with systematic bias removal (0.657m) and CbT & WCCG
with systematic bias removal (0.673m) are closest to that of
the Cramer-Rao Bound, CRB (0.236 m), which proves that
these two methods are the most robust amongst the six
methods listed in Table 5. Nevertheless, the standard devia-
tion of all six methods is worse than that of CRB, showing
that these methods still can be further improved in terms of
robustness.

In the analysis of Fig. 17 CDF plot, RLS with our system-
atic bias removal process performs the best for both the 90
and 60 percent CDF errors. For the 90 percent CDF, the CbT
with systematic bias removed gives 2.063 m and CbT &
WCCG with systematic bias removed gives 2.012 m com-
pared to RLS with systematic bias removed is 1.975 m,
although all results are close to each other. For the 60 per-
cent CDF, the CbT with systematic bias removed is 1.452 m
and the CbT & WCCG with systematic bias removed is
1.326 m while RLS with systematic bias removed is 1.113 m,
which is the best.

We conclude that if the systematic bias is stable over
time and repeatable for particular models of smartphones

and Wi-Fi APs, then they can be calibrated and stored as
lookup tables for use in our systematic bias removal pro-
cedure. In this case our method and the RLS method with
our systematic bias removal both can achieve satisfactory
positioning accuracy. However, if the systematic bias
vary over time or with temperature and from model to
model and manufacturer to manufacturer of smartphones
and Wi-Fi APs then the best method to use is CbT &
WCCG without bias removal as this method is very toler-
ant to systematic bias and the additional loss of accuracy
compared to the RLS with our systematic bias removal is
only 0.139 m.

5.2 Dynamic Motion Tracking Experimental Results
In the dynamic motion test, a remotely controlled robot with
a plastic shelf, shown in Fig. 18, is used to carry the initiator
smartphone. Also, another camera phone was used to
record all details such as the start/end time, positions and a
second view of the trajectory to record the ground truth of
the movement.

When the smartphone is dynamically moved by the
robot, the data recording position is different at each time.
So, our new algorithms CbT & WCCG are used for each
data recording to find the ranging result and so give a posi-
tioning result.

Since the dynamic motion tests are designed to be per-
formed in straight-line trajectories, a basic Kalman filter
was used to improve the dynamic motion tracking result.
Advanced filters such as Extended Kalman Filter (EKF) or
particle filters can be applied when dealing with more com-
plicated motion or motion in a three-dimensional space.
The test results are presented in Table 6.

Fig. 18. Picture of an initiator carried by a robot.



754 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 21, NO. 2, FEBRUARY 2022

TABLE 6
Dynamic Motion Test Results with CbT & WCCG
(Using a 40-MHz Working Bandwidth)

Average RMS Standard

Error Error Deviation
Dynamic tracking result 145m 1.82m 1.09 m
Dynamic result with 131m 159 m 0.90 m

Kalman filter

Comparing Table 6, with the static positioning results of
Table 5, both RMS and average errors do not reach the accu-
racy level of the static situation but still give an average
error of 1.45 m and a RMS error of 1.82 m. The Kalman filter
improves the accuracy from 1.45 m to 1.31 m by 0.14 m and
gives an improvement both in RMS error and standard
deviation showing that it can improve the results.

6 CONCLUSION AND FUTURE WORK

This paper gave a detailed description of how to character-
ize, design and implement the next generation of Wi-Fi
based positioning supporting infrastructure — Fine Time
Measurement (FTM), also known as Wi-Fi RTT ranging and
positioning technology. We proposed a ranging measure-
ment system using commercial-off-the-shelf (COTS) Wi-Fi
RTT devices and smartphones. We also proposed a new sys-
tematic bias removal process and proved that it significantly
improves the ranging accuracy and hence, the positioning
accuracy when Wi-Fi RTT is implemented as an indoor
positioning system. We also proposed a new positioning
method of Clustering-based Trilateration (CbT) with
Weighted Concentric Circles Generation (WCCG) to deal
with the issues of no intersection points in trilateration. The
accuracy of our method achieves the same level as the well-
known RLS method if it is also combined with our new sys-
tematic bias removal process. Our new method of CbT &
WCCG has a far better standard deviation and more
closely approaching the CRB limit than any method we
investigated. Also, it is an important discovery that CbT &
WCCG performs well when there is an unknown or even
time varying systematic bias so there is no need for prior
calibration and removal of systematic bias. Finally, our Wi-
Fi RTT ranging based positioning system has an average
accuracy of around 1.20 m in an office environment for
static positioning and 1.31 m for dynamic motion using a
Kalman filter. As a trilateration positioning method, com-
pared to a fingerprint-based system, it completely avoids
the labor and time intensive initial survey (offline calibra-
tion) step. With knowledge of the position of the router’s
positions, the entire system can be simply implemented
and easily brought into successful operation. Furthermore,
because all experiments and tests are based on COTS devi-
ces, it means that it can be directly used in practical appli-
cations in our daily lives today.

In this paper, we used four WILD fit2 APs (with knowl-
edge of their position coordinates in a 2D plane) to imple-
ment our positioning system which can easily be extended
to higher numbers of APs to investigate the effect of this on
system performance. Considering the three plots in Fig. 5,

this performance was obtained with a clear line-of-sight so
an investigation of how obstructions will affect the RTT
ranging should also be carried out. With the methods of
importance sampling, there should be no limitation to the
shape of desired noise probability distributions. In future
development, the desired noise probability distribution can
be a more complex model to obtain a better positioning
result.
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