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Abstract—Received signal strength based device-free localization applications utilize a model that relates the measurements to

position of the wireless sensors and person, and the underlying inverse problem is solved either using an imaging method or a

nonlinear Bayesian filter. In this paper, it is shown that the Bayesian filters nearly reach the posterior Cram�er-Rao bound and they are

superior with respect to imaging approaches in terms of localization accuracy because the measurements are directly related to

position of the person. However, Bayesian filters are known to suffer from divergence issues and in this paper, the problem is

addressed by introducing a novel Bayesian filter. The developed filter augments the measurement model of a Bayesian filter with

position estimates from an imaging approach. This bounds the filter’s measurement residuals by the position errors of the imaging

approach and as an outcome, the developed filter has robustness of an imaging method and tracking accuracy of a Bayesian filter. The

filter is demonstrated to achieve a localization error of 0:11 m in a 75 m2 open indoor deployment and an error of 0:29 m in a 82 m2

apartment experiment, decreasing the localization error by 30-48 percent with respect to a state-of-the-art imaging method.

Index Terms—Received signal strength, wireless sensor networks, Bayesian filtering, posterior Cram�er-Rao bound, positioning and tracking

Ç

1 INTRODUCTION

UBIQUITOUS radio frequency (RF) sensing technologies
have experienced a surge of interest over the past years

and are considered as a potential candidate to be used in
smart homes. Smart homes control heating, ventilation and
air conditioning systems to improve environmental sustain-
ability and the comfort of their residents [1]. Our vision is that
future smart homes would not only monitor the homes we
live in, but also its inhabitants. Such system capabilities are
enabled by RF signals and recently, various radio signalmeas-
urements have been demonstrated for vital sign monitoring
[2], activity and gesture recognition [3], and localization and
tracking [4]. With such information, the smart home could be
controlled using our gestures, the vital sign information could
be used to enhance our health-awareness, and heating and
lighting could be automatically adjusted based on our
location.

Non-invasive RF sensing technologies are built upon the
fact that humans alter the propagation characteristics of radio
signals and at the receiver, these changes can be quantified
using the radio’s channelmeasurements. Research has demon-
strated the use of various radio signal measurements for infer-
ence, including time delay [2], phase [3], and signal strength
[4]; and these have been used for various purposes as

mentioned above. Most notably, the technology is non-inva-
sive and does not require the person to carry any electronic
device.Moreover, the technology can be realizedwith received
signal strength (RSS) measurements that are ubiquitously
available in nearly all receivers. In this paper, we consider nar-
rowbandwireless devices that measure the RSS andwe utilize
the channel measurements for locating and tracking people in
indoor environments. It is to be noted that the technology is
not limited to localizing people and the proposed method
could also be used to locate large animals [5] and vehicles [6].
The readers are referred to [7], [8] for a comprehensive over-
view of RF-based passive localization technologies.

In RSS-based device-free localization and tracking (DFLT),
the algorithmic approaches can be divided into two catego-
ries. In the first, the person is located using an imaging
approach [9], [10] and a Kalman filter (KF) is used for tracking
[11], [12]. In the second, a propagation model together with a
nonlinear Bayesian filter such as a particle filter (PF) [13], [14],
[15] or an extended Kalman filter (EKF) [16] is used to track
the kinematic state of the target. The considered problem can
be solved more accurately using a nonlinear Bayesian filter,
however, these filters are known to suffer from divergence
issues if the modeling errors are significant [17, p.128]. To
address this problem, we introduce a novel Bayesian filter in
which the measurement update recursion is augmented with
position estimates from an imaging approach. The benefit of
the proposed approach is that the filter’s measurement resid-
uals are bounded by the position errors of the imaging
approach, and as a result, the filter has the robustness of an
imagingmethod and almost the tracking accuracy of a nonlin-
ear Bayesian filter. Moreover, the implemented filter is com-
putationally efficient. We refer to the developed Bayesian
filter as Fusion Filter (FF) and it practically merges an EKF
approachwith an imaging approach.
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The work is motivated by deriving the posterior Cram�er-
Rao bound (PCRB) for the RSS-basedDFLT problem and eval-
uating two estimators with respect to the bound. The used
RSS-based DFLT estimators are: an EKF-based method [16]
and a modified radio tomographic imaging (RTI) method
[12]. The analysis clearly shows that RTI is lower bounded by
the pixel size of the discretized image and this bound is signif-
icantly higher than the PCRB. On the other hand, the EKF
nearly achieves the bound which encourages its use in RSS-
based DFLT. However, the divergence issues of the EKFmust
be solved and we propose to use the FF for this purpose. The
filter is experimentally and numerically evaluated. The results
imply that the presented filter nearly achieves the perfor-
mance of the EKF in ideal scenarios, it outperforms the EKF
and PF in more challenging environments and it has the
robustness of an imagingmethod. The presented filter is dem-
onstrated to achieve a localization error as low as 11 centi-
meters in a 75 m2 open indoor deployment and an error of
29 centimeters in a 82 m2 apartment experiment, decreasing
the localization error by 30-48 percent with respect to a state-
of-the-art imagingmethod.

In RF sensing, sensor fusion is the inherent way of com-
bining the information from multiple sources (distributed
sensor nodes [9], [18], antennas [2], [3] and/or frequency
channel [12], [19]). Several works have also used different
types of sensors including ultra-wideband radios [20], cam-
eras [21], [22], [23] and acoustic sensors [24] to enhance the
performance of a system that solely uses radio channel
measurements. The works perform sensor fusion by com-
bining the sensory data from two kinds of sensors to reduce
the uncertainty and improve the accuracy. Our solution
differs from traditional sensor fusion methods since we do
not combine different types of sensory data but instead, we
merge the information from two categories of DFLT appro-
aches into one filtering algorithm.

This paper makes the following contributions:

� A closed form solution for the PCRB is derived and
two well known estimators are evaluated with
respect to the bound.

� A sequential imaging method is proposed allowing
recursive image updates whenever new RSS meas-
urements are received.

� Wepropose amethod on how the uncertainties related
to RTI position estimates can be taken into account.

� A novel filtering framework is proposed that aug-
ments the measurement update recursion of a non-
linear Bayesian filter with position estimates from an
imaging solution.

The remainder of the paper is organized as follows. In
the next section, related work is discussed. In Section 3, the

problem of tracking the kinematic state of the person is for-
mulated and two estimators are presented. The PCRB is
derived in Section 4 and the bounds of RSS-based DFLT are
analyzed. Motivated by the bound analysis, the FF is devel-
oped and the filter is presented in Section 5. The experi-
ments and results are presented in Sections 6 and 7 in
respective order and thereafter, the conclusions are drawn.
In Table 1, major notations of the paper are summarized.

2 RELATED WORK

In RSS-based DFLT, there are two widely used approaches
for locating people: fingerprinting [25], [26], [27], and
model-based approaches [9], [12], [14]. Fingerprinting meth-
ods use a database of training data labelled with a person’s
known locations. During runtime, the current set of RSS
measurements are compared to those in the database to esti-
mate the current location. Model-based approaches use an a
priori model for the changes in RSS with respect to the loca-
tions of the sensors and person, and localization is per-
formed for example using an imaging approach [9], [10].
Fingerprinting methods are able to achieve high accuracy
also in demanding environments, but the training process is
laborious and the performance degrades exponentially as
the environment is altered [27]. Model-based approaches
can be deployed quickly [28], but the mismatch between the
RSS model and measurements can significantly affect the
system performance [12]. This paper focuses on model-
based DFLT and a novel tracking filter is presented, and it
is shown that the filter is robust to modeling errors.

In model-based approaches, the person is typically
located and tracked either using an imaging approach [9],
[10], [12] or Sequential Monte Carlo (SMC) methods [13],
[14], [15]. The imaging methods compute a propagation
field image of the monitored area [9], [10], the person is
localized from the estimated image, and then a KF is used
for estimating the kinematic state of the target [11], [12]. In
literature, the changes in the propagation field have been
quantified using various RSS link metrics including shad-
owing [9], RSS variance [11] and kernel distance between
two RSS histograms [28]. The benefit of the imaging
approaches is that they are computationally efficient, they
are robust and an improper prior does not cause the track-
ing filter to diverge. As a drawback, information can be lost
in the two-step process to first estimate the image and then
the location. In addition, discretization of the image inevita-
bly degrades the localization accuracy.

The SMC methods typically utilize a PF to solve the prob-
lem, and in the tracking algorithms, the RSS measurements
are directly related to the person’s location using either an
empirical model [13], [15] or a theoretical propagation model

TABLE 1
Major Notations and Common Operators

Symbol Description

zl, zk and Z A scalar RSS measurement of link l, RSS measurement vector at time k and RSS matrix
xk, x̂k, Pk State of the person at time k, estimate of the state and covariance of the estimate
hl,Hx andH Measurement model of link l, Jacobian of hlðxkÞ and linear measurement model
DlðkÞ and uul ¼ ½fl �l s

2
l � Excess path length of link l at time k and model parameters of the link

ð�ÞT , ð�Þ�1 and k � k matrix transpose, inverse and euclidean norm
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[14], [29]. Different variants of the PF have been proposed in
literature including the sequential importance resampling
(SIR) filter [13], [14], [15], auxiliary particle filter [30] andMar-
kov chain Monte Carlo filter [31]. However, the filters have
been reported to yield comparative accuracy at least in the sin-
gle target tracking case [31]. Furthermore, our recent work
demonstrates that an EKF yields similar performance as a PF
as long as the time evolution of themeasurements is taken cor-
rectly into account in the filter recursion [16]. The benefit of
the Bayesian filters is that they are more accurate than the
imaging approaches if the used RSS-model describes the data
well [13], [16], [29]. As a disadvantage, the PF is computation-
ally very demanding, and the filters can diverge if the prior
distribution is inaccurate [16]. In this paper, we introduce a
Bayesian filter in which the measurement update recursion is
augmented with position estimates from an imaging
approach in order to improve robustness of the filter. The
developed filter is computationally less demanding than the
PF, it has the robustness of an imaging method and the track-
ing accuracy of a Bayesian filter.

The PCRB states that the mean squared error (MSE) of an
unbiased estimator is always larger than the bound [32],
[33]. The PCRB can be used to evaluate the developed esti-
mator and in addition, as a pre-deployment predictor of
system performance, providing an analytical method for
system design and pre-deployment performance evalua-
tion. Despite the importance of the PCRB, there exists only a
few works in RSS-based DFLT that have used it for evalua-
tion purposes [10], [14], [29], [34], [35], [36]. In [10], the CRB
is derived for RTI and in the work, it is studied how the
node locations affect the accuracy of image estimation. It is
shown that the best node geometry is where the nodes are
deployed uniformly around the monitored area. The CRB
for five different RTI models is derived in [34] providing an
analytical tool on how the system parameters affect the
CRB, enabling analysis of the tradeoffs between the parame-
ters in system design. Neither analysis provides a bound on
position estimates�they can only bound the covariance of
the values of the pixels in the image. In this paper, we
derive the PCRB on localization error similar to the works
in [14], [29], [35], [36]. Contrary to [14], we provide a closed-
form solution to the PCRB. In addition, we incorporate the
apriori knowledge of the target dynamics and position into
the PCRB as opposed to the works in [29], [35], [36]. In fact,
the PF used in [29] outperforms the derived bound and the
authors point out that the conventional CRB does not incor-
porate the apriori information of the motion. Furthermore,
the aforementioned works use a diffraction-based RSS
model which has been validated only in ideal line-of-sight
(LOS) scenarios limiting the usefulness of the derived
bounds. In this paper, we use an exponential model [13]
that is widely used in literature. In addition, the model has
been used in challenging through-wall scenarios [12] and
therefore, the derived PCRB can be applied to a wide range
of environments.

Radio source localization systems have been investigated
and deployed in a variety of forms over the past several dec-
ades [37]. Source localization from signal-strength is most
relevant to this paper, and bounds and algorithms have
been presented [38]. Similarly, localization bounds using
temporal characteristics has been widely investigated via

geometric dilution of precision [39] or via CRB [40]. Bounds
for systems that combine multiple signal characteristics
(time, power, and angle) are given in [41]. In general, the
RSS source localization variance bound is inversely propor-
tional to the average squared distance between neighboring
sensors. It also decreases with increasing path loss exponent
and increases with fading variance [42]. Respectively, the
RSS-based DFLT variance bound decreases with increasing
number of wireless links that cover the location. It also
decreases with increasing measurement gain and increases
with measurement noise variance.

3 RSS-BASED DFLT

This section presents the background information needed to
derive the PCRB for RSS-based DFLT in Section 4 and devel-
oping the novel Fusion filter in Section 5. This section begins
by defining the problem of localizing and tracking a person
using RSS measurements of wireless links. Thereafter, two
solutions from the literature are summarized [12], [16]. The
first solution is based on an EKF that directly relates the RSS
measurements to the person’s kinematic state [16]. The lat-
ter is a two-step method, where a discretized propagation
field image is first computed and then, the person’s position
is estimated from the image [10], [12].

To simplify the notation, we assume in this section that
the wireless network consists of S nodes forming
L ¼ S � ðS � 1Þ unique links and that the link measurements
are taken at the same time instance k. We want to emphasize
that full connectivity is not a requirement of RSS-based
DFLT and that the link measurements can be sampled at
different time instances. In Section 5, we present the used
communication protocol, how the RSS measurements are
sampled and how the time evolution between transmissions
is taken into account.

3.1 Problem Formulation

This work aims to localize and track a person using RSS
measurements of the wireless nodes. The considered prob-
lem can be formulated using a state space model of the form

xk ¼ f xk�1ð Þ þ qk�1; (1a)

zk ¼ h xkð Þ þ rk; (1b)

where k denotes the time and

xk 2 R4�1 is the person0s kinematic state;

zk 2 RL�1 RSS measurement vector;

qk�1 � Nð0;QÞ Gaussian process noise;

rk � Nð0;RÞ Gaussian measurement noise;

fð�Þ dynamic model of the person;

hð�Þ RSS measurement model:

The measurement noise covariance is assumed diagonal
and it is defined as R ¼ diag s2

1; s2
2; . . . ; s

2
L

� �
. In literature,

the DC component is typically removed from the RSS since
it does not contain information about location of the person
[10], [13], [14], [15]. Thus, what we refer as the RSS of link l
is actually the mean removed RSS, that is, zlðkÞ ¼ ~zlðkÞ � ml,

782 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 20, NO. 3, MARCH 2021



where ~zl is the RSS provided by the radio module and ml is
the mean RSS computed during an initialization procedure.

The state of the person is defined as

xk ¼ pxðkÞ vxðkÞ pyðkÞ vyðkÞ½ �T ; (2)

where pxðkÞ and pyðkÞ are the x- and y-coordinates, and the
velocity components are denoted as vxðkÞ and vyðkÞ. A com-
mon choice for the dynamic model in DFLT is the second-
order kinematic model [11], [14], [15] given by [43, Ch 6]

F ¼

1 t 0 0
0 1 0 0
0 0 1 t

0 0 0 1

2
664

3
775;Q ¼ q

1
3 t

3 1
2 t

2 0 0
1
2 t

2 t 0 0
0 0 1

3 t
3 1

2 t
2

0 0 1
2 t

2 t

2
664

3
775; (3)

where q is the power spectral density of the process noise
and t is the sampling period. In this case, the state evolution
in Eq. (1a) can be expressed using xk ¼ Fxk�1 þ qk�1 because
the dynamic model is linear.

3.2 Extended Kalman Filter

The EKF algorithm directly relates the RSS measurements to
the person’s kinematic state and we model the RSS of link l
using the exponential model [13], [15], [31]

hlðxkÞ , fl e
�DlðkÞ=�l ; (4)

where fl defines themeasurement gain when the person is on
the LOS and �l controls the decay rate. In this paper, we use
the exponential model because it has been widely used in lit-
erature and its applicability has been demonstrated in chal-
lenging indoor environments and through-wall scenarios
[12]. Nevertheless, the proposed filter can readily be used
used with other RSS models as well. In (4), the excess path
length Dl relates the person’s location pk ¼ pxðkÞ pyðkÞ½ �T to
link lwith transmitter (TX) i and receiver (RX) j by

DlðkÞ , kpi � pkk þ kpj � pkk � kpi � pjk; (5)

where pi and pj denote the TX and RX positions in respec-
tive order. The EKF requires the Jacobian of hlðxkÞ for which
the elements are given by [16]

dhl
dpx

dhl
dpy

h iT
¼ hlðxkÞ

�l

pi � pk

kpi � pkk
þ

pj � pk

kpj � pkk

 !
; (6)

so that the Jacobian for link l can be expressed as

fHxgl ¼
dhl
dpx

0 dhl
dpy

0
h i

: (7)

Given that the dynamic model in (3) is linear, the predic-
tion step of the first order additive noise EKF can be
expressed as [17, Ch 4]

x̂�k ¼ Fx̂k�1;

P�
k ¼ FPk�1F

T þQ:
(8)

At time k, measurement zk becomes available and the mean
x̂�k and covariance P�

k can be updated using [17, Ch 5]

Sk ¼ Hxðx̂�k ÞP�
k H

T
x ðx̂�k Þ þ R;

Kk ¼ P�
k H

T
x ðx̂�k ÞS�1

k ;

x̂k ¼ x̂�k þKk zk � hðx̂�k Þ
� �

;

Pk ¼ P�
k �KkSkK

T
k :

(9)

3.3 Radio Tomographic Imaging

In RTI, the RSS for the L links is assumed to be a linear com-
bination of voxel changes plus noise [9]

zk ¼ Abk þ rk; (10)

where rk 2 RL�1 is the measurement noise defined in (1b),
A 2 RL�N is a weight matrix that relates the spatial propa-
gation field bk 2 RN�1 to the RSS zk 2 RL�1 and N is the
voxel number. The minimum mean square error estimate
(MMSE) for the model in (10), with zero-mean Gaussian pri-
ors with image noise covariance Sb and measurement noise
covariance R is

b̂k ¼ Pzk; (11)

where P ¼ ðATR�1Aþ aS�1
b Þ�1ATR�1 in which a is a regu-

larization parameter. From the estimated image, b̂, the per-
son can be localized by finding voxel n with highest
intensity, given by

p̂k ,
pxðnÞ
pyðnÞ

� �
¼ argmax

n
b̂kðnÞ: (12)

The covariance matrix Sb for pixelsm and n is [9]

fSbgm;n ¼ exp �kpm � pnk=dd
� �

; (13)

where dd is a user defined space constant. For link l and
pixel n, the elements of A are [12]

fAgl;n ¼ sgnðflÞffiffiffiffi
dl

p e�Dl;n=�l ; (14)

where fl and �l are defined by the RSS measurement model
in (4), sgnð�Þ is the sign function, Dl;n the excess path length
and dl ¼ kpi � pjk the distance between TX-RX pair i� j. In
[12], the direction of RSS change is taken into account by
weighting the measurements using sgnðflÞ � zl. Analo-
gously, the sgnðflÞ term can be included into the weight
matrix as we have done above. Also other models for A
have been proposed and the reader is referred to [34] and
[44] for further details.

4 POSTERIOR CRAM�ER-RAO BOUND

This section presents a new lower bound for coordinate
tracking in RSS-based DFLT. While the PCRB is a well-
established bound for tracking problems, in general, we are
not aware of its application to the RSS-based DFLT problem.
The earlier works have only bounded the covariance of the
values of the pixels in the image [10], [34], provided the
CRB on localization error [29], [35], [36] or have approxi-
mated the bound numerically [14]. In the following, we pro-
vide a closed-form solution to the PCRB for the tracking
problem.
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The CRB for a time-varying system, referred to as the
Van Trees version of the CRB [32], or posterior CRB [33],
states that the MSE of an unbiased estimator is always
larger than J�1

Ef x̂ðzÞ � xð Þ x̂ðzÞ � xð ÞTg � J�1; (15)

where J is the Fisher information matrix (FIM), x̂ðzÞ denotes
an estimator of x which is a function of measurements z.
The FIM is defined as

J ¼ E �Dx
xlog pðx; zÞ

� �
; (16)

where pðx; zÞ is the joint probability density function (PDF)
of the pair and Dy

x is defined as the gradient product

Dy
x ¼ rxrT

y , where rT
x ¼ @

@x1
; . . . ; @

@xN

h i
. The joint PDF for

an arbitrary time instant k is defined as

pðxk; zkÞ ¼ pðx0Þ
Yk
i¼1

pðzijxiÞ
Yk
j¼1

pðxjjxj�1Þ; (17)

and for a time-varying system, the FIM can be calculated
recursively using [45]

Jk ¼ D22
k�1 �D21

k�1 Jk�1 þD11
k�1

� ��1
D12

k�1; (18)

where

D11
k�1 ¼ Ef�Dxk�1

xk�1
log pðxkjxk�1Þg;

D12
k�1 ¼ Ef�Dxk

xk�1
log pðxkjxk�1Þg;

D21
k�1 ¼ Ef�Dxk�1

xk
log pðxkjxk�1Þg ¼ D12

k�1

� �T
;

D22
k�1 ¼ Ef�Dxk

xk
log pðxkjxk�1Þ þ log pðzkjxkÞ½ �g:

(19)

4.1 PCRB of RSS-Based DFLT

Considering the nonlinear filtering problem with additive
Gaussian noise defined in (1), the conditional PDFs in (19)
are

�log pðxkjxk�1Þ ¼ c1þ
1

2
xk � f xk�1ð Þð ÞT

�Q�1 xk � f xk�1ð Þð Þ;

�log pðzkjxkÞ ¼ c2þ
1

2
zk � h xkð Þð ÞT

� R�1 zk � h xkð Þð Þ;

(20)

where c1 and c2 are constant scaling terms of the multivari-
ate distributions. Plugging (20) to (19) yields

D11
k�1 ¼ Ef rxf xk�1ð Þð ÞQ�1 rxf xk�1ð Þð ÞTg;

D12
k�1 ¼ �Efrxf xk�1ð ÞgQ�1;

D22
k�1 ¼ Q�1 þ Ef rxh xkð Þð ÞR�1 rxh xkð Þð ÞTg;

(21)

and since F is linear, and hð�Þ nonlinear for the problem
defined in (1), (21) simplifies to

D11
k�1 ¼ FTQ�1F;

D12
k�1 ¼ �FTQ�1;

D22
k�1 ¼ Q�1 þHT

x R
�1Hx;

(22)

where Hx is defined in (7). Now, the recursion to update the
FIM can be obtained by substituting (22) to (18) giving

Jk ¼ HT
x R

�1Hx þQ�1

�Q�1F Jk�1 þ FTQ�1F
� ��1

FTQ�1;
(23)

which can be simplified to

Jk ¼ HT
x R

�1Hx þ Qþ FJ�1
k�1F

T
� ��1

; (24)

using the matrix inversion lemma. It is to be noted that the
bound is not defined when the target location coincides
with the position of the TX or RX since this results into divi-
sion by zero in Eq. (6).

The PCRB states that for any unbiased estimator, the root-
mean squared (RMS) localization error is lower bounded by

RMSEðkÞ � epk ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fJ�1

k g1;1 þ fJ�1
k g3;3

q
; (25)

where fJ�1
k g1;1 and fJ�1

k g3;3 denote elements of the PCRB
matrix corresponding to the x- and y-coordinates. The PCRB
can be used as a pre-deployment predictor of localization
accuracy, providing an analytical method for system design
and pre-deployment performance evaluation. As an example,
[10] uses the CRB to investigate the effect of node geometry to
imaging accuracy, [35] uses it to analytically evaluate the
developed model and [36] uses it for pre-deployment perfor-
mance assessment. In the following section, we compare the
RMS errors of RTI and the EKF to the lower bound for locali-
zation RMSE, denoted by epk , to evaluate the system and loca-
tion estimators.

4.2 Bound Analysis

The bound analysis is conducted using a network of 20 sen-
sors that cover an area of 75 m2 and the devices are distributed
around themonitored area as illustrated in Fig. 1a. The experi-
mental setting is the same as the open environment experi-
ment described in Section 6 but the data is simulated. For
now,we consider a time-invariant system so thatwe can focus
on localizing a stationary target. This assumption simplifies
the PCRB analysis since time evolution can be neglected and
power spectral density of the process noise can be set to zero,
that is, q ¼ 0. The PCRB and position estimates are calculated
assuming full connectivity and that a single RSSmeasurement
is available from each TX-RX pair. The empirical cumulative
distribution function (ECDF) for the model parameter esti-
mates in the open environment experiment are shown in

TABLE 2
Experimental Parameters

Parameter

Regularization parameter in (11) a 500
Pixel width dp 0.25 (m)
Correlation distance in (13) dd 2 (m)
Image process noise in (34) qi 0.1 (dB/s2)
Image measurement noise in (34) s2

i 0.03 (dB2)
Image threshold (37) g 0.75
RSS model parameter (4) f �2:22
RSS model parameter (4) � 0.04
Measurement noise (1) s2 1.42
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Fig. 6 and the median of the ECDFs is used in the following
analysis. Thus, the RSS is modeled using: fl ¼ �2:22 dB,
�l ¼ 0:04 m and s2

l ¼ 1:42 dB2 8 l and parameters of the fil-
ters are given in Table 2.

In Fig. 1a, 16 example locations and the lower bound on 3s
uncertainty ellipses illustrated together with the mean of the
RTI estimates and 3s uncertainty ellipse. The average lower
bound on localization RMSE is �ep ¼ 1

16

P16
k epk ¼ 0:1191 m

and the RMSE of RTI estimates is 0:3980 m, over three times
higher than the bound. The advantage of RTI is that the esti-
mator does not require accurate priori information about state
of the target and the method can locate the target as long as a
sufficient number of links intersect the location. As a disad-
vantage, the two-step estimator is inefficient as it never
reaches the lower bound as shown by the uncertainty ellipses
in Fig. 1a. The other disadvantage is that measurement noise
can result in imageswithmultiple peaks leading to inaccurate
position estimates. An example of a noisy RTI image is illus-
trated in Fig. 3bwhich leads to an inaccurate position estimate
and as a result, the uncertainty ellipse of the RTI position esti-
mator is very large inmany of the positions in Fig. 1a.

For the node configuration shown in Fig. 1a, the sumof link
contributions, htotðpkÞ ¼

PL
l¼1 e

�DlðkÞ=�l , is calculated andplot-
ted as a function of target location pk in Fig. 1b. Respectively,
the PCRB on RMSE is computed and illustrated in Fig. 1c.
With the given model parameters, the PCRB is entirely
defined by the geometrical relationship of the target and
nodes, and the PCRB decreases as the number of wireless
links that intersect the location increases. The minimum
PCRB is 0:0449 m and the lowest values are found beside the
wireless devices on the side that faces the monitored area.
Respectively, the maximum PCRB is 1:4142 m and the worst
localization accuracy is expected in the corners of the moni-
tored area where none of the links intersect the location (see
Fig. 1b). On average, the PCRB is 0:1858 m and 80 percent of
the monitored area has a PCRB of 0:1308 m or lower. Thus,
the localization accuracy is expected to be high and similar
performance is anticipated throughout the monitored area as
long as the target is not close to the borders.

In Fig. 2, the PCRB and RMS errors of the estimators illus-
trated as a function of number of devices per side when they
are equally spaced on the side of aX ¼ 9:58 m by Y ¼ 7:82 m
deployment. The PCRB is a monotonically decreasing func-
tion and the lower bound is cut to half every time the number
of devices per side is doubled. The RMS errors of the RTI esti-
mates are illustrated using three pixel size values and as
shown, lower RMS errors can be achieved with higher image
resolution but with the expense of increased computational
complexity. Interestingly, the RMS error of the RTI estimates
converge toward �ep ! dp=

ffiffiffi
6

p
1. This value is the lower bound

for RTI and it requires that the target can always be positioned
to within the correct pixel. The EKF is not constrained by dis-
cretization of the monitored area resulting to lower RMS
errors as shown in Fig. 2.Moreover, the EKF is an efficient esti-
mator as it nearly achieves the bound alreadywith a lownum-
ber of devices and it converges toward the PCRB as the
number of sensors increases.

Fig. 1. In (a), the RTI estimator mean ( ) and 3s uncertainty ellipse ( ) using 1000 trials for 16 example locations with respect to the true location ( )
and PCRB on the 3s uncertainty ellipse ( ). In (b), the sum of link contributions htotðpkÞ ¼

PL
l¼1 e

�DlðkÞ=�l as a function of target coordinates pk.
In (c), lower bound of localization standard deviation in logarithmic scale, 10 log 10 epk=1 m

� �
, as a function of pk.

Fig. 2. The PCRB as a function of devices per side ( ), and the RMS
errors of EKF ( ) and RTI w/ ( ) and w/o outliers ( ) obtained
over 1000 trials. An estimate is considered an outlier if it is one meter or
more from the true location.

1. If the estimate locates within the correct pixel, the coordinate
errors can be considered as i.i.d. uniform random variables X �
Uð� 1

2 dp;
1
2 dpÞ and Y � Uð� 1

2 dp;
1
2 dpÞ. Then, the MSE is E½e2p� ¼ E½X2þ

Y 2� ¼ E½X2� þ E½Y 2� ¼ d2p=6, where the expected value of the uniformly
distributed zero-mean random variable is known to be E½X2� ¼ E½Y 2� ¼
d2p=12 [46, Ch.6]. Thus, the RMS error is E½ep� ¼ dp=

ffiffiffi
6

p
and this value is

the lower bound for RTI location estimates.
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In the analysis of Fig. 2, the EKFs prior on the mean and
covariance are set as x0 ¼ xtrue þQ0w and P0 ¼ 3J�1 þQ0,
where xtrue denotes the true state and J is the FIM at xtrue,

Q0 ¼ diag 0:252 m2 0:0 ðm/sÞ2 0:252 m2 0:0 ðm/sÞ2
� �� �

andw 2 R4�1 is a zero-meanwhiteGaussiannoise vector. The
EKF requires an accurate prior or otherwise the filter can
diverge and result to a biased estimate. Thismatterwill be fur-
ther discussed in the following.

4.3 Discussion

Ideally, we would prefer to use the EKF since it is able to
achieve the PCRB and the filter is computationally efficient.
However, the filter has two important limitations. First, the
filter is prone to diverge if modeling errors exist. Second,
the filter requires the prior distribution to locate near the
true state. These reasons restrain using the EKF in real
world applications since the model parameters are known
to vary for each link [12] and the person’s location is not
known when initializing the filter. RTI can be considered as
complementary to the EKF, since RTI is significantly more
robust to modeling errors and it can be initialized without
prior information of the person’s location. Due to these rea-
sons, we present a novel Bayesian filter in the next section
that has the beneficial properties of both approaches.

5 FUSION ALGORITHM

5.1 Sampling and Processing

In RSS-based DFLT, the sensors are programmed to transmit
and receive packets from other sensors of the network. Typi-
cally, the communication schedule follows a token passing
protocol where one sensor transmits at a time while the others
are in reception mode [47]. After transmission, the turn is
assigned to the next sensor in the schedule following the sensor
IDs in sequential order. In the packets, the sensors include the
most recent RSS associatedwith the transmissions of others’.

Let the wireless network consist of S sensors, then, when
the last sensor in the schedule transmits at time k the pay-
load of the packet is

zSðkÞ ¼ zS;1ðk�Sþ1Þ zS;2ðk�Sþ2Þ � � � zS;S�1ðk�1Þ 0½ �T;

where zi;jðnÞ denotes the RSS that is transmitted by node j
and received by node i at time n. A base station listens to
the ongoing transmissions and it stacks the packets to form
a measurement matrix

fZgk�Sþ1
k ¼ z1ðk�Sþ1Þ � � � zSðkÞ½ �T ; (26)

containing the RSS measurements of the last S packets
before processing. We denote this time interval as the com-
munication cycle and it contains a transmission from each
node and the elements of Z are

fZgk�Sþ1
k ¼

0 z1;2ðk�2Sþ2Þ � � � z1;S ðk�SÞ
z2;1ðk�Sþ1Þ 0 � � � z2;S ðk�SÞ

..

. ..
. . .

. ..
.

zS;1ðk�Sþ1Þ zS;2ðk�Sþ2Þ � � � 0

2
6664

3
7775:

The measurements of Z are clearly taken at different time
instances and a sequential processing scheme was intro-
duced in [16] to resolve this issue. The proposed scheme

processes the RSS one transmission at a time and the meas-
urements can be associated to the same time instant by
delaying the processing by S � 1 samples so that when TX j
transmits at time k, the RSS corresponding to the transmis-
sion of TX

i ¼ S � jþ 1 if j 	 S
jþ 1 otherwise

	
;

becomes available at the base station. Using the time nota-
tion n ¼ k� S þ 1we can write

zn;i , colifZgk�Sþ1
k : (27)

As an example,when the transmitter ID is j ¼ S, themeasure-
ments of node i ¼ 1 can be processed since the first column of
the RSS matrix, zn;1 ¼ col1fZgk�Sþ1

k ¼ 0 z2;1ðk�Sþ1Þ � � �½
zS;1ðk�Sþ1Þ�T, are related to the same time instant k� S þ 1. At
the next time instant, the transmitter ID is j ¼ 1 and the meas-
urements of fZgk�Sþ2

kþ1 are updated accordingly. Now the
measurements of node i ¼ 2 can be processed since the sec-
ond column of the RSS matrix, zn;2 ¼ col2fZgk�Sþ2

kþ1 ¼
z1;2ðk�Sþ2Þ 0 � � � zS;2ðk�Sþ2Þ½ �T, are related to the same
time instant k� S þ 2.

The sequential processing scheme improves the accuracy
and robustness of RSS-based DFLT [16] and taking the time
evolution correctly into account as given in (27), the prob-
lem defined in (1) can now be written as

xn ¼ Fxn�1 þ qn�1; (28a)

zn;i ¼ h xnð Þ þ rn; (28b)

where n denotes the time, zn;i 2 RS�1 is the new RSS mea-
surement vector and the corresponding measurement noise
covariance is Ri 2 RS�S . Using zn;i, the noise covariance,
measurement model vector and Jacobian of the EKF are
replaced with

fRigj;j ¼ s2
l ;

fhiðx̂�n Þgj;1 ¼ hlðx̂�n Þ;

fHx;iðx̂�n Þgj;� ¼
dhl
dpx

0 dhl
dpy

0
h i

;

(29)

where i and j are the TX and RX IDs in respective order,
j ¼ 1 . . .S and l ¼ ði� 1Þ � S þ j.

5.2 A Sequential Imaging Method

5.2.1 Image Filtering

The drawback of using the RTI formulation presented in
Section 3.3 is that the estimator requires the complete RSS
measurement matrix Z and it computes a batch estimate of
the changes within that communication cycle. In the follow-
ing, an image filter is presented which allows us to recur-
sively estimate the propagation field image every time new
measurements become available. Moreover, the time evolu-
tion is more accurate with the proposed method.

The RTI solution in Eq. (11) is equivalent to forming the
image by summing together the link contributions

b̂n ¼
XS
i¼1

PPizn;i; (30)
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where the jth column ofPi is defined as

fPig�;j ¼ fPPg�;l (31)

and indexes i, j and l are defined as in (29). Now, instead of
summing the link contributions to form the image, an adap-
tive filter is implemented to track the changes in the image
using PPizn;i.

The designed filter is similar to the one presented in [12]
with the difference that the presented filter estimates the
images from the link contributions PPizn;i whereas the one in
[12] uses b̂k. In the filter, the image state is expressed as

m ¼ m1 m2 � � � mN

_m1 _m2 � � � _mN

� �
; (32)

where mj denotes the image intensity and _mj change rate of
voxel j. The state-space model is

mn ¼ Fmn�1 þ qn�1; (33a)

bn ¼ Hmn þ rn; (33b)

where qn�1 � Nð0;QÞ is the process noise and rn � Nð0;RÞ
the measurement noise. The image is modeled using a dis-
crete white noise acceleration model (DWNA) as in [12] for
which the transition matrix, measurement model and noises
are [43, Ch.6]

F ¼ 1 t

0 1

� �
; Q ¼ qi

1
3 t

3 1
2 t

2

1
2 t

2 t

� �
; H ¼ 1

0

� �T
; R ¼ s2

i IN;

(34)

where qi is the power spectral density of the image process
noise. Given the models, it is straightforward to implement
a KF for tracking state of the image. The prediction step of
the KF is [17, Ch.4]

m̂�
n ¼ Fm̂n�1;

C�
n ¼ FCn�1F

T þQ:
(35)

Thereafter, the mean m̂�
n and covariance C�

n are updated
when measurement zn;i becomes available using [17, Ch.4]

Sn ¼ HC�
nH

T þ R;

Kn ¼ C�
nH

TS�1
n ;

m̂n ¼ m̂�
n þKn PPizn;i � Hm̂�

n

� �
;

Cn ¼ C�
n �KnSnK

T
n :

(36)

5.2.2 Positioning

If a single person locates within the area, it is expected that
the pixels with highest intensity locate near the target and
therefore, localizing the person can be postulated as finding
the mode of b̂n , Hm̂n [48]. If I ¼ maxðb̂nÞ denotes the max-
imum component of the spatial field, than the mode is in
the set of pixels with intensity higher than gI . To simplify
the notation, let us define

~bn ¼ b̂n if b̂n � gI
0 otherwise

	
; (37)

and wn ¼ ~bn=
P ~bn. Now, the position can be estimated as

the weighted sum of pixels

p̂n ¼ pwn; (38)

where p 2 R2�N are the pixel coordinates andwn 2 RN�1 the
pixel weights. The covariance of the estimate is defined as

Nn ¼ wn 
 p� p̂n

� �
p� p̂n

� �T
; (39)

where 
 is the Hadamard product. Note that the localization
proposed in (38) is only capable of locating one person.
Multi-target localization and tracking is a challenging task
in DFLT, and it is outside the scope of this paper. Thus, we
do not propose coordinate estimators for the multi-target
case and for now, readers are referred to [15], [26], [31], [49]
for RSS-based multi-target tracking.

Two example RTI images are shown in Fig. 3 together with
the position and covariance estimates. The image on the left
shows that the pixels with b̂n � gI are centered around the
true location, the position estimate is accurate, and the esti-
mated covariance is small. The image on the right is noisy and
does not clearly indicate the person’s location. The estimated
position is over a meter away from the true location and the
estimated covariance is significantly higher then in the other
image. Estimating the covariance allows to take such uncer-
tainties into account and the Kalman filter gives less weight to
position estimates that are estimated from noisy images.

5.3 Fusion Filter

The FF composes of two filters running in parallel. The first
one is the image filter presented in Section 5.2 and it tracks
the changes in the discretized propagation field image. The
second filter is the target tracking filter that is implemented
using the EKF presented in Section 3.2. However, the update
step of the EKF is augmented with position measurements
from the imaging solution in order to bound the EKFs mea-
surement residuals by the position errors of the imaging
approach. Recursion of the FF at time step n is presented in
the following and pseudocode of the filter is given in Algo-
rithm 1. The filter recursion can be divided into three stages:

1) Predict—Prediction step of the image and target
filter.

Fig. 3. Two example RTI images and the position and covariance esti-
mates calculated using (38) and (39). In the image, the plus sign indi-
cates the true position, the crosses are the position estimates and the
dashed line illustrates the 3s uncertainty ellipse which is defined as
p̂n þ

ffiffiffiffiffiffiffi
Nn

p
½ cos ðbÞ sin ðbÞ�T in which b ¼ ½0; . . . ; 2p� and

ffiffiffiffiffiffiffi
Nn

p
denotes

the lower Cholesky factorization ofNn such thatNn ¼
ffiffiffiffiffiffiffi
Nn

p ffiffiffiffiffiffiffi
Nn

p T
.
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2) Model concatenation—Forming themeasurementmodel
matrices.

3) Update—Update step of the target filter.

Algorithm 1. Fusion Filter at Time Step n

1: procedure PREDICT

2: Form F,Q, F and Q using t

3: Predict m̂�
n and C�

n using (35) " Image Prediction
4: Predict x̂�n and P�

n using (8) " Target Prediction
5: end procedure
6: procedure MODEL CONCATENATION

7: Update image filter using (36)
8: Estimate p̂n andNn from image using (38) and (39)
9: Form ~R, ~zn, ~Hxðx̂�n Þ and ~hðx̂�n Þ using (40)
10: end procedure
11: procedure UPDATE

12: Sn ¼ ~Hxðx̂�n ÞP�
n
~H
T

x ðx̂�n Þ þ ~R;

13: Kn ¼ P�
n
~H
T

x ðx̂�n ÞS�1
n ;

14: x̂n ¼ x̂�n þKnð~zn � ~hðx̂�n ÞÞ;
15: Pn ¼ P�

n �KnSnK
T
n

16: end procedure

In the prediction step, matrices F andQ in (34), and F and
Q in (3), are formed using sampling interval t and thereaf-
ter, prediction step of the filters is performed. In the model
concatenation step, measurement zn;i of TX i becomes avail-
able and the image filter can be updated. From the filtered
image m̂n, the position and covariance are estimated as
described in Section 5.2.2. Thereafter, the measurement
model matrices for the FF are formed as follows

~R ¼ blkdiag Ri;Nnð Þ;

~zn ¼ zTn;i p̂T
n

� �T
;

~Hxðx̂�n Þ ¼ HT
x;iðx̂�n Þ HT

h iT
;

~hðx̂�n Þ ¼ hT
i ðx̂�n Þ Hx̂�n

� �Th iT
;

(40)

where Ri, hiðx̂�n Þ andHx;iðx̂�n Þ are defined in (29) and

H ¼ 1 0 0 0
0 0 1 0

� �
:

Finally, in the update step, the Fusion Filter can be updated
as given by lines 12 through 15 in Algorithm 1.

6 EXPERIMENTS

This section begins by introducing the experimental setup.
Thereafter, the different filtering algorithms are summarized
and initialization of the filters is discussed. The section is con-
cluded by presenting the evaluationmetrics.

6.1 Experimental Setup

The used wireless sensors are Texas Instruments CC2531
USB dongles operating at the 2.4 GHz ISM band and the
sensors communicate in TDMA fashion as described in Sec-
tion 5.1 and further explained in [47]. The experiments are
conducted using all 16 frequency channels for communica-
tion in order to increase the system performance [19] and
the used channels are 11�26 as defined by the IEEE 802.15.4
standard [50]. The transmission interval between communi-
cations is approximately t � 2:9 ms, which defines the sam-
pling period for the filtering algorithms.

The experiments are conducted with 20 nodes that are
deployed in two different environments as illustrated in
Fig. 4. In the open environment, the nodes are deployed
around the monitored area and the network covers a 75 m2

area. The nodes are set on top of podiums at approximately
waist height (� 0:9 m). The floor plan of the apartment is
82 m2 and the nodes are deployed so that the person can be
located throughout the entire house. To replicate a realistic
deployment scenario, 18 nodes are installed by electric sockets
of the apartment so that we could power them using AC
adapters. The walk-in closets did not have electric sockets on
the exterior walls, so we decided to deploy one battery pow-
ered node in each to ensure coverage of the entire apartment.
These two nodes are located at ½0:08 2:89�T and ½10:24 2:80�T .

Fig. 4. The experimental layouts in which the nodes ( ) and the validation positions ( ) are illustrated. The apartment was fully furnished with two
beds, nightstands, cupboards, a sofa, coffee table, etc., but the furniture is omitted from the figure.
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In the experiments, markers are placed inside the moni-
tored area for the test person to follow. During the experi-
ment, the person always walks directly from one validation
position (as illustrated in Fig. 4 using ) to another and once
the person reaches the destination, they stop for a few
seconds before proceeding to the next validation position.
In both environments, three different trials are conducted
and in each trial, the person is inside the area for approxi-
mately three minutes and every validation position is vis-
ited at least once. During the experiments, the person is
carrying a video camera. In post-processing, the RSS and
video streams are synchronized and the video is used to
generate the ground truth trajectory. However, we evaluate
the tracking accuracy only when the person is stationary to
ensure that the ground truth position is correct.

A recent work has presented the means for an adaptive
RTI (ARTI) system to use unsupervised training for estimat-
ing the unknown model parameters [12]. This improves the
RSS models over time as data is gathered and enhances the
system performance. We could adapt similar algorithms in
this paper but for simplicity, we calibrate the model parame-
ters using the ARTI system [12] and then use these estimates
in our filtering algorithms. Thus, the RSS model parameters
uul ¼ fl �l s2

l ml

� �
are estimated by minimizing the cost

function

JðuulÞ ¼
XK
n¼1

zlðnÞ � hlðx̂n;fl; �lÞ½ �2; �30 � fl � 30
0:001 � �l � 1

	
;

(41)

whereK is the total number of estimates in one trial (approx.
180 seconds of data), zlðnÞ is the measured RSS, hlð�Þ is evalu-
ated using ARTI state estimates x̂n

2, and the dependence of
hlð�Þ on the model parameters is now explicitly stated. In this
paper, constrained nonlinear optimization [51] is used to find
theminimumof JðuulÞ and thereafter, themaximum likelihood

(ML) estimates of ml ¼ 1
K

PK
n¼1 ~zlðnÞ � hlðx̂n;fl; �lÞð Þ and s2

l ¼
1
K

PK
n¼1 ~zlðnÞ � ml � hlðx̂n;fl; �lÞð Þ2 are obtained.

6.2 Filtering Algorithms

In the following, the different filters are summarized. The
process noise value of the filters has been used as a tuning
parameter to maximize performance of each filter. Other-
wise, a specific value might favor one filter over another.

� FF—The Fusion Filter can be implemented using
Algorithm 1 and the imaging parameters of the sys-
tem are given in Table 2. The selected parameter val-
ues work in a wide range of environments and they
are close to the ones used in [12]. The process noise
of the kinematic state is set to q ¼ 0:1 m/s2.

� EKF—The first benchmark system is the EKF solu-
tion presented in [16]. The algorithm is summarized
in Section 3.2, the filter uses sequential processing
and the process noise is the same as for the FF.

� PF—The second benchmark system is a particle filter,
which is the de facto nonlinear Bayesian filter used in

RSS-based DFLT [13], [14], [15]. The used PF is a
sequential importance resampling filter where the
dynamicmodel is used as the importance distribution.
The implemented PF uses 10000 particles, resampling
is performed once the number of effective particles is
below 1000 and the process noise is increased to
q ¼ 1 m/s2 and s2

l is increased by one, to mitigate the
sample depletion problem [52]. The readers are
referred to [17], [53] for further details on PFs.

� ARTI—The third benchmark system is ARTI [12]. We
modify the original ARTI algorithm so that the meas-
urements can be processed sequentially as explained
in Section 5.1. In addition, the online estimator (see
Algorithm 2 in [12]) is disabled because the parame-
ters are already estimated. The imaging and filtering
parameters are given in Table 2 but the pixel width
is decreased to dp ¼ 0:15 m so that discretization
does not degrade the tracking accuracy. ARTI locates
the person using (12) and a KF is implemented to
track the target. The process noise of the filter is set
to q ¼ 1 m/s2 and the measurement noise covariance
isN ¼ diag 0:25 m2 0:25 m2

� �� �
.

6.3 Filter Initialization

The image state is initialized with an all zeros matrix and
the covariance as C0 ¼ diag 1 dB2 1 ðdB/sÞ2

� �� �
. The

target tracking filter is initialized using the true state of the
target when the person has reached the first validation
position and the covariance matrix is set to P0 ¼
diag 0:1 m2 0:1 ðm/sÞ2 0:1 m2 0:1 ðm/sÞ2

� �� �
. We want

to make the following remarks: i) An inaccurate prior does
not cause the imaging solutions to diverge, the methods are
not particularly sensitive to initialization and only the first
few estimates would be affected by inaccurate initialization.
ii) The FF could be designed so that the algorithm would
only use the position estimates of the imaging solution in
the beginning. After convergence, the filter would switch to
the augmented measurement model. iii) The EKF requires
that the initial estimate is close to the true state. The priori
estimate could be obtained for example using an imaging
solution or initializing numerous EKFs simultaneously and
keeping the one that converges. iv) The PF could be initial-
ized by uniformly distributing the particles inside the moni-
tored area, and with a sufficient number of particles, the
posterior distribution is expected to converge to the true
state. Initialization of the filters is not within the scope of
this work, and for a fair comparison of the different filters,
we have chosen to use the true state instead of implement-
ing a different initialization procedure for each filter.

6.4 Evaluation Metrics

The filters are evaluated using the localization RMSE

�ep ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

K

XK
n¼1

ðepðnÞÞ2
vuut ; (42)

where K is the total number of estimates in one trial
(approx. 180 seconds of data) and the distance error at sam-
ple n is calculated as

2. In the model calibration phase, the RTI position estimates are
substituted with the person’s true coordinates whenever the person is
stationary and used as input in the filtering recursions.
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epðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpxðnÞ � p̂xðnÞÞ2 þ ðpyðnÞ � p̂yðnÞÞ2

q
;

in which px and py denote the true coordinates and the hat
accent indicates the estimate. In addition, we use the ratio
of measurements outside a defined threshold for examining
robustness of the filters. The metric is defined as

e% ¼ 1�M

K


 �
� 100%; (43)

where M is the number of estimates within one meter of the
true location. Typically, the filter has diverged from the cor-
rect trajectory if the estimate is one meter or further from
the true position.

It is to be noted that the sequential processing scheme
introduces a delay of ðS � 1Þt � 55 ms to the estimates
which corresponds to a distance error of 0:055m if the per-
son moves at 1 m/s. This might have an impact in critical
real-world applications if for example the system would be
used in collaborative human-robot workspaces [22]. In non-
critical applications such a delay can be neglected, espe-
cially when duration of the delay is known. In this paper,
the delay caused by the sequential processing scheme can
be calculated from the transmission times and the lag is
removed from the position estimates before calculating the
evaluation metrics given above.

7 RESULTS

The development efforts are experimentally and numeri-
cally evaluated in this section and the FF is compared with
respect to the EKF, PF and ARTI solutions. It is to be noted
that the system performance strongly depends on the used
model parameters and their accuracy. Thus, we investigate
two scenarios:

� Scenario 1: Using an educated guess for the model
parameters and the same value is used for all links.

� Scenario 2: Using the training scheme explained at
the end of Section 6.1 and using the unique model
parameter estimates for each link.

The ECDFs of the model parameter estimates in the open
environment are illustrated in Fig. 6 and these values are
used in scenario 2. In scenario 1, the educated guess is the
median of the ECDFs and the RSS is modeled using:
fl ¼ �2:22, �l ¼ 0:04 and s2

l ¼ 1:42 8 l.

7.1 Experimental Results

The RMS errors of the filters in the different scenarios and
trials are summarized in Table 3 for the open environment
experiment. In scenario 1, when an educated guess is used
for the model parameters, the EKF and PF always diverge
because the filters can not tolerate significant modeling
errors. The imaging solutions are more robust to such
modeling errors and despite individual position estimates
can be inaccurate, the imaging solutions are able to track the
person at least to some extent. On average, the FF performs
slightly better than ARTI and both methods are able to
achieve an RMS error of approximately one meter or below.

Next, the filters are run on the same experimental data
and using scenario 2. The EKF solution results to the lowest
RMSE in two of the trials when the filter does not diverge.
With respect to the EKF solution, the PF is more robust but
it is not as accurate despite using 10000 particles. The lower
accuracy results from increasing the process and measure-
ment noises, which in our case was mandatory to avoid the
sample depletion problem and divergence issues in the
open environment. With respect to the nonlinear filters,
ARTI has a higher RMSE because the position estimates are
always affected by discretization of the image. In addition,
the time evolution can not be solved as accurately because
the image formation always requires low pass filtering
which is performed with the KF in this paper. In this experi-
ment, the FF never diverges and the accuracy of the filter is
comparable to the other nonlinear filters and it provides a
superior combination of robustness and accuracy.

The coordinate estimates of the filters in scenario 2 are
illustrated in Fig. 5a for trial 1 and the position estimates are
shown with respect to the validation positions in Fig. 5c for
trial 2. On most parts, the coordinate estimates of the filters
overlap one another. However, the ARTI estimates are
slightly more spread out as shown in Fig. 5c and the trajec-
tory is not as smooth as can be seen in Fig. 5a. In the figure,
the time instance (t ¼ 158 s) when the EKF diverges is also
shown. The trajectory should be a straight line from one val-
idation position to another but all filters result to inaccurate
estimates with the difference that the EKF diverges and the
other filters are able to recover. It is to be noted that if the
modeling assumptions hold, the EKF is the best performing
filter in the mean squared sense and no other filter can out-
perform it. However, the open environment experiment is
actually very simplifying and modeling errors are very
common due to the complex nature of the indoor propaga-
tion channel. Next, we show that the EKF and PF fail in
more realistic deployment scenarios even though the model
parameters are trained.

Next, the filters are run on experimental data from the
apartment experiment and using scenario 2. The coordinate
estimates of the filters are illustrated in Fig. 5b and the posi-
tion estimates are shown with respect to the validation posi-
tions in Fig. 5d for trial 1. The apartment experiment is
significantly more challenging since most of the nodes have
non line-of-sight (NLOS) communication with one another
and multipath propagation is common. As an outcome, the
person’s presence in between the transceivers does not neces-
sarily cause the RSS to change. On the other hand, the person
can alter static multipath components causing a significant
RSS change even for large D values. These can result to

TABLE 3
RMSE [cm] in the Open Environment Experiment

Scenario / Trial FF EKF PF ARTI

1 / 1 75:2 � � 99.3
1 / 2 103:6 � � 115.1
1 / 3 80:8 � � 97.2
1 / average 86:3 � � 103.9
2 / 1 10.0 � 9:6 22.7
2 / 2 10.9 10:2 11.1 21.7
2 / 3 12.3 9:5 10.1 19.9
2 / average 11:1 � 10:3 21.4
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significant modeling errors and the EKF and PF always
diverge in the apartment experiment due to this reason. Thus,
the coordinate estimates of the filters are omitted from
Figs. 5b and 5d. Since the imaging solutions do not rely on an
accurate image prior, the methods are significantly more
robust to modeling errors and can track the person even in
challenging environments as shown in the figures and as
given in Table 4. More quantitatively, the average RMS error
is 40:9 cm for ARTI and 28:6 cm for FF, decreasing the RMSE
by 30 percent with respect to ARTI. In scenario 1, the results

are similar to the ones in the open environment and the results
are summarized in Table 4.

The average computation times to initialize the filters
and to compute a single recursion are given in Table 5 for
the open environment experiment. The results are obtained
using a Matlab implementation and a standard laptop
equipped with a 2.70 GHz Intel Core i7-4800MQ processor
and 16 GB of RAM. Initializing the nonlinear filters is negli-
gible, whereas the imaging methods require computing the
projection matrix given in (11) which requires inverting
large matrices. Complexity of matrix inversion is at least
quadratic3 andN / 1=dp

� �2
so that the overall complexity of

calculating the projection matrix relates to the pixel size via
O½ 1=dp
� �4�. The quartic proportion increases the computa-

tional complexity rapidly as the pixel size decreases, and
ARTI requires seven times longer to initialize than FF. For
ARTI, the initialization time can be reduced by using a
larger pixel size, but at the same time, the RMS error
increases. As an example, the RMSE of ARTI increases by

Fig. 5. Experimental results - In (a) and (b), coordinate estimates of the filters in the two environments. In the figures, the validation positions are illus-
trated with ( ) and filter estimates are shown using: EKF ( ), PF ( ), ARTI ( ) and FF ( ). In (c) and (d), position estimates of the filters in
the validation positions. In (b) and (d), the EKF and PF estimates are omitted from the figure because the filters have diverged.

TABLE 4
RMSE [cm] in the Apartment Experiment

Scenario / Trial FF EKF PF ARTI

1 / 1 80:3 � � 84.7
1 / 2 91:0 � � 100.9
1 / 3 82:9 � � 94.3
1 / average 84:7 � � 93.3
2 / 1 28:4 � � 43.0
2 / 2 30:7 � � 39.4
2 / 3 26:8 � � 40.3
2 / average 28:6 � � 40.9 3. The complexity is at least O n2ð Þ because an n� n matrix has n2

values but naive algorithms can have a complexity ofO n3ð Þ.
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27 percent to 27:2 cm in the open environment experiment
when dp ¼ 0:25 m.

In the experiments, the time interval between two trans-
missions is approximately 2:9 ms which defines the system’s
sampling rate and also sets an upper boundon how long a sin-
gle filter recursion can last. As shown, the PF exceeds this
value and real-time operation is not possible when 10000 par-
ticles are used. The computation time could be decreased by
using fewer particles but at the same time, the filter becomes
even more vulnerable to divergence issues. The other filters
can easily be implemented in real-time and the EKF is supe-
rior to the other methods. However, its use is limited to very
simplistic environments and when the model parameters are
known. Lastly, the FF is more efficient than ARTI because the
real-time computation of the image estimate has complexity
O½NL� and N / 1=dp

� �2
. In the next section, the PF uses

N ¼ 1000 particles so that a real-time implementation would
be possible.

7.2 Numerical Results

The performance and differences between the filters is fur-
ther analyzed in this section using simulations which repli-
cate the open environment tests. This experimental setting
is chosen because all filters were capable of tracking the per-
son successfully in this environment. First, we compute the
ECDFs for the model parameter estimates in the open envi-
ronment. Thereafter, various distributions are fitted to the
data and the one that maximizes the log likelihood is used
to describe the model parameter. The ECDFs and the fitted
distributions are illustrated in Fig. 6 and the selected distri-
butions are: non-standardized Student’s t-distribution
f � T ð�2:22; 4:09; 8:09Þ, log-normal � � Lð�3:14; 1:23Þ and
Gamma s � Gð2:66; 0:51Þ. Interestingly, the same distribu-
tions can be used to describe the apartment experiment
model parameters and similar behavior was reported in
[12]. This suggests that each parameter might follow a

specific distribution where the parameters of the distribu-
tion are specified by the environment and layout of the net-
work. Such information would aid pre-deployment
performance assessment and could be used as informative
priors to the model parameters. However, further investiga-
tion is left for future work.

In the simulations, the model parameters for each link
are randomly drawn from the fitted distributions, and in an
ideal scenario the model parameter is known. In reality, the
model parameters are unknown in advance and an edu-
cated guess must be used. We use the median of the ECDFs
as given in Table 2 and the DC term m is assumed known
for each link. In the simulations, the educated guess is used
for link l randomly with probability P and we denote P as
the fraction of links with incorrect uul. Note that the educated
guess is likely to differ from the drawn parameter values. In
the analysis, the filter performance between the two
extremes is studied, that is, having perfect knowledge of the
model parameters P ¼ 0% and having no prior information
of the model parameters P ¼ 100%.

The simulated trajectory and filter estimates averaged
over 1000 Monte Carlo simulations are illustrated in Fig. 7a
and the PCRB and RMS errors are shown in Fig. 7b when
P ¼ 0%. As shown in Figs. 7a and 7b, the state estimates of
the nonlinear filters are close to the true coordinates’ while
the ARTI estimates are not as accurate. As discussed earlier,
ARTI performance is degraded by discretization and the
estimates are lagging because the image formation always
requires low pass filtering. For the y coordinate estimates in
Fig. 7a, the impact of discretization can be seen between
t ¼ 88�92 s and the effect of low pass filtering between
t ¼ 84�88 s. The nonlinear filters do not have such draw-
backs and as shown in Fig. 7b, the nonlinear filters nearly
reach the PCRB. However, RMSE of the PF is slightly higher
because the process and measurement noise of the filter
have been increased to mitigate the sample depletion prob-
lem [52]. The time averaged PCRB is 2:53 cm over the 1000
Monte Carlo simulations and the RMSE of the filters in
increasing order are: 3.01, 3.17, 3.62 and 14.42 cm for EKF,
FF, PF and ARTI in corresponding order. Thus, the results
are inline with the experimental results, that is, the EKF
achieves the lowest RMSE in ideal scenarios, the FF and PF
are slightly more inaccurate and ARTI has the highest
RMSE in ideal scenarios. It is to be noted that acceleration of

TABLE 5
CPU Times in Milliseconds

FF EKF PF ARTI

Initialization 2107.3 0.5 1.5 13920.3
Filter recursion 0.410 0.075 5.945 0.590

Fig. 6. The empirical CDFs for uu ¼ f � s½ � in the open environment experiment ( ) and the distribution fits ( ). The fitted distributions are:
non-standardized Student’s t-distribution f � T ð�2:22; 4:09; 8:09Þ, log-normal � � Lð�3:14; 1:23Þ and Gamma s � Gð2:66; 0:51Þ.
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the person is non-zero for short time periods when the per-
son stops and starts moving as shown in Fig. 7b. During
these time intervals, the RMSE of the nonlinear filters
increase as shown in Fig. 7b. A multiple model (MM)
approach [43, Ch. 11] could be adopted where multiple fil-
ters would be run in parallel, each having a different pro-
cess noise value. However, the improvement is expected to
be marginal because maneuverability of the target is low
and the maneuvers last for short time periods.

Next, robustness of the filters is studied by incrementing
P so that the number of links that use the educated guess
instead of the true model parameter value increases. The
results are shown in Fig. 7c, and the advantages and disad-
vantages of the filters are clearly conveyed by the evaluation
metrics. Ideally, the model parameters would be known and
a good choice for the filter is an EKF due to its high tracking
performance and low computational overhead. However,
as the fraction of links with modeling error increases, the PF
and EKF start to experience divergence issues and the filters
can not be used as stand alone solutions. The PF can cope
slightly better with the modeling errors but the improve-
ment is insignificant considering the added computational
complexity. The imaging solutions are significantly more
robust to modeling errors and the filters are able to track the
target even though all links are using an incorrect model
parameter value. The main reason for this is that the imag-
ing methods do not rely on an accurate prior when estimat-
ing the images. As shown in Fig. 7c, FF always outperforms
ARTI and in the most challenging scenario when P ¼ 100%,
the RMSE is 0:26 m with FF and 0:42 m with ARTI, an
increase of 62 percent in tracking error. Thus, the numerical
results support the experimental findings and we can con-
clude that the FF provides a superior combination of robust-
ness and accuracy. It is to be noted that the numerical and
experimental results do not correspond one another pre-
cisely because the used model is a simplification of the
actual propagation phenomena and error sources.

8 CONCLUSION

The PCRB of RSS-based DFLT is derived in this paper and
two estimators are evaluated with respect to the bound. The
first estimator is a two-step imaging approach which first

estimates the changes in the propagation field and then the
person is localized from the image. The second estimator is
a Bayesian filter which is realized using an EKF and the
method directly relates the RSS measurements to the per-
son’s kinematic state. The bound analysis clearly shows that
the EKF is efficient as it nearly reaches the bound and it is
superior to the imaging approach in terms of localization
accuracy. However, the EKF has practical limitations which
restrict its use in real world deployments and in this paper,
we address these limitations by introducing a Fusion Filter
which merges the EKF and imaging solutions. The benefit
of the proposed approach is that the filter’s measurement
residuals are bounded by the position errors of the imaging
approach and as an outcome, the filter has the robustness
of an imaging method and the tracking accuracy of a nonlin-
ear Bayesian filter. The results imply that the presented filter
nearly achieves the performance of the EKF in ideal sce-
nario, and it is as robust as the imaging solution in non-ideal
scenarios.

Developments of this paper open interesting opportuni-
ties in smoothing and parameter estimation since the
Rauch-Tung-Striebel smoother can be directly applied to
improve the state estimates of the presented filter. More-
over, the required expectations and maximization step for
an expectation maximization algorithm can be computed in
closed form using the smoothing distributions. These topics
will be explored in future research.
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