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Abstract—Mobile crowdsensing (MCS) is a popular paradigm to collect sensed data for numerous sensing applications. With the

increment of tasks and workers in MCS, it has become indispensable to design efficient task allocation schemes to achieve high

performance for MCS applications. Many existing works on task allocation focus on single-task allocation, which is inefficient in many

MCS scenarios where workers are able to undertake multiple tasks. On the other hand, many tasks are time-limited, while the available

time of workers is also limited. Therefore, time validity is essential for both tasks and workers. To accommodate these challenges, this

paper proposes a multi-task allocation problem with time constraints, which investigates the impact of time constraints to multi-task

allocation and aims to maximize the utility of the MCS platform. We first prove that this problem is NP-complete. Then two evolutionary

algorithms are designed to solve this problem. Finally, we conduct the experiments based on synthetic and real-world datasets under

different experiment settings. The results verify that the proposed algorithms achieve more competitive and stable performance

compared with baseline algorithms.

Index Terms—Mobile crowdsensing, multi-task allocation, time constraint, evolutionary algorithm
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1 INTRODUCTION

IN recent years, mobile crowdsensing (MCS) [1] is becoming
a popular sensing paradigm to take advantage of the collec-

tive sensing capabilities of the large population of mobile
users. Unlike traditional sensing networkswhich rely on ded-
icated sensor deployment, any user carrying a mobile device
(such as smartphones and tablets) equipped with multi-
functional sensors can become a data source in MCS. For
example, users can report the road-surface condition on the
way home for traffic surveillance [2], [3], or collect noise infor-
mation for noise pollution monitoring while walking after a
meal [4]. At the same time, a user can also play the role of
information requester by actively asking somemobile users to
collect sensed data to fulfill their requirements. Thanks to its
efficiency and scalability in collecting various types of sensed
data, MCS has a wide range of applications, such as public
safety [5], [6], environment monitoring [6], [7], health care [8],
signal map construction [9] and indoor localization [10].

In general, there are three roles in MCS applications:
workers (i.e., users who undertake sensing tasks), reques-
ters (i.e., users who send task requests), and the MCS plat-
form. The MCS platform is responsible for allocating
sensing tasks to suitable workers and integrating sensed
data for the corresponding task requesters. Considering
that the numbers of workers and tasks can be rather large, a
proper task allocation scheme is important to match work-
ers with tasks, such that the MCS applications can operate
efficiently and improve user stickiness.

As an important part of four-stage life cycle (i.e., task crea-
tion, task assignment, individual task execution, and crowd
data integration) in mobile crowdsensing process [11], task
allocation has become a crucial research issue in MCS and
drawn a lot of research attention [12], [13], [14], [15]. These
works mostly consider the single-task allocation scenario,
where an available worker is associated with one task at one
round of task allocation. In this paradigm, if a worker is will-
ing to undertake multiple tasks for rewards, he has to wait
and interact with the MCS platform for multiple rounds of
assignments. Furthermore, considering that most MCS tasks
are location dependent, workers are required to physically
travel to the locations of interest in order to complete the allo-
cated tasks. In the single-task allocation scenario, a worker
may be assigned with tasks that have large accumulated
traveling distances when undertaking multiple tasks during
his validworking period.

Considering these inefficient factors, recent research efforts
try to model multi-task allocation frameworks [16], [17], [18],
[19], [20], [21]. Some of these works take into account the valid
time of a task, as many sensing tasks are time sensitive (such
as traffic dynamic monitoring and pollution monitoring at
specified locations and time intervals). However, they do not
incorporate the worker’s time availability. Intuitively, a
mobile worker can spend limited time to perform sensing
tasks each day. Some researchers hence start to consider time
availability of both tasks and workers [21], but they only con-
sider the scenario where a worker has a destination, which
means that the tasks that can be completed should be located
along the worker’s moving direction. This model limits the
sensing capability of mobile workers who do not have explicit
destinations. For example, a worker may want to perform
sensing tasks within half an hour of his after-meal walking
time in the neighborhoods, or a worker is in the shopping
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zone where he can spend a certain amount of timewandering
and thus can perform sensing tasks. By performing the
assigned tasks, these workers can receive some rewards. Fur-
thermore, similar to the traditional crowdsourcing platform
MTurk [22] where there are a lot of workers who complete
crowdsourced tasks to earn money when they have time, we
can envision that there will be an MCS platform where there
are many mobile workers who want to earn rewards by com-
pleting sensing tasks when they have some time. Therefore, in
this work, we investigate efficient task allocation schemes in
this general multi-task allocation scenario where both tasks
andworkers are associatedwith valid time constraints. Specif-
ically, workers should only be assigned with the tasks in the
positions where the workers can arrive during their available
time; on the other hand, tasks should be assigned to workers
who can arrive at the target location within the effective time
of the tasks.

Take Fig. 1 as an illustrating example. The workers and
tasks are associated with valid time units. The line segments
indicate the candidate matching results between workers and
tasks. The time units it takes to travel between the locations of
workers and tasks are listed beside the line segments. Consid-
ering the time constraints, the assignment of worker w6 to
tasks t9 and t10 is a feasible solution, while the assignments of
w5 to t8 and w3 to t4 are infeasible due to the time constraint
violation. Several challenges occur when designing efficient
multi-task allocation approacheswith time constraints:

� Consider worker w1 with 4 available time units. There
are three tasks located around w1, i.e., t1; t2; t3 with
valid time units of 6; 5; 4, respectively. As can be seen,
if we assign t3 to w1 first by the commonly adopted
greedy strategy, w1 can be assigned with one task as
the next closet task t2 will be expired when w1 moves
from t3 to t2. On the hand, we may assign t1 to w1 at
first according to the same strategy. In this case, t1 and

t2 can be successfully be assigned tow1. This phenom-
enon indicates that, given the time constraints ofwork-
ers and tasks, it becomesmore difficult in determining
themost suitable bunch of tasks for a single user.

� Consider the competition of twoworkersw2 andw4. If
we assign tasks to fulfill w2, an efficient and feasible
task sequence is t5; t6; t7 according to the traveling
time. However, in this case, w4 can not be assigned
with any task since the only accessible task to w4 is t7,
which has been occupied. On the other hand, if w2 is
assigned with the feasible task sequence t5; t6; t11, w4

can bemapped to t7. From this aspect, the overall util-
ity of the MCS is improved. In summary, given time
constraints of workers and tasks, the competition
among workers and tasks become more complex
when designing efficient task allocationmethods.

Considering these challenging scenarios, we propose effi-
cient multi-task allocation schemes with time constraints
based on genetic algorithm (GA) [23], which has been
proved to be efficient in solving complex combination opti-
mization problems as illustrated above. In brief, we have
made the following contributions in this paper:

1) We formulate a general multi-task allocation prob-
lem with time constraints for both workers and tasks,
and prove that the formulated problem is NP-
complete.

2) We propose two heuristic algorithms, namely MATC-
GA and MATC-IGA, to efficiently solve the formu-
lated task allocation problem.

3) We evaluate the proposed algorithms based on syn-
thetic and real-world datasets. The experimental
results show the superiority of our algorithms com-
pared with other algorithms.

The rest of the paper is organized as follows. Section 2
summarizes the related works. Section 3 analyzes and

Fig. 1. An example of task allocation. The left figure shows the distribution of some workers and tasks in a certain sensing area, and the right figure is
a distribution map of tasks and workers mapped according to the left figure. As shown in the right figure, the line segments indicate the candidate
matching results between workers and tasks, where the red solid lines represent a set of feasible solutions, the red dotted lines indicate allocation
failure (infeasible solutions), and the blue dotted lines indicate a set of better solutions. The numbers on the line segments represent the time costs.
For example, it takes 3 time units from the location of w1 to the location of t3. The number in parentheses indicates the valid time of tasks or working
time of workers. For example, w2ð8Þmeans worker w2 has 8 available time units, while t2ð5Þmeans task t2 will expire after 5 time units.
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demonstrates the multi-task allocation problem with time
constraints. Section 4 proposes two heuristic algorithms in
detail to solve the studied problem. In Section 5, we evaluate
the proposed algorithms and discuss the results. Finally, the
discussions and conclusions are drawn in Sections 6 and 7.

2 RELATED WORK

With the development of MCS applications [24], [25], [26],
[27], [28] and platforms [29], [30], [31], task allocation becomes
a key issue that influences the efficiency ofMCS.Many exiting
works on task allocation considers the single-task allocation
scenario. Zhang et al. [12] propose a framework, namedCrow-
dRecruiter, to select workers to satisfy the probabilistic cover-
age constraint under the piggyback crowdsensing paradigm
while minimizing incentive payments. In the similar sensing
setting, Xiong et al. [13] solve a bi-objective task allocation
problem with the aim of maximizing the probabilistic cover-
age under a fixed budget. Reddy et al. [14] study a recruitment
framework that selects appropriate workers for data collec-
tion to maximize spatial coverage. Considering the task allo-
cation problem for heterogeneous workers with different
initial positions, moving costs, moving speeds and reputation
levels, Cheung et al. [15] propose an asynchronous distributed
task allocation algorithm. Cheng et al. [32] model a task alloca-
tion model by considering workers’ observation angles and
time when they undertake tasks, and propose an effective
algorithm to solve this problem. Zhang et al. [58] formulate a
reliable task assignment problem which incorporates the
quality of sensing tasks and propose effective algorithmswith
theoretical guarantees.

Recently, researchers have begun to study the multi-task
allocation scenario, where the potentials of workers can be
made full use of Zhang et al. [16] propose a bi-objective crowd-
sensing model, aiming at recruiting a set of vehicles to simul-
taneously complete location-based query tasks and automatic
sensing taskswhilemaximizing the sensing utility of eachpar-
ticipant. The task allocation optimization model proposed by
He et al. [17] aims to maximize the rewards for the MCS plat-
form, given that each worker has a moving distance budget
and each location-based task needs to be completed by multi-
ple workers. Song et al. [18] study the multi-task allocation
strategy to minimize the number of selected participants
under the total budget constraints and the requirements of
quality information for concurrent tasks. Considering the dif-
ferent requirements of time-sensitive tasks and delay-tolerant
tasks, the frameworkActiveCrowd proposed byGuo et al. [19]
study two multi-task allocation situations: task allocation

based on workers’ intentional movement for time-sensitive
tasks and unintentional movement for delay-tolerant tasks.
Liu et al. [20] study two scenarios formulti-task allocation opti-
mization: 1) maximizing the number of completed tasks while
minimizing the total traveling distance, and 2) minimizing the
incentive cost while minimizing the total moving distance. In
addition, Li et al. [33] also study multiple heterogeneous task
allocation, and propose a dynamic recruitment algorithm aim-
ing tominimize the incentive cost.

Moreover, there are a few studies that consider the impact
of time constraints on task allocation. Cheung et al. [15]
propose a model that collect time-sensitive and location-
dependent information by heterogeneous workers to maxi-
mize coverage. Guo et al. [19] take into account the impact of
tasks with different time types on task allocation, and propose
two greedy-enhanced genetic algorithms to address them. In
addition, Deng et al. [34] propose a worker selected tasks
mode, and consider a set of tasks with locations and expira-
tion time. The goal is to find a schedule for workers that
maximizes the number of performed tasks.Estrada et al. [35]
propose a service computing framework for time con-
strained-task allocation in location-based crowdsensing sys-
tems. The platform goal is to efficiently determine the most
appropriate set of workers for each task so that high-quality
results are returnedwithin the requested response time.

However, few studies take into account the time con-
straints of both workers and tasks in a multi-task scenario. In
this work, we investigate this scenario and formulate a gen-
eral task allocation model for MCS, and we design two effi-
cient heuristic algorithms for solving the task allocation
problem. Note that Zhao et al. [21] also consider the time con-
straints of workers. But they study a destination-aware task
assignment problem to maximize the total number of com-
pleted tasks while all workers can reach their destinations
before deadlines and tasks assigned to workers can be com-
pleted before expiration. Their problem can be considered as
a special scenario of our proposedmodel to some extent.

Note that the specific structural properties (e.g., optimiza-
tion goals, spatial-temporal constraints, coverage constraints)
of task allocation problems in MCS make the solutions from
other domains difficult to be directly applied in MCS. For
example, task (or resource) allocation schemes in edge com-
puting [36] and cloud computing [37] do not consider the
spatial-temporal constraints as proposed in this paper, hence
their solutions cannot be applied directly. Due to the page
limit of the paper, we havemade a table describing the differ-
ent concerns in the relevant domains of MCS [38], [39], edge/
cloud computing [37], [40], [41], robot/UAV [42], [43] in
Appendix A of the supplementary file, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TMC.2019.2962457.

3 PROBLEM STATEMENT

In this section, we present the main definitions and the for-
mulated problem. For clarity, the main notations are sum-
marized in Table 1.

Definition 1 (Worker). A worker wj is willing to undertake
multiple sensing tasks, subject to a constraint that the total
traveling time starting from his current location wlj is not
larger than his expected working time wtj.

TABLE 1
Main Notations

Notation Description

W;wj the worker set and a worker
wlj; wtj the location and expected working time of wj

Twj
; waj the task set to be allocated to wj and the size of the

task set

T; ti the task set and a task
tli; tei the location and valid time of task ti

tai; wri the utility obtained by the platform and the reward
obtained by the worker after task ti is allocated

tec current time
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We assume that the workers are ordinary mobile users
who are motivated to perform tasks for the following fac-
tors: 1) Workers have vacant time to perform sensing tasks
by moving around, thus they do not have explicit require-
ment on traveling cost as long as they can arrive at the loca-
tions of tasks within the time budget; 2) Workers can
receive rewards after completing sensing tasks. We also
assume that the travel time from one place to other place is
proportional to the movement distance (such as [19], [20])
and that each worker has sufficient battery power to per-
form tasks.

Definition 2 (Task). A sensing task ti submitted by a requester
is associated with a location tli, a revenue tri and a valid period
½tec; tec þ tei�, where tec is the current time and tei is the time
duration.

We assume that the sensing tasks are easy for human by
using the sensing devices (e.g., smartphones), and the sens-
ing tasks are heterogeneous in the sense that they have dif-
ferent spatial and temporal constraints and require different
sensing dimensions and skills (such as taking photos and
recording noise at different time and locations). In our sce-
nario, the tasks do not have explicit priorities. However, the
task revenue posted by the requester can reflect the priority
to some extent in the formulated optimization problem.

Definition 3 (MCS platform). An MCS platform is responsi-
ble for allocating sensing tasks to suitable workers and integrat-
ing sensed data for the corresponding task requesters. If a task ti
is assigned to a worker wj, the MCS platform will receive the
revenue tri of ti given by the requester, while the worker will
get a reward wri given by the MCS platform. Therefore, the
utility of the platform can be calculated as tai ¼ tri � wri after
the task ti is assigned.

Given the above definitions, once a worker wants to
undertake sensing tasks, he submits his information which
includes his current location and expected working time to
theMCSplatform. Similarly, a requester can submit a sensing
task with required information, such as its location, revenue
and valid period. Note that the worker reward determination
method adopted by the MCS platform can vary according to
specific applications (e.g., setting the reward to be a fixed
equal value, or be in direct proportion to the revenue of the
task). The metric of the platform utility or worker reward
depends on the “currency” adopted in the MCS application.
Commonmetrics could be dollars or electronic cashes.

Consider that there is a worker set W ¼ fw1; w2; . . . ; wmg
(where m is the number of workers) and a task set
T ¼ ft1; t2; . . . ; tng (where n is the number of tasks). We
define a traveling distance to assist in verifying whether the
constraints of workers and tasks are met respectively, i.e.,
whether the workers can complete the assigned tasks within
the expected working time and whether the tasks can be
completed within the valid period.

Definition 4 (Traveling distance). Given that the set of
ordered tasks allocated to wj is Twj

¼ ft1; t2; . . . ; tsjg � T ,

where the task tsj is the last task, we define the function
fDðwj; ti; Twj

Þ to represent the traveling distance from the initial
location wlj of worker wj to the location of task ti 2 Twj

. The
function fDðwj; ti; Twj

Þ can be expressed as follows:

fDðwj; ti; Twj
Þ ¼ fdðwlj; tl1Þ waj ¼ 1

fdðwlj; tl1Þ þ
Pi

i0¼2 fdðtli0�1; tli0 Þ waj � 2

�
;

(1)

where waj is the size of the task set Twj
and the distance from

location a (task or worker) to location b (task or worker) is
denoted as fdða; bÞ:
The goal of the MCS platform is to maximize its utility by

matching workers to the suitable tasks. Then the studied
problem of multi-task allocation with time constraints
(MATC) can be defined as follows:

Definition 5 (MATC). The problem of MATC is to solve the
following optimization problem:

max
Xm
j¼1

Xn
i¼1

tai � xji

 !
; (2)

subject to

fDðwj; tsj ; Twj
Þ � wv � wtj; 8wj 2W (3)

fDðwj; ti; Twj
Þ � wv � tei; 8ti 2 Twj

(4)

xji ¼ 1 or xji ¼ 0; 8wj 2W; ti 2 T (5)

Xm
j¼1

xji � 1; 8ti 2 T; (6)

where wv is the traveling velocity, xji indicates the status of
task assignment: xji ¼ 1 indicates that task ti has been
assigned to worker wj, while xji ¼ 0 means that task ti has not
been assigned to worker wj.

According to Definition 5, MATC is a combinatorial opti-
mization problem which maximizes the utility of the MCS
platform. Eqs. (3) and (4) demonstrate the constraints of
workers and tasks respectively, i.e., the workers can com-
plete the assigned tasks within the expected working time
and the tasks can be completed within the valid period.
Eqs. (5) and (6) give the restriction on tasks that the status of
each task is assigned or unassigned and each task can only
be assigned to at most one worker respectively.

The solution space of MATC is very large and finding the
optimal solution is difficult. Assuming that there are n tasks
and m workers, and a worker can complete more than one
task while a task can only be allocated to one worker. There
are mþ 1 ways to allocate a task. For all of n tasks, there
will be ðmþ 1Þn allocation ways. In addition, the order in
which tasks are completed will greatly affect the allocation.
In summary, the solution space will reach ðmþ 1Þn � n!.
Therefore, it is impractical to enumerate all possible alloca-
tions and it is difficult to find a reasonable solution in a rea-
sonable time. In fact, we can prove that the MATC problem
is NP-complete.

Lemma 1. The MATC problem is NP-complete.

Proof. The Multiple Knapsack Problem (MKP) has been
proved to be an NP-complete problem [44]. MKP can be
described as follows: Given a set U ¼ fu1; u2; . . . ; ung of n
items and a set V ¼ fv1; v2; . . . ; vmg of m knapsacks,
where m � n. For ui

0 2 U , its weight is defined as si0 and
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its utility is defined as pi0 . The capacity of vj0 2 V is
defined as cj0 . The objective is to find a viable way to put
items into knapsacks, so that the total utility of all items in
the knapsacks is maximized. The MKP is to solve the opti-
mization problem:maxðPm

j
0 ¼1
Pn

i
0 ¼1 pi0xj0 i0 Þ, where the xj

0
i
0

indicates the status of items. xj
0
i
0 ¼ 1 indicates that item ui

0

has been put into knapsack vj0 , while xj
0
i
0 ¼ 0 means that

item ui
0 has not been put into knapsack vj0 .

We prove the lemma by reducing the MKP to an
instance of MATC problem. First, we assume that the
time a worker spends to move from one location to
another is a fixed valueD. xji indicates the status of tasks.
xji ¼ 1 indicates that task ti has been allocated to worker
wj, while xji ¼ 0means that task ti has not been allocated
to worker wj. The simplifiedMATC is to solve the optimi-

zation problem:maxðPm
j¼1
Pn

i¼1 taixjiÞ. Next we can asso-

ciate MKP and simplifiedMATC bymapping U to T , V to

W , fvj0 ; cj0 g to fwj;wtjg, fui
0 ; si0 ; pi0 g to fti; ðtei þDÞ; taig,

and xj
0
i
0 to xji, as shown in Table 2.

As demonstrated above, the MKP is as complex as the
simplifiedMATC,whichmeans that the simplifiedMATC
is alsoNP-complete, which completes the proof. tu

4 TASK ALLOCATION ALGORITHMS FOR MATC

From the above section, we can see that the solution space of
the MATC problem is too large for traditional combinatorial
optimization algorithms. When the scale of the problem
increases gradually, the exact algorithms cannot return results
in polynomial time. Therefore,we consider designing efficient
heuristic algorithms to solve the problem. Specifically, consid-
ering that the characteristics of Genetic Algorithm are suitable
for the proposed MATC problem, we will design task alloca-
tion schemes based on GA. In this section, we first design a
genetic algorithm for MATC according to the problems and
constraints. In order to further improve the performance of
the algorithm, we then design the immune genetic algorithm
based on vaccine for MATC. Since effective constraint han-
dling techniques for evolutionary strategies are important for
finding superior solutions [45], [46], we customize several
constraint handling strategies in the key operators (including
the selection operator, repair operator, and IGA_selection
operator) in our algorithms.

4.1 Genetic Algorithm for MATC

A traditional GA generally contains chromosome representa-
tion, fitness evaluation, selection operator, crossover operator
and mutation operator. We design a new genetic algorithm for

MATC named MATC-GA based on the idea of GA and the
characteristics of MATC. In GA, it is important to construct a
suitable chromosome which can not only express the content
of the problem, but also reduce the computational complex-
ity. In existing works, GAs mainly adopt the traditional 0-1
encoding structure (such as [19]) or the fixed-length real num-
ber encoding structure (such as [16]) as the representation of
the solution. However, in MATC, these schemes cannot effi-
ciently represent the solution structure and will result in
more complicated subsequent operations. Therefore, we
design an appropriate encoding structure for the solution of
MATC. Based on the constructed chromosome, the proposed
MATC-GA is sketched inAlgorithm 1. Line 1 generates initial
populationwith a specified sizeN . Then, themain loop (Lines
4-11) iteratively selects better individuals to find the best solu-
tions. In Line 5, we compute the fitness values of all chromo-
somes based on function fð�Þ, and update the currently best
chromosome which has the best fitness (line 6). Line 7-9
perform selection, crossover, and mutation operations in
sequence. The loop ends when the Maximum Generation set
in advance is met. We next explain the key components in
Algorithm 1.

Algorithm 1.MATC-GA

Input: Task set T , Worker setW
Output: Best chromosome (task-worker allocation scheme)
1: Initialize population Gð0Þwith N chromosomes
2: P0  Gð0Þ
3: Set the iteration counter k ¼ 0
4: repeat
5: According to function fð�Þ, compute the fitness of all

chromosomes in Pk

6: Update the currently best chromosome

7: P
0
k  select N chromosomes using the selection operator
on Pk

8: P
00
k  produce new N chromosomes by crossover and

mutation operator on P
0
k

9: Pkþ1  perform repair operator on P
00
k

10: k kþ 1
11: until k > Maximum Generation

4.1.1 Chromosome Representation

In MATC-GA, we hope that a solution can indicate the task-
worker allocation result as well as the order in which each
worker performs the tasks allocated to him. Furthermore,
for different solutions, the set of workers is fixed, but the
tasks assigned to each worker in each solution are uncertain.
Therefore, we adopt the array structure to represent a solu-
tion chromosome. Specifically, a chromosome consists of m
genetic segments wherem is the number of candidate work-
ers. The index of each genetic segment represents the ID of a
worker. Each genetic segment can be further divided into
several genes, the values of which represent the indices of
tasks allocated to the worker. For instance, in Fig. 2, Ci and
Cj are two chromosomes representing different solutions.
Worker w4 on both chromosomes are assigned with tasks
t5; t9 and t10. Note that the gene sequences reflect the execu-
tion order of the tasks. As illustrated in Fig. 2, the red solid
line is the task execution order for w4 on Ci, while the blue
dotted line shows the order for w4 on Cj.

TABLE 2
The Mapping Between MKP and Simplified MATC

MKP SIMPLIFIED MATC

U ¼ fu1; u2; . . . ; ung T ¼ ft1; t2; . . . ; tng
V ¼ fv1; v2; . . . ; vmg W ¼ fw1; w2; . . . ; wmg
vj0 2 V; cj0 wj 2W;wtj
ui
0 2 U; si0 ; pi0 ti 2 T; tei þD; tai

maxðPm
j
0 ¼1
Pn

i
0 ¼1 pi0xj

0
i
0 Þ maxðPm

j¼1
Pn

i¼1 taixjiÞ
xj
0
i
0 ¼ 0 or 1 xji ¼ 0 or 1
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According to Eqs. (3) and (4) in the Definition 5, we can
define two types of chromosomes: valid chromosome and
invalid chromosome.

� Valid chromosome: The allocation scheme represented
by the chromosome is valid, that is, the constraints
Eqs. (3) and (4) are satisfied. In addition, Eqs. (5) and
(6) indicate that any task can only be found in one
genetic segment, ensuring that the task can only be
assigned to one worker.

� Invalid chromosome: The chromosome does not meet
constraints Eqs. (3) and (4). Some tasks are allocated
to multiple workers at the same time, violating the
constraint Eqs. (5) and (6). However, invalid chromo-
somes may contain some good genetic segments. So
it is also helpful to keep some invalid chromosomes
during evolution.

Algorithm 2. Random-Greedy

Input: Task set T , Worker setW
Output: Chromosome C (task-worker allocation scheme)
1: Generate a chromosome C with no genes
2: Create a candidate worker set CW  W
3: Create an unallocated task set UT  T
4: repeat
5: Select a worker w from CW randomly
6: Set the iteration counter k ¼ 0
7: while k � number of tasks do
8: Select a task t from UT randomly
9: C

0  allocate t tow and append t to the end of the task
sequence forw onC

10: if C
0
is a valid chromosome then

11: C  C
0

12: UT  UT � ftg
13: end if
14: k kþ 1
15: end while
16: CW  CW � fwg
17: until CW ¼ ;

4.1.2 Population Initialization

Based on the chromosome representation, we generate
the first-generation population by using Random-Greedy

(Algorithm 2) to obtain the population diversity. Lines 1-3
generate an empty chromosome with no genes, a candidate
worker set and a unallocated task set. Then, the main loop
(Lines 4-17) iteratively selects workers and tasks randomly
to get valid chromosome (task-worker allocation scheme). In
Line 5, we select a worker w from the candidate worker set
randomly. The inner loop (Lines 7-15) iteratively selects tasks
randomly and make a decision on whether to assign tasks to
the worker w based on the type of chromosome. Specifically,
we select a task t that has not been allocated (Line 8), and
allocate the task t to the worker w and append the task to the
end of the task sequence for the worker w on the chromo-
some of the last iteration (Line 9). If it is a valid chromosome,
the chromosome is updated and the task t is removed from
the unallocated task set (Lines 10-13). In Line 16, the worker
w is removed from the candidate worker set. When the can-
didate worker set is empty, themain loop ends.

The population of each generation is defined as: GðiÞ ¼
fC1; C2; . . . ; Ckg, where GðiÞ denotes the ith generation with
k chromosomes and Ck denotes the kth chromosome. We
only accept valid chromosomes when randomly generating
the first-generation population.

4.1.3 Fitness Evaluation

In GA, the evolutionary population is evaluated on the quality
of each chromosome by using the fitness function. In MATC,
the objective is to maximize the utility of the MCS platform.
Hence, we use the platform utility to reflect the chromosome
fitness. The higher the platform utility is, the better the fitness
is. Given a population G ¼ fC1; C2; . . . ; Ckg, we use array
Xl ¼ fx1; x2; . . . ; xng to represent the task allocation state for
chromosome Clð1 � l � kÞ, where the value of xið1 � i � nÞ
is “1” or “0”. xi ¼ 1 indicates that the task ti has been assigned,
while xi ¼ 0 means that the task ti has not been assigned.
Then, the fitness of chromosomeCl can be calculated as

fðClÞ ¼
Xn
i¼1

tai � xi: (7)

Note that the superior chromosomes with higher fitness
have higher possibilities to form a new generation. So the
function fð�Þ can distinguish the quality of chromosomes.

4.1.4 Selection Operator

The selection operator is to pass the chromosomes with
higher fitness to the next generation while ensuring the
diversity of the population. However, some chromosomes
with lower fitness may also contain some good genetic seg-
ments. In [47], the tournament selection operator has been
proved to be an effective strategy for covering the popula-
tion. However, the tournament selection is a stochastic oper-
ation that can lead to selection errors, and it is possible that
chromosomes with higher fitness may not be available. In
order to ensure that superior chromosomes can be passed on
to the next generation, we adopt an enhanced selection oper-
ator with two steps to do the selection (as shown in Fig. 3).

1) Elitist preservation selection: We sort the chromo-
somes in the parent population according to the fit-
ness values in the descending order, and select the
first to eth (e.g., first third) of them directly to the

Fig. 2. Chromosome representation.
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next generation. We regard them as elitist chromo-
somes. This method can ensure that chromosomes
with high fitness values will not be eliminated.

2) Tournament selection: For the remaining chromo-
somes, we regard them as ordinary chromosomes. In
each operation, we randomly select a predefined
number of chromosomes from ordinary chromo-
somes to the competition pool. Then we compare the
fitness values of the chromosomes from the competi-
tion pool and pass the one with the highest fitness
value to the next generation. The operation is
repeated until the quantity requirement is met.

4.1.5 Crossover Operator

After selection, we get the most potential chromosomes.
Thenwe need to recombine the chromosomes through cross-
over operation in order to produce more potential chromo-
somes. We use the idea of survival of the fittest to cross the
corresponding genetic segments of the parent chromosomes.
First of all, we need to select two chromosomes from the pop-
ulation as the parents for crossover operation. Specifically,
we randomly select one chromosome from the set of ordi-
nary chromosomes (such as Ci in Fig. 4), and one chromo-
some from the set of elite chromosomes (such as Cj in Fig. 4).
This operation can make the whole population evolve and
maintain the diversity of the population. Next, we generate a
superior child by combining high-quality genetic segments
of parents. Take the genetic segments of worker w1 in Ci and
Cj as an example (as shown in Fig. 4). In Ci, the fitness value

of w1 is fðw1Þ ¼ 34, while in Cj, the fitness value of w1 is
fðw1Þ ¼ 16. Therefore, the genetic segment of w1 in Ci is
superior and should be passed to the child chromosome
Cnew. This process is repeated until all genetic segments are
compared. Note that the child chromosome produced by the
crossover operator may violate the restriction conditions and
leads to an invalid chromosome.

4.1.6 Mutation Operator

Mutation operator is used to change the genes of a chromo-
some to form a new chromosome. This operator can not
only increase the diversity of the population, but also make
it easier to jump out of the local optimum. For a chromo-
some to be mutated, we randomly select two genes in two
different genetic segments. Then, the swap operation is per-
formed on the two selected genes to generate a mutated
chromosome. Note that this generated chromosome may be
an invalid chromosome. An example of mutation operation
is shown in Fig. 5.

Algorithm 3. Repair Operator

Input: An invalid chromosome C
Output: A valid chromosome Cnew

1: for each genetic segment CðwÞ do
2: if the worker or any allocated task violates Eqs. (3) and (4)

then
3: CðwÞ  the largest subset of tasks that satisfy the condi-

tions in the genetic segment CðwÞ
4: end if
5: end for
6: for each task t do
7: CGS  all genetic segments containing task t
8: Cbest the genetic segment with the maximum fitness in

CGS
9: for each genetic segment in CGS � fCbestg do
10: Remove task t
11: end for
12: end for
13: for each genetic segment CðwÞ do
14: Update worker w’s location and remaining working time

by the task sequence in CðwÞ
15: Tw the tasks that worker w can perform in unallocated

tasks
16: while Tw 6¼ ; do
17: Select a task t

0
from Tw randomly

18: C
0 ðwÞ  add task t

0
to the end of the task sequence CðwÞ

19: if C
0 ðwÞ is a valid genetic segment then

20: CðwÞ  C
0 ðwÞ

21: end if
22: Tw Tw� ft0 g
23: end while
24: end for

4.1.7 Repair Operator

In order to make an invalid chromosome generated during
crossover and mutation become a valid chromosome, we
design a repair operator (Algorithm 3). According to the

Fig. 3. Selection operator.

Fig. 4. Crossover operator.

Fig. 5. Mutation operator.
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constraints given by Eqs. (3) and (4), both workers and tasks
need to satisfy their own time constraints. In addition, the
same task cannot be allocated to more than one worker simul-
taneously according to Eqs. (5) and (6). Similar to the previous
defined types of chromosomes, we define the types of genetic
segments: 1) valid genetic segment: the worker and all allo-
cated tasks satisfy the time constraints given by Eqs. (3) and
(4); 2) invalid genetic segment: theworker or any allocated task
violates the time constraints given by Eqs. (3) and (4). Then, we
repair an invalid chromosome by the following steps:

1) Check each genetic segment (Lines 1-5) to verify (a)
whether the worker can complete the tasks accord-
ing to the prescribed order within the expected
working time, and (b) whether the allocated tasks
can be completed by the worker before the task expi-
ration time. If any one of the above two conditions is
violated, we search for the largest subset of tasks
that satisfy the conditions in the current genetic seg-
ment as a new allocation scheme. Take worker w3 in
Fig. 6-(1) as an example. We assume that the current
allocation cannot meet one of the above two condi-
tions. Then we need to find a subset satisfying both
conditions and having the largest fitness value from
ff?g; ft7g; ft4g; ft7; t4gg.

2) Find the task which is allocated more than once in
the chromosome (Line 7). Then, the fitness values of
the genetic segments that contain the same task are
compared (Lines 8). We retain the task in the
genetic segment with the maximum fitness value
and remove it from other genetic segments (Lines 9-
11). An example is shown in Fig. 6-(2).

3) After the first two steps, we obtain a valid chromo-
some. However, someworkers may have enough time
to complete some unassigned tasks. Sowe redistribute
the remaining unallocated tasks as many as possible
given that the new chromosome satisfies the con-
straints given by Eqs. (3), (4), (5) and (6) (Lines 13-24).
An example is shown in Fig. 6-(3).

4.1.8 Complexity Analysis of MATC-GA

The parameters that can be considered as constants in
MATC-GA are the number of chromosomes in the popula-
tion k and the maximum generation MG. Given the worker
set W with m workers and the task set T with n tasks, the
computation complexity of the population initialization,
selection operator, crossover operator and mutation opera-
tor is Oðk	m	 nÞ þ Oð2kÞ þ Oðk	mÞ þ OðkÞ ¼ Oðm	 nÞ.
Next, we analyze the computation complexity of the three
steps in the repair operator. First, the computation complex-
ity of finding all ordered subsets of an ordered set is
Oðm	 TwÞ, where Tw is the set of tasks assigned to worker
w, and its size will not exceed n. Second, the computation
complexity of repairing the task which is allocated more
than once in the chromosome is about OðnÞ. Finally, the
number of tasks that the worker with updated information
can perform in unallocated tasks is less than n, so the com-
putation complexity will not exceed Oðm	 nÞ. Therefore,
the overall computation complexity of MATC-GA is about
MG	 ðOðm	 nÞ þ Oðm	 TwÞ þ OðnÞ þ Oðm	 nÞÞ ¼ Oðm	 nÞ.

Algorithm 4.MATC-IGA

Input: Task set T , Worker set W , Number of intermediate indi-
vidualsM , proportion of vaccine immunity b

Output: Best chromosome (task-worker allocation scheme)
1: Initialize population Gð0Þwith N chromosomes
2: P0  Gð0Þ
3: Set the iteration counter k ¼ 0
4: repeat
5: Compute the fitness of all chromosomes in Pk according

to the function fð�Þ
6: Update the currently best chromosome
7: V  make the vaccines
8: Sk  select M chromosomes using the IGA Selection

operator
9: P

0
k  select b �M chromosomes from Sk for vaccine infu-

sion operator
10: P

00
k  produce newM chromosomes by crossover on Sk

11: P
000
k  produce newM þ b �M chromosomes bymutation

on P
0
k [ P

00
k

12: Rk  perform repair operator on P
000
k

13: Pkþ1  sort Rk in descending order with respect to the fit-
ness values, and select the firstN chromosomes

14: k kþ 1
15: until k > Maximum Generation

4.2 Immune Genetic Algorithm for MATC

In addition to the population evolution nature of MATC-
GA, we investigate to incorporate the individual learning
feature into the GA-based algorithms. Specifically, we pro-
pose the immune genetic algorithm for MATC (MATC-IGA) by
introducing the immune principle and the vaccine method,
which is able to weaken the unfavorable influence caused
by random selection and mutation operation. In addition,
MATC-IGA can solve the problems of early maturity of the
population, early convergence into a local optimal solution,
and difficulty in obtaining a stable solution. The pseudo-
code of MATC-IGA is shown in Algorithm 4. Different from
MATC-GA, we have added the steps for vaccine production
(Line 7) and infusion (Line 9). During the evolution, we

Fig. 6. Repair operator.
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increase the number of chromosomes in the population
so that the diversity and stability of the population can
be improved. In MATC-IGA, chromosome representation,
population initialization, fitness evaluation and mutation
operator are the same as MATC-GA; while crossover opera-
tor randomly selects two chromosomes that have not been
crossed yet in the population, rather than selecting between
elite chromosomes and ordinary chromosomes as MATC-
GA. The details of new operations are as follows:

4.2.1 Vaccine Production

Unlike the traditional elitism used by GA, the vaccination
strategy learns the excellent genetic segments of all chromo-
somes in the population and combines them to obtain a vac-
cine (an invalid chromosome), while the traditional elitism
selects an optimal chromosome (a valid chromosome) in the
population. Specifically, the vaccine is a special chromo-
some which retains characteristics of superior chromosomes
in a generation. We infuse the vaccine into other chromo-
somes, so that we can get better chromosomes and the
population does not degenerate under the premise of main-
taining diversity. Specifically, as shown in Fig. 7, in the kth
generation, we select the top two chromosomes Ctop1 and
Ctop2 with the highest fitness values to perform crossover
and repair operations to obtain the candidate vaccine Cb.
Then, we compare the fitness values of the chromosome
with the highest fitness value Ca, the candidate vaccine Cb,

and the vaccine Cc in the ðk� 1Þth generation. We choose
the one with the highest fitness value as the new vaccine for
the current generation.

4.2.2 IGA Selection Operator

In the kth generation, we select all the N chromosomes
directly as part of the intermediate MðM � NÞ chromo-
somes. The remaining M �N chromosomes are randomly
selected from theN chromosomes by the roulette wheel [48].
The reason we do not use the roulette wheel to select the M
intermediate chromosomes directly is that if we select them
randomly, some chromosomes may be selected multiple
times and some others may not be selected, which results in
the reduction of the population diversity. Furthermore,
selecting a chromosome too often may lead to invalid cross-
over in the subsequent crossover operation.

4.2.3 Vaccine Infusion Operator

The vaccine infusion shown in Fig. 7 is to crossover the vac-
cine Cb with the selected chromosomes such as Ci to ensure
that the excellent genes in the vaccine can be passed on to
the next generation. The difference between the vaccine
infusion operator and the crossover operator is that the par-
ent chromosomes are the chromosomes selected for vaccine
infusion and the vaccine.

4.2.4 Complexity Analysis of MATC-IGA

Different from MATC-GA, the steps of vaccine production
and infusion are added in MATC-IGA. The computation
complexity of these two steps is OðmÞ þ OðmÞ ¼ OðmÞ. The
other steps of MATC-IGA are the same as MATC-GA.
Therefore, the overall computation complexity of MATC-
IGA is Oðm	 nÞ.

5 EXPERIMENT

In this section, we evaluate the performance of the proposed
algorithms based on the synthetic and real datasets. We first
introduce the datasets and the compared algorithms, and
then discuss the experimental results in detail. In addition,
we develop a prototype to measure the performance of the
system in a real-world environment. We will discuss the
result of running the prototype briefly.

5.1 Datasets

5.1.1 Synthetic Datasets

We simulate three types of task distributions to measure the
scalability and flexibility of themodel and algorithms (Fig. 8):

Fig. 7. Vaccine production and vaccine infusion.

Fig. 8. The three types of task distributions.
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� Uniform Distribution: The uniform distribution can be
used when the tasks that are dispersed in the sensing
area. For instance, generating a noise map may
require location-based query tasks with uniform dis-
tribution over the sensing area.

� Compact Distribution: In the compact distribution, the
tasks are mostly concentrated in a small area of the
sensing area, and the distance between each task is
relatively small. This type of tasks can occur in areas
where there are large-scale local events and crowds,
like the Olympic Games.

� Mixed Distribution: The mixed distribution is a mix-
ture of the uniform and compact distributions. Many
tasks conform to the mixed distribution, such as
reporting traffic conditions on different roads during
rush hours. The roads in the bustling areas require
more sensed data than the roads in other areas (such
as residential and rural areas).

We generate workers in the sensing area randomly. The
position coordinates of the tasks and workers are restricted
to [0,50]. We assume that each worker has a unit velocity,
such that the traveling time of a worker directly reflects his
traveling distance. Then, the maximum traveling time of
each worker is randomly generated within the range of
[5,15], and the valid time of each task is randomly set within
the range of [2,15]. Finally, we set the utility of each task
within the range of [5,30].

5.1.2 Real-World Datasets

Next, we test the algorithms by using the real-world datasets,
T-drive [49], [50] and parking places of Beijing [51]. T-drive
consists of taxi trajectories which was generated by 10,357
taxis in a period of one week in Beijing. Each trajectory
record represents the travel history of a taxi, including the
taxi ID, date, time, and location (latitude and longitude). We
regard each taxi as a worker and take his historic initial loca-
tion along a trajectory as the starting location for undertaking
sensing tasks. We set the moving velocity of a worker to
35 km/h according to the computation in [52]. In addition,
we randomly select a period of continuous driving time of a
worker in the trajectory as the expected working time. Con-
tinuous driving can be judged by whether the distance
between two consecutive GPS sampling points is greater
than 100meters.

Another real-world dataset, parking places of Beijing,
contains 5,881 parking places of Beijing. The map of Beijing
and some parking places of Beijing are shown in Fig. 9.
Each parking place is associated with an id, address,

latitude, and longitude, and we consider the parking places
as the locations of sensing tasks. The valid time of each task
is randomly generated within the range of [2,15] minutes,
and the value of each task is set to be within the range
of [5,30].

Note that the aforementionednecessary parameters in both
synthetic and real-world datasets are generated by ensuring
that the following unreasonable situationswill not occur:

� A worker works too long, so that he can complete
most of the tasks;

� Expected working time of most workers is too short,
so that few tasks can be completed;

� The valid time of most tasks is too short, so that few
workers can complete the tasks;

� The valid time of most tasks is so long that it violates
the temporal features of many location-based tasks.

5.2 Compared Algorithms

Greedy. The first compared algorithm uses the greedy heu-
ristic. Specifically, The algorithm chooses the closest task to
determine whether it can be assigned to a candidate worker.
If the assignment is valid, the location of the assigned task is
considered as the new starting location of the worker. The
assignment process continuous until the worker’s expected
working time is exhausted.

GGA-I. The second compared algorithm is the greedy-
enhanced genetic algorithm for intentional movement (GGA-
I) proposed in [19]. The initial population of GGA-I is gener-
ated using the result of the NearestFirst algorithm which is a
kind of greedy heuristic. Due to the difference of the solution
representation, we adapt the operation constraints tomeet the
proposed optimizationmodel.

DAEA. The third compared algorithm is an exact algo-
rithm for destination-aware spatial crowdsourcing (named
DAEA here) from [21]. Since DAEA is an exact algorithm,
we only compare it in small-scale synthetic datasets.

EA. In small-scale datasets, we also find optimal solu-
tions for comparison by running an exact algorithm (named
EA) based on the branch and bound method [53], [54].

5.3 Parameter Settings for GA

The main parameters concerning GA include the population
sizeN , the crossover probability Pc, the mutation probability
Pm, proportion of vaccine immunity b, and the maximum
generation MG. We set N ¼ 50; Pc ¼ 0:9; Pm ¼ 0:01;b ¼ 0:1
following the common settings for these parameters. Then
through the experiment by setting m ¼ 60; n ¼ 200 in the
synthetic dataset (as shown in Fig. 10), we can observe that
MATC-IGA andMATC-GA start to convergewhen the num-
ber of iterations (i.e., the maximum generation MG) is
around 22. Considering that the common setting for themax-
imum generation is around 100, we set MG ¼ 100 in our
experiments.

5.4 Results

In the experiment, we evaluate the performance of the algo-
rithms with respect to the utility of the MCS platform, the
number of allocated tasks (the ratio of allocated tasks), and
the average number of tasks allocated to each worker. The
utility of the MCS platform is a direct reflection of the

Fig. 9. Parking places of Beijing.
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optimization goal, and higher utility indicates better results.
For task requesters, the high allocation rate of the tasks will
attract more task requesters; while for workers, the more
tasks a worker completes, the more reward he can receive.
For each experiment, the algorithms run 50 times to get the
average values. All the algorithms are implemented on an
Intel Core i7-7700 CPU @3.60 GHz with 8 GB RAM.

5.4.1 The Effect of the Task Number

in Synthetic Datasets

We fix the number of workersm ¼ 60 and set the number of
tasks n ¼ f60; 80; 100; 120; 140; 160; 180; 200g. From Figs. 11
and 12, we can see that with the increment of the number of

tasks, the utility of the MCS platform increases, while
the ratio of allocated tasks decreases. This trend is due to
the fact that, as the number of tasks increases, the workers
have a higher probability to be assigned with the tasks that
are more beneficial to the platform. At the same time, due to
the limited number of workers and their limited working
time, only part of the tasks can be accomplished. As a result,
with the increment of the number of tasks, more and more
tasks will not be allocated, which leads to a reduction in the
ratio of allocated tasks.

Fig. 11 shows the comparison of the platform utility
under different task distributions. It can be observed that
the different algorithms all perform better under the uni-
form distribution, and perform worse under the compact
distribution. This is because that, tasks with the uniform
distribution are accessible to more workers in the sensing
area, but tasks with the compact distribution may leave the
workers who are far from the tasks idle. Next, we illustrate
the numerical performance comparison of different algo-
rithms. In the three types of distributions, the proposed
MATC-GA and MATC-IGA achieve the highest utility val-
ues. Specifically, as shown in Table 3, the utility value of
MATC-GA is around 17.28 and 22.10 percent larger on aver-
age than that of GGA-I and Greedy, respectively; while the
utility value of MATC-IGA is around 8.97 percent larger on
average than that of MATC-GA. In addition, since one
worker can accomplish multiple tasks, the performances of
the four algorithms are similar when the number of tasks
and workers are comparable.

On the other hand, the ratios of allocated tasks of the four
algorithms decrease with the increment of task numbers (as
shown in Fig. 12). It can be observed that the ratio of allo-
cated tasks for the compact distribution is less satisfactory.

Fig. 10. Convergence of MATC-GA and MATC-IGA.

Fig. 11. Utility of the platform (m ¼ 60).

Fig. 12. Ratio of the allocated tasks (m ¼ 60).
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As the number of tasks increases, the ratio of allocated tasks
drops significantly, and the MATC-IGA algorithm with the
best performance also drops below 50 percent. As listed in
Table 4, MATC-GA and MATC-IGA perform better than
GGA-I and Greedy, with average improvement ratios of
49.01/20.72 and 60.79/30.24 percent, respectively.

5.4.2 The Effect of the Worker Number

in Synthetic Datasets

Next, we fix the number of tasks n ¼ 200 and set the num-
ber of workers m ¼ f20; 40; 60; 80; 100; 120; 140; 160; 180; 200g

to study the effect of the worker number. In Figs. 13, 14, and
15, there are three types of results: the utility of the MCS
platform, the number of allocated tasks, and the average
number of tasks allocated to each worker. Through the first
two types of results, we can see that with the increment of
the number of workers, both the utility of the platform and
the number of allocated tasks exhibit an upward trend. The
reason is that as the number of workers increases, the candi-
date pool of workers is larger so that the possibility for tasks
to be allocated is increased. On the other hand, for the three
different task distributions, when the number of tasks
and workers are comparable (for example, n ¼ 200 and

TABLE 3
Average Performance Comparison of the Platform

Utility (w.r.t. the Number of Tasks)

Algorithms Greedy GGA-I MATC-GA MATC-IGA

Greedy – 4.09% 22.10% 33.10%
GGA-I -3.91% – 17.28% 27.85%
MATC-GA -17.86% -14.53% – 8.97%
MATC-IGA -24.52% -21.47% -8.15% –

TABLE 4
Average Performance Comparison of the Ratio

of the Allocated Tasks (w.r.t. the Number of Tasks)

Algorithms Greedy GGA-I MATC-GA MATC-IGA

Greedy – -18.85% 20.72% 30.24%
GGA-I 23.35% – 49.01% 60.79%
MATC-GA -16.96% -32.57% – 7.86%
MATC-IGA -22.96% -37.42% -7.24% –

Fig. 13. Utility of the platform (n ¼ 200).

Fig. 15. Average number of tasks per worker (n ¼ 200).

Fig. 14. Number of the allocated tasks (n ¼ 200).
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m ¼ ½140; 200�), the results obtained bydifferent algorithms in
the three task distributions are not significantly different.
However, when the number of workers and the number of
tasks have larger differences (for example, n ¼ 200 and
m ¼ ½20; 120�), the performances of different algorithmsunder
the uniform distribution are much better than that under the
compact distribution, which is consistent with the aforemen-
tioned conclusion.

We then analyze the average performances of the algo-
rithms under the three task distributions. For the utility of
the platform (as shown in Fig. 13), the performance of
MATC-IGAperform best with different numbers of workers,
followed by MATC-GA. Specifically, as shown in Table 5,
MATC-IGA is better than MATC-GA, GGA-I and Greedy
with average increment ratios of around 7.88, 24.84 and 28.70
percent, respectively; while MATC-GA is better than GGA-I
and Greedy with average increment ratios of around 15.38
and 18.85 percent, respectively. Furthermore, when the ratio
of the number of tasks to the number of workers is about 4:1,
the performance of MATC-IGA and MATC-GA can be opti-
mized. Similarly, for the number of allocated tasks (as shown
in Fig. 14), MATC-IGA is still better than the other algo-
rithms. In contrast, GGA-I has the worst performance. Spe-
cifically, as shown in Table 6, the average increment ratio of
MATC-IGA is up to 6.99/51.80/25.44 percent compared to
that ofMATC-GA/GGA-I/Greedy, respectively.

Finally, we analyze the third type of results in detail,
where the average number of assigned tasks per worker is
used to measure the performance of the algorithms. If the
number of assigned tasks per worker is higher, it means that
workers can get higher reward.While maximizing the utility
of the platform, we can achieve a win-win situation between
the MCS platform and the workers if we can assign more
tasks for each worker. When the number of workersm grad-
ually increases (gradually becoming commensurate with the
number of tasks), there is a greater possibility a fixed number
of tasks can be allocated. In this case, all of the algorithms can
achieve better performance. Here we set m ¼ f20; 40; 60;
80; 100g to investigate the situation when the number of
workers is relatively small. First we analyze the tasks with
the uniform distribution (as shown in Fig. 15a). It can be

observed from the figure that as the number of workers
increases, the average number of tasks assigned per worker
decreases slightly. MATC-IGA algorithm has the best results.
The results of MATC-GA and Greedy are similar and are
slightly worse than that of MATC-IGA, while the results of
GGA-I is the worst. Considering the compact distribution as
shown in Fig. 15b, it is not difficult to find that the results are
different from those in the uniform distribution. The reason
is that because of the compact distribution of tasks, a worker
can spend less time in traveling and undertake more tasks,
which happens to reflect the local search nature of Greedy.
With the increment of the number of workers, MATC-IGA
can achieve similar results compared with Greedy. For the
mixed distribution, as shown in Fig. 15c, it is clear that
MATC-IGA is better than the other algorithms, following by
MATC-GA and Greedy. In conclusion, MATC-IGA outper-
forms the other algorithms in all three distributions, while
MATC-GA and Greedy have similar performances. Com-
bined with the first two metrics, MATC-IGA has the best
overall performance, followed by MATC-GA. It confirms the
effectiveness and feasibility of the proposed algorithm.

5.4.3 The Time Complexity of MATC-GA

and MATC-IGA in Synthetic Datasets

We have already analyzed the computation complexity of
MATC-GAandMATC-IGA in the previous section.Although
the solution space of MATC grows exponentially with the
increasing number of tasks and workers, the computation
complexity MATC-GA and MATC-IGA does not increase
dramatically, as shown in Table 7. When the number of tasks
(workers) is constant, the time complexity increases linearly
as the increment of workers (tasks). Note that because
the time complexity ofMATC-GA andMATC-IGA is affected
by the number of iterations, we compare the CPU time of
each iteration.

5.4.4 Results in Small-Scale Synthetic Datasets

In order to compare the performance of the proposed algo-
rithms with exact algorithms, we reduce the number of
tasks and workers for small-scale experiments. First, we fix
the number of workers m ¼ 35 and set the number of tasks
n ¼ f35; 40; 45; 50; 55; 60; 65; 70; 75; 80g to get the perfor-
mance of the exact algorithms and the proposed algorithms
in three task distributions. Due to the limited space, we only
show the result figures of the compact distribution (Fig. 16).
The figures of the other distributions show similar trends

TABLE 5
Average Performance Comparison of the Platform

Utility (w.r.t. the Number of Workers)

Algorithms Greedy GGA-I MATC-GA MATC-IGA

Greedy – 2.88% 18.85% 28.70%
GGA-I -2.72% – 15.38% 24.84%
MATC-GA -14.97% -12.70% – 7.88%
MATC-IGA -20.76% -18.71% -7.16% –

TABLE 7
Average Time Complexity of MATC-GA and MATC-IGA

[w.r.t. Runtime per Generation(s)]

m = 60 Number of tasks

60 80 100 120 140

MATC-GA 0.1479 0.2059 0.2978 0.3938 0.4936
MATC-IGA 0.2379 0.3154 0.4468 0.5927 0.7458

n = 200 Number of workers
60 80 100 120 140

MATC-GA 0.7268 0.7816 0.8224 0.8746 0.9189
MATC-IGA 1.0914 1.1045 1.2246 1.3167 1.3904

TABLE 6
Average Performance Comparison of the Ratio

of the Allocated Tasks (w.r.t. the Number of Workers)

Algorithms Greedy GGA-I MATC-GA MATC-IGA

Greedy – -16.79% 16.93% 25.44%
GGA-I 20.49% – 41.33% 51.80%
MATC-GA -13.71% -27.98% – 6.99%
MATC-IGA -19.03% -32.33% -6.42% –
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and are presented in Appendix B, available in the online
supplemental material. From Figs. 16a and 16b, we can see
that the trends of the algorithms are similar to that in the
aforementioned results. Furthermore, we can observe from
Fig. 16c that when the number of workers is fixed, the CPU
time of the proposed algorithms grows linearly with the
increment of the number of tasks, which is consistent with
the conclusions obtained from the previous analysis and
experiments. On the contrary, the exact algorithms (EA and
DAEA) are limited by the scale of problem. As the number
of tasks increases to certain extent, the time grows sharply,
so that they cannot be applied to large-scale problems.

Next, we illustrate the numerical performance compari-
son of different algorithms. In the three types of distribu-
tions, the proposed MATC-GA and MATC-IGA can achieve
a superior solution close to the optimal solution. Specifi-
cally, the average utility values of MATC-IGA and MATC-
GA can achieve 97.32 and 91.75 percent of the value of EA
respectively, while DAEA can only achieve 59.7 percent. On
the other hand, MATC-IGA, MATC-GA and DAEA can
achieve 93.91, 93.91 and 63.14 percent in the ratio of allo-
cated tasks obtained by EA, respectively. Here we can find
that MATC-IGA can achieve higher utility of the platform
when the ratios of allocated tasks of MATC-IGA and
MATC-GA are the same. It indicates that the immune prin-
ciple and the vaccine method are able to weaken the unfa-
vorable influence caused by the random selection and the
mutation operation.

Considering the effect of the worker number in small-scale
synthetic datasets, we fix the number of tasks n ¼ 50 and set
the number of workers m ¼ f5; 10; 15; 20; 25; 30; 35; 40; 45; 50g.
Similarly, we only show the result figures of the compact dis-
tribution (Fig. 17). The figures of the other distributions show

similar trends and are presented in Appendix C, available in
the online supplemental material. The trends shown in
Figs. 17a and 17b are similar to that in the aforementioned
results with a larger synthetic dataset. Fig. 17c shows that,
with the increment of workers, the running time of the pro-
posed algorithms increase linearly, while EA and DAEA
grows sharply when the number of workers increases to
certain extent.

We now summarize the average performance of the algo-
rithms under the three task distributions. For the utility of
the platform, MATC-IGA and MATC-GA perform well
with different numbers of workers. Specifically, MATC-IGA
and MATC-GA can reach 97.37 and 92.18 percent of the
optimal value returned by EA on average, while DAEA can
reach 52.42 percent of the optimal by EA. Similarly, for the
number of allocated tasks, both MATC-IGA and MATC-GA
can reach 92.85 percent of the result by EA. In contrast,
DAEA has the worst performance, which can only reach
56.71 percent of the result by EA.

See Appendix B and C, available in the online supple-
mental material, for details of the results in small-scale syn-
thetic datasets.

5.4.5 The Results in Real-World Datasets

We also compare the algorithms based on the real-world
datasets. In order to test the applicability of the algorithms,
we randomly select 200 workers and 200 tasks based on the
real-world datasets to perform the experiments.

First, we analyze the effect of task numbers. We set the
number of workersm ¼ 60 and the number of tasks n ¼ f60;
80; 100; 120; 140; 160; 180; 200g. As shown in Fig. 18a, we can
see that the trend presented by the results is similar to that
produced by the previous synthetic data. Specifically, the

Fig. 16. The effect of the number of tasks in small-scale dataset with compact distribution (m ¼ 35).

Fig. 17. The effect of the number of workers in small-scale dataset with compact distribution (n ¼ 50).
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utility of platform obtained by MATC-IGA is better than
GGA-I and Greedy (9.00 to 24.13 percent better than GGA-I,
13.63 to 26.84 percent better than Greedy), and is similar to
MATC-GA. But for the ratio of allocated tasks (as shown in
Fig. 18b), we can see that the result is not the same as what
we get from experiments with synthetic data. The results
show that for each algorithm, the ratio of allocated tasks
does not change significantly with increment the number of
tasks. Instead, the ratios of allocated tasks keep almost at the
same values (73 percent for MATC-IGA, 71 percent for
MATC-GA, 50 percent for GGA-I, 60 percent for Greedy). In
other words, even if the resources of workers are limited,
some newly added tasks can still be assigned to the appropri-
ate workers. This phenomenon is because that, in the real
data, the workers are not uniformly distributed, which leads
to the allocation becoming more random and the result fluc-
tuates in a small range rather than in a downward trend.

Next, we analyze the effect ofworker numbers. As shown in
Figs. 19a and 19b, we can see that the results are similar to the
overall trend of the results obtained from the previous syn-
thetic data. The only difference is that the trend of the results
obtained here is steep first and becomes flat gradually, while in
the synthetic data, the growth trend is steadily rising. These
results are also caused by the nonuniformdistribution ofwork-
ers. Numerically, the utility of the platform obtained by the
MATC-IGA is at least 7.98 percent higher than that obtained by
GGA-I, and the highest increment reaches 50.86 percent. Com-
pared with Greedy, the utility of MATC-IGA is 8.91 to 59.56
percent higher. The average gap between MATC-GA and
MATC-IGA is about 4.37 percent. On the other hand, MATC-
GA and MATC-IGA achieve considerable numbers of allo-
cated tasks. Specifically, compared with GGA-I and Greedy,

the improvement of MATC-GA is more than 22.81 and 7.21
percent at least, andmore than 37.85 and 16.06 percent on aver-
age. MATC-IGA is shown to be slightly better than MATC-
GA, with an improvement of around 0.91 to 9.67 percent. As
for the average number of tasks allocatedperworker (as shown
in Fig. 19c), both MATC-IGA and MATC-GA have high com-
petitiveness similar to the above conclusions.

To sum up, through these three measures, the proposed
algorithms MATC-IGA and MATC-GA achieve more com-
petitive and stable performances compared with GGA-I
and Greedy.

5.5 A Crowdsensing Prototype for MATC

In order to measure the real performance of the proposed
algorithms and MCS system, we deploy a prototype named
MatcSense in a limited experimental environment. Matc-
Sense is used to monitor garbage classification in various
areas of the campus by uploading photos of garbage areas in
campus. The preliminary result of running MatcSense show
that, our proposed algorithms can effectively find the supe-
rior solution, which also proves the effectiveness and appli-
cability of our algorithms. Due to the page limit of the paper,
the details about the prototype is placed in Appendix D,
available in the online supplemental material.

6 DISCUSSION

This section discusses the limitations of the studied model
and the proposed algorithms.

1) Efficiency: The proposed algorithms may be less effi-
cient in a very large scale environment (e.g., a city-wide

Fig. 18. The effect of the task number in real-world datasets.

Fig. 19. The effect of the worker number in real-world datasets.
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application). In this case, the combination of distrib-
uted technology such as fog computing and mobile
crowdsensing is promising for effectively solving this
problem and thus can further improve the allocation
efficiency. Recently, researchers have begun to pay
attention to incorporate the concept of fog computing
to task allocation in mobile crowdsensing [55], which
focuses on secure data deduplication scheme to
improve communication efficiency while guaranteeing
data confidentiality. How to coordinate distributed fog
nodes to design more efficient allocation strategies is
still a challenging and unsolved problem inMCS.

2) Scalability: The proposed algorithms are designed
based on GA, which is suitable for batch (or static)
task allocation problems where the information of
workers and tasks are known before running the
algorithm. Therefore, the proposed algorithms can-
not be applied to some MCS applications where the
platform needs to make real-time decisions when
receiving task requests.

3) Incentive mechanism: Task allocation and incentive
design are two important research topics in MCS.
Currently, research works on task allocation mainly
focus on matching workers and tasks efficiently, and
they assume that workers are willing to perform tasks
given a simple incentive mechanism. Similarly, our
model adopts a simple incentive mechanism. On the
other hand, research works on incentive mechanism
design [56], [57], [59] mainly focus on designing
diverse thorough mechanisms to provide ordinary
mobile users with sufficient incentives, and they use
scenarios which do not require efficient task allocation
methods. In the future work, we will investigate incor-
porating a more thorough incentive mechanism to the
task allocationmodel.

7 CONCLUSION

This paper studies a multi-task allocation problem with time
constraints inMCS.Wefirstmodel the problem as a combina-
torial optimization problem with two time constraints (i.e.,
the expected working time of workers and the valid time of
tasks), which aims at maximizing the utility of the MCS plat-
form. Then we prove that this problem is NP-complete and
design two heuristic algorithms to solve the problem. Finally,
the experiments based on synthetic and real-world datasets
verify that the proposed algorithms outperform compared
algorithms under different experiment settings.
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