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Abstract—Energy-efficient location tracking with battery-powered devices using energy harvesting necessitates duty-cycling of GPS

to prolong the system lifetime. We propose an energy- and mobility-aware scheduling framework that adapts to real-world dynamics to

achieve optimal long-term tracking performance. To forecast energy, the framework uses an exponentially weighted moving average

filter to compute a virtual energy budget for the remainder of the forecast period. The virtual energy budget is then used as input for our

proposed information-based GPS sampling approach, which estimates the current tracking error through dead-reckoning and

schedules a new GPS sample when the error exceeds a given threshold. In order to improve the long-term tracking performance, the

threshold is adapted based on the current energy and movement trends to balance the expected information gain from a new GPS

sample with its energy cost. We evaluate our approach on empirical traces from wild flying foxes and compare it to strategies that

sample GPS using fixed and adaptive duty cycles and by using dead-reckoning with a fixed threshold. Our analysis shows that the

proposed information-based GPS sampling strategy reduces the mean tracking error compared to existing methods and approaches

the performance of the optimal offline sampling strategy.

Index Terms—Trajectory tracking, energy awareness, GPS, positioning, energy harvesting, scheduler
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1 INTRODUCTION

POSITION tracking has become an essential building block
for many applications, ranging from location-based

services for mobile phones to wildlife tracking. Tracking
can either be user-initiated, where users request location
from the device, or autonomous, where the tracking devices
collect user location information based on events of interest.
Advanced tracking systems have used additional sensor
inputs for autonomous detection of traffic conditions [25] or
potholes [10] in a city, tracking and evaluation of out-patient
health [28], or sharing cycling experiences [9].

Long-term location tracking, however, remains a chal-
lenge, with GPS requiring high power consumption to
continuously deliver accurate positions. High energy con-
sumption can be often traded off for lower localization accu-
racy, for example, by employing the signals of nearby Wi-Fi
access points or cellular base stations to estimate the

location instead of the GPS receiver. Energy improvements
can be substantial [17] when continuously tracking the user
context and selecting the most energy-efficient localization
algorithm. Advanced techniques can use accelerometers to
improve energy efficiency of location tracking [19], [26] and
magnetometers to improve trajectory tracking [18] by a fac-
tor of three or more.

Nearly all of the existing energy-efficient tracking algo-
rithms focus on minimizing energy consumption subject to
an application-specific position error bound. Because of the
predictability of their energy budget (for instance, mobile
phones are recharged every day), most methods track posi-
tion within given accuracy constraints and aim to minimize
energy consumption in the process. The accuracy con-
straints then implicitly define the energy budget.

In this paper, we are interested in autonomous long-term
tracking that relies on energy harvesting. As opposed to hav-
ing a fixed daily energy budget, we investigate algorithms
that adapt to the changing nature of harvested energy. Our
focus is tomaximize the tracking accuracy given this dynamic
energy budget, which is the reverse problem of most existing
energy-efficient tracking algorithms. Adaptive tracking high-
lights the question of how to schedule GPS samples in a given
future period on the basis of a dynamic energy budget. We
build on the fact that the mobility of people [15] and many
animal species [27] exhibits known recurring patterns, such
as periodic preferential return to home base and time-
correlated trip durations. Historical movement patterns can
thus be used to forecast movement in the near future and to
guide the choice of parameters for a given GPS sampling
strategy. In a similarway, historical records of daily harvested
energy can be used to predict future energy harvesting.While
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historical patterns can be used for sampling forecasts, it is
important to re-evaluate the sampling strategy periodically in
case the current behavior of the tracked object deviates from
historical trends.

Building on these concepts, we propose energy- and
mobility-aware tracking that minimizes tracking errors
within the available energy budget. Our strategy uses low-
power inertial sensors to detect object motion and schedules
GPS sampling within the object motion periods. We predict
the available energy and the remaining movement duration
until the end of the forecast period to determine suitable
parameters for GPS sampling. Our focus is on tracked
objects with periodic preferential return to one or few key
locations, and temporally correlated trip duration. We use
historical movement statistics coupled with instantaneous
estimates of displacement from the most likely destination
to forecast movement duration.

Both the available energy and the movement forecast are
updated in real-time on the mobile node and the GPS sam-
pling strategy is continuously adapted as new estimates
become available. We propose an information-based GPS
sampling strategy that considers expected movement dura-
tion, expected energy availability, and expected information
gain of the next GPS sample. The ratio of the forecast move-
ment duration and forecast remaining energy budget deter-
mines an adaptive threshold for the expected tracking error.
The maximum tracking error is estimated through dead
reckoning and, once it exceeds the adaptive threshold, a
new GPS sample is triggered. This threshold balances the
expected information gain from a new GPS sample, i.e.,
how well the original trajectory can be approximated by
taking into account that position, with its cost for longer-
term tracking performance. Our simulation results using
empirical data traces from wild flying foxes confirm that
information-based tracking delivers significant reduction in
tracking error compared to static and adaptive GPS sam-
pling and performs close to an offline optimum algorithm.

Our previous work in [32] had proposed the information-
based sampling strategy within the energy- and mobility-
aware framework. That work included prediction of mobility
patterns (the remaining moving time in a forecast period),
with a fixed energy budget. The energy budget was fixed to
target the motivating application of flying foxes, which move
during the night, and roost in sunlight in trees during the
day. This effectively resulted in a fixed energy budget for
each night, based on energy harvested during the day. Fixed
energy budgets are a special case of energy-awareness where
we have full certainty of our energy budget. In this paper, we
consider the more general scenario where the movement and
energy harvesting periods can overlap, meaning the energy
budget can vary over the course of the forecast period. The
variable energy budget results in uncertainty regarding
energy availability. Here, we use an exponentially weighted
moving average (EWMA)-based energy budget prediction
for online updating of the available energy budget for posi-
tion sampling.

The remainder of the paper is organised as follows.
Section 2 motivates long-term tracking and outlines its
objectives. Section 3 introduces our task scheduling
framework for long-term tracking. Section 4 presents our
algorithms for online energy and mobility prediction within

the framework, while Section 5 discusses online GPS sam-
pling strategies using these predictions, as well as an offline
oracle algorithm as benchmark. Section 6 details the setup
of our trace-driven evaluations of the algorithms, while
Section 7 presents the simulation results. Section 8 discusses
related work, while Section 9 concludes the paper with a
discussion of the results, limitations, and future work.

2 LONG-TERM MOBILITY TRACKING

Long-term tracking of small mobile entities is a challenging
problem with high relevance in ecology, agriculture, and
logistics. The key constraint here is energy. The very need
to track mobile entities long-term implies that their location
is unknown and not readily accessible, which limits oppor-
tunities for manually recharging the battery of tracking
devices. An alternative approach is to support energy har-
vesting on tracking devices, such as through solar panels, to
replenish energy supplies in situ. With energy harvesting,
the available energy budget is subject to the amount of
energy that has been harvested in the recent past and the
expected energy to be harvested while the object needs to
be tracked. Furthermore, decisions to acquire position sam-
ples have to be made autonomously and in real-time by the
tracking device on the basis of both available energy and
likely movement activity as communicating with the device
for setting parameters manually might not be feasible.

2.1 Accuracy- versus Energy-Bound Tracking

Most recent work has focused on accuracy-bound tracking.
Given an uncertainty or accuracy bound on location, the goal
is to minimize energy consumption while operating within
this bound to maximize lifetime. The accuracy bound de-
facto defines the minimum required energy budget of the
position tracking, given a typical motion pattern of the
tracked object. If the available energy resources are smaller
than the tracking budget, the device will run out of energy
and the accuracy-bound tracking will fail to deliver the
required performance.

With energy harvesting, a well-designed system can oper-
ate near-perpetually as long as it tailors its consumption to its
available energy budget. Given a fixed energy budget, the
focus becomes on how to maximize the location accuracy
within a specific future period. We refer to this problem as
energy-bound tracking. Solving this problem naturally
depends on the sampling frequency of GPS and other sup-
porting sensors (energy output), which are linked to the
underlyingmovement dynamics of the tracked object and the
harvesting energy dynamics of the environment (energy
input). For energy forecasts,weuse an EWMAfilter on histor-
ical data to predict the harvested energy for a future period.

Objects that move rarely can be tracked reasonably well
through a sparse scheduling strategy, while determining an
energy-efficient schedule for tracking highly mobile objects
with high accuracy is a challenging problem. For this rea-
son, our work here not only considers the energy availabil-
ity through harvesting sources, but also the mobility of the
tracked objects. This paper specifically focuses on tracked
objects that follow regular daily movement patterns, such
as commuting trips to foraging or activity locations and
return to one or few “home” locations [15], [27]. More
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specifically, we predict the remaining movement distance
for a tracking interval on the basis of two estimates: (1)
movement distance during the previous interval; and (2)
current distance from the most likely destination. Each of
these estimates proves to be more accurate in a specific time
frame within the tracking interval.

2.2 Motivating Application

We focus our evaluation on a specific application of tracking
flying foxes in their habitat across Australia. However, our
approach can be applied to tracking any mobile objects that
have regular motion patterns and periodic energy harvest-
ing intervals, such as tracking commuting times of people
to work, tracking people during leisure activities such as
biking, roller-blading, or jogging, and tracking domestic,
farm, or wild animals.

Flying foxes, also known as fruit bats, play an important
ecological role as dispersers of pollen and seed in wet tropical
areas of Africa and Asia, but are also vectors for a range of
emerging infectious diseases which have serious consequen-
ces for human health, e.g., Hendra virus in Australia, Nipah
in Asia and Ebola in Africa. Flying foxes are highly mobile,
with individuals able to fly hundreds of kilometers during
nightly foraging. Key to understanding and managing these
animals is to understand how they utilize landscapes and
how they interact with other disease hosts, which requires a
fine-grained understanding of their movement. However,
their weight (600 g to 1 kg) limits the weight and size of track-
ing devices that can be placed on them [24], imposing a tight
energy budget on sensing activities, such asGPS sampling.

Behavioral Patterns. Flying foxes are nocturnal animals and
during the daylight rest in large groups at sites called camps or

roosts. During the day they generally only move within the
camp (within a radius of about 100-200 meters) and for most
of the time they sleep at a single location. In contrast to the
family of microbats, which are common in Europe and the
US, flying foxes do not roost in caves, but hang upside down
from the top branches of large trees exposed to direct sunlight.
At dusk, they leave the camp and fly out to forage at sites that
are usually tens of kilometers away. During the night they
may change location several times before returning to the
campbefore sunrise, as shown in Fig. 1.

2.3 Limitations of Static GPS Sampling

Current commercial motion trackers use a combination of
motion-triggering and time-based duty cycling of GPS for
energy management. In particular, motion sensors are used
to detect the start and end of motion events according to a
given movement threshold and GPS samples are only taken
during the motion events with a fixed duty cycle. We refer
to this approach as static motion-based tracking, which
effectively fixes the GPS sampling strategy for the duration
of a typical motion event. This approach does not work well
when the mobility dynamics or the available energy vary
day-to-day. A static scheduler might miss key parts of a tra-
jectory if it underestimates the length of the trajectory or
overestimates the energy availability. Autonomous long-
term tracking applications, therefore, need to adapt GPS
sampling in order to reconstruct the original trajectory as
accurately and efficiently as possible.

To illustrate the energy andmotion duration dynamics, we
present data from a flying fox tracking application in Fig. 1.
We show an example of two trips made by the same animal
that vary in duration. We also note large differences in har-
vested energy for an individual animal on a day-to-day basis
over a 4-week period of empirical data, illustrating the likeli-
hood for differences in energy intake andmovement duration
among individuals and over time for the same individual.

3 TASK SCHEDULING FRAMEWORK

In this section, we introduce our framework for location
tracking of mobile nodes that adapts to changing energy
availability and motion patterns. At its core is the Task
Scheduler component, which uses inputs from the Energy-
Awareness Layer and Mobility-Awareness Layer to schedule
sampling of different hardware components in the Sensor
Process Layer, such as the GPS receiver or inertial sensors.
The building blocks of the framework are depicted in Fig. 2.

3.1 Task Scheduler

We assume that physical or remote access to the mobile
node may not be feasible for prolonged time periods, so we

Fig. 1. Two GPS trajectories of a spectacled flying fox tagged with a
mobile tracking device. The bar plot shows daily harvested solar energy,
consumed energy of the tracking device, and battery state-of-charge
(SOC).

Fig. 2. Building blocks of the energy- and mobility-aware scheduling framework.
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develop mechanisms to support autonomous operation and
reconfigurability. Specifically, the scheduler allows for
adaptive execution of GPS sampling tasks based on the
input from the energy- and mobility-awareness layers. This
design principle allows us to adapt the GPS sampling rate
in real-time based on the available energy and predicted
duration of activity (see Section 5).

3.2 Sensor Process Layer

The sensor process layer contains software components that
control the operation of the sensors implemented on the
hardware platform (e.g., GPS, accelerometer, magnetome-
ter, etc.). This layer provides an abstraction of the underly-
ing sensor hardware and allows to control and monitor the
power state of the sensor, as well as to acquire sample val-
ues from the sensors. The sensing modalities used as input
for the mobility-awareness layer depend on the capabilities
of the hardware platform and on the application scenario.

3.3 Energy-Awareness Layer

The energy-awareness layer is responsible to keep track of
the energy consumed and harvested by the system (energy
monitoring) and to provide an estimate of the energy
resources available in the near future (energy prediction).

Precise book-keeping of both energy consumption and
energy harvesting is key to maintaining a realistic estimate
of the energy available at any time. The Energy Monitoring
component keeps track of the available energy stored in the
batteries, the so called State of Charge (SOC), the energy con-
sumed by the node Eused, and the energy harvested EH .

Energy Book-Keeping. We keep track of the energy con-
sumption during runtime using a software-based book-
keeping mechanism. The instantaneous overall consump-
tion of a sensor node can be broken down into the power
consumption of its individual hardware components, which
includes the microcontroller, sensors, radio transceiver, and
flash storage chip. The total instantaneous power consump-
tion P ðtÞ of the sensor node can be calculated as the sum of
the power consumption of its components at time t

P ðtÞ ¼
X
i

PiðtÞ ¼
X
i

ViðtÞ � IiðtÞ; (1)

where PiðtÞ is the instantaneous power consumption of com-
ponent i, which depends on the supply voltage ViðtÞ and cur-
rent consumption IiðtÞ of its operating state. We assume that
the software is able to control and/or monitor the operating
state of a component (e.g., active, idle or sleepmode) and that

the current consumption in each state is known from device
datasheets or measurements. Consequently, we can estimate
the energy consumed by the nodeEused from the beginning of
the interval, by integrating the power consumption over the
observation period. We have shown in lab experiments that
software book-keeping can estimate the energy consumption
within 10 percent even when using a simple model based on
estimated average current draw andduration for each operat-
ing state of a component [31].

Energy Harvesting. The hardware platform is able to mea-
sure the voltage VHðtÞ and the charge current IHðtÞ into the
battery while energy harvesting is in progress, which allows
to estimate the harvested energy EH during a time interval.
Historical patterns of the amount of harvested energy are
used by the Energy Prediction module to predict energy har-
vesting in the near future (see Section 4).

State of Charge Estimation. By combining energy book-
keeping with the measurement of harvested energy, we can
calculate the estimated total available energy (SOC) at time
t as follows:

SOCðtÞ ¼ SOCðtstartÞ þ
Xt

t¼tstart
EHðtÞ � EusedðtÞð Þ; (2)

where EHðtÞ denotes the harvested energy and EusedðtÞ is
the total energy consumed by different system components
at time t. In this paper, the time interval begins at noon of
the current day (tstart) and lasts until noon of the next day
(tend), at which point it resets.

3.4 Mobility-Awareness Layer

The mobility-awareness layer uses the input of different
sensing modalities to capture the underlying mobility
dynamics of the tracked objects (activity detection) and pre-
dicts the duration of future movements accurately (motion
prediction). As these dynamics are largely dependent on
the type of the tracked object, we focus here on our motivat-
ing application of long-term flying fox tracking.

Activity Detection. In order to facilitate activity detection
based on low-power sensor inputs, many mobile tracking
platforms feature inertial sensors. For example, the Camazotz
hardware platform (see Section 6.1) is equipped with a com-
bined 3-axis accelerometer and 3-axis magnetometer. The
accelerometer provides samples of the acceleration along its
three axes at a sampling frequency between 1 Hz and several
kHz. Furthermore, the accelerometer provides a programma-
ble interrupt for detection of movement events, e.g., when the
animal changes from roosting to flying. This functionality can
unburden the micro-controller from having to continuously
read samples from the accelerometer’s output buffer, so that
it can remain in sleep mode for most of the time. The magne-
tometer measures the strength of the magnetic field at a
sampling rate between 0.75 and 220 Hz along three axes,
which can detect heading changes.

Classification of Activity. We show a real-world example
for activity detection using inertial sensors on a flying fox
tagged with a Camazotz node in Fig. 3. GPS data is used to
provide ground truth on the animal activity state, move-
ment duration, and heading. In our application scenario,
continuous sampling of the accelerometer at 10 Hz provides
enough information to detect animal movement with high

Fig. 3. Accelerometer readings (top) and magnetometer heading (bot-
tom) versus GPS speed/heading recorded on a flying fox. The animal
starts flying at t=30 s.
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accuracy. Specifically, our activity classifier accumulates
acceleration changes along the z-axis in each 5-second win-
dow. The animal is classified as active in the time window if
the average accumulated acceleration change is above a
learned threshold. For groundtruth we use time windows
in which both GPS and accelerometer readings are present.
The animal is considered truly active if the average GPS
speed in the time window is more than 1 m/s.

The process of getting an adaptive threshold for the classi-
fication is as follows: first we use a fixed population-level
threshold as the initial threshold, whichwe choose based on a
high-frequency dataset with both GPS and accelerometer
data that we collected in the initial phase of the animal track-
ing project. Then this initial threshold is adjusted adaptively
in a dedicated learning phase, with both accelerometer and
GPS readings accessible to the algorithm regardless of the ani-
mal’s motion status. In the learning phase, the algorithm clas-
sifies each time window using the current threshold, and
validates the result with the actual activity state from the GPS.
If a false negative (active classified as non-active) occurs, the
threshold is reduced by a percentage (i.e., 30 percent in the
experiments) of its current value. Otherwise when a false pos-
itive (non-active classified as active) occurs, the threshold is
increased by the same percentage. The threshold is then fixed
and used at all timeswhen theGPS is not active on the node.

Validation. We perform cross-validation on the GPS and
accelerator samples that are collected from two sensor nodes
and span 137 minutes. The dataset consists of 2,283 GPS
samples and 30,972 matching accelerometer samples from
continuous time frames for each of the nodes. One node is
mostly stationary and the other mostly active. In total, we
have 2,277 valid samples in two segments, with 1,081 in
moving state and 1,196 in stationary state. We split each
node’s data into five consecutive segments, and iteratively
combine the training and test set from each segment into a
unified training set and a unified test set. Therefore there
are 25 repetitions. For each repetition, we use the adaptive
algorithm on the training set to learn the classification
threshold, and then perform the detection on the test set to
evaluate the prediction performance. Note that all folds
after the split are still consecutive samples to avoid the over-
estimation effect mentioned in [34]. Finally we use the aver-
age precision and recall from the 25 repetitions as the overall
validation results. Empirical result for the average precision
reaches 98.2 percent, and 98.7 percent for the average recall,
with the learned threshold fluctuating between 0.7 and 0.9.

4 ENERGY AND MOBILITY PREDICTION

In this section, we describe themodels used in our scheduling
framework to predict the amount of energy harvested in the
near future and the duration of the remaining activity within
the forecast period. Prediction of the harvested energy allows
us to consider cases when the activity of the tracked object
and energy harvesting overlap in time, such as animals that
are active during the day. Note that our previous work [32]
assumed the energy harvesting and motion/activity phases
to be separate, which is the case in the flying fox application
scenario. Separating the harvesting and motion periods
effectively results in a deterministic energy budget. In a pre-
diction context, this provides a perfect prediction with zero

uncertainty. By allowing overlap of harvesting and motion
periods, we explore the more general case where energy
budgets change over time and need to be predicted into a
future forecast period, which inherently involves uncertainty.

4.1 Energy Prediction

Our approach assumes that the harvested energy on a day is
subject to seasonal variations and that it is similar to the
average energy harvested during the recent past. We adopt
the exponentially weighted moving average (EWMA) filter
approach [16] for short-term energy harvesting prediction
to predict the expected energy that will be harvested from
the start (denoted as tstart) until the end of the forecast
period (denoted as tend), as shown in Algorithm 1. We
choose EWMA because it works with only historical values
of harvested energy and has low memory and computa-
tional demands, allowing us to run it on our resource con-
strained platform.

Algorithm 1. Energy Prediction Algorithm

Require: �EHðiÞ " Recent Avg. harvested energy in slot i
Require: EHðtÞ " Harvested energy from book-keeping
1: procedure PREDICT_ENERGY_INPUT(i)

2: ÊH;totðiÞ ¼
Ptend

j>¼i �EHðjÞ " Predict energy input

3: �EHðiÞ ¼ a �EHðiÞ þ ð1� aÞEHðiÞ " Update average

We set the maximum forecast period to one full day
(starting and ending at noon), and split it into fixed 30 min
slots. We introduce the time slot index i ¼ ðtmod 1dÞ=30m.
EHðiÞ stands for the energy harvested during slot i. We
maintain an array of the exponentially weighted moving
average of energy harvested �EHðiÞ during slot i. For each

slot, we update �EHðiÞ as the weighted average (a ¼ 0:5) of
the historical average and the latest observation of energy
harvested during this slot

�EHðiÞ ¼ a �EHðiÞ þ ð1� aÞEHðiÞ: (3)

We forecast the energy harvested in a time slot for one
day to be equal to the average calculated on the previous
day. Consequently, the predicted total energy to be har-
vested until the end of the day ÊH;totðiÞ is calculated as an
aggregate of the estimated energy harvested in each future
time slot until the end of the forecast period tend

ÊH;totðiÞ ¼
Xtend
j> i

�EHðjÞ: (4)

Note that ÊH;totðiÞ can be calculated ahead for later time
slots on the same day. We assume the energy input to be
arriving at a constant rate during each time slot. At any
time t, the estimated energy input until the end of the day is
then given as the linear interpolation between the values at
the beginning of the current slot i and the beginning of the
next time slot iþ 1 as follows:

ÊH;totðtÞ ¼ ÊH;totðiÞ þ ÊH;totðiþ 1Þ � ÊH;totðiÞ
30m

� tmod30mð Þ:
(5)
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The scheduler can over- or under-spend the available
energy if the actual harvested energy or animal mobility
deviate from their respective predictions. This deviation
Ebalance is accumulated from all past values of harvested and
spent energy since the beginning of the forecast period t0, as
reported by the energy book-keeping module

EbalanceðtÞ ¼
Xt

t¼t0
EHðtÞ � EusedðtÞð Þ: (6)

The scheduler compensates for this deviation in an
online fashion. Specifically, we introduce the concept of the
virtual energy budget Ebudget, which is the energy that is
available to the sensor node for the rest of the forecast
period at time t. We calculate Ebudget from the energy we
predict will be harvested for the rest of the forecast period
and then compensate for the prediction errors made during
the current and previous forecast periods

EbudgetðtÞ ¼ ÊH;totðtÞ þ EbalanceðtÞ: (7)

The virtual budget is used by the scheduler for sampling
decisions of the GPS algorithm (see Section 5). We refer the
reader to a detailed description of the virtual budget calcula-
tion in Algorithm 2. Note that the algorithm is designed to
run after an initial training period, during which only steps 2
(tracking the energy balance for each time step) and 3 (updat-
ing the average energy harvested for each slot) are executed.
The training period needs to be at least one forecast period, so
that the algorithm can populate �EHðiÞ for all i.

Algorithm 2. Virtual Budgeting Algorithm

Require: EbalanceðtÞ " Accumulated energy balance
Require: ÊH;totðiÞ " Energy prediction beginning of slot
Require: ÊH;totðiþ 1Þ " Energy prediction end of slot
Require: EHðtÞ " Harvested energy from book-keeping
Require: EusedðtÞ " Used energy from book-keeping
1: procedure CALCULATE_VIRTUAL_BUDGET(t)
2: EbalanceðtÞ þ¼ ðEHðtÞ � EusedðtÞÞ
3: ÊH;totðtÞ ¼ ÊH;totðiÞ þ ÊH;totðiþ1Þ�ÊH;totðiÞ

30m � tmod 30mð Þ
4: EbudgetðtÞ ¼ ÊH;totðtÞ þ EbalanceðtÞ

4.2 Mobility Prediction

Optimal scheduling depends both on the available energy
budget and the amount of energy thatwill be used for tracking
movements. Therefore, it is important that the GPS process
can estimate for how long the node will be moving within a
certain time interval. Clearly, the accuracy of our prediction
will directly influence the energy consumption of the tracking
algorithm. If the actual total tracking time exceeds the pre-
dicted time, we risk running out of energy early andwe sacri-
fice accuracy of tracking towards the end of the observation
period. On the other hand, overestimating the total tracking
timewill result in conservative budgeting of energy resources
and may lead to larger localization errors. The implementa-
tion of the mobility prediction module needs to be tailored to
the designated application scenario and might take into
account input from several sensors, last location from GPS,
the current time/date information and historical data.

Prediction of Movement Duration. For our animal tracking
application, we developed a hybrid approach to predict ani-
mal mobility based on individual- and population-based
models and real-time estimation of the remaining motion
duration based on the remaining distance to the previous
roosting camp (see Algorithm 3). We start by using an initial
estimate for the total flight distance based on the previous
night or an individual-based model. If we detect that the
animal has exceeded the maximum distance from camp
observed in the previous night dprev max, we switch to a pop-
ulation-based model to estimate the total flight distance
based on historical trajectories.

Algorithm 3.Mobility Prediction Algorithm

Require: dcampðtÞ " Current distance to camp
Require: dprev max " Previous max. distance from camp
Require: Dtmotion " Estimate for remaining movement
Require: vavg " Average flying speed
Require: dtotalðdÞ " Estimate of total flight distance
Require: tstart; tend " Observation interval
procedure PREDICT_REMAINING_DISTANCE(t)
ifdcampðtÞ < dprev max then
ifDtmotion � vavg < dcampðtÞ then
g  t�tstart

tend�tstart " Weight factor

dremainingðtÞ  ð1� gÞ � Dtmotion � vavg þ g � dcampðtÞ
else
dremainingðtÞ  dcampðtÞ

else
dremainingðtÞ ¼ dtotalðdcampðtÞÞ

Mobility Models. We assume that we are given a set of his-
torical trajectories of an object of interest with a certain level
of regularity ofmotion that allows us to extract simplemotion
features. Note that this motion regularity is shared by many
other species including humans [33]. An estimate for the
motion duration of an animal per night Dtmotion can be calcu-
lated by observing typical animal behavior in historical data
(see Section 6). Tracking of new animals can be done using a
population-level motion model which maps the current dis-
tance from the camp dcampðtÞ to the total flight distance dtotal,
while a more accurate individual-level model can be derived
over time asmore data becomes available.

Distance to Home Base. Tracked objects may exhibit large
variations in motion patterns across the population, or across
time (see Fig. 1). Prediction of motion duration that is based
on simple statistics only, such as themean duration ofmotion,
will therefore be inaccurate. We observe that flying foxes usu-
ally return to the same roosting camp after the nightly forag-
ing (similarly to humans commuting to/from home and
work). The current location of the animal can thus be used as
a lower bound on the remaining flight distance. This provides
us with a lower bound on the remaining motion time, which
in turn determines the lower bound on energy required to
capture the return trip to the camp. Clearly, this approach
can only provide a good estimate after the animal has reached
the maximum distance from the camp, which usually hap-
pens in the second half of the night. We therefore employ a
linear weighting factor g which applies more weight to the
individual- or population-based mobility prediction in the
beginning of the observation period, while the distance to
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base becomes more important towards the end of the obser-
vation period, or as soon as it exceeds the initial distance
estimate.

Having defined the scheduling framework and prediction
algorithms, the next 3 Sections focus on our approach to use
these predictions to drive GPS sampling in a real world track-
ing scenario. Section 5 introduces three online GPS sampling
strategies that use some or all of the predictions, as well as an
offline oracle algorithms that we use a performance bench-
mark. Section 6 presents the hardware platform assumptions
and empirical traces that we use for comparing the perfor-
mance of these GPS sampling strategies. Section 7 evaluates
our prediction accuracy for energy and mobility and the per-
formance of our proposed online GPS sampling algorithm
against existing online approaches and the oracle approach.

5 GPS SAMPLING STRATEGIES

In this section, we present four online and one offline strate-
gies to configure sampling of the GPS receiver. Our schedul-
ing framework is agnostic of the actual GPS sampling
strategy, and it assumes that each strategy will tune its sam-
pling parameters based on the given constraints. Energy
harvesting and mobility prediction described in Section 4
provide two key inputs to the GPS scheduler, as they define
energy inputs and outputs that need to be balanced out.
This introduces an additional time-varying constraint on
GPS sampling as the used energy should be smaller than
the harvested energy at any point in time. We assume that
the battery capacity is substantially larger than the energy
harvested per day and therefore the system can operate
around a target SoC that allows to buffer surplus harvested
energy and balance energy deficits. The GPS schedulers can
then operate with a virtual energy budget Ebudget and aim to
achieve energy neutral operation at the end of the forecast
period, rather than at any point in time.

5.1 Motion-Based GPS Sampling

The activity detection module (see Section 3.4) can be con-
figured to enable the GPS receiver while movement of the
tracked object is detected. During the movement period
(Dtmotion), periodic GPS samples are acquired. Between posi-
tion samples the GPS receiver remains in sleep mode to
reduce the power consumption. The total energy consump-
tion in the time interval Dtinterval ¼ tend � tstart is propor-
tional to the GPS scheduling period (Tsampling) and can be
calculated as follows:

Eused ¼ Dtinterval � Pbaseline þ k � Thotstart � Ptracking: (8)

Pbaseline denotes the baseline power consumption of the sys-
tem, Ptracking is the additional power used during tracking
operation, and Thotstart is the average duration of a GPS

hotstart. k ¼ bDtmotion
Tsampling

c is the total number of recorded GPS
samples.

Strategy #1: Static Motion-Based. The static motion-based
strategy employs a fixed GPS sampling interval during
movement periods. Specifically, the optimal GPS sampling
interval can be calculated using the following inequality:
Eused � EH . Performance of the static GPS scheduler criti-
cally depends on our initial estimates of the energy budget
and mobility patterns of the tracked object, which determine
the constant GPS sampling interval Tsampling. We can get esti-
mates for both the harvested energy and motion duration
by studying typical behavior of a population of animals.
However, any individual deviations from the typical behav-
ior, for example, due to weather or changes in food avail-
ability will result in a suboptimal GPS sampling strategy.
This strategy is used by many commercial motion-based
GPS trackers that operate at a fixed GPS duty cycle.

Strategy #2: Adaptive Motion-Based. In contrast to static
movement-based tracking that sets a fixed Tsampling for the
whole time window, the adaptive approach continually
updates the GPS sampling interval to meet the energy con-
straints. By distributing the remaining GPS samples kðtÞ uni-
formly over the predicted remaining duration of motion
DtmotionðtÞ, we obtain the updated GPS sampling interval
TsamplingðtÞ and the corresponding duty cycleDCðtÞ as follows:

TsamplingðtÞ ¼ DtmotionðtÞ
kðtÞ DCðtÞ ¼ kðtÞ � Thotstart

DtmotionðtÞ : (9)

5.2 Information-Based GPS Sampling

Periodic duty-cycling of GPS during movement does not
take into account the intrinsic characteristics of the trajec-
tory, for example sharp turns, to identify key points that
will result in small errors when used as input for trajectory
interpolation. Therefore, our aim is to obtain GPS samples
at a minimal number of key locations that provide detailed
information about the shape of the trajectory.

Sampling inertial sensors while the node is in motion can
provide a rough estimate of the current heading while using
only a small fraction of the power consumption of the GPS
(see Fig. 3). By employing dead-reckoning using the magne-
tometer heading, the current position can be extrapolated
using the last known GPS position and speed vgps. In each
time step, we calculate the tracking errors e½t� between the
dead-reckoning-based position estimates at time t and the
corresponding interpolated positions on a straight line
between the last known GPS position and the most recent
position estimate by dead-reckoning (see Fig. 4).

If the interpolated trajectory based on the previous GPS
sample and dead-reckoning exhibits small estimated tracking
errors e½t�, there is little benefit in spending energy to take
another GPS sample. On the other hand, a large estimated
tracking error increases the value of taking another GPS sam-
ple to avoid incurring even larger errors in the future. There-
fore, as soon as the estimated maximum tracking error
emax ¼ maxte½t� exceeds the threshold R another GPS sample
is acquired and the dead-reckoning phase is restarted.

Strategy #3: Static Information-Based. In this strategy, a
fixed error threshold R for dead-reckoning is defined at the
start of the observation window based on the expected

Fig. 4. Dead-reckoning using heading estimation based on magnetome-
ter data. The current position is extrapolated from the last GPS position
and speed vgps.
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movement duration and the available energy budget. This
strategy is conceptually similar to the heading-aware sam-
pling approach of EnTrackedT [18], where a fixed error
threshold can be configured. Note that the trajectory error
of EnTrackedT is calculated as the orthogonal distance from
the straight line defined by the initial heading, while the
information-based trajectory error is calculated based on a
straight line between the initial position and the most recent
position estimate based on dead-reckoning.

Strategy #4: Adaptive Information-Based. In the adaptive ver-
sion of the information-based GPS tracking, we calculate a
dynamic threshold RðtÞ for the tolerated tracking error based
on the current duty cycleDCðtÞ using the following equation:

RðtÞ ¼ R0 �
� 1

DCðtÞ � 1
�b

: (10)

The intuition is to continually update the GPS sampling
policy based on the relationship between the expected
remaining movement duration and the remaining energy
budget. The ratio of movement duration and energy budget
expressed in remaining GPS sample duration is effectively
the inverse of the duty cycle DCðtÞ in Eq. (9). As a result,
the threshold RðtÞ will increase when the remaining energy

budget decreases, which will yield fewer GPS samples and
a more conservative sampling policy. On the other hand,
the calculated threshold decreases if the remaining energy
budget and the expected motion duration are similar (when
the expected movement duration roughly matches the
budgeted GPS samples), allowing for more aggressive GPS
sampling. R0 and b are tuning parameters for calibrating
the scale of the threshold. In case of limb!0, RðtÞ converges
to a fixed threshold R0.

The parameter settings for R0 and b depend on the char-
acteristics of the trajectories. Given a dataset with historical
trajectories, we can obtain the resulting duty cycle for spe-
cific choices of the threshold parameter R by means of simu-
lation and calculate the most suitable setting for R0 and b by
curve fitting. Alternatively, the scheduler can start with an
initial estimate and optimize the parameters used to calcu-
late the threshold R in an online fashion based on the mea-
sured resulting duty cycle.

5.3 Optimal Offline Scheduling of GPS

As a performance benchmark, we consider an offline oracle-
based optimal strategy that provides a lower bound on
the tracking errors for a given energy budget by finding
the optimal sampling points. The offline optimal strategy

Fig. 5. GPS sampling points and energy profile for different GPS sampling strategies on a flying fox trajectory. Maps show the groundtruth trajectory
and the selected sampling points for each GPS sampling strategy. The grid size of the map is 1 kilometre. The plot shows the energy budget
EbudgetðtÞ, energy consumption EusedðtÞ, and energy balance EbalanceðtÞ (see Eq. (6)). Plot areas shaded in gray indicate activity periods and GPS
samples are indicated with a black circle. Time is relative to the start of the observation period at 5 pm local time.
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cannot be implemented on a mobile device since it requires
knowledge of the complete trajectory.

Strategy #5: Offline GPS Scheduling. Let a sequence P ¼
f1; 2; . . . ; Ng denote the points of the ground truth trajec-
tory. Suppose we take GPS samples at the first and last
points of the trajectory by default, and the energy budget
only allows us to take at most k additional GPS samples to
form an estimated trajectory. The optimal estimated trajec-
tory is a subsequence of P , denoted by S ¼ f1; i1; . . . ;
ik; . . . ; ijSj�2�k;Ng, which has the minimum worst-case
tracking error eopt ¼ argmin emaxðSÞ. This problem is equiva-
lent to the min-� problem in curve approximation and can
be solved by a graph-search approach in polynomial
time [5]. The basic idea is to construct a directed graph
GðV;EÞ with the vertices set V ¼ P and edges set
E ¼ fði; jÞjdij � �; i < jg and use G to find the optimal esti-
mated trajectory. Here dij is the tracking error between the
estimated trajectory îj to the ground truth trajectory. A
shortest path from vertex 1 to vertex N in G then represents
the optimal estimated trajectory with tracking error �.

5.4 Comparison of GPS Tracking Strategies

We provide a case study trajectory from our flying foxes
dataset comparing the behaviour of different GPS sampling
strategies given the same energy budget (see Fig. 5). Static
sampling strategies employ a population-based historical esti-
mate of movement duration. For the adaptive sampling
strategies, the node starts out with an individual-based histor-
ical estimate of movement duration, and as the time pro-
gresses the weight of this estimate progressively decreases,
while the weight of the current distance from base increases.
We have chosen a challenging example trajectory, where the
tracked animal explores additional foraging areas resulting
in a considerably longer travel distance than the average
nightly foraging distance.

Clearly, the information-based and offline approaches
capture the original trajectory well. In contrast, the static
motion-based approach underestimates the flight time as this
animal is flying longer than the initial estimate would sug-
gest, so the node depletes its energy resources early during
the night and suffers high position errors from that point on.
The remaining flight trajectory back to the roosting camp can
only be interpolated. The example traces demonstrate the
benefits of the information-based scheduling strategy, which
also takes into account the shape of the trajectory based on
the dead-reckoning approach. As a result, the sampled trajec-
tory clearly shows non-uniform sampling patterns, where

long straight segments are sampled infrequently and more
tortuous segments are sampledwith higher frequency.Adap-
tive information-based tracking continuously adapts the
error threshold for sampling, and thereby the sampling
schedule, according to updated estimates of remaining flight
time and energy budget. Static information-based scheduling
approach, which is similar to EnTrackedT, shows similar per-
formance for the first part of the trajectory. However, as the
error threshold is not adapted based on the remaining move-
ment duration, it slightly overspends on energywhich allows
to take fewer samples towards the end of the trajectory, which
results in a larger tracking error.

6 EXPERIMENTAL SETUP

In this section, we describe the experimental setup for eval-
uating our tracking framework using data gathered during
a deployment on wild flying foxes.

6.1 Hardware Platform

In this work, we employ the Camazotz platform [14], a low-
power sensor platform for GPS location tracking, which is
optimized for small size and lowweight (see Fig. 6). The plat-
form is based on the Texas Instruments CC430F5137 system-
on-chip, which combines a microcontroller with a sub-GHz
short-range radio transceiver. Besides a GPS receiver, the
Camazotz platform provides various sensing modalities,
such as accelerometer, magnetometer, pressure and tempera-
ture sensor, and a microphone. In this work, we employ the
inertial sensors (accelerometer and magnetometer) as input
for activity detection, while the other sensors are not used and
remain in sleep mode. Full details of the platform’s energy
supply and harvesting, GPS, sensors and wireless communi-
cation capabilities are available in [32].

6.2 Empirical Traces

Our empirical data set is based on tracking and energy har-
vesting data from 5 free-living flying foxes that were tagged

with a Camazotz tracking device.1 Details of the GPS task
configuration are available in [32]. Based on an observation
period of several weeks, we select a dataset with 51 trips con-
tainingmore than 140,000GPSdata pointswith high temporal
resolution, which allows reconstruction of the corresponding
trajectories with onlyminor gaps (e.g., due to GPS hotstarts or
temporary signal degradation).We further employ the empir-
ical traces to learn the population-wide parameters used by
the information-based tracking algorithm (see Eq. (10)).

Energy Consumption and Harvesting. We estimate both
energy consumption Eused and harvested solar energy EH for
each 24-hour period starting at noon, as shown in Fig. 7. For
energy harvesting, the charge current from the solar panel is
sampled every 10minutes.We obtain the solar power bymul-
tiplying with the system voltage and up-sample to 1 s by lin-
ear interpolation. Other than the energy consumption of the
GPS receiver, we also account for the baseline consumption of
the microcontroller, inertial sensors, flash storage chip, and
radio transceiver during idle listening, contact logging and
data offload to the base station. During the data collection

Fig. 6. Camazotz collars (left) and a spectacled flying fox (Pteropus con-
spicillatus) with collar (right).

1. Ethical approval for experiments with animal subjects has been
granted.
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phase, we report an average energy consumption of 33.0mAh
and an average harvested energy of 27.3 mAh daily. It is
important to note that the GPS task configuration is chosen to
provide consecutive GPS samples to serve as a high resolution
ground truth data set for our animal tracking case study.
However, the energy consumption of such a scenario, which
is mainly dominated by the GPS receiver, will exceed the
amount of daily harvested solar energy. It can therefore not
guarantee long-term tracking operation, which clearly shows
the need for an energy management framework that can bal-
ance energy inputs and outputs.

Inertial Sensors. As collecting raw samples from the iner-
tial sensors is not feasible due to storage constraints on the
mobile nodes, we simulate magnetometer heading samples
based on GPS heading angle affected by a random jitter
from a normal distribution with standard deviation of
10.0 degree. This value has been obtained by comparing
magnetometer samples with heading information provided
by GPS obtained during experiments on wild flying foxes.

7 EVALUATION

In this section, we present an evaluation of the individual
building blocks of our task scheduling framework pre-
sented in Section 3. Furthermore, we evaluate the tracking
performance for the GPS sampling strategies from Section 5
with our proposed framework when applied to a real-world
animal tracking dataset and application that are detailed in
Section 6.

7.1 Mobility Prediction

Distance from Camp. We calculate the maximum distance
from the camp and the total flight distance within that day

(see Fig. 8) for a dataset consisting of 314 trips by 10 ani-
mals. Time periods where we do not have continuous high-
resolution GPS trajectories available are interpolated based
on hourly GPS positions. We can observe that today’s and
yesterday’s maximum distance from the camp are weakly
correlated (Pearson correlation = 0.35), confirming that yes-
terday’s distance alone is not sufficient for predicting
today’s distance. Furthermore, the maximum distance from
the camp is also related to the total flight distance on that
day (Pearson correlation 0.86). We use these observations to
build a model for the total flight distance dtotal based on the
current distance from camp dcampðtÞ (see Algorithm 3).

Motion Duration. We present a summary of motion statis-
tics based on the high-resolution GPS dataset collected with
five tagged animals in Table 1. It can be observed that daily
motion duration can vary greatly for individual animals.
For each animal, we evaluate the performance of trip dura-
tion prediction based on individual statistics. Specifically,
we calculate the prediction error of a trip as the difference
between the trip duration and the mean duration of all other
trips in the dataset for the same animal.

Prediction Error. To examine the behaviour of our flight
time prediction algorithm more closely, we adopt the mean
absolute prediction error (MAPE). The MAPE metric calcu-
lates the absolute error between the estimated total flight
time and the actual flight time at any time of the day, aver-
aged overN trips

T̂motionðtÞ ¼ tmotionðtÞ þ DtmotionðtÞ

MAPEðtÞ ¼ 100

N

XN Tmotion � T̂motionðtÞ
Tmotion

�����

�����:

At any time t, tmotionðtÞ is the known, past movement dura-
tion, DtmotionðtÞ the predicted remainingmotion duration and
Tmotion is the totalmovement duration of the current trip.

Fig. 7. Daily energy consumption and harvested solar energy for the
Camazotz nodes on wild flying foxes.

Fig. 8. Maximum distance from the camp for two consecutive days (left),
and maximum distance from the base camp and the total flight distance
(right).

TABLE 1
Actual and Predicted Motion Duration for five Animals and 51 Daily Trajectories in the Flying Foxes Dataset

Animal identifier (number of trips) 1 (10) 2 (8) 3 (9) 4 (18) 5 (6) All (51)

Motion duration/night [minutes] Minimum 20.3 52.4 43.7 8.7 50.3 8.7
Average 48.2 73.1 57.2 16.6 69.1 52.8
Maximum 110.5 109.0 64.6 23.9 95.0 110.5

Avg. prediction error [minutes] Individual 31.9 14.7 6.2 3.8 18.3 15.0
Population 28.7 28.7 12.7 29.0 24.6 24.7
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Fig. 9 shows the MAPE metric for activity duration aver-
aged over 48 trajectories of our data set, after removing three
outliers. The flight duration prediction is based on experien-
ces from previous trips and if the current trip differs strongly
from previous trips, the prediction can fail. One example
could be when an individual moves farther from the roosting
camp than usual to access more remote sources of food. A
more sophisticated algorithm might help to mitigate the
effect of such outliers on prediction performance. However
we only observed deviations in 3 out of 51 trips, indicating
that the proposed method works in a majority of cases. The
prediction error of total flight time at the beginning of the
observation period is around 33 percent and decreases after-
wards. A small prediction error remains in cases where the
animal has changed its roosting location, which cannot be
foreseenwith the currentmobility prediction algorithm.

7.2 Energy Prediction

To evaluate the performance of our energy prediction algo-
rithm based on an exponential moving average (EWMA) fil-
ter (see Section 4), we use the MAPE, similar to the previous
evaluation of total flight time. In this case, the MAPE metric
calculates the absolute error between the estimated total
energy budget and the actual total energy budget for each
time slot i averaged overN trips

MAPEðtÞ ¼ 100

N

XN P
i EHðiÞ � EHðtÞ þ ÊH;totðtÞ

� �
P

i EHðiÞ

�����

�����:

Fig. 9 shows the mean absolute prediction error over all
trajectories of our data set. It can be observed that the pre-
diction error of the total available energy budget at the

beginning of the observation period is around 15 percent
and that the uncertainty will decrease later on.

7.3 Energy Consumption

We report the energy consumption of the individual system
components in Table 2 when executing the different track-
ing strategies. The system baseline consumption includes
the task scheduler, which periodically wakes up the micro-
controller from sleep mode, as well as additional permanent
consumers (e.g., voltage regulators, disabled sensors in
sleep mode, leakage currents). The motion detection mod-
ule requires the inertial sensors to be powered on continu-
ously to detect activity of the tracked object and signal a
hardware interrupt to the microcontroller, which accounts
for around 30 percent of the total energy consumption. Fur-
thermore, the GPS receiver consumes roughly 6 percent of
the energy while in standby mode, while active GPS track-
ing accounts for 14-15 percent of the total energy budget.

7.4 Emulation with Real-World GPS Traces

We use the previously described 51 empirical GPS traces
from 5 free living flying foxes to emulate the behaviour of
our scheduling framework with different tracking strategies
under identical realistic energy constraints. As the magne-
tometer readings used as input by the information-based
algorithm are modelled with a random jitter in our simula-
tion framework (see Section 6), we calculate the mean
results of 10 simulation runs for each trajectory.

Metrics. We focus on two metrics when evaluating track-
ing strategies, namely the average tracking error and the
power consumption. The chosen sampling strategy deter-
mines when a GPS position sample is taken. The location of
the tracked object between GPS sampling points is interpo-
lated. Given a sampling strategy, the average tracking error
metric is used to measure the accuracy of the obtained tra-
jectories, and the power consumption characterizes its
energy efficiency. The instantaneous tracking error e½ti� at
the discrete time instant ti is defined as the euclidean
distance between the ground truth location ðx; yÞ and our
estimated location ðx̂; ŷÞ. We then calculate the average
tracking error eavg in the interval ½0; T � as follows:

eavg ¼ 1

T

XT
i¼0

e½ti�: (11)

Energy Prediction Modes. In our emulation scenario, we con-
sider the following two scenarios for energy harvesting:

Fig. 9. Mean absolute prediction error (MAPE) for energy harvesting and
movement duration.

TABLE 2
Energy Breakdown by System Components for the Different Tracking Strategies

Baseline (P=0.54 mW) GPS tracking
(P=141 mW)

GPS standby
(P=0.07 mW)

Inertial (P=0.33 mW)

Algorithm Duty Cycle Energy Duty Cycle Energy Duty Cycle Energy Duty Cycle Energy

#1: static-motion 100% 49.02% 0.12% 15.04% 99.88% 5.99% 100% 29.95%
#2: adaptive-motion 100% 49.02% 0.12% 15.03% 99.88% 5.99% 100% 29.96%
#3: static-information 100% 49.58% 0.11% 14.06% 99.89% 6.06% 100% 30.30%
#4: adaptive-information 100% 49.42% 0.11% 14.34% 99.89% 6.04% 100% 30.20%
#5: offline 100% 49.20% 0.11% 14.72% 99.89% 6.01% 100% 30.07%

576 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 19, NO. 3, MARCH 2020



� Separated harvesting/tracking: Separate periods of har-
vesting (day) and tracking (night), such as in the fly-
ing foxes application, results in a fixed energy
budget for the tracking period.

� EWMA-based prediction:This scenario overlays harvest-
ing and tracking synthetically and sets an energy bud-
get for the tracking phase that is based on a EWMA-
based prediction of harvested energy (see Section 4).

7.5 Tracking Performance

We evaluate our frameworkwith the followingGPS sampling
strategies: static motion-based (Strategy #1), adaptive motion-
based (Strategy #2), and adaptive information-based (Strategy
#4). Furthermore, we compare the performance of these algo-
rithms with the static information-based strategy (Strategy #3),
which is conceptually similar to the heading-aware strategy
of EnTrackedT [18], and an optimal offline schedule calculated
with full access to the trajectory (Strategy #5). Fig. 10 shows
the Tukey boxplot of the average daily tracking error for the
four online strategies (see Section 5) with EWMA-based
energy prediction, separated harvesting and tracking phases,
and the optimal offline strategy with perfect energy predic-
tion. The boxplot exposes the non-normal distribution of daily
average tracking errors, highlighting the impact of variations
in trace length and shape on themean tracking error.

Motion-Based GPS Sampling.The static motion-based strat-
egy (Strategy #1), which sets a fixed duty cycle at the begin-
ning of the observation period based on a population-based
estimate for movement duration, exhibits a median error of
146.9 m for separated energy harvesting and tracking
phases and of 243.3 m for EWMA-based energy prediction.
Employing online estimates for remaining movement dura-
tion, as in the adaptive motion-based strategy (Strategy #3),
results in a smaller median tracking error of 31.1 m for sepa-
rated harvesting and tracking phases, and in a tracking
error of 95.3 m for EWMA-based energy prediction.

Information-Based GPS Sampling. While the optimal offline
strategy (Strategy #5) expectedly has the lowest median
(15.8 m) and the smallest spread of daily average tracking
errors, the adaptive information-based sampling strategy
(Strategy #4) yields a significantly lower mean daily track-
ing error with less outliers than the other online approaches.
Since the adaptive information-based approach adapts the
dead-reckoning error threshold to both energy and mobility

forecasts in real-time and tunes its sampling decisions on
trajectory features rather than a fixed duty cycle setting, it is
able to vary its performance to instantaneous changes in
both movement and energy profiles.

Although the static information-based strategy (Strategy
#3) achieves the next lowest median tracking error (sepa-
rated: 23.6 m, EWMA: 24.1 m) after the adaptive informa-
tion-based approach (separated: 21.6 m, EWMA: 23.6 m),
daily tracking errors still have high variation due to the
fixed error threshold. This strategy performs well for days
where the movement duration and energy budget match
well with the fixed error threshold. Otherwise, the threshold
is mismatched due to longer than expected movement or
less than expected energy availability, resulting in higher
daily tracking error in many instances.

Consider the separated energy prediction scenario in
Fig. 10, which provides a priori definition of the energy
budget. To highlight the performance gain of the proposed
adaptive information-based strategy, we calculate the reduc-
tion of the median tracking over a comparison algorithm as
G ¼ ecomp�eadaptive�information

ecomp
. The reduction of the median track-

ing error by 8.2-85.2 percent over the other online
approaches can be attributed to linking the dynamic move-
ment prediction component to the adaptive error threshold
RðtÞ in dead reckoning.

7.6 Prediction of Harvested Energy

The EWMA scenario highlights the combined effect of con-
sidering both real-time movement and energy predictions,
further decreasing the median error of adaptive information-
based sampling by 2.2 percent compared to static information-
based, by 75.2 percent compared to adaptive motion-based,
and by 90.3 percent compared to staticmotion-based.

The adaptivemotion-based strategy performance degrades
in the EWMA prediction scenario as it directly computes a
sampling duty cycle based on movement and energy fore-
casts, which both include uncertainty. Although the same
forecasts are also used by the adaptive information-based
strategy to compute the dynamic error threshold, employing
dead-reckoning to estimate the instantaneous trajectory error to
decide on sampling yields significant benefits.

Interestingly, EWMA prediction yields a slightly higher
median error for adaptive information-based sampling than
for the scenario with separated harvesting and tracking. We
attribute this effect to hidden constructive interaction between
the uncertainties in mobility and energy prediction. Further-
more, the variance in the daily tracking error for information-
based sampling in the EWMA scenario is slightly higher than
for the separated scenario, highlighting the effect of uncer-
tainty in the energy budget on the tracking performance.

Benefits of Energy Prediction. To shed further light on the
effects of energy prediction on the tracking performance,
we compare the adaptive information-based strategy in a
scenario without and with EWMA-based energy prediction.
Fig. 11 shows the average error for all 51 traces against the
remaining energy at the end of each day. In both cases,
energy harvesting traces are overlayed with tracking activ-
ity in time synthetically.

Without a mechanism to predict the amount of harvested
energy, information-based sampling initially has a very small
available energy budget, based on what has been harvested

Fig. 10. Tukey boxplot of the average daily tracking error for separated
harvesting and tracking, EWMA-based energy prediction, and the offline
scenario.
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since the beginning of the simulation, leading to higher track-
ing errors and an underspending on energy. As time pro-
gresses, the early energy savings translate into a lower error
threshold and higher accuracy tracking for trajectory seg-
ments with significant information content. With EWMA-
based energy prediction, the information-based strategy uses
its energy forecast effectively to set lower tracking error
thresholds early on, leading to relatively small average track-
ing errors for 49 out of the 51 traces. It also results in a smaller
positive energy carryover than without prediction, indicating
it is able to better utilize the harvested energy.

7.7 Benefits of Information-Based GPS Sampling

We conclude that adaptive information-based sampling out-
performs other online strategies as it adapts gracefully to
uncertainty in harvested energy predictionswhen the tracking
activity overlaps with the energy harvesting period. Fig. 12
shows the performance of the adaptive information-based
strategy for the different energy harvesting scenarios. As a
benchmark, the optimal offline tracking strategy, which has
full visibility into future movement and energy input, yields
an average tracking error of 27.3 m. In comparison, adaptive
information-based sampling without energy prediction leads
to an average error of 1000.9m.With EWMAprediction, infor-
mation-based sampling reduces the mean tracking error by
90.3 percent to 97.4 m compared to the scenario without pre-
diction. When the energy budget is deterministic, such as in
the scenario with separated harvesting and tracking periods,
information-based sampling achieves an average tracking
error of around 79.9 m. Thus, the uncertainty in harvested
energy prediction leads to an increase of the mean error by
21.9 percent over deterministic energy prediction, yet still
achieves roughly a nine-fold reduction in error compared to
the scenario without prediction. In terms of median perfor-
mance, adaptive information-based sampling achieves a daily
average tracking error of 23.6 m (EWMA) and 21.6 m (sepa-
rated), compared to 15.8mwith the optimal offline strategy.

8 RELATED WORK

Localisation of mobile devices have been studied exten-
sively in the past motivated by applications in navigation,
tracking and rescue. Location awareness is also a key
requirement for emerging mobile applications such as loca-
tion-based search, turn-by turn navigation, social media, or
participatory sensing [9], [10], [25].

Wildlife Tracking. GPS technology is being used to track
increasingly smaller animals, thanks to miniaturisation of
GPSmodules.However, certainwildlife tracking applications

cannot rely on GPS due to the application scenario, e.g., track-
ing badgers underground [8], and thus employ alternative
localization techniques such as RFID tags or radio contact log-
ging [4], [21]. With our focus on tracking in remote areas with
limited cellular network coverage, we rely on GPS only to
determine the current position of tagged animals. Although
the power consumption of GPS receivers has been continually
improving, it remains a major part of the overall energy bud-
get of mobile devices. Liu et al. [22] proposed to reduce the
power consumption by offloading the GPS signal processing
to the cloud. However, this requires to store and transfer raw
data, which creates another bottleneck for resource-con-
strained applications.

GPS Duty-Cycling. Continuous tracking applications
exhibit a trade-off between accuracy of localization and the
amount of energy spent to do so. Therefore, mechanisms to
adapt the duty cycle of the GPS receiver and other localiza-
tion modalities have been extensively studied in previous
work [9], [35]. Paek et al. [26] use the location-time history
of a user and a blacklist based on cell tower signal strength
to decide when to activate the GPS and to avoid unavailabil-
ity of GPS indoors. SensLoc [17] uses algorithms to detect
the user context, such as frequently visited places, and
movement detection to adapt the GPS duty cycle. Jurdak
et al. [13] propose to use short-range radio contact-logging
to bound the position uncertainty when duty-cycling the
GPS. SmartDC [6] provides adaptive GPS duty-cycling
using prediction mechanisms for regularities in user mobil-
ity. eNav [12] employs dead-reckoning using the accelera-
tion in smartphones to enable the GPS only when the user
reaches the next navigation waypoint.

Energy Management. Adaptive localization algorithms,
such as EnLoc [7], EnTracked [2], [18], [19], and a-Loc [20],
dynamically select the localization modality that provides
the most energy-efficient position estimate within provided
uncertainty bounds. Another approach to duty-cycling the
GPS is to rely on low-power sensors such as accelerometer
or compass to trigger GPS sampling only when the device
is moving [17], [26] or when it changed its heading [18].
Jigsaw [23] manages battery life of mobile phones by balanc-
ing power consumption of sensing processes with quality
requirements of the application and user context.

Unlike most adaptive localization algorithms, we focus on
the inverse problem of determining the most accurate GPS
sampling strategy given energy constraints. Consequently,
instead of sampling GPS location when the uncertainty of the
current location estimate increases above a certain limit, we
constrain the GPS sampling subject to the available energy.
Our approach will not strictly enforce that all location

Fig. 11. Daily average tracking error versus energy carryover to the fol-
lowing day without and with EWMA-based prediction of energy
harvesting.

Fig. 12. Tracking performance of the adaptive information-based strat-
egy for the different energy prediction modes. Error bars represent one
standard deviation.
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estimates are within the error bounds, but will strive to
achieve best performance overall given the energy constraints.

Energy-aware process scheduling frameworks have been
proposed to adjust the long-term system performance based
on prediction of harvested energy [3].While such frameworks
consider long-term operation of solar energy harvesting sys-
tems over years at a guaranteedminimumperformance level,
the goal of this paper is to manage short-term energy usage
under daily varying harvesting andmobility.

9 CONCLUSIONS AND DISCUSSION

This paper has presented an energy- and mobility-aware
scheduling framework for perpetual tracking applications.
At the core of this framework is an adaptive information-
based tracking strategy that maximizes the tracking infor-
mation return subject to a given energy budget. Our strat-
egy uses historical motion statistics and distance from the
destination to forecast activity duration to strategically sel-
ect the best GPS sampling policy. It also predicts energy
availability to set a virtual energy budget for a future sam-
pling period. The algorithm then updates its forecast and
adapts its acceptable error threshold in response to mobility
forecast and energy availability. We evaluated our approach
on empirical traces from wild flying foxes and showed that
our approach can significantly increase positioning accu-
racy for a dynamic energy budget.

While our work was motivated by animal tracking, we
believe that our proposed energy- and mobility-aware sched-
uling framework is applicable to a broad range of tracking
applications. For instance, most living beings, including
humans, exhibit very strong preferential return behavior to
one or two locations, typically home and work or study [11],
[15], and exhibit time-of-day correlations with the most likely
destination (e.g., going to work at 8 am or returning home at 5
pm [1]). As such, the concepts for scheduling of GPS by
predicting motion duration on the basis of previous days,
population-based statistics, or current distance from the most
likely destination are transferable to tracking people and
indeed many other living species [30]. A related area is asset
tracking in logistics where ground assets often need to be
tracked over long durations. Using historic motion patterns,
whether for the asset group or individual assets, and energy
availability to schedule position sampling can provide more
accurate asset tracking.

An interesting direction for future work is to improve the
prediction of motion duration and energy harvesting for
more accurate scheduling of GPS samples by applying more
advanced algorithms or a combination of several meth-
ods [29]. For the flying fox application, it will be important to
detect if the animal is flying to a previously unknown loca-
tion. In addition, temperature and solar exposure inputs can
be used as proxies for weather conditions that may better pre-
dict the extent of movement and energy demand for a single
forecast period. Finally, it will be important to evaluate the
information-based tracking strategy for other application sce-
narios, such as for tracking people, different animal species,
or movable assets in logistics. We expect our work to be an
important step towards highly autonomous tracking with
energy harvesting that delivers detailed trajectory data near-
perpetually for a broad range of applications.
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