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Abstract—Mobile Cloud Computing or Fog computing refers to offloading computationally intensive algorithms from a mobile device

to the cloud or an intermediate cloud in order to save resources e.g., time and energy in the mobile device. This paper proposes new

solutions for situations when the cloud or fog is not available. First, the sensor network is modelled using a network of queues, then a

linear programming technique is used to make scheduling decisions. Various centralized and distributed algorithms are then proposed,

which improves overall system performance. Extensive simulations show slightly higher energy usage in comparison to the baseline

non-offloading case, however, the job completion rate is significantly improved, the efficiency score metric shows the extra energy

usage is justified. The algorithms have been simulated in various environments including high and low bandwidth, partial connectivity,

and different rate of information exchanges to study the pros and cons of the proposed algorithms.

Index Terms—Offloading, mobile cloud computing, energy, IOT, Fog computing, Edge computing
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1 INTRODUCTION

THE use of commercial off-the-shelf (COTS) smart devices in
defence and surveillance applications is an extremely

useful prospect. Imagine a swarm of COTS devices gather-
ing visual intelligence on amissing person or an armed terror-
ist (See Fig. 1) using person re-identification (PRID) [1] and face
identifications [2] algorithms. However, reporting raw data
back to a base station can be prohibitive in terms of both time
and energy. Furthermore, it may open up the base to external
attacks. So some pre-processing must be undertaken on the
device itself; for example only reporting to the base once the
individual is recognised. For that, the devices must be able to
run PRID algorithms for the targets appearing in its Field
Of View (FOV). The time complexity of the PRID algorithms
is substantially higher than other algorithms running in the
algorithm chain (Fig. 2) such as background subtraction and
person detection [3]. The devices may have different comput-
ing and energy resources. Depending on the state of the
device, it may not be able to complete these processing in an
allocated time. Traditional Mobile Cloud Computing (MCC),
in which jobs are outsourced to the cloud, may not be feasible
depending on the communication channel to the cloud [4],
[5]. Recently, Fog or Edge computing has been introduced
whereby mobile devices offload to the nearby servers

(preferably at base stations) instead of the cloud [6]. However,
Fog computing could be unavailable just like the cloud, for
example in underground or underwater scenarios.

In this paper, new algorithms are proposed to balance the
computational load among the network of smart cameras
for soft real-time applications. For rest of this paper, a net-
work of smartphones running PRID algorithms is consid-
ered as the exemplar problem. However, the algorithms can
be generalised to other problems such as multistatic radar
or sonar, distributed audio processing etc. The following
assumptions are made in this paper:

1) In a network of cameras, targets are spatially and
temporally distributed. That means, more targets
may appear in some camera FOV’s than others and
at different times.

2) While targets do not appear in a camera’s FOV, its
resources (Central Processing Unit (CPU), Graphical
Processing Units (GPU)) are not fully utilised. There-
fore, in theory, it should be able to help its busy
neighbours to cope with the demand.

3) As long as the total job rates (across all nodes) is less
than the total computing capability of the network
of nodes, it should be possible to trade energy with
performance and productivity.

The argument about helping neighbours is valid even if
the devices are battery powered. For example, solar pow-
ered devices would be recharged every day or a drone
swarm would be recharged after 20-30 minute of flight
time. It does not benefit to have energy left when recharging
is available. In case of uneven load, by helping neighbours,
the network lifetime (the time when the first node in the net-
work runs out of battery) can be extended.

The problem tackled in this paper is twofold. First,
a scheduling decision algorithm for offloadable jobs (see
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Section 2) among the nodes is created. Second, a deter-
mination of the required Node State Information (NSI)
(described in Section 3) that needs to be shared in order
to make the scheduling decision as well as the update fre-
quency. Queuing theory (see Section 3) is used to model
the nodes processing. It abstracts the scheduling algo-
rithms of the underlying hardware so the system may
consist of CPU nodes or dedicated accelerators such
as Graphical Processing Units and Field Programmable
Gate Arrays. Also, by working with job rate rather than
individual jobs, the need to take the decision for each and
every task is eliminated.

After modelling, the scheduling decision is posed as a
minimum cost problem. Based on where the solver is exe-
cuted and how data is shared, four novel algorithms are
presented and their performances are compared with the
non-offloading case. The core algorithms were first pre-
sented in [7]; this work substantially extends these ideas
with further experimentation with real data as well as
experiments with more dynamic scenarios such as partial
connectivity, and the effect of communication bandwidth.
In summary, the main contributions of this paper are:

� Proposed novel algorithms for on-line workload
balancing for real-time applications in distributed
systems.

� Proposed an Offloading Cost function that incorpo-
rates NSI such as battery level, bandwidth and CPU
availability.

� Proposed proactive and reactive strategies for shar-
ing NSI among sensor nodes.

� Demonstrate that the proposed algorithms improve
the performance of the overall network of battery-
powered sensor system compared to the Non-
Offloading (NO) system on simulated data as well as
a real dataset.

The next section presents the background and related
works in MCC. In Section 3, the node network is modelled
using a network of queues and the problem is formulated
along with the NSI. In Section 4, the algorithms are pro-
posed. Section 5 introduces the simulator developed for
testing the algorithms. In Section 6, the experiments and
results are presented. Finally, discussions and conclusions
of the results and findings are presented in Section 7.

2 RELATED WORKS

In this section, a brief introduction toMobile CloudComput-
ing (MCC) and relatedworks is provided. Themain objective
is to present the existing works in relation to offloading
to neighbouring nodes and the additional challenges. Tradi-
tionalMCC refers to the offloading of computationally inten-
sive algorithms from a mobile device to the cloud in order
to save processing time and energy on the mobile device.
Recent literature reports significant time and energy
resource saving by offloading to the cloud [8], [9]. For a com-
prehensive list ofMCC algorithms, interested readers should
refer to the recent surveys [10], [11], [12]. However, for off-
loading to cloud to have a positive impact, the environment
has to be suitable as well. It was discussed in the paper [4]
that it may be better to offload to neighbours depending on
the bandwidth. These factors apply to computation offload-
ing to neighbouring devices also and is described below.

2.1 Characterising Offloadable Algorithms

The benefit of offloading a particular algorithm depends on
the speedup that can be achieved as well as the bandwidth
available to the cloud [11]. The jobs arriving at the node can
be offloadable or non-offloadable depending on whether the off-
loader can save time or energy by offloading the job to others.
Also, some algorithms are non-offloadable because they are
inseparable from the device. For example, Operating Sys-
tem (OS) hardware related jobs cannot be offloaded.

Generally, MCC implementations use static and dynamic
application partitioning of algorithms based on profiling
[13]. For this work the jobs are classified as offloadable or
non-offloadable by design. For example, a typical person
re-identification software chain is shown in Fig. 2. In this
chain, only person re-identification is considered as the offload-
able as its time complexity far outweighs others in the chain
and data it requires is minimal (person’s image) [3].
However, instead of a binary classification of each algo-
rithm as offloadable and non-offloadable, each algorithm could
be granularised into many sections. Each of the section can
be offloadable or non-offloadable. For example, in Fig. 2 it can
be assumed that light gray sections can be offloaded and
dark gray sections do not benefit from offloading.

2.2 Communication Channel

The availability and quality of a communication channel
have a huge impact on successful offloading. Cuervo [8]
points out significant energy usage when the Round Trip
Time (RTT) increases between the offloader and onloader. In
that sense, offloading to the neighbouring nodes is better than
the cloud as the RTT can be expected to be in the range of 10
ms in a typical case compared to 100 ms for the cloud. Wu
et al. [14] also used a queuing theory approach forMCC, how-
ever, their focus was on offloading to the cloud and availabil-
ity of communication channels. Zhang et al. [15] usedMarkov
Decision Process (MDP) to tackle the intermittent channel
availability. Similarly, many game theoretic approaches also

Fig. 1. Pedestrian identification scenario: Device X inundated with
targets while device Y is idle.

Fig. 2. Typical pedestrian identification flowchart showing offloadable and
non-offloadable algorithm parts in light and dark gray colors, respectively.
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exist whereby nodes compete against each other while using
the shared communication channel to avoid interference [16],
[17]. In this approach, communication is between neighbour-
ing nodes connected by WiFi or Bluetooth etc. As the WiFi
and Bluetooth coverage is limited compared to cellular net-
work coverage, interferencemay be limited aswell.

2.3 Offloading Candidates

The majority of work reported in the literature considers
cloud and fog as the only offloading candidate with the
assumption that the cloud has unlimited computational
resources. As the cloud is mains powered, it is not limited
in terms of energy. As such, the decision is mainly limited
to “given current channel availability should you offload or not?”
However, offloading to computationally similar devices
needs to answer additional questions such as “which neigh-
bour is best suited?” and “is someone going to offload to me as
well?” Still, as the development of embedded devices con-
tinues, researchers are keen to exploit it. For example, Lin
et al. [18] considered offloading to coprocessors. Authors of
[19], [20], [21] considered offloading to cloudlets along with
the cloud. Recently, [22], [23] also considered smartphones
as offloading candidates. The main objective of [22] is to
divide a computationally expensive work into pieces and
offload to neighbours. Similar to this work, the cost function
comprises computing cost and communication cost and
uses an optimisation algorithm to solve the problem. How-
ever, the differences are significant, for example, their main
aim is to reduce the higher cost incurred due to neighbours
moving away from the offloader (uncertainty of connection
time), whereas, for this work, the main objective is to bal-
ance the computational load among the nodes (uncertainty
of target distribution). Their approach is based on the point
of view of a single user. Each user care about their own goal
only to save their resources so they are termed as “selfish”.
They do not propose how or when resource discovery is
accomplished. This work considers various centralised and
distributed approaches with various data exchange policies
which show how they can affect the performance.

2.4 Summary

The main advantages and disadvantages of offloading to
cloud versus offloading to neighbouring nodes are summar-
ised in Table 1. In case of higher bandwidth between neigh-
bouring nodes is based on the availability of WiFi among
neighbouring devices whereas only low-speed cellular is
available to the cloud. Clearly, only in some cases, neigh-
bouring nodes have benefits over the cloud. However, as it
was stated earlier in this paper, the cloudmay be unavailable

due to several reasons such as natural disasters, terrorist
attack, and remote environments etc. In the next section, the
sensor nodes are modelled and problem is formulated so
that the neighbouring nodes can be considered as offloading
candidates and various solutions are proposed.

3 SYSTEM MODEL

LetG ¼ ðN;AÞ be a directed network defined by a setN of n
nodes and a set A of m directed arcs. Each arc ði; jÞ 2 A rep-
resents a communication link (for example WiFi) from node
i to j, and has an associated cost that denotes cost per unit
flow on that arc. A link can be single hop or multi-hop.
Before going into the detail modelling of sensor nodes, a
brief description of a network of queues is presented in the
next section.

3.1 Network of Queues

Sometimes it is easier to model a system with multiple
nodes, with each node having a room for queuing and each
having a service centre [24]. Such network of queues is
defined as an open network if there are external jobs coming
into the system and can be modelled using the Open Jack-
son network [24]. For example, Fig. 3 shows an open net-
work with two M=M=1 queues Q1 and Q2 with external
target rates g1 and g2 respectively. The arrival rate for a
queue i 2 f1; . . . ; ng in such network is given

�i ¼ gi þ
Xn
j¼1

pji�j; (1)

where gi is the rate of arrival of external targets at queue i,
�j is the arrival rate at queue j; pji is the probability a job
moves from queue j to i. Vilaplana et al. [25] used the Open
Jackson to model the cloud architecture and estimate their
performance. Based on this formulation, the incoming and
outgoing job rates of all the sensors in the system are mod-
elled in the next section.

3.2 Node

Each node i is a smart camera with limited computational
capability. As an exemplar, this work considers each node
to be a COTS smartphone with a CPU, WiFi, cellular link
and a camera—see Fig. 4. Two types of queues,M=M=1 and
M=M=1=K are used to model the behaviour of these com-
ponents. The M=M=1 has First Come First Service (FCFS)
scheduling discipline, an arrival process that is Poisson dis-
tributed, and a service time that is exponentially distributed

TABLE 1
Relative Comparison between Offloading to Cloud

or Fog and Offloading to Neighboring Nodes

Cloud, Fog Neighbouring nodes

Computational capability Almost Unlimited Limited
Energy Limited No Yes
Configuration Static Dynamic
Round Trip Time (RTT) Long (100 ms) Short (10 ms)

Bandwidth Lower (1 Mbps) Higher ( 54 Mbps)

Count Low (Single) Multiple

Superior choice is highlighted in bold.

Fig. 3. A network of two Queues. Total incoming target rate at Q1 (�1) is
the sum of external target rate (g1) and targets rates emanating from the
queues heading to Q1. Under stable condition, the outgoing rate is equal
to the incoming rate.
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[24]. The communication part is modelled using two
M=M=1 queues (sender and receiver side). The CPU is
modelled using M=M=1=K type queue, which is same as
the M=M=1 except for the finite buffer of size K. There can
be a maximum of K jobs at any time in the CPU (waiting
jobs + jobs being serviced). Size of the buffer for the CPU is
chosen so that the system is stable at all times. In this work,
K is chosen as

K ¼ Tthreshold

Tmin

� �
; (2)

where Tthreshold; Tmin are allocated timewindow and the mini-
mum processing time for each jobs. In the literature, jobs
arriving after the buffer is full can be dropped or block pre-
ceding queues [26], [27]. In this work, regarding the real-time
execution of the application, if a job arrives when the existing
number of jobs in the queue equalsK, the job is not processed
and dropped. The probability of dropping a job is pðKÞ and
the job arrival rate for the queue is restricted to the 1� pðKÞ.
However, when the buffer is restricted, the Open Jackson net-
work is not valid as it assumes infinite buffer queues. So, for
the modelling purpose, they are approximated as M=M=1
queues based on the decomposition method proposed by
Takahashi et al. [28]. In this method, the arrival rate and ser-
vice times of the queues are updated based on the dropping
probability and the blocking times respectively.

Each node i may be defined as a tuple fgi; gi0;mi;
miWR;miWSg where gi is the rate of offloadable jobs, gi0 is the
rate of non-offloadable jobs, miCPU is the service rate of CPU
and miWR;miWS are the WiFi transmission rates. This node
information is defined as the Node State Information (NSI).
Each individual target that passes through a camera FOV
generates an offloadable job. Jobs that are integral to the node
itself, such as operating system load and algorithms which
do not benefit from offloading are termed as non-offloadable
jobs. The notations and their definitions are listed in Table 2.

3.3 Centralised Problem Formulation

The scheduling decision problem is defined as a minimum
cost flow problem to find the optimal policy X such that all
the jobs get scheduled among the available nodes with mini-
mum energy and time costs and with constraints that all the
jobs get scheduled, without compromising the stability of
the queues. The optimal policyX is given by

X ¼ argmin
x

Xn
i¼1

Xn
j¼1

cijxij (3a)

subject to Xn
j¼1

xij ¼ gi; 8i 2 N (3b)

Xn
j¼1

xji þ gi0 � miCPU ; 8i 2 N (3c)

xij � 0: (3d)

The decision variable xij represent the probability of job
flow on an communication link ði; jÞ 2 A and xii is the job
rate that is executed locally. cij represents the general cost
of scheduling a job from node i to j which is described in
detail later in Section 3.5. The solution of Eq. (3) can be writ-
ten as a decision matrix shown below:

X ¼

x11 : x1i : x1n

: : : : :
xi1 : xii : :xin

: : : : :
xn1 : xni : xnn

2
66664

3
77775: (4)

Each row of X represents the policy for each node. We
defined it as a decision vector ðdvÞ. The dvi tells node i how it
should process the incoming targets. Also, ith column of the
matrix indicates the policy of other nodes towards the ith
node. The rate stability of a queue can be guaranteed by
ensuring the average arrival rate is less than the average ser-
vice rate. Hence, if the average incoming job rate for the CPU
queue in a node is greater than its service rate, an alternative
node has to sought. The equality constraint in (3b) makes sure
that all the jobs are assigned to a processing nodewhereas the
inequality constraint in (3c) makes sure that the jobs can be
processed by the corresponding nodes they are assigned to.
This formulation uses NSI from all the nodes (N) and makes
decision for all the nodes simultaneously. Eq. (3) can be solved
using efficient linear programming techniques [29].

3.4 Distributed Problem Formulation

In a large network, collecting NSI from all the nodes may
not be advised for several reasons. For example, collecting

Fig. 4. A sensor nodemodelled as network of queues. CPU,WR, andWS
represent CPU,WiFi Receiver, andWiFi Sender queues, respectively.

TABLE 2
List of Notations

Notation Definition

N Set of sensor nodes {1,...,n}

A Set of directed arcs between nodes.

gi Incoming external Offloadable jobs rate of ith node

gi0 Incoming external Unoffloadable jobs rate of ith node

�iCPU Total incoming job rate for ith CPU

miCPU Job service rate of CPU of ith node

�iWS Total incoming job rate of WiFi send queue for ith node

miWS WiFi transmission rate of ith node

�iWR Total incoming job rate of WiFi receive queue for ith node

miWR WiFi receive rate of ith node

f average retransmission times

BWij Expected bandwidth between node i and j

Bi Remaining battery in node i

Li Number of CPU Jobs in Node i

Ti Average processing time for each CPU Jobs

LiWS Jobs in WiFi send queue of node i

LiWR Jobs in WiFi receive queue of node i

TiWS Expected time to process one WiFi job i; j

v1;v2;v3 Weighting factor set to 0.6,0.3,0.1 respectively
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NSI information and sending dvi may have significant
impact as the bandwidth decreases and the frequency of
information exchange increases. Also, nodes that cannot be
reached due to lack of communication links, can neither
offer help nor ask for help. So, the centralised problem is
simplified by primal decomposition [29] whereby each node
calculates its own dv. The distributed formulation can then
be defined for each node i 2 N as given by Eq. (5).

dvi ¼ argmin
x

Xn
j¼1

cijxij (5a)

subject to,

Xn
j¼1

xij ¼ gi (5b)

Xn
i¼1

xji þ gi0 � miCPU (5c)

xij � 0: (5d)

This is similar to the Gauss-Siedel like method used by
Meskar [30] for MCC. The algorithm basically communi-
cates with its immediate neighbours to ask for help and
makes the decision. The approach is not selfish as it still con-
siders neighbours’ resources rather than offloading every-
thing. It is different from the centralised problem in Eq. (3)
where each node i only tries to minimise the cost of its own
objective function on the basis of information available on
its neighbours. Eq. (5) can also be solved using linear pro-
gramming techniques [29].

3.5 Cost Function

Once all the arriving jobs can be scheduled such that the
queues are all rate stable, it should be accomplished with
the minimum cost. Here, the cost function cij used in both
central and distributed formulation described by Eqs. (3)
and (5) is defined. It is composed of energy costs in the com-
munication links, availability of the CPU and the remaining
energy. More precisely, the cost of scheduling from node i
to j is defined as:

cij ¼
v1LiTi; if i ¼ j
v1LjTj þ v2aij þ v3

1
Bj
; if i 6¼ j; ði; jÞ 2 A

1; if i 6¼ j; ði; jÞ =2 A;

8<
: (6)

where, Li is the number of CPU jobs already in node i, Ti is
the average processing time of each CPU Jobs,Bj is the
remaining energy in node j (Joules) and fvkg31 are weight
factors. The significance of various components in Eq. (6)
can be changed using the weighting factor fvkg31. Even
though the selection of weights could be unique based on
application and context, we describe a general methodology
on their selection. The weights can be static for a system or
dynamically varying depending on context. For example,
for the nodes that are mains powered, v3 ¼ 0 can be selected
universally . This would mean that overall cost of offloading
would be cheaper to the nodes that have mains power at the
time. Similarly, some nodes may have prior knowledge of
incoming target density, which could have been learnt over
time. For example, cameras monitoring entry and exit of a
station would be busier during office hours. Those nodes

can set high value for v1 so that other nodes do not offload
to them at those times. In the same manner, nodes with less
battery power can minimize the load distributed to them
without fully isolating themselves from the network by
selecting higher value of weights. This would mean that
other nodes would only offload to them if there is no one
else available to help. Likewise, if the communication band-
width is expensive or currently required for some other ser-
vice, the v2 could be set high so that the nodes would prefer
on-board processing to offloading. The weights are set at
0:6; 0:3 and 0.1 for this application. Each component of the
cost function is described in the next section.

3.5.1 CPU Availability

The number of existing jobs in the CPU queues (Li) is used
as the measure of CPU availability in the node. A higher
number indicates lower availability for further external jobs
and vice versa. This cost is applicable to self-processing in
the scheduling decision making as well.

3.5.2 Communication Cost

The WiFi communication cost (time as well as energy)
depends upon the bandwidth between the nodes and data
size. However, the communication channel is not perfect
due to various noises and interference. Bandwidth is
adjusted depending on these factors using metrics such as
Signal to Noise Ratio (SNR), acknowledgement etc. for opti-
mal performance which is to offer high bandwidth at high
Packet Delivery Rate (PDR) [31], [32]. Results from [32]
show that depending on SNR, the PDR can be different for
different data rates. So in order to model their behaviour
correctly, this paper accounts for them using a retransmis-
sion factor f . In the experiments, PDR is randomly sampled
between two nodes and uses the mean of the geometric dis-
tribution to calculate the average number of transmissions
to send the data from one node to another (see Eq. (7a)):

fðPDRÞ ¼ E½gðx; PDRÞ�;where (7a)

gðx; PDRÞ ¼ PDRð1� PDRÞx�1; 8x 2 f0; ::;1g: (7b)

The relationship (see Fig. 5a) shows us that as the PDR
degrades, the average number of retransmission rises expo-
nentially. For example, if the PDR is 1,0.5 and 0.1, the aver-
age number of times the data has to be transmitted is 1, 2
and 9 times, respectively. In Section 4.2, further analysis is
performed to see effect of bandwidth, PDR and frequency
of data exchange on the communication resources. For the

Fig. 5. (a) Average no. of retransmissions required due to imperfect
channel. (b) Time complexity of various linear solvers.
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simulations, 0.5 is considered as the minimum PDR for any
valid communication link. Then the communication cost
between i and j, aij is defined as

aij ¼ LiWSTiWS þD� f þ 1

BWij
þ LjWRTjWR; (8)

where BWij is the bandwidth between node i and j; D is the
data size; f is the average retransmission times (see
Eq. (7a)); aij is the communication cost; LiWS; LjWR are the
number of jobs already in the WiFi send and receive queues
of node i and j; TiWS; TjWR are expected WiFi sending and
receiving time in i and j. Note that aij can be interpreted as
the suitability of node j based on existing communication
queues and the channel available.

3.5.3 Energy Available

The last element of the cost function is the battery level of the
onloader. When the battery level at node j is close to full, it
does not affect the decision making significantly due to the
large value ofBj in Eq. (6) as the corresponding term is small.
However, when the battery is nearly empty, its significance is
considerably higher. It makes our decisions “energy aware”
i.e., the nodes do not completely drain while trying to help
the neighbouring nodes. Detailed models of power drain for
the CPU, Image sensor and WiFi communications are desc-
ribed in Section 5.2.

3.6 Computational Complexity of Optimisation

It would be inefficient if the proposed optimisation algo-
rithms uses a significant amount of CPU resources itself to
balance the computational load. Fortunately, the optimisa-
tion problem stated in Eqs. (3) and (5) can be solved using
efficient linear programming techniques. Using data rate in
the problem formulation means that we do not have the
integer constraint and the decision can be taken periodically
rather than for each and every job as they arrive. Experi-
ments were performed to gauge their time complexity for a
different number of nodes. These experiments were per-
formed on a desktop computer with an Intel Xeon processor
and running MATLAB 2015a under Linux environment.
The runtime of these algorithms on an embedded device
may be significantly higher but should follow the similar
pattern. The results show that the Interior Point is the most
efficient for 5 to 35 nodes—see Fig. 5b. Running Optimisa-
tion periodically incurs time and energy cost on the node.
In this work, we assume the size of network to be around
30, so a fixed cost of optimisation is accounted. This is simi-
lar to executing a general algorithmic task running on the
node which is described in Section 5.1. Every time a node
runs the optimisation algorithm, it’s costs are accounted by
the simulator. The overall performance of the system is
dependent on the frequency of the optimisation algorithm
execution. This is described in Section 6.4.

4 ALGORITHMS

In Sections 3.3 and 3.4, the problem of scheduling jobs
was formulated as a centralised and distributed problem.
This section describes how those solutions are implemented.
Two data sharing mechanisms; proactive and reactive are also

considered. Depending on which solution is used, and how
the data is shared amongst the nodes, four algorithms are
proposed. All four algorithms are then compared to the Non-
Offloading case when offloading is not allowed whatsoever.
For this work, a co-operative environment is assumed, such
that every node wants to achieve global objectives (i.e., pro-
cess the most jobs in an allocated time). Also, by “co-
operative”, it implicates that: if a node sends a job to another
node, the other node must execute it (see Eqs. (3) and (5)).
However, an assumption is made that the nodes are not
selfish and only offloads if required.

4.1 Oracle (O)

The target detection rate varies with time so the job rates (g)
in Eqs. (3) and (5) are non-stationary. The lowest sampling
time of the simulator is 10 msmatching a typical RTT, hence
the problems in Eqs. (3) and (5) must be solved periodically.
For the Oracle, it is assumed that it has access to every sen-
sor Node State Information (NSI) at all times. Since it has no
energy limitation, the Oracle solves the cost minimization
problem in Eq. (3) every second which is every hundredth
sampling step. Once solved, it sends the related policy dvi
to all nodes simultaneously without using the communica-
tion channel. While this continued update of NSI, is not fea-
sible in practice, it provides a benchmark for comparison.

4.2 Proactive Centralised (PC)

This is a more realistic version of the Oracle. In this method,
a node from among the nodes, is nominated as the server
and all other (n� 1) nodes send their NSI to it. Similar to
Oracle, the server then solves Eq. (3) and sends the corre-
sponding policy (dv) back to each node. All other nodes are
obliged to follow the decision made by the server and com-
putes and offloads based on the policy dvi until a new one is
broadcast. However, different and in contrast to Oracle, the
cost of communication, as well as cost of executing the
solver periodically, are taken into account. Section 3.6 show
that the cost is fairly constant when the number of nodes
are up to 20 sensors, we add this to the CPU queue as well.

An important distinction with the Oracle is that, due to
the partial connectivity among the nodes, some of the sen-
sors are not able to communicate to the server and vice-
versa. Hence they are excluded from the offloading process
altogether. In order to minimise this effect and minimize
extra drain of the server’s energy, a new server is selected in
round-robin basis. In this paper, every minute a different
server is chosen which acts as the server and so on.

A key question that arises is how often the nodes need to
broadcast their NSI and how often can they broadcast it
without flooding the communication links. Obviously, the
answer depends on many factors such as the communica-
tion bandwidth, size of NSI, PDR and number of nodes in
the set. If there are n nodes in total, and n� 1 nodes sending
their NSI to the server every t seconds, the node with the
highest probability of being busy is the server. The arrival
rate, worst service rate and the utilisation of the server’s
receiving queue can be calculated as follows:

Arriving rate; � ¼ n� 1

t
(9)

1504 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 7, JULY 2019



Worst Service rate;m ¼ Data Rate� worst PDR

NSI size
(10)

Utilization; r ¼ �

m
¼ ðn� 1Þ �NSI size

t�Data Rate� PDR

p½0� ¼ 1� r;

(11)

where, p½0� is the probability that there is no jobs in the
queue. Based on the arriving rate and service rate, the uti-
lisation of the WiFi receiver queue of the server can be esti-
mated. Low utilisation is desired as it means lower delay
and more room for transmission of other data. For example,
say there are 11 sensors connected with a data rate of
54 Mbps, PDR of 0.7 and NSI of 1 Mbits, send NSI every
10 seconds. Then Eq. (7a) estimates the queue utilisation is
� 0:03 and no waiting times for � 97% of the time. Similarly
the average delay is around � 0:03 seconds. Fig. 6 shows
waiting times at the receiving node at various intervals and
for different speeds. For the data rate of 11 Mbps (red lines
in Fig. 6) any PDR and NSI frequency leads to significant
usage of communication resources which is not desirable.
However, for 33 and 54 Mbps, NSI exchanges can be fre-
quent upto once every five seconds, without significantly
using the communication resources.

4.3 Proactive Distributed (PD)

Proactive Distributed (PD) is similar to PC except for three
main differences.

1) It is purely distributed. There is no server and each
node has to solve its own optimisation problem.
Time and energy cost of solver is also on each node.

2) Instead of solving central problem in Eq .(3), each
node only solves distributed problem in Eq. (5).

3) SetN contains immediate rather than neighbours than
all the nodes. Even if total nodes is large (>100), N
may be limited to tens of nodes. For example, see
Fig. 7b, node 1 and 5 are only connected to one another.

4.4 Reactive Distributed (RD)

If a few nodes become overloaded infrequently, transmit-
ting NSI regularly can be a waste of energy. Also, tail-end

behaviour User Equipment (UE) may mean regular trans-
mission forces UE to stay in the high powered state instead
of the low powered idle state [33]. In this method (see Algo-
rithm 1), nodes only communicate when they need to off-
load. The node seeking offloading help broadcasts Request
For Help (RFH) and waits until the neighbours respond by
sending their NSI. Neighbouring nodes must respond if
their average CPU usage is less than a threshold. Once the
node seeking help receives NSI from other nodes, it formu-
lates and solves Eq. (5). To avoid using old information and
update neighbour’s current situation, a timer T th is set after
which the NSI expires and the node has to start again by
broadcasting the Request For Help (RFH).

Algorithm 1. Reactive Distributed Algorithm

if gi þ gi0 	 mi then
Set dvi to not offload.

else
if RFH broadcasted & decision time < Tth then
Follow previous dvi

else
Broadcast RFH to all nodes.
Wait Twait seconds for NSI
ifNo of NSI received �2 then
Solve Eq. (5) for new dvi and follow it.

else
Broadcast RFH again, follow previous dvi.

end if
end if

end if

5 SIMULATOR SETUP, DATA, AND NETWORK

In our previous work, a simulator was developed to run off-
loading algorithms [4]. It is available for download from
this.1 The simulator consists of a three-dimensional space
called the platform. Sensors are stationary and placed on
the platform base (z ¼ 0) randomly during initialisation.
One instance of the resulting simulator setup is shown in
Fig. 7. Fig. 7a shows sensor placement and Fig. 7b shows
how they are connected to each other. The connection links
are created based on the sensor positions. Targets spawn in
the platform and move around (see Section 5.3.1). When the

Fig. 6. Queue utilization of server in proactive setting under various
network conditions (Lower is better). Data size set at 1 Mb.

Fig. 7. Simulation setup for one monte-carlo simulation. (a) Ten sensors
(blue squares) with uneven FOV placed randomly on the simulation plat-
form of 100m� 100m size. (b) Visualizing sensor connectivity based on
spatial positioning.

1. http://dx.doi.org/10.7488/ds/2397
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targets comes to the FOV of a sensor, it gets detected; once
detected, the sensor has to identify the target within the
allocated time. The major elements of our simulator relate
to the algorithmic tasks, the sensor architecture, communi-
cation links and the targets.

5.1 Algorithmic Tasks

Execution of an algorithmon amodernCPU is a complex pro-
cess. Apart from the number of Operation (OP)s required to
execute the algorithm, an execution on a CPU depends upon
several factors such as multi-stage pipeline, cache-miss rate
and parallelism etc. The Princeton Application Repository
for Shared-Memory Computers (PARSEC)[34] benchmark
suggests typical applications have billions of instructions to
executewith an equally large number of read andwrite oper-
ations. For example, Table 3 details the execution details
including synchronization primitives for a body tracking
application from the PARSEC benchmark [34]. However, to
keep the simulator simple, an algorithmic task is character-
ised just by its number of OPs, input and output data size.
For example, a person detection algorithm takes an image of
size M �N as the input, requires approximately C OPs per
image and outputs the number of persons in the image.
Assuming one OP per clock cycle, the execution time on the
device can be estimated using the clock frequency.

Texec / C

Clock Frequency
: (12)

5.2 Component Based Sensors

In order to realistically emulate its behaviour, a sensor is
divided into its components such as the CPU and cellular
radio. The utilisation based model by Jung et al. is imple-
mented to calculate the energy consumption [33] and our
parameters are based on a Google Nexus I phone which
was a Device Under Test (DUT) in [33]. If desired, the simu-
lator can be easily calibrated for a different DUTs.

5.2.1 Application Processor (AP)

The CPU power consumption is made up of two parts, idle
power and the running power, as follows:

P cpu ¼ bcpu
freq � uþ bcpu

idle; (13)

where u is the utilisation and b
cpu
freq and b

cpu
idle are the

CPU parameters, listed in Table 4 for the DUT [33].
The utilisation is calculated as the ratio of the CPU time
used versus the time available per frame. However, the
CPU is also used by the OS and other running appli-
cations. Dargie [35] used normal and exponential distri-
butions to simulate workload. Also a random variable, r
sampled from a Gaussian distribution is used to simulate
these other activities. By adjusting the mean of r, busy
and idle sensors can be simulated. The total utilisation is
calculated as:

u ¼
PN

i¼1 Texeci

TFrame
þ r; (14)

whereN is the number of algorithms to be processed, Texeci is
the execution time for ith algorithm for execution times
for all algorithms) and TFrame ¼ 1

Frames Per Second ðFPSÞ is the

time available for each frame. In the situation where
Texeci > TFrame which is very likely in the case of algorithms

for person re-identification; the CPU is run up to 100 percent

load and run the remainder of the algorithm in the next

frame and so on.

5.2.2 Image Sensor

The image sensor consumes significant energy in a mobile
device when used continuously. According to Likamwa
et al. [36], when using the image sensor continuously, the
energy consumption per frame of the image sensor can be
modelled as:

Ecamera ¼ Pidle � ðTframe � TactiveÞ þ Pactive � Tactive; (15)

where, Tframe ¼ 1=FPS is time allocated for each frame,
Tactive ¼ Number of Pixels=Camera Clock Frequency is the
time taken by the sensor to gather the pixel data, and
Pidle; Pactive are the idle and the active power consumption of
the image sensor respectively. Based on Eq. (15), power con-
sumption of the image sensor depends on image resolution
and the acquisition rate. The parameters used for the simu-
lation are listed in Table 5.

TABLE 3
Execution Details for a Bodytrack Example in PARSEC [34]

Consisting of Four Frames and 4,000 Particles

Instructions (Billions) Synchronization Primitives

Total Reads Writes Locks Barriers Conditions

14.03 3.63 0.95 114,621 619 2042

TABLE 4
CPU Parameters for the DUT (Google Nexus I) based on Jung et al. [33]

Freq. 245.0 384.0 460.8 499.2 576.0 614.4 652.8 691.2 768.0 806.4 844.8 998.4

bcpu
freq 201.0 257.2 286.0 303.7 332.7 356.3 378.4 400.3 443.4 470.7 493.1 559.5

bcpu
idle 35.1 39.5 35.2 36.5 39.5 38.5 36.7 39.6 40.2 38.4 43.5 45.6

TABLE 5
Image Sensor and WiFi Parameters

Image Sensor WiFi

Parameter Value Parameter Value

Pidle 225.4 Joules bLT base 238.7
Pactive 338.8 Joules bHT base 247.0
Image Resolution 800� 600 bLT 1.2
Camera Clk Frequency 32 MHz bHT 0.8

PTh 20 pkts/sec
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5.2.3 Wi-Fi

The Wi-Fi model calculates the time and energy of the Wi-Fi
component in the connected mode. There are two modes
depending upon the packet rate.

pwifi ¼ bLT � pþ bLT base if p 	 PTh

bHT � pþ bHT base if p > PTh;

�
(16)

where p is the packet rate, bLT;bHT;bLTbase;bHTbase and PTh
are the parameters of the DUT based on [33] (see Table 5).
As per [33], if the number of packets per second exceeds the
threshold of 20 then Wi-Fi is in the high power state, else in
the low power state. Unlike the cellular system, the power
consumption is directly proportional to the data rate.

5.3 Target Data

The proposed centralised and distributed algorithms defi-
ned in Section 4 along with the Non-Offloading (NO) case,
are tested on two different datasets. The first is a simulated
dataset and uses a widely used mobility model called
Random Waypoint Model (RWP), and the second uses
real data from a computer vision dataset. They are briefly
described below.

5.3.1 Simulated Data: Random Waypoint Model

In the Random Waypoint Model [37], targets spawn at
random locations in the platform and moves around the
platform in a straight line. The targets either pause for
certain time or select its next destination. When it selects
its next destination it moves towards it with a random but a

constant velocity; the process repeats until it dies (i.e., target
moves out of the platform). In order to have different job-
rate among the nodes, the size of FOV is also randomly
selected (see Fig. 7a. The target spawning rate is higher than
dying rate, so target rate generally increases over time
across all nodes—see Fig. 10a.

5.3.2 Real Data: SAIVT Dataset

A multi-camera scenario described in SAIVT Multi-Camera
Surveillance Database [38] is chosen to test the algorithms
on a real dataset. This dataset consists of eight cameras and
contains movements of more than 150 people in a cafeteria.
The target tracks for the simulator were extracted from the
Extensible Markup Language (XML) files provided with
the dataset. According to the dataset [38], the acquisition
rate was 25 FPS. A brief study of their target distribution
revealed there were far too many targets in the short span
of time and majority of the targets appeared in the first half
of the dataset. So, the FPS was relaxed to 10 and the data
was split along the timescale to 16 sensors. The resulting
target distribution looked like shown in Fig. 8. The majority
of targets are detected by Cameras 1, 7 and 15.

6 EXPERIMENTAL RESULTS

In this work, 100 Monte-Carlo simulations were executed
for 720,000 simulation steps which is equivalent to 12
minutes of simulated time, on two sets of target data
described in Section 5.3.

6.1 Calculation of RTT

In order to establish that our assumptions about the com-
munication network is valid, some experiments were car-
ried out on Network Simulator 3 (NS-3) [39] for Wi-Fi, and
real Wi-Fi and cellular networks. The main objective of this
experiment was to see if the delay would be non-negligible
as multiple station will be transmitting at the same time. For
the NS-3 simulation, we considered three nodes. One acting
as the AP and two acting as stations. The two stations
simultaneously transmitted data to the AP so it represents
the worst case scenario. Further simulation parameters are
displayed in Table 6. Fig. 9 shows the distribution of the

Fig. 8. Heterogeneous loading of cameras in a multi-camera scenario.
Each shaded band represents target load on each camera. For example,
the bottom and the top bands represent target arrivals in camera index
1 and 16, respectively. Majority of targets appear in camera indexed
1, 7, and 15. (Best viewed in color).

TABLE 6
NS-3 Simulation Parameters

Parameter Value

Network Structure 1 AP + 2 Stations
Network Protocol 802.11n
Modulation 64 QAM
Data rate 54 Mbps
Data rate (ACK frame) 6 Mbps (MCS0, constant)
Error rate model YANS error rate model [40]
Mobility Model Constant position

Reno-TCP
Delay type Constant propagation delay model
Channel Loss model Friis propagation loss model
Transmission power 10 dBm
Distance between stations 2-5 metres
Network traffic Single queue and full buffer
Typical Data Size 240� 120� 3� 8 bits � 85 KBytes
Average Latency 13.1 Milli Seconds
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latency for the scenario of one AP and two stations when the
stations are transmitting continuously (worst case scenario).
The average delay based on data size of 85 KiloBytes was
about 13 Milli-seconds which is well under our threshold of
one second. In offloading applications, the stations will not
be transmitting at all times, so the probability of collision
would be reduced. However, there may be more nodes that
may transmit at the simultaneously.

The total energy consumption for each sensor was esti-
mated by summing power consumption of each component
based on energy values from Eqs. (13), (15), and (16) in
Section 5.2. For each run, the simulator was initialised as
per Algorithm 2. Each simulation was repeated for the
various parameters to see if there is any effect on algorithm
performance (see Table 7).

Algorithm 2. Simulator Initialisation

Generate n sensors randomly on the platform.
Create communication links between sensors that are within
the communication range.
For each link, randomly generate Packet Delivery Rate
Use shortest path algorithm to calculate cost per bit between
nodes. The cost can range between 0 (ie same node) to 1 (i.e.,
no communication link).

6.2 Results for the Standard Configuration

Fig. 10a shows the average target detected across all the
nodes and across all the trials, normalised by the total capac-
ity of the system for the RWP dataset. It remains same for all
the different simulator parameters specified in Table 4. Tar-
gets that cannot be processed within the allocated time
(30 and 20 for RWP and SAIVT respectively) is considered as
dropped targets. At around 10 minutes, the target rate
exceeds the computational capacity of the system so even in

an ideal case, targets would be dropped. Fig. 10b shows the
results for the standard configuration of 11 Mbps, communi-
cation range of 60m and NSI exchange every 5 seconds. In
the baseline NO case, about 30 percent of all targets are
dropped. The RD does slightly better than the NO and drops
only about 25 percent. The PD however, performs quite well
and drops approximately 40 percent less targets. The perfor-
mance of centralised algorithms though is at a different level.
The PC and the O drops only about 5 and 3 percent of the tar-
gets. Another noticeable fact is that the centralised algo-
rithms dropped only a few targets up to 8 minutes, this is
when more targets arrive than the system can process. The
results will be further analysed in Sections 6.3, 6.4, and 6.5

Fig. 11a shows the target arrival rate during the simula-
tion time for SAIVT. Similar to RWP case, it remains con-
stant for different simulation parameters. Unlike RWP, the
SAIVT has two peaks during the simulation when the target
rate is higher than the maximum processing capability of
the system. In this case, the NO algorithm dropped almost
60 percent of all targets which is very poor. All the proposed
algorithms performed significantly better than that. Both
distributed algorithms (RD and PD) produced very similar
results and in both case the targets dropped were recorded
to be around 22 percent which is less than half of the base-
line case. The Oracle performed best followed by the PC

Fig. 9. Latency for NS-3 simulation. The average RTT was 13.1 Milli
seconds.

TABLE 7
Simulation Parameters

Dataset Bandwidth
(Mbps)

NSI Frequency
(sec)

Network
Size

Range
(Metre)

RWP 1,11,54 5,10,20 10 30,60,90
SAIVT 1,11,54 5,10,20 16 30,60,90

Fig. 10. Simulation results for RWP target data with Bandwidth 11 Mbps
NSI exchange frequency of 5 seconds and range of communication lim-
ited to 60 meters. (a) Normalized Target arrival rate per nodes over sim-
ulation time (b) Targets dropped over Arrival Rate. NO dropped the most
(30 percent of all targets). Centralized algorithms performed best with at
least 80 percent reduction in dropped targets and distributed algorithms
perform in between.

Fig. 11. Simulation results for SAIVT target data with Bandwidth
11 mbps NSI exchange frequency of 5 seconds and range of communi-
cation limited to 60 meters. (a) Normalized Target arrival rate per nodes
over simulation time. (b) Cumulative targets dropped over time. Pro-
posed algorithms perform significantly better than the NO case. Distrib-
uted algorithms dropped less than half of the baseline and the Oracle
dropped only about sixth.

1508 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO. 7, JULY 2019



solution. They dropped approximately 10 and 20 percent
of the targets respectively. Also, the Oracle method did
not drop any significant targets after approximately three
minutes which is the first peak in load shown in Fig. 11a.
In the remaining section, the performance is analysed with
respect to the energy consumed as well as effect of environ-
ment and parameter selections.

6.3 Process Score and Efficiency Score

The process score is defined as the percentage of jobs success-
fully executed in the allocated times. The efficiency score (ES)
as the ratio of Successful Identification to the energy con-
sumed [4]. Similar metric (mAP/Energy) has also been
used by Mao et al. [41] for measuring the performance of
their object detection algorithm on embedded platform
where mAP is the mean Average Precision. In simple terms,
ES is a measure of work accomplished per joule and shows
if the extra energy cost is justified (especially for a battery
powered device). The overall result is summarised in Table 8
and Fig. 12 for the standard configuration. For Fig. 12, the
objective of the proposed algorithm is to be at the top left
corner which means the system uses less energy but pro-
vides better performance. This is not always possible and
some extra energy has to be used to gain performance. The
ES metric gives an insight if the extra energy consumed is
justified and can help in selecting the right algorithm. This
can be explained using an example, in Fig. 12a, PD performs
slightly better than RD but also uses slightly more energy.
Between those two, which one should be preferred? Those

two algorithms have ES of 1.07 and 1.12 respectively which
suggest that the system achieves better performance per
joule using the PD than RD. So PD should be chosen over
RD. However, in case of PC and PD, PC is superior as it has
a higher ES score. This can be seen in Fig. 12 as well.

In both datasets, Oracle performs better than the PC,
which can be explained by two reasons. First, the Oracle
takes decisions every second as opposed to every five sec-
onds in PC. Second, when choosing the nominated server in
PC on a round-robin basis, due to the partial connectivity,
not all the nodes can communicate with the server which
results in slightly degraded performance (see Section 6.5).
However, PC is still superior than the distributed algo-
rithms. Regarding energy consumption, in the RWP case,
the centralised algorithms actually consumed less energy
than the NO case. It is because when not offloading some of
the sensors were utilised heavily and consumed a lot of
energy whereas others were idle which still consumed
some energy. By offloading, the load was more balanced
and overall the system consumed less energy.

6.4 Effect of Bandwidth and NSI Frequency

In the RWP simulation, the bandwidth had minimal effect
on the performance (i.e., no change in targets dropped over-
all due to change in bandwidth)—see Fig. 13a. This may be
due to the lower amount of data exchanges rather than the
bandwidth having no effect at all. This is evident in the real
SAIVT dataset case, where the number of targets were
significantly higher ( see Fig. 13b). All three algorithms, RD,
PC and PD benefited from higher bandwidth but the signi-
ficance was higher in the case of distributed algorithms.
Also, increasing the bandwidth from 11 Mbps to 54 Mbps
had minimal effect on the performance but slightly

TABLE 8
Simulation Results (Averaged over 100 runs) for Bandwidth

11 mbps NSI Exchange Frequency of 5 Seconds and
Range of Communication Limited to 60 Meters

Data Algorithm
Arrival
Rate

(/min)

Service
Rate

(/min)

Process
Score

Energy
Used

(Joules)

Efficiency
Score

(Ident/100J)

RWP

NO 8.6 6.16 0.71 613 1.0047
RD 8.6 6.69 0.78 628 1.0653
PD 8.6 7.29 0.85 649 1.1232
PC 8.6 8.22 0.95 585 1.4061
O 8.6 8.42 0.98 569 1.4786

SAIVT

NO 9.37 4.10 0.43 529 0.7696
RD 9.37 7.11 0.76 680 1.0448
PD 9.37 7.08 0.76 692 1.0237
PC 9.37 7.56 0.81 647 1.1683
O 9.37 8.44 0.90 703 1.2012

Fig. 12. Efficiency Scores: (a) RWP and (b) SAIVT.

Fig. 13. Effect of communication bandwidth (1,11), and NSI frequency
(5, 10, and 30 seconds) (a) RWP: Performance increased as NSI update
frequency increased, however, no significant difference as bandwidth
increased. (b) SAIVT: Performance increased as the result of increased
bandwidth and NSI update frequency.
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increased energy usage. This can be explained using
Eq. (16), the higher bandwidth led to higher packet rate
increasing the radio power slightly. As the data was trans-
mitted periodically, the WiFi radio could not go into the
sleep state. Hence the slight increase in energy usage.

The NSI frequency corresponds to how frequently nodes
are updated with neighbour information and how often
the proposed optimisation algorithms are executed. The
cost of periodically executing optimisation algorithm was
described in Section 3.6. The performance of the proposed
algorithms increased when the NSI exchanges were frequent
(from once every 20 seconds to once every 5 seconds). This
signifies the importance of having recent NSI about neigh-
bouring nodes. Particularly, PDwas highly dependant on the
frequency of NSI exchange. When the frequency was low
(once every 20 seconds), it performed worse than the NO
case, but when it was higher, the performance was better. The
trend was consistent in both target datasets. For RD the NSI
frequency rate should have no effect because it is asynchro-
nous and nodes communicates with its neighbours when
they seek help only. However, as seen in Fig. 13, there is some
variation in performance, this is due to different sampling
duration of NSI. For NSI 5,10,20 second frequency, the mov-
ing average was calculated from the last 4,9 and 19 seconds
respectively. The opposite energy trends for the RWP dataset
between PC and PD for various NSI frequencies also draw
attention (Fig. 13a). However, upon further study, the energy
usagewas basedmore onCPUusage than onNSI exchanges.

6.5 Effect of Communication Range

As the communication range of a node is increased, the
number of neighbours the node can talk to increases (and
vice-versa)—see Algorithm 2. The range was changed to see
how the algorithms behave in varying conditions. Heuristi-
cally, more neighbours mean more options so the proposed
algorithms should perform better when the communication
range increases and vice-versa. The experiments generally

follow this belief and the results are shown in Fig. 14. How-
ever, some interesting results were noted in the case of PD
for the RWP case. The performance slightly reduced in this
case when the communication range was extended for
the lower frequency of NSI exchange (10 and 20). This is
because as the NSI frequency was low and there were many
neighbours, the uncertainty of their state was higher and
led to decisions that were not optimal. However, the trend
was not evident in the SAIVT case. In future works, more
simulations will be carried out with different degrees of
communication links to further investigate this behaviour.

6.6 Average CPU Utilisation

Themain idea behind the proposed algorithms is the distribu-
tion of the computational load among the nodes so as to
minimise overloading as much as possible. Fig. 15 shows the
average spread of CPU utilisation among the nodes. For
RWP, the median CPU utilisation for PC and O across the
nodes reduced by approximately 12 and 15 percent compared
to the NO case, leading to reduced energy usage. In case of
PD the median usage increased slightly be appoximately 6
percent while the RD the change was negligible. Due to the
fact that the targets distribution were uniformly random and
the resources usage is evenly distributed already, the perfor-
mance gains were not large.

However, in the real dataset case, the overall CPU usage
was higher and spread more evenly for the proposed algo-
rithms than the NO case, which is signified by shorter boxes
(see Fig. 15b). This led to significant performance gainsmean-
ing less targets were dropped. This may also lead to longer
network lifetimes. The CPUusage in theNO case shows some
sensor using three timemore than the median and about nine
time more than the sensor using lowest CPU. This would
mean very short network lifetime, as the one using the most
CPU would run out of battery sooner than the rest. In all the
proposed algorithms, the median of average CPU usage is
raised (signifying more performance) but bar some of the
outliers, some of the sensors have reduced CPU usage which
suggests network lifetimesmay be extended.

6.7 Mean Execution Time

The simulation considered in this work is a soft real-time
system. So a threshold was set for each every algorithm to
be completed. The threshold was set to 30 and 20 seconds
for RWP and SAIVT respectively. The Algorithm drop sta-
tistics corresponds to the algorithms that were not completed

Fig. 14. Effect of communication range (30, and 60 meters) and NSI
frequency (5, 10, and 30 seconds). Slight improvement in performance as
the rangewas extended except for PD inRWP case. (a)RWP. (b)SAIVT.

Fig. 15. Average CPU utilisation across the nodes and NSI frequency
(5, 10, and 30 seconds.) (a) RWP. (b) SAIVT.
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within the threshold period. Among those processed success-
fully, the mean execution times are compared. The results are
shown in Table 9. The results show that even though offload-
ing requires data to be offloaded, processed remotely and the
results sent back to the offloader, the average execution time
is comparable to the baseline NO case and often better. The
Oracle had the shortest execution time of all the algorithms
tested including the baseline for the RWP dataset, whereas
PC had the shortest time for the SAIVT case. The centralised
algorithms performed better in this metric which could be
because it considers all the neighbouring states and less likely
tomakewrong assumptions about neighbours.

7 CONCLUSION

In this paper, a sensor network was modelled as a network of
queues using an Open Jackson network model, in the interest
of computational load balancing in absence of cloud and fog.
The network conditions were verified to be adequate using
NS-3 simulations which showed latency in milli-seconds for
worst case. Various novel reactive and proactive algorithms
were proposed, which significantly enhanced the perfor-
mance of the system compared to the Non-Offloading
scenario. The algorithms were tested on Random Waypoint
Model and a real SAIVT person re-identification dataset for
different scenarios such as higher and lower bandwidth,
higher and lower update rates etc. The results reinforce the
assertion that most of the jobs can be processed if (a) the total
job rate is less than total computing capability, and (b) if
another node NSI is available. Especially in the real dataset,
the performance improvements were significant. The perfor-
mance boost also comes at similar energy cost and may well
increase the network lifetime. This area of work has not been
studied and explored before.
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