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Abstract—Smartphone-based indoor navigation services are desperately needed in indoor environments. However, the adoption of

them has been relatively slow, due to the lack of fine-grained and up-to-date indoor maps, or the potentially high deployment and

maintenance cost of infrastructure-based indoor localization solutions. This work proposes ViNav, a scalable and cost-efficient system

that implements indoor mapping, localization, and navigation based on visual and inertial sensor data collected from smartphones.

ViNav applies structure-from-motion (SfM) techniques to reconstruct 3D models of indoor environments from crowdsourced images,

locates points of interest (POI) in 3D models, and compiles navigation meshes for path finding. ViNav implements image-based

localization that identifies users’ positions and facing directions, and leverages this feature to calibrate dead-reckoning-based user

trajectories and sensor fingerprints collected along the trajectories. The calibrated information is utilized for building more informative

and accurate indoor maps, and lowering the response delay of localization requests. According to our experimental results in a

university building and a supermarket, the system works properly and our indoor localization achieves competitive performance

compared with traditional approaches: in a supermarket, ViNav locates users within 2 seconds, with a distance error less than 1 meter

and a facing direction error less than 6 degrees.

Index Terms—Indoor mapping, indoor localization, indoor navigation, 3D modelling, mobile crowdsensing

Ç

1 INTRODUCTION

INDOOR navigation systems for smartphones are crucial in
complex indoor environments such as airports, shopping

malls and museums. Unfortunately, the adoption rate of
indoor navigation systems is still very low, even though ini-
tial efforts into deploying them were taken several decades
ago. There are multiple reasons for the slow progress. First
of all, indoor navigation requires fine-grained and up-to-
date indoor maps for calculating navigation routes and
searching for points of interest (POI). Certain solutions1 ask
users to provide photos of floor plans in public venues as
their indoor maps. However, most of them lack details, or
have not been kept up to date. Therefore, they can rarely be
used directly for indoor navigation. Second, even in the
case where accurate indoor maps do exist, most systems
rely on pre-scanned radio maps or pre-installed hard-
ware [14], [19] for localization, which are expensive to
install and cumbersome to maintain. Thus, we saw it
worthwhile to investigate whether we could develop an
alternative indoor navigation method that would not need

pre-created indoor maps, pre-scanned radio maps or pre-
installed hardware.

Smartphones today are equipped with high-resolution
cameras, and mobile users are willing to share some of their
photos publicly, e.g., via photo-sharing websites like Flickr2

or Instagram.3 Furthermore, researchers have proven that it
is possible to use crowdsourced photos to build 3D models
of indoor and outdoor environments via structure-from-
motion (SfM)4 techniques [6], [9], [33], [36]. With SfM-based
3Dmodels, it has a good potential to build maps and further
navigation meshes. Furthermore, it is possible to provide
image-based localization services based on feature match-
ing. Inspired by this, we propose to create a system, ViNav,
which utilizes crowdsourced visual data and SfM-based 3D
models to solve the problems of indoor mapping, localiza-
tion and navigation as a whole.

Our system is based on sensor-enriched 3D models that
are bootstrapped and updated using crowdsourced visual
and sensor data collected from smartphones. ViNav first
takes crowdsourced images and videos as an input to build
3D models (in a form of 3D point clouds) of an indoor space
of interest by using SfM techniques. It then creates navigation
meshes for path planning based on the obstacle information
extracted from the 3D models. Because the crowdsourced
photos are taken at arbitrary locations, the generated 3D
model may not cover every aspect of a space, and suffer from

1. http://docs.indooratlas.com/app/
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uploaded-on-Instagram-daily
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uneven points density distribution. This might result in
incomplete navigation meshes. To tackle this problem, we
propose to track user trajectories using motion sensors and
integrate pedestrian paths extracted from the crowdsourced
user trajectories into the navigation meshes. We also enable
multi-storey building navigation by utilizing the barometric
pressure sensor readings when users are using our system to
detect connecting paths (e.g., stairs and elevators) and to con-
nect 3D models of different floors. ViNav also extracts POI
information from the collected visual data and maps it into
the 3D space, thus, users can easily locate POIs.

With SfM-based 3D models, the system provides image-
based localization that identifies user’s position and facing
direction using the photos taken in situ. The problem with
this approach is that the response time increases as the sizes
of the 3D models increase, because location is determined
by matching 2D features in a query photo against 3D points
contained in the 3D models. To enable fast localization,
ViNav employs model partitioning based on the density of
3D points, and selects partitions for feature matching based
on Wi-Fi fingerprinting. Experimental results demonstrate
decreased localization response delays for this partitioning
scheme even for large 3D models. By utilizing the image-
based localization, the navigation mesh and the identified
POI position, our system can provide a navigation path and
guide mobile users to their destinations.

In this paper we present the design, implementation and
thorough evaluation of ViNav. The contributions of this
paper are summarized as follows:

� We address several technical challenges to enable
ViNav: (1) we combine the pedestrian paths recog-
nized from crowdsourced user trajectories to com-
plement the crowdsourced 3D models of indoor
environments; (2) we fuse barometric pressure data
with user trajectories to detect connecting paths
between floors; (3) we extract POI information from
crowdsourced visual data and map the extracted
POI into the 3D space; (4) we speed up the localiza-
tion process by density-based model partitioning
and fingerprint-based partition selection.

� We implement a prototype ofViNav to evaluate its fea-
sibility and performance. Experimental results dem-
onstrate that ViNav works properly in multi-storey
buildings and shows good performance. According to
our experiments carried out in two different indoor
environments, ViNav locates a user within 2 seconds,
with a location error of less than 1 meter and a facing
direction error of less than 6 degrees.

2 SYSTEM OVERVIEW

We argue that a good indoor navigation system should ful-
fill the following requirements: (1) it should be able to locate
the users precisely and efficiently; (2) it should allow users
to search for POI; (3) it should supply the users with flexible
navigation routes. To date, when people are talking about
indoor navigation, it is usually assumed that fine-grained
and up-to-date indoor maps already exist for navigation
purpose. For end users, these indoor maps are supposed to
contain at least the structural information of the indoor
environment, such as the layout of rooms in an office build-
ing and the locations of lavatories and emergency exits.
Ideally, the indoor maps are expected to contain also infor-
mation about the places of interests, such as a schedule of

lectures in a certain classroom or a sales campaign of a
shop. For the purpose of indoor navigation, the indoor
maps used for calculating navigation routes are supposed
to contain complete information of traversable paths and
obstacles. However, such maps are not widely available.

The ViNav indoor navigation system fulfils the aforemen-
tioned requirements. The system is based on a client/server
architecture. The client serves two purposes: (1) collecting
visual data and other sensing data (i.e., accelerometer, gyro-
scope, barometer readings and Wi-Fi fingerprints), and
uploading the collected data to the server for building
sensor-enriched 3D models of indoor environment; (2) pro-
viding interfaces for POI searching; (3) indicating locations
and presenting clear navigation paths to users.

Accordingly, as illustrated in Fig. 1, the server provides
two modules: (1) building sensor-enriched 3D models which
consists of SfM-based 3D reconstruction, geo-referencing of
sensor fingerprints, and recognizing and locating places of
interest. (2) 3D-model-based navigation, which calculates
positions and navigation routes based on the sensor-enriched
3D models. These functions are explained briefly below,
whilemore details will be given in Sections 3 and 4.

Building Sensor-Enriched 3D Models. First, ViNav builds an
initial 3D model from the crowdsourced photos using SfM
techniques. The 3D model will be updated constantly by
newly collected photos, either from the Internet or from the
ViNav clients. Second, ViNav detects user trajectories and
adds them to the 3D model. In practice, sensor data includ-
ing accelerometer and gyroscope readings are used as a
base for detecting user trajectories. These trajectories are
automatically calibrated by the photos taken on the way.
Third, Wi-Fi fingerprints collected along the user trajecto-
ries are automatically geo-referenced and added to the 3D
model to enable fast localization. Fourth, barometer read-
ings along user traces are also collected to detect connecting
paths between multiple floors. Finally, POI information and
their corresponding locations are calculated based on the
crowdsourced visual data and the generated 3D model.

3D-Model-Based Indoor Navigation. ViNav combines image-
based localization with fingerprint-based approach for fast
localization. The 3Dmodel is partitioned intomultiple smaller
models based on the density of 3D points during an offline
process. A localization request includes a photo and, if avail-
able, a group of Wi-Fi fingerprints collected on site. These Wi-
Fi fingerprints are used to match with the geo-referenced Wi-
Fi fingerprint database. Once amatch is found and coarse loca-
tions are calculated, the model partitions that contain these
locations are selected for executing image-based localization.
After a source and a destination are identified, ViNav calcu-
lates navigation routes based on navigationmeshes using path
finding algorithms. The navigation meshes are first compiled
from the obstacle information extracted from the 3D models,
and then modified by adding the pedestrian paths extracted
from crowdsourced user trajectories. In a multi-storey build-
ings, the locations of stairs and elevators are identified based
on barometer readings collected along the pedestrian paths, to
enable seamless navigation betweenmultiple floors.

3 BUILDING SENSOR-ENRICHED 3D MODELS

OF INDOOR ENVIRONMENTS

This section describes how we utilize crowdsourced data in
building sensor-enriched 3D models. The 3D models are
later used for implementing indoor navigation.
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3.1 Initializing SfM-Based 3D Models
ViNav applies SfM techniques to build sparse 3D point clouds
from unordered photos and videos. A typical SfM pipeline
consists of 3 steps: feature extraction, feature matching, and
bundle adjustment. First, highly distinctive and invariant fea-
tures are extracted from images using algorithms like Scale-
Invariant Feature Transform (SIFT) [21]. After that, the SfM
pipeline tries to match features between image pairs. Some
photos are automatically dropped if they do not have enough
common matches with others. Finally, the matches are input
for the bundle adjustment step that jointly produces optimal
estimates of camera poses and locations of 3D points.

The output of the pipeline includes a sparse 3D point
cloud and a list of estimated camera poses. In detail, a sparse
3D point cloud is a set of data points in a 3D coordinate sys-
tem. Each 3D point is represented as a tuple consisting of the
3D coordinates (location), a color, and a list showing what
images and which features in these images have been used
for reconstructing the particular point. For each input image,
there is a camera pose included in the output. A camera pose
is described with the 3D coordinates of the camera position,
a focal length, and a quaternion rotation.

We need to convert the 3D point cloud to the real world
scale in order to understand the size of the indoor environ-
ment.5 ViNav utilizes the state-of-the-art tools to register
ground control points (GCPs) in two ways. First is to label
GCPs on imageswhich contain the same object with a known
size by labeling its corner points6. The other way is to take
photos at 4 different positions (that do not fall to a same 3D
plane) with pre-measured real world euclidean coordinates.7

Either approach can be used to scale the 3D point cloud to a
real world scale, based on the GCPswith known coordinates.

We extend our system to support automaticmodel update
as described below. First, if the new photos provide more

details of an area already covered by the latest 3D models,
the new photos will be registered to the latest models based
on feature matching. Second, if the new photos reflect
changes in indoor scenes, or cover an area that has not been
included in the latest 3D models yet, these photos cannot be
directly registered to the latest models. In this case, ViNav
will first create 3D models from the new photos and then try
to merge them with the existing ones. For the first case (i.e.,
photos reflecting changes), ViNav will calculate the field of
view for each of the new photos, and then apply a ray tracing
algorithm to detect which points from the previous models
lie inside the field of view. The detected points will then be
removed from the latest 3D models. In case there are insuffi-
cient common features between models (i.e., covering differ-
ent areas), thesemodels will remain disconnected.

3.2 3D Model Based Sensor Fusion
After creating the 3D model, our system tries to enrich the
model based on sensor fusion, as described below.

3.2.1 Detecting User Trajectories Using Motion

Sensors

The ViNav client collects accelerometer and gyroscope read-
ings from smartphones as users traverse in indoor environ-
ments. Based on these readings, the ViNav server calculates
user trajectories based on dead reckoning [18], and uses
photos taken on the way for trajectory calibration. The pro-
cess of automatically detecting and calibrating user trajecto-
ries is implemented through two steps.

First, the ViNav server obtains the camera position of
each photo taken on the way based on the image-based
localization method, which will be described in Section 4.1.
The camera positions are set to be the calibration points.

Second, between every two successive calibration points,
theViNav server computes a trace based on step count, head-
ing offset, and stride length. Steps are counted based on
accelerometer data [18], while the heading offset between
two steps is calculated from gyroscope readings. The stride
length is first set to its default value, e.g., 0.7 meter, and then

Fig. 1. Overview of a mobile crowdsensing-based indoor navigation system for smartphones.

5. ViNav does not require the actual position of the building in the
global coordinate system.

6. http://openmvg.readthedocs.io/en/latest/software/ui/SfM/
control_points_registration/GCP/

7. http://ccwu.me/vsfm/doc.html#usage
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updated according to the accumulated walking distance and
step count. The position after each step is reckoned based on
the previous position and the accumulated heading offset.
The calculated trace will be calibrated based on the locations
of the two calibration points [35].

Given a set of user trajectories, ViNav discovers pedes-
trian paths by selecting the paths that have been covered by
at least a certain number of trajectories. By default we set
the number to 2. Each pedestrian path is represented as a
sequence of points. These paths are integrated into the 3D
point clouds while compiling navigation meshes. More
details about compiling navigation meshes will be pre-
sented in Section 4.2.

3.2.2 Geo-Referencing Sensor Fingerprints

TheViNav client collects barometer readings andWi-Fi finger-
prints while capturing accelerometer and gyroscope data
along user trajectories. Based on time stamps, these finger-
prints can be easily geo-referenced and attached to the 3D
point clouds after the user trajectories have been automatically
calibrated. The system monitors the changes in barometer
readings, and estimates the locations of stairs and elevators
based on the changes. Meanwhile, the geo-referenced Wi-Fi
fingerprints are stored in a databasewhichwill be used for fin-
gerprint-based 3D model partition selection, as described in
Section 4.1.

3.3 Locating Stairs and Elevators in Multi-Storey
Buildings

In multi-storey buildings, different floors are connected
with stairs, escalators, and/or elevators. However, they are
very challenging to be reconstructed with SfM techniques,
due to featureless surfaces or repetitive and non-distinctive
patterns. As a result, it is very challenging to obtain a single
SfM-based 3D model that covers all the floors. Instead, we
build one model for each floor and connect them together
using connecting paths. In our system, we rely on barometer
readings collected along user trajectories to identify the con-
necting paths between floors and to further provide cross-
floor navigation services.

Fig. 2a shows examples of barometric pressure readings
which are collected while taking an elevator or walking
downstairs/upstairs in a three-storey building. We can
always observe a significant difference of barometric pres-
sure when going up or down. The value decreases when we
move to an upper floor, and vice versa. Although the exact
values corresponding to each floor varies with the time-of-
day [25], by monitoring the changes over time, we can reli-
ably detect the movement between floors.

From calibrated user trajectories we can obtain user’s
position at time t. Whenever a significant change in the

barometer readings is detected, we record the position of a
user at that moment (i.e., ðx1; y1Þ in model A) and consider
it as an endpoint of a connecting path between floors. When
the barometer readings become stable in a pre-defined time
window, we assume that the user has left the stairs or an
elevator and we record a position (i.e., ðx2; y2Þ in model B)
as the other endpoint of the connecting path. We set the
time window of 2 seconds, which, according to our experi-
ments, was most suitable to distinguish between walking
on a staircase and walking in a corridor. Once we obtain
enough connecting path endpoints (at least 3 are required
for the clustering algorithm to work), we utilizeDBSCAN [8]
clustering algorithm to obtain mean locations of the end-
points and to filter out outlier measurements. The connect-
ing paths are added to the 3D models, as shown in Fig. 2b.

3.4 Adding Points of Interest Information
A comprehensive indoor map is supposed to include also
POI information, e.g., shop names, room numbers and even
discount information in stores. Usually such information is
manually tagged to the corresponding locations on the
map. Since our system uses photos as input and these pho-
tos include useful information that describes the places, we
propose to apply Optical Character Recognition (OCR) tech-
niques [32], [37] to extract texts from these images and add
them to the map.

The recognized texts are associated to corresponding
locations in a 3D space as described in Algorithm 1. The first
step is to apply an OCR tool to images to recognize texts.
Due to the complex backgrounds of the images, some char-
acters may not be correctly recognized. To filter out non
existing and incorrectly recognised words, we select only
the words close to the lexicon entries [34]. We utilized
English, Swedish and Finnish lexicons, as experiments were
carried out in Finland. If a word is recognized from a photo,
we obtain the pixel coordinates of the word in the photo, as
shown by a dashed rectangle in Fig. 3.

On the other hand, after image feature extraction, a set of
features can be extracted from the photo [21] and we can
obtain a set of pixel coordinates of these features. The green
dots in Fig. 3 describe these feature points. By comparing
the coordinates of each feature point with the ones of the
recognized word (in practice, we use the center of the
detected sign), the nearest feature point to the word can be
found. The yellow circle in Fig. 3 shows an example of a
selected feature point. After that, the recognized word is
associated with the selected feature point. As explained

Fig. 2. Detecting transitions between floors based on barometer read-
ings. (a) Pressure variations when changing floors. (b) Marking a con-
necting path (red dots) between floors.

Fig. 3. An example of locating a recognized word. The dashed rectangle
indicates the area where a word is recognized. The dots represent the
feature points extracted from the image. The circle shows the feature
point which is the closest one to the center of the recognized word.
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in Section 3.1, each 3D point in the SfM model contains a
relationship between the point and a list of images that see
this point. Especially, the 2D pixel coordinates that represent
the point in these images are also stored in the SfM model.
Fig. 4 shows an example of the relationship between
extracted features and their corresponding 3D points in the
point cloud. As a result, the recognized word can be associ-
atedwith a 3D position based on the relationship.

Algorithm 1. Pseudo Code of Adding POI Information

Input: Crowdsourced photos: P , 3D model:M
Output: Location of place of interests: L
1: for Pi 2 P
2: //Apply OCR to each photo
3: if Recognition(Pi) == TRUE
4: //Get pixel coordinates of the detected text
5: TextPixelCoord = GetCoord(Pi);
6: //Get pixel coordinates of all the feature points extracted

from Pi

7: FeaturePixelCoordSet = GetFeatureCoord(Pi);
8: //Find the feature point which is the closest to

TextPixelCoord
9: point = Find(TextPixelCoord, FeaturePixelCoordSet);
10: //Locate the 3D coordinate of FeaturePoint from the 3D

model
11: L = Get3DCoord(point,M);

After collecting a list of POI and their 3D positions in an
indoor environment, we maintain them in a database.
When a user wants to find a specific POI, we will return the
position of the POI and show it on the map.

4 3D-MODEL-BASED INDOOR NAVIGATION

After building the sensor-enriched 3D models as described
in Section 3.1, this section continues to discuss how indoor
navigation can be conducted. We first describe methods of
indoor localization in Section 4.1; then we present how navi-
gation meshes are compiled in Section 4.2; in Section 4.3 we
explain how we implement cross-floor navigation.

4.1 Indoor Localization

Given a query photo, the process of image-based localization
is expected to return the locationwhere the photo is taken and
the direction in which the camera is facing. A straightforward
method is to register the query image into the 3D point clouds
based on feature matching. In theory, the feature matching is
conducted between the query image and each of the images
used for building the point clouds. If enough matches are
found, the camera posewill be calculated and returned.

The size of a 3D point cloud, in terms of the number of 3D
points, increases with the number of images involved. It

results in consuming more resources not only to load the
point cloud into memory but also to iterate over its 3D points.
To enable parallel processing,ViNav operates on a point cloud
that is divided into smaller sub-clouds, and executes feature
matching operations only on certain selected partitions.

Algorithm 2. Pseudo Code of Indoor Localization
Algorithm

Input: User’s query photo: Uphoto, Wi-Fi Fingerprints: UWi�Fi

Output: User’s location: Uloc, User’s facing direction: Udir

1: //Apply k-NN to get a set of coarse locations based on
Wi-Fi fingerprints

2: //DBWi�Fi: Database of geo-referenced Wi-Fi fingerprints
3: Lcoarse = k-NN(UWi�Fi,DBWi�Fi);
4: //Select model partitions based on coarse locations
5: Partitions= SelectPartition(Lcoarse);
6: //Identify user’s location and facing direction based on

feature matching between Uphoto and each partition in
Partitions.

7: [Uloc, Udir] = StartSfMInParallel(Uphoto, Partitions);

ViNav partitions a 3D point cloud into smaller ones fol-
lowing two rules. First, each partition includes 3D points
that are created based on the image features extracted from
a limited number of photos. Second, the area covered by
each partition should not be too small. In practice, we define
the minimum length and width of the area covered by each
partition. An example is visualized in Fig. 5.

As a first step of the localization process, ViNav selects
partitions for feature matching as described in Algorithm 2.
It applies K-Nearest Neighbour (k-NN) algorithm to acquire
a set of coarse locations based on Wi-Fi fingerprinting. After
that, ViNav selects all the partitions that cover the coarse
locations. ViNav then executes SfM localization algorithm
on each partition in parallel. The localization algorithm
matches features extracted from the query photo to features
in a point cloud and estimates the camera pose. Different
SfM tools can be used to fulfill the purpose. In this work, we
selected two state-of-the-art SfM tools, VisualSFM8 and
openMVG,9 for evaluation. The details are described in
Section 5.5.

It is possible that several positions and rotations are
returned, since several partitions were selected during the
previous fingerprinting step and more than two of them
contain enough common features for registering the query

Fig. 4. Each feature point extracted from the input image has a corre-
sponding 3D position in the SfM point cloud.

Fig. 5. An example of density-based point cloud partitioning. Each partition
includes points corresponding to features extracted from no more than
100 photos. Both the width and length of each partition are larger than
5meters. The camera positions aremarked as green dots in the figure.

8. http://ccwu.me/vsfm/
9. https://github.com/openMVG/openMVG
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photo. In practise, we compare reprojection errors of multi-
ple camera pose estimations by projecting 3D points seen by
a camera back to a 2D image and computing euclidean dis-
tance between reprojections and original feature locations.
We choose the pose estimation with the smallest error. The
facing direction of a camera is derived from the estimated
camera rotation.

4.2 Compiling Navigation Meshes
After locating the end user, we need to calculate a naviga-
tion path for her, for which a navigation mesh is fundamen-
tal. Given a 3D point cloud of indoor environment, some
points may represent obstacles, e.g., tables, chairs and walls.
ViNav compiles a navigation mesh from a point cloud by
extracting obstacles from these points, treating the rest of
the blank areas as traversable areas. It is implemented
through the following four steps.

1) ViNav first removes the points which are lower than
a floor level or higher than a ceiling level. In our
experiment, we set a threshold to 10 cm for the floor
and 2 m for the ceiling.10 The thresholds are used to
remove noise that may occur from floor objects, such
as carpets and doorsteps, or from ceiling objects
such as lamps. The rest of 3D points are projected
onto the ground plane to acquire a 2D point set.

2) Pedestrian paths are extracted from any available tra-
jectories. A pedestrian path includes a sequence of
points. Assuming that there are no obstacles along the
path, all the points along the path are removed from
the 2D point set obtained in the previous step. ViNav
removes the neighbouring points that are close to the
central line of the path. In practice, we set the distance
threshold to be 25 cm, thus making a clear path of
50 cm width. We chose 50 cm threshold, as according
to our experiments, this width is still an ergonomic
one for a single person to pass through. The chosen
value also agrees with values for non egress passage
width recommended by Lehto et al. [17].

3) ViNav applies the algorithm proposed by Duck-
ham [7] to generate non-convex polygons out of the
2D points derived in the previous step. The algo-
rithm wraps a set of points with a polygon, specify-
ing which points belong to the outline and which lie
inside the polygon. Accordingly, we divide all the
2D points into groups, with each group correspond-
ing to one obstacle. In practice, ViNav groups the
points if the distance between any two points is less
than the previously defined threshold, i.e., 50 cm.

4) After extracting the polygons, ViNav extrudes all 2D
polygons towards the z-axis to form solid meshes.
The generated meshes are saved in a Wavefront
Object (.obj) file.

4.3 Multi-Floor Navigation
Based on the generated navigation meshes, our system
implements an A* like path finding algorithm, using Recast-
Detour library11 to calculate navigation paths. To support

cross-floor navigation, we modify the A* path finding
algorithm by taking into account the connecting paths,
such as stairs and elevators. The locations of the connect-
ing paths are identified as described in Section 3.3. The
multi-floor routing algorithm consists of off-line process-
ing stage, when a new floor or a connecting path is
added, and an on-line stage when a user issues a multi-
floor navigation request.

Off-Line Preprocessing and Building a Navigation Graph. We
execute the offline step when a floor or a connecting path
CP between two floors is added. A connecting path starts
from a floor exit point Xi and ends at an entrance point of
another floor Ej (blue solid lines in Fig. 6). In other words, it
defines a floor change between those particular points. Any
Xi may correspond to multiple connecting paths and differ-
ent entry points Ej, as e.g., if one takes an elevator, it can
stop at multiple floors. During the off-line stage we build a
multi-floor navigation graph G that is later used for naviga-
tion. We add every floor entrance Ei and exit Xj points as
nodes to graph G. Since a user’s route may include travers-
ing multiple floors, we precompute navigation paths NP
between every pair of Ej and Xi points and add them as
edges to G. Finally, we add the previously detected CP to G
to connect all floors to one navigation graph (blue lines in
Fig. 6). Weights of the graph edges are calculated either as
lengths of NP or as weights of changing the floors. We set
different weights of CP according to the means of changing
a floor (whether by an elevator or on foot). In this way, a
user can give a preference to elevators over stairs or vice
versa by simply changing a setting inside a client applica-
tion. After G is built, we can easily find an optimal path
between any two locations within a building.

On-Line Processing of a Multi-Floor Navigation Request.
When a user travels from a position PAðxs; ysÞ on one floor
(model A), to a destination PBðxd; ydÞ located on another
floor (model B), a navigation path is calculated according
to Algorithm 3. The algorithm first utilizes A* algorithm to
find paths from PA to all exit points in model A (line 2)
and from all entry points in model B (line 4) to PB. The
paths are then added to G (lines 5-10). Since we now have
a weighted directional navigation graph that includes the
user’s location and the destination, we apply Dijkstra’s
algorithm to find the shortest path between nodes PA and
PB (line 11) and send it to the user. Our algorithm supports
navigating between multiple floors and arbitrary floor

Fig. 6. Multi floor navigation graph for a three story building. Blue nodes
(entry and exit points) and edges (connecting and navigation paths
between them) represent graph G. Orange parts are automatically
added before computing a path between user’s position and destination.
The thicker edges represent the shortest path.

10. After the SfM model is converted to a real world scale, the points
that represent the floor should have the height of less than 10cm, while
the points representing the ceiling should have the height of at least 2m.

11. https://github.com/memononen/recastnavigation
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changing points even in cases when one has to take several
elevators, escalators or stairs to reach a desired destination.

Algorithm 3. Pseudo Code of Calculating Cross-Floor
Navigation Paths

Input: Current location: PAðxs; ysÞ; Destination: PBðxd; ydÞ;
Navigation meshes compiled from model A and model B,
respectively: meshA;meshB; Floor entry an exit points database
DB; navigation graph: G.
Output:Navigation path: path
1: // Get all exit points in the starting floor
2: exitPointsA ¼ getFloorExitPointsðmeshA;DBÞ
3: // Get all entry points in the destination floor
4: entryPointsB ¼ getFloorEntryPointsðmeshB;DBÞ
5: // Add edges from the start position to the floor exits
6: for Px 2 exitPointsA do
7: addEdgeðG; edgeðPx; PAÞÞ
8: // Add edges from the floor entries to the destination
9: for Pe 2 entryPointsB do
10: addEdgeðG; edgeðPe; PBÞÞ
11: // RunDijkstra’s algorithm to find the shortest path through

G
12: path ¼ FindShortestPathWithDijkstraðG;PA; PBÞ

5 EVALUATION

We implemented a prototype of ViNav to evaluate the feasi-
bility of building a smartphone-based indoor navigation
system using crowdsourced data. We have carried out field
studies in different indoor environments including an office
building and a supermarket. According to the field studies,
the functionalities of ViNav have proved to work properly.
We will focus on the performance evaluation of ViNav, and
will introduce in this section the methodology and the
experimental results, including a short summary of the fea-
sibility study.

5.1 Methodology
ViNav can be used for locating users, searching for places of
interests, calculating navigation routes, and providing AR
navigation guidance. Performance of ViNav depends on the
performance of the localization, the accuracy of recognized
PoIs, and the accuracy of the navigation meshes used for
path planning. Because the navigation meshes are generated
from the sensor-enriched 3D models (cf. Section 3), the accu-
racy of the navigationmeshes is determined by the quality of
the 3D models in use. Similarly, the accuracy of the naviga-
tion depends on the accuracy of the estimates of user’s
position and facing direction. Therefore, for performance
evaluation of ViNav, we measure the following metrics: (1)
the accuracy of the indoor layout extracted from the 3Dmod-
els, (2) the accuracy of detecting stairs and elevators in multi-
floor buildings, (3) the performance of POI detection, and (4)
the performance of the 3D-model-based indoor localization.

5.2 Accuracy of Navigation Mesh
We first evaluate the accuracy of the indoor layout extracted
from 3D models. We collected data in two different indoor
environments. The first one is an office building, where
Department of Computer Science at Aalto University locates
(we name it as CS building thereafter). It consists of 3 floors.

Duringweekdays, more than 500 students and staffs visit the
CS building on daily basis. The ground floor is approxi-
mately 1,100m2, covering a long corridor, a library, and a caf-
eteria. The indoor scenes of the cafeteria change frequently
due to promotions and decorations. A construction work of a
new food store was started during the field study. The sec-
ond building is a big supermarket in Helsinki. Its size is
around 1,600m2. There aremore than 30,000 products selling
in the supermarket.

5.2.1 CS Building

We recruited 5 volunteers to collect photos on the ground
floor of CS building. The volunteers can choose by them-
selves where to take photos. For each location they chose,
they were requested to take 5 to 10 photos with the camera
facing different directions. Meanwhile, the ViNav mobile
app was configured to record Wi-Fi fingerprints and the
readings of accelerometer and gyroscope while the volun-
teers were walking in the CS building. The data collection
started immediately after the first photo was taken, and can
be stopped manually. Over a period of 3 weeks, the volun-
teers collected in total 2,197 photos and 4,239 groups of
Wi-Fi fingerprints along 119 walking traces.

We built an initial 3D model of the CS building using the
data collected by volunteers. Following the SfM pipeline
described in Section 3.1, the initial 3D model (as shown in
Fig. 7b), which includes 253,839 3D points, was successfully
built from 1,968 (out of 2,197) photos. Based on the generated
3D models and the user trajectories, ViNav compiled a navi-
gationmesh as described in Section 4.2. The navigationmesh
is visualized in Fig. 8a. For comparison, a navigation mesh
generated from the initial 3D model only is also shown in
Fig. 8a. We can see that the pedestrian paths, especially the
one along the corridor, are better reconstructed when user
trajectories are used for compiling navigationmeshes.

Localization and navigation services were provided to
users after the initial model was built. The volunteers were
invited to test the indoor navigation services. During the
trial period, another 355 photos and 1,181 Wi-Fi fingerprints
along 31 walking traces were collected. Accordingly, the 3D
model will be updated based on new images. As illustrated
in Figs. 7b and 7c, the 3D models have been successfully
updated to reflect a significant change of indoor layout
caused by the ongoing construction work of a Subway store.

Compared with the official floor plan released in 2008
(c.f. Fig. 7a), the 3D models generated by ViNav well recon-
struct the outline of the CS building. To evaluate the accuracy
of the reconstructed outline, we calculated the euclidean dis-
tances of walls surrounding the CS building based on the 3D
models, and measured the ground truth using a laser range-
finder. After that, we calculated the distance error as defined
in [28]. Specifically, the distance error for a correctly detected
segment is defined as the average distance between the
detected segment and its associated ground truth segment.
The overall distance error, denoted by ED, is calculated
below.

ED ¼
XN
i¼1

½lengthðsiÞEdðsiÞ�=
XN
i¼1

lengthðsiÞ; (1)

where N is a number of correctly detected segments, and
EdðsiÞ is the distance error for a correctly detected segment
si. According to the results, ViNav is able to reconstruct the
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outline of the CS building with an overall distance error of
0.502 meters.

Based on the updated 3Dmodel,ViNav compiles a naviga-
tion mesh including 215 obstacles. The navigation mesh is
visualized in Fig. 8b. We calculate the average location error
of obstacles according to Eq. (2). Denote the coordinates of an
obstacle in the mesh by ðxi; yiÞ, and its actual coordinates by
ðXi; YiÞ, the average location error of obstacles, denoted by
Eobstacles, can be calculated as

Eobstacles ¼
XN
i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi �XiÞ2 þ ðyi � YiÞ2

q
=N; (2)

where N is the number of obstacles. As a result, the average
location error is 0.78 meters, which indicates a reasonably
high accuracy of the navigation mesh.

Our experiment results have shown that the initial data
set, which includes 2,197 photos collected from locations that
are nearly evenly distributed in the area, is enough for
building a 3D model of the CS building with reasonably
good quality. Concerning the complexity of indoor struc-
ture and the diversity of indoor scenes, the number of
photos needed for building a good-quality 3D model
varies with indoor environments. Furthermore, the qual-
ity of 3D models depends also on the manner of data col-
lection, including where to take photos and what to be
captured by the photos.

To analyze the impact of data collection, we combined the
two photo sets collected by volunteers (we name it as data set
C thereafter), and sampled them in 5 different ways. We
compared the 3Dmodels built from each subset accordingly.
The 3D models created from data set C was used as the base-
line. First, we grouped the photos by location and facing
direction, and then evenly selected 50 percent of the photos.
The set of sampled photos is referred to as Sample 1. Simi-
larly, we evenly sampled 25 percent of the photos from
data set C to form Sample 2. Compared with the data set C,
the photos in Sample 1 and 2 were taken with lower den-
sity but still trying to cover the whole space. To emulate
the data collection in a more random manner, we also
built Sample 3 an Sample 4 by randomly selecting 50 and

25 percent of photos from data set C, respectively, regard-
less of location or facing direction. For comparison, we
manually selected 20 percent of the photos from data set C
by removing photos that captured similar scenes. The
selected photos form Sample 5.

The number of 3D points generated from the 5 samples
are listed in Fig. 9. From the figure we can observe that as
less photos are used for 3D modelling, the output 3D mod-
els are more prone to be fragmented, which is clearly illus-
trated in cases where Samples 2, 3, and 4 are used as input.
On the other hand, the 3D models built from Sample 1
remain almost as intact as the ones from data set C, from
fragmentation perspective. Compared with the largest 3D
models generated from Samples 3 and 4, the biggest 3D
model created from Sample 5 contains more 3D points. This
is because the scenes captured by different photos in Sam-
ple 5 are expected to have less overlaps. The impact on the
density of 3D points will be discussed in Section 5.5.3.

Crowdsourcing helps collect data with a low cost. How-
ever, it brings uncertainty in the quality of the modelling
result. Depending on the size and the complexity of indoor
environments, it is hard to tell how many photos are
enough. In principle, in order to use as few photos as possi-
ble for building SfM-based 3D models while maintaining
the performance of localization, the input photos are
expected to have as little overlap as possible while having
sufficient common features to be matched.

5.2.2 Supermarket

We recruited another 8 volunteers to collect data from the
supermarket. Different from the data collection in the CS
building, the volunteers were asked to collect videos. The
idea of collecting video instead of images is to check the fea-
sibility of bootstrapping an initial model in a more efficient
way. The volunteers collected 2 hours video in total in one
morning. We extracted frames from these videos by com-
paring blurriness of frames and choosing the most clear one
within a time window. 9,594 image frames were extracted

Fig. 7. Comparison of the generated 3D models with the actual layout of the CS building. (a) Official floor plan. The layout of shelves in the library has
changed since the plan was released. (b) A 2D view of the initial 3D model. The blue lines marked on the figure indicate the walking traces of the vol-
unteers. (c) A 2D view of the updated 3D model.

Fig. 8. Navigation meshes generated from 3D models. (a) Navigation
mesh of the library area. The gray solid polygons represent the one com-
piled from the initial 3D model only, while the black hollow polygons cor-
respond to the one utilizing also the user trajectories. (b) The navigation
mesh of the CS building updated in March, 2015.

Fig. 9. Comparison of the number of 3D points included in the 3D models
built from different samples. The different color in each bar represents the
number of points included in each fragment of the 3Dmodel in question.
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in total. We built a model with 1,806,772 points, with 9,497
out of the 9,594 frames registered into the model.

Fig. 10b shows a top-down view of the generated point
cloud. By comparing it with the official floor plan as shown
in Fig. 10a, it is interesting to see that the structure of the
supermarket is well reconstructed. Specifically, the overall
distance error of the outline is 0.68 m based on Eq. (1).
Fig. 10c shows an overlap between the point cloud and the
official floor plan. There are some shelves which are differ-
ent from the original floor plan. We made a site survey in
the supermarket and found that our point cloud reflects the
ground truth better. This is because the floor plan was cre-
ated several years ago. Some of the shelves were changed
during these years but the floor plan was not updated
accordingly. The green dotted circles in Fig. 10c show an
example, where a newly added shelf is not on the original
floor plan but reconstructed correctly in the point cloud.

5.3 Locating Stairs and Elevators
In this section we will evaluate how accurately and how
well we can build a multi-floor navigation graph with only
crowdsourced input. We carried out the evaluation in a 3
floor building. We have built each of the floors as a separate
model with a single floor navigation enabled. We then
walked around the building and collected 50 cross-floor
traces while taking stairs and elevator. The algorithm of
trace collection is described in Section 3.3.

Table 1 shows all the discovered connecting paths, i.e.,
stairs and elevators. The building has an elevator between
the 3 floors and several staircases in between floors. We
have measured the distance error between each detected
floor changing point and the actual point. For staircases, we
considered the middle outer point on a first staircase step as
the actual point, while in case of an elevator, a middle outer
point of the elevator door. Our system detected all floor
changing means inside the building. We observe larger
errors only in cases of Floor 1 elevator and the staircase
from Floor 3 to Floor 2, since at those places there are many
featureless surfaces and accurate position was obtained
only after a user walked several steps away from an eleva-
tor/staircase. The average distance error was 2.13 meters
(1.31 std). The result shows that ViNav can reliably identify
floor changing points which can be further used to enable
the multi floor navigation in the building.

5.4 Accuracy of Mapping Points of Interest
We applied one state-of-the-art OCR tool, Google cloud

vision,12 to recognize texts from the images used for 3D
modelling. As a result, 5,247 words were extracted from the
images of the CS building. After applying the predefined
lexicon entries, 17 POIs were found, including room num-
bers and exit information. Comparing to CS building, we
extracted 5,316 words from the supermarket. 135 POIs were
found after the lexical filtering.13 Fig. 11 shows that some
sale signs were detected in the supermarket because the text
in the sign was recognized. The positions of these signs are
calculated as shown in Fig. 11a.

As explained in Section 3.4, the location of a POI is set as
the coordinates of the feature point which is the closest one
to the center of the recognized word. As a result, the accu-
racy of POI mapping depends on the distance from the cen-
ter point to the closest feature point. Because the density of
the feature points surrounding the text is high in most cases,
the error of POI mapping is reasonably low. Compared with
manually-obtained ground truth, the average distance error
of POI mapping is 0.26 meters with standard deviation of
0.16 in the CS building, and is 0.29 meters with standard
deviation of 0.17 in the supermarket.

5.5 Performance of 3D-Model-Based Indoor
Localization

We collected a new test data set in CS building for evaluat-
ing the performance of indoor localization. The data set
includes 2,220 photos taken from 185 measurement points
in the CS building. As shown in Fig. 12a, the measurement
points are distributed evenly across the walkable area on
the ground floor.

We used a self-built toolkit, as shown in Fig. 13a, to obtain
the ground truths corresponding to the data set. At eachmea-
surement point, we took photos and collected Wi-Fi finger-
prints using the Android phone placed on the tripod. After

Fig. 10. 3D modelling result of the supermarket.

TABLE 1
Discovered Connecting Paths (Stairs and Elevators)

in a Three Story Building

Staircase name No. of measurements Position error (m)

Floor 1

Staircase to 2nd floor 5 1.3622
Staircase to 2nd floor 4 2.5137
Elevator 15 4.2298

Floor 2
Staircase to 1st floor 6 1.8135
Staircase to 3rd floor 13 2.6886
Staircase to 1st floor 18 1.3317
Staircase to 3rd floor 8 0.8875
Elevator 3 0.5212

Floor 3

Staircase to 2nd floor 12 2.1184
Staircase to 2nd floor 6 4.6336
Elevator 8 1.3539

The second column shows how many detected positions were used in calculat-
ing a connecting path endpoint. The last one shows an euclidean distance error
between an estimated endpoint and a ground truth.

12. https://cloud.google.com/vision
13. The supermarket provided us a list of products selling in it.
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taking one photo, the camera was rotated horizontally by 30
degrees before taking another one. More specifically, before
taking the first photo at each measurement point, the camera
was facing the same direction defined as the baseline direc-
tion. After that, the camera was rotated by 30 degrees to take
the next photo.We repeated the process until the camera was
facing the baseline direction again. At each measurement
point, we collected 12 photos. Additionally, we used a laser
rangefinder to measure the distance to each reference point.
Given the measurements from the distance and locations of
the reference points, we calculated the actual location of the
camera based on trilateration, as illustrated in Fig. 13b. For
each photo, the actual location and the facing direction of the
camera was recorded and used as the ground truth for accu-
racy analysis.

We also collected a new test data set in the supermarket.
We collected the data along two main corridors as described
in Fig. 12b. We used the grid on the floor to measure the
ground truth.14 The length of one grid is 0.5 m, we chose a
measurement point every 1.5 m. In total, we collected
images at 71 measurement points. At each measurement
point, we took images facing to 4 different directions. The
angle between 2 images is 90 degree. 284 images were col-
lected in the end.

Two SfM tools were applied in the two scenarios. In CS
building, we used VisualSFM, which tries to mach the query
image with the images registered in the 3D model. In super-
market, we adopted openMVG, which utilizes a fast
approximate nearest neighbour L2 matching technique [24]
to speed up the matching process.

We measured the performance of indoor localization
with four metrics, namely, hit rate, location error, direction
error, and response delay. Hit rate refers to the percentage
of measurement points that can be located. When there is a
hit, the accuracy of the result is measured with location error,
and direction error if the result includes also user’s facing

direction. The location error calculates the distance between
the estimated location of the measurement point and the
ground truth, while the direction error measures the angle
offset from the actual facing direction. Additionally, response
delay measures how much time it takes for the server to
return the result. Note that the response delay of indoor
localization depends on the computational complexity of
the localization algorithm under test, as well as the comput-
ing power of the computing infrastructure in use.

ViNav combines Wi-Fi fingerprinting with image-based
localization to achieve fast while accurate indoor localization.
To provide an objective comparison with the state-of-the-art,
we provided a reference implementation of the image-based
localization (abbreviated as Image) in the scenario of CS build-
ing. The reference implementation of Image applies Breadth-
first Search (BFS) to select candidates for feature matching,
and tries to search through the whole 3D point cloud
instead of selected partitions to get the best possible
result. Both ViNav and the reference implementation of
Image were tested with the same 3D models. In addition,
to provide a comparison with the Wi-Fi fingerprinting
based approaches, we utilized the Wi-Fi fingerprints col-
lected in the test data set to implement a standalone Wi-
Fi fingerprinting solution (abbreviated as Wi-Fi). The
experimental results are presented as follows.

5.5.1 Hit Rate

If a valid location can be returned by the localization algo-
rithm, we consider the input as a matching input for the algo-
rithm; otherwise, it is considered as a non-matching input. If
at least one image collected from the same measurement
point was considered as a matching input, we count the cor-
responding measurement point as a locatable point. The hit
rate is calculated as the number of locatable points divided
by the total number of measurements points. It provides a
good hint on how easy a user can be located at different
positions of an indoor environment.

In Table 2 we compare the hit rate among ViNav, Wi-Fi,
and Image in the CS building. In general, the hit rate is rea-
sonably high in all the three cases. Compared with Wi-Fi,
the two image-based schemes (i.e., ViNav and Image) fail to
locate around 5 percent of the measurement points. This is
because of the changes of indoor scenes occurred after the
initial 3D model was built. Compared with the corridor, the
layout of the cafeteria and the library changed more fre-
quently, which explains the relatively low hit rates in such

Fig. 11. Examples of POI mapping. The red stars in (a) refer to the posi-
tions of the sale signs in the supermarket. (b) and (c) show example
images from which the sale signs are recognized by text and marked
with green rectangles.

Fig. 12. Measurements points in two environments. (a) One hundred
eighty-five measurement points in CS building. They were distributed in
the cafe (black circle), corridor (red triangle) and library (blue square).
(b) Seventy-onemeasurements in the supermarket.

Fig. 13. Evaluation toolkit. The left-hand figure shows a self-built toolkit
that consists of a laser rangefinder, a protractor, an Android phone run-
ning ViNav mobile app, and a tripod as a stand. The right-hand figure
demonstrates how trilateration is applied to determine the location of the
toolkit based on measurements of the distance to each reference point.

14. We were collecting the data during opening hours, so using the
laser range finder would disturb customers. Thus, we used a different
way to measure the ground truth.
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areas. Furthermore, Image also achieves slightly higher hit
rate than ViNav. This is because ViNav only selects a subset
of model partitions for feature matching in order to lower
the response delay. The partitions filtered out by Wi-Fi fin-
gerprints in ViNav may contain feature matches with the
query photo. The hit rate in the supermarket for our system
is higher than in the CS building. All the 71 measurement
points are locatable.

Photos taken at the same position may get different local-
ization results, due to different facing directions. We further
check the number of matching inputs at each measurement
point, which discloses how easy a user can be located at a
specific position. As described in Fig. 14, 69 percent of the
measurement points in the supermarket have all the test
images located. If the query photo includes mostly the
texture-less scenes, e.g., white walls, it is very likely that dis-
tinguishable features are lacking and it will become a non-
matching input. The supermarket is an open space contain-
ing many shelves that do not block the view. As a result,
most of the test images have enough common scenes for fea-
ture matching.

In the CS building, we took 12 photos at each measure-
ment point. It is inevitable that a certain number of test pho-
tos are facing to texture-less scenes. As shown in Fig. 15, we
can clearly see that the experiment in the library has higher
percentage of measurement points with more matching
inputs than in the corridor. This is because library is an
open space while corridor only has distinguishable scenes
when facing forward or backward. In practice, ViNav will
suggest the user to take photos of distinguishable scenes. If
the first photo is a non-matching input, ViNav will request
the user to turn to a different direction to take a new photo.

5.5.2 Accuracy

As explained previously, we collected ground truth of loca-
tions and facing directions using self-developed toolkit in
the CS building, and evaluated the accuracy of indoor locali-
zation based on the ground truth and the estimated location
and facing direction (if available). As shown in Figs. 16a
and 16b, the accuracy of ViNav is very close to that of Image.
In both cases, for at least 90 percent of the valid inputs, the
location error is less than 2 meters, while the direction error
is less than 6 degrees. Similar to the hit rate (cf. Table 2), the
accuracy of Image is slightly different from that ofViNav, due
to the pre-filtering of model partitions used inViNav.

The result of Wi-Fi does not include an estimate of the
facing direction. The location error of Wi-Fi is less than 5
meters in approximately 70 percent of the test cases and less
than 10 meters in 90 percent of cases. Obviously, the accu-
racy of Wi-Fi is relatively low, compared with the image-

based approaches. On the other hand, because the hit rate
of Wi-Fi is higher, it is reasonable to fall back to the coarse
locations provided by Wi-Fi fingerprinting, when the sys-
tem fails to obtain a more accurate location based on photos.

The location and facing direction errors of our system in
the supermarket are described in Fig. 17. The accuracy is
better than the ones in the CS building: 97 percent of the test
cases have location errors of less than 1 m and facing direc-
tion errors of less than 6 degrees. Although the products on
shelves are changing from time to time, there are still
enough stable features for matching. For example, posters
hanging on the roof and brand advertisements on shelves
are very good hints for localization.

5.5.3 Robustness

To investigate the impact of the input for 3D modelling on
the accuracy of localization, we chose the 3D models built
from data set C as a reference, and built another two models
from Samples 1 and 5, respectively, for comparison. We
chose the library as the testing environment, and selected
all the 840 test photos.

As illustrated in Fig. 18, the system achieves higher accu-
racy with the reference model than the ones built from Sam-
ples 1 or 5.15 Recall that more test data become matching
inputs with a denser point cloud, as shown in Fig. 15.
Hence, we can conclude that the positioning accuracy
increases with the density of the point cloud. Nevertheless,
the density does not increase if less photos are used for
building the point cloud.

TABLE 2
Comparison of Hit Rate among image,
Wi-Fi, and ViNav in the CS Building

Area No. Measurement
Points

No.of
Photos

Hit rate

Image Wi-Fi ViNav

Cafe 78 936 91% 100% 91%
Corridor 37 444 100% 100% 100%
Library 70 840 98:6% 100% 97:1%
Total 185 2,220 95:7% 100% 95:1%

Fig. 14. Sixty-nine percent of the measurement points in the supermar-
ket have four matching inputs, while 25.4 and 5.6 percent of them have
three and two matching inputs, respectively.

Fig. 15. The numbers of measurement points where the indicated
amount of matching inputs are identified at each point in the CS building.
Sample 1 and 5 are subsets of data set C in the library. Each color repre-
sents the number of matching inputs at a certain measurement point.
For example, there are 15 (out of 37) measurement points in the corridor.
Each point has six matching inputs.

15. The indoor navigation system performs better than average in
the library, because the scenes in the library are more distinguishable
than the corridor for example. That is why the results in Fig. 18 are bet-
ter than the ones shown in Fig. 16a.
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Objects like whiteboards and chairs may appear (disap-
pear) or move around frequently in the building after the
3D models are built. Additionally, people may accidentally
show up in front of the camera when photos are taken for
localization. To evaluate how the localization accuracy is
affected, we conducted a set of tests where we brought a
whiteboard to the library and moved it towards our camera
slowly, trying to block the whole camera view gradually.
We took 18 photos from the same location while the white-
board was moving as described in Figs. 19a, 19b, and 19c.
After that, we used ViNav to locate the camera with each of
these photos. With 17 out of the 18 photos, ViNav success-
fully identified the location with comparable accuracy, as
shown in Figs. 19d and 19e. ViNav failed to locate the cam-
era only when the photo captured nothing more than the
whiteboard. The localization accuracy remained at the same
level as far as the location was successfully identified.

5.5.4 Response Delay

We deployed ViNav on a server equipped with an Intel
Xeon processor E5-2650 (8-core, 2.6 GHz), 64 GB RAM, and
a Tesla K20C GPU. We measured the response delay using
all the test data, and compared the results between ViNav,
Wi-Fi, and Image. Note that the testing data set includes
both matching and non-matching inputs from the perspec-
tive of localization.

Fig. 20a shows that the response delay of Wi-Fi is less
than 0.6 s for 87 percent of the input. For Image, as presented
in Fig. 20b, it takes more than 40 s to generate a response.
The delay comes from VisualSFM model preloading and
image matching which increases with model size.

ViNav supports 3D model partitioning and fingerprint-
based partition selection. As shown in Fig. 20c, the response
delay, including loading time, is decreased to 4 s for 73 percent
of the tests when each model partition contains features
extracted from less than 100 photos. The response delay
excluding the loading time is on average 3.85 s with standard
deviation of 1.5 s. In the supermarket, as shown in Fig. 20d,
more than 85 percent of the matching inputs are finished

within 1.5 seconds and more than 95 percent of them are fin-
ished within 2 seconds. The response delay is shorter, as
OpenMVG supports pre-loading 3D models at the begin-
ning,16 thus the loading time is saved.

5.5.5 Scalability

We evaluated performance and scalability of ViNav in the
supermarket case. We started by simulating a single system
user and kept increasing the number of simultaneous users.
In order to take network latency into account we deployed
ViNav on an amazon public cloud17 p2.xlarge instance.
Fig. 21a shows system response times for different amounts
of simultaneous systemusers. The selected p2.xlarge instance
can support up to 7 users without exceeding amean response
delay of 5 seconds. We also conducted an experiment where
we sent localization requests from a client within a single net-
work hop to simulate an edge computing scenario. As
Fig. 21b shows, such setup can support almost twice as many
users, meaning that network latency has a notable impact on
system performance. We have measured request payload
sizes of 400 arbitrary localization requests. The mean request
size was 129.62 KB (s = 60.75), of which the captured image
accounts for more than 95 percent. Therefore, a server with a
typical 100 Mbps connection could support up to 98 simulta-
neousViNav users.

5.6 Summary
From the experiments and analysis presented above, we can
reach the conclusion that it is feasible to build a well per-
forming 3D-model-based indoor navigation system, using
only the photos and sensor data collected from smart-
phones. The quality of 3D models, nevertheless, is affected

Fig. 16. Comparison of (a) location error and (b) direction error between
ViNav, Image, and Wi-Fi in the CS building. Note that Wi-Fi does not
return user’s facing direction.

Fig. 17. (a) Location error and (b) direction error of ViNav in the
supermarket.

Fig. 18. Comparison of location error between scenarios where the
3Dmodelswere built fromdata set C, Sample 1, and Sample 5, respectively.

Fig. 19. Location and facing direction errors in the cases where a white-
board was brought into the scene and then moved towards the camera.

16. VisualSFM does not support pre-loading models since it is a
closed source software.

17. Amazon Web Services (AWS), https://aws.amazon.com/
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by multiple factors, including the number of photos used
for generating the 3D models, and the coverage and the fac-
ing direction of the input photos. Although the coverage of
crowdsourced photos may be limited to certain areas of
interest, with more and more photos becoming available,
there is an increasing chance of producing high-quality 3D
models for the purpose of indoor navigation. Furthermore,
the accuracy and response delay of ViNav are decent and
acceptable compared to the state-of-the-art.

6 RELATED WORK

3D-Model-Based Indoor Mapping. 3D modelling has been
widely used for indoor mapping. Conventionally, 3D mod-
els for indoor mapping are generated from the data cap-
tured by laser scanners and/or depth cameras through war-
driving. For example, the system presented in [28] obtained
3D point cloud of indoor environment from laser scanners
positioned in multiple locations, and extracted 2D floor
plan from the 3D point cloud. KinectFusion [26] imple-
mented real-time 3D surface reconstruction of room-sized
scenes based on the depth data streamed from a moving
Kinect sensor. The recently developed Simultaneous Locali-
zation and Mapping (SLAM) based indoor mapping tools,
such as Google Cartographer and Xsens Scannect [4], are
equipped with inertial measurement units in addition to
laser scanners and depth cameras. The Cartographer-like
backpack systems can automatically create floor plans when
the backpacker-wearers walk inside the buildings.

Differently from SLAM, SfM techniques enable 3D
modelling of different environments using unordered 2D
photos. These photos can be taken by commodity devices
such as smartphones. Based on SfM, Agarwal et al. [1] con-
structed 3D models of Rome city from 150 K photos found
from Internet photo sharing sites. Furukawa et al. [10] used
SfM and multi-view stereo for reconstructing and visualiz-
ing an entire house interior. Martin-Brualla et al. [23] con-
sidered the scenario of producing disconnected 3D point
clouds and proposed to connect these 3D pieces with the
help of a given floor plan. Gao et al. [12] proposed a WiFi
and accelerometer based approach for detecting inter-floor
connecting paths between the models. Jigsaw [13] builds
SfM-based 3D models for landmarks. After that, the local
coordinates of these landmarks are converted to a global
coordinate system with the help of motion sensor data.
ViNav also adopts SfM for 3D modelling. Our work further
complements SfM modeling by detecting user trajectories,
geo-referencing Wi-Fi fingerprints and locating stairs and

elevators. As a result, the sensor-enriched 3D models are
used to accelerate image-based localization, detect pedes-
trian paths, and find connection areas between floors.

Indoor Localization and Navigation. Previous work has pro-
posed to utilize fingerprints of Wi-Fi [2], magnetic field [5]
or Bluetooth [3] for locating users in indoor environments.
Fingerprinting-based approaches require a training data set
comprising of measurements at known locations in a space
of interest. Since labelling fingerprints is labour-intensive,
Zee [29] proposed automatic inferencing of location, based
on the combination of inertial sensor information and the
constraints imposed by the map. Similarly, Nguyen
et al. [27] applied dead reckoning approach to track users in
indoor environment. Due to the error accumulation of the
dead reckoning approach, Nguyen et al. utilized active
learning for automatically identifying strategically impor-
tant locations which should be labelled manually. Travi-
Navi [38] employed traces of fingerprints recorded from
entrance POIs to be used for leader-follower navigation.
Rather than manually labelling Wi-Fi fingerprints, ViNav
utilizes arbitrary photos taken along user trajectories for
automatic calibration, utilizing the feature of image-based
localization. Furthermore, ViNav provides navigation to
arbitrary destinations with no requirement of following a
pre-recorded trace.

Image-based localization systems allow users to locate
themselves by simply taking photos from where they are.
State-of-the-art systems such as Travi-Navi [38] employs
image histogram matching, Liu et.al [20] utilized deep-
learning approach for matching and tracking, while Huang
et al. [15] proposed image feature matching for panoramic
images to obtain user’s position. However, this process of
image feature matching is slow due to heavy computation.
To accelerate this process, Lu et al. [22] proposed to use the
visual words and the approximate nearest neighbour meth-
ods. Similarly, Sattler et al. [31] proposed a framework for
efficient 2D-to-3D matching based on visual vocabulary
quantization and a prioritized correspondence search. Sex-
tant [11] utilizes physical features (i.e., logos or paintings) as
reference objects to measure user positions. The challenges
of designing such a POI-based localization system include
identifying distinguishable POIs, obtaining accurate posi-
tions of POIs, and etc. ViNav utilizes features extracted from
images as references to locate users. Distinguishable fea-
tures are more widely available than distinguishable POIs
in different indoor environments. ViNav further utilizes
Wi-Fi fingerprints for reducing the search space and mini-
mizing response latency while utilizing SfM based pose cal-
culation to provide high accuracy.

Fig. 20. Comparison of response delay between indoor localization
algorithms in the (a), (b), and (c) CS building and (d) supermarket.

Fig. 21. ViNav response delays for different numbers of simultaneous
users. The marking inside each box shows the median, bottom and top
edges of the box indicate the 25th and 75th percentiles, the whiskers
extend to the most extreme data points.
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In addition to location, a walking direction of a user is
also important for creating and updating navigation instruc-
tions. WalkCompass [30] detects the walking direction within
a few steps using sensors available on smartphones, while
Husen et al. [16] employed a dense Wi-Fi infrastructure to
determine the orientation. In our work, user’s facing direc-
tion is considered to be equal to the facing direction of the
smartphone camera, and is obtained from the camera pose
provided by image-based localization.

7 CONCLUSION

We presented ViNav, a low-cost and whole-system solution
for indoor navigation in this paper. ViNav is partially built
on top of several existing techniques, e.g., SfM and finger-
printing. Nonetheless, ViNav brings new functions and
addresses several technical challenges to enable mobile
crowdsensing-based indoor navigation. It utilizes crowd-
sourced visual data to build 3D models of indoor spaces of
interest, and detects pedestrian paths from crowdsourced
user trajectories. It enables fast localization by taking advan-
tage of the high hit-rate and low response delay of Wi-Fi fin-
gerprinting. It also supports multi-floor navigation by
locating stairs and elevators with the help of barometer read-
ings. Moreover, with the information extracted from crowd-
sourced visual data,ViNav enables mobile users to search for
POIs and navigate to them. The new elements introduced
into ViNav make it functional and well performing, as dem-
onstrated in the field study. ViNav would be a good primer
for any system that aims to provide indoor navigation serv-
ices based on crowdsourced visual and sensor data.
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