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Abstract—Wireless Local Area Network (WLAN) location fingerprinting has become a prevalent approach to indoor localization.
However, its widespread adoption has been hindered by the need for manual efforts to collect location-labeled fingerprints for the
calibration of a localization model. Several semi-supervised learning methods have been applied to reduce such manual efforts by
exploiting unlabeled fingerprints, but they still require some amount of labeled fingerprints for initializing the learning process. In this
research, in order to obviate the need for location labels or references, we propose a novel unsupervised learning method that
calibrates a localization model using unlabeled fingerprints based on a hybrid global-local optimization scheme. The method
determines the optimal placement of fingerprint sequences on an indoor map, under the constraint imposed by the inner structure
shown on the map such as walls and partitions. An efficient interaction between a global and a local optimization in the hybrid scheme
drastically reduces the complexity of the learning task. Experiments carried out in a single- and a multi-story building revealed that the
proposed method could successfully build a precise localization model without any location reference or explicit efforts to collect

labeled samples.

Index Terms—Location estimation, Wi-Fi fingerprint, crowdsourcing, radio map construction, unsupervised learning

1 INTRODUCTION

HE recent explosive proliferation of wireless devices and

WLANS (based on the IEEE 802.11 standard) is acceler-
ating the demand for practical location-based applications
in indoor environments. In such applications, the identifica-
tion of a user’s location in an indoor area is critical because
the Global Positioning System (GPS) is usually unavailable
due to signal blocking. Instead, WLAN infrastructure
allows a wireless device to be localized by referring to
the Received Signal Strength Indicator (RSSI) in an indoor
environment.

Among RSSI-based techniques, fingerprinting is known
to be the most accurate and popular approach to indoor
localization [1]. The RSSI fingerprinting-based techniques,
however, require an initial training or calibration phase in
which RSSI measurements are collected at known locations.
Then, in the localization phase, the location of a device is
estimated by matching an online RSSI measurement with
the training data [2], [3].

The need for calibration is a major drawback of finger-
printing-based techniques, because this step involves labori-
ous and time-consuming manual effort to collect location-
labeled training data. The manual calibration must be
conducted for every new building and should be repeated
whenever the training data become outdated due to
changes in the WLAN environment. The cost of manual

o The authors are with the Department of Computer Science, Korea
Advanced Institute of Science and Technology, N2 CS723, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea.

E-mail: {sh.jung, chul7672, dshan}@kaist.ac.kr.

Manuscript received 24 Oct. 2014; revised 3 Nov. 2015; accepted 25 Nov.
2015. Date of publication 8 Dec. 2015, date of current version 28 Sept. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TMC.2015.2506585

calibration thus hinders the widespread adoption of finger-
printing-based indoor localization.

In endeavors to reduce the calibration efforts, several
studies have been carried out on crowdsourcing approaches
in which general users can participate in the data collection
activity. Implicit crowdsourcing, besides explicit contribu-
tion approaches [4], [5], [6], has been studied to make use of
RSSI measurements contributed during the normal opera-
tion of wireless devices [7], [8]. This type of data can be
viewed as unlabeled samples since the true positions from
which the measurements are obtained are unknown. There-
fore, the issue that must be addressed is the assignment of
correct location labels to the unlabeled samples for the
calibration of localization models.

Additional data from inertial sensors embedded in
smartphones can be used for estimating the unknown loca-
tion labels [7], [8], [9], [10], [11], [12]. Although these meth-
ods can reduce the calibration efforts to some extent, the
engagement of additional sensors raises new issues, such as
accuracy, availability, device heterogeneity, and additional
power consumption of the sensors.

Another research stream is focused on semi-supervised
learning techniques that utilize both labeled and unlabeled
samples [13], [14], [15], [16], [17], [18], [19]. These studies
employ optimization techniques to estimate location labels
of unlabeled samples based on RSSI values. However,
without a good initial model, the techniques encounter dif-
ficulties in finding the global optimal solution and pro-
jecting a learned model onto an indoor map, and thus
require some amount of labeled samples for constructing
the initial model.

In this paper, we propose an unsupervised learning
method, named Unsupervised Calibration based on a Mem-
etic Algorithm (UCMA), to build a precise indoor locali-
zation model using only unlabeled fingerprints. UCMA
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avoids the necessity of location labels by applying a hybrid
global-local optimization scheme in which the initial model
is provided by a global search algorithm without reference
to location information. Once the initial model is provided,
location labels are estimated in a similar manner to the pre-
vious learning-based methods by a local optimization algo-
rithm in the hybrid scheme. The global search and local
optimization algorithms are integrated into a Memetic
Algorithm (MA) [20], which is an evolutionary approach
that provides an efficient way to address optimization prob-
lems through the interaction between global and local
optimizations.

Unlike previous strategies proposed to reduce calibration
efforts, UCMA does not require any prior knowledge of the
WLAN environment, the involvement of additional sensors,
or explicit efforts to collect labeled samples from the build-
ing of interest. As in previous studies, it is assumed that
users turn on their WLAN modules to contribute their
traces of RSSI measurements, i.e. user traces, while carrying
wireless devices in a building. Another prerequisite of
UCMA is an indoor map of the building for initialization.
These two conditions usually are not considered to be a part
of calibration efforts because online measurements and an
indoor map are essential elements required in the localiza-
tion phase for most location-based applications, such as
navigation [8].

Unsupervised learning techniques have not been fully
applied to the calibration of localization models. Two main
problems should be addressed to avoid the need for loca-
tion-labeled data and to perform the unsupervised learning
of a localization model. The first is the mapping of a learned
model onto an indoor space. In the previous learning-based
methods, this has been solved by using location-labeled sam-
ples as reference points for the mapping. UCMA solves this
problem by incorporating the structural information of an
indoor area and human mobility constrained by the struc-
ture. Once the indoor map of a building and unlabeled user
traces are given, UCMA arranges the traces to fit into the
inner structure shown in the map, like fitting pieces into a
puzzle. Similar approaches have been used before in a few
studies [8], [10], [13]. However, the suggested approaches
still depend on some amount of labeled samples [13] or data
from inertial sensors [8], [10] because of the second problem.

This problem is related to the size and the complexity of a
solution space to be dealt with. In general, the solution space
of a location assignment problem is huge and complex since
it comprises all possible assignments of location labels to
given samples. Suppose that 1,000 unlabeled samples are col-
lected from a building composed of 100 locations. There are
then 100" possible solutions to the assignment problem.
With such a huge solution space, optimization algorithms
usually fail to find the global optimal solution or do not ter-
minate. To address this problem, an effective configuration
of the global search and local optimization algorithms was
deliberately devised in the proposed hybrid scheme. Under
the configuration, only the solutions that do not violate the
nature of signal propagation are discovered and evaluated
during the interaction between the global and local optimiza-
tions. In this way, the solution space is effectively restricted
to a much smaller space, and thus a localization model can
be constructed via unsupervised learning.
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To validate UCMA, we deployed a prototype system and
conducted extensive experiments in a medium- and a large-
scale building. The experimental results revealed that
UCMA could build a precise localization model using unla-
beled user traces. In the medium-scale building, a localiza-
tion test of UCMA yielded average errors of 2.7-3.7 m under
various conditions, a level comparable to the error of 1.6-
2.8 m achieved with the ground-truth model. In the large-
scale building where the ground-truth model yielded aver-
age errors of 2.0-3.7 m, UCMA yielded average errors of 3.1-
4.6 m. These results indicate that a localization service can
be provided by implicit crowdsourcing, where training data
are gathered during the normal operation of wireless devi-
ces. In this way, the cost of building an indoor localization
system can be dramatically reduced.

2 RELATED WORK

2.1 RSSI-Based Indoor Localization
2.1.1 Trilateration-Based Approach

This approach estimates the location of a wireless device
based on a mathematical principle called “trilateration”. It
assumes that APs’ installed locations are known, and esti-
mates the location of a device based on the distances
between the device and the APs. Their distances can be cal-
culated using the correlation between signal strength and
distance given a propagation model [21].

Once the distance is determined, a circle (sphere) with
the AP as its center, and the distance as its radius can be
generated. Since the device is assumed to be located on
the circumference, its location is estimated to the point
where the circles are crossed one another. At least n + 1
APs are needed to calculate a location in n dimensions,
e.g., three APs are required in 2D space, and four, in 3D.

Trilateration-based techniques are simple and require a
little calibration effort. However, trilateration-based techni-
ques are known to show comparably low accuracy [22].
Moreover, most of the APs’ locations are not known in real-
ity because many different vendors and providers are usu-
ally involved in the installation of APs for public areas such
as large-scale indoor shopping malls.

2.1.2 Fingerprinting-Based Approach

RSSI fingerprint matching has been used as the basic scheme
of many indoor localization systems these days. Here, indoor
area of a building is usually represented as the set of discrete
locations, and machine-learning techniques are often used to
build a localization model from training data. In the localiza-
tion phase, the methods estimate the most likely location by
matching the online RSSI measurement with fingerprints in
the trained model. RADAR, one of the pioneering finger-
printing-based systems, estimates the location of a device
based on k-Nearest Neighbor (kNN) averaging [2]. While
RADAR uses a simple, deterministic localization technique,
researchers have developed more sophisticated fingerprint-
ing-based techniques using neural networks [23], probabilis-
tic methods [24], or fuzzy logic [25].

Although various techniques have been proposed for
localization, the accuracy of localization is highly dependent
on the quality and quantity of training data which comprise
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RSSI measurements and their location labels. The training
data set is usually collected through a labor-intensive man-
ual calibration. Furthermore, this manual calibration must
be repeated if the training data are outdated due to changes
in the WLAN environment such as addition, removal, and
relocation of APs.

2.2 Reducing Calibration Efforts

Researchers have started to find ways to reduce calibration
efforts for RSSI fingerprinting-based localization. They have
been trying to build a precise model using only a few
labeled data or to collect a large amount of training data
with much less cost.

Unlabeled measurements are easier to collect than
labeled ones, and they also can be collected from general
users while localization service is provided. When a small
portion of training data are labeled with locations, semi-
supervised learning techniques can propagate location
labels to unlabeled measurements in the data set. Manifold
learning or dimensionality reduction techniques have often
been used for the semi-supervised training of a localization
model [14], [15], [16], [17], [18], [19]. These techniques proj-
ect high dimensional data (RSSI measurements) onto a low-
dimensional space (the physical space of a building) by
aligning unlabeled measurements with a small amount of
labeled ones. In [13], expectation maximization algorithm
was applied to exploit unlabeled measurements for the
enhancement of a pre-built, incomplete localization model.
The semi-supervised techniques have made a considerable
progress in reducing manual labeling efforts. However,
these techniques still require some amount of already-
known location labels or prior knowledge of the AP deploy-
ment for a model calibration.

In addition to the semi-supervised learning techniques,
researchers have developed crowdsourcing systems to col-
lect a large amount of training data at low cost. The training
data for conventional localization systems are collected by
experts who can assign precise locations to collected meas-
urements. Crowdsourcing systems usually facilitate this
assignment procedure, so that even untrained users can
participate in the data collection activity [4], [5]. Several sys-
tems have chosen coarse location granularity such as rooms
or places for easier location assignment [6]. Some other sys-
tems encourage participants to specify prominent locations
such as entrances and corners, and then infer the location
labels of RSSI measurements using timestamps or inertial
sensors (e.g., an accelerometer, a compass, a gyroscope)
embedded in devices [26].

While inertial sensors are usually used to assist manual
operations, there have been attempts to infer the location
labels only from inertial sensor readings [7], [11]. Zee [8] and
LiFS [9], [10] estimate the relative formation of RSSI measure-
ments in user traces using inertial sensors and then infer
their absolute positions by placing the traces on an indoor
map. The constraints imposed by the indoor layout are
referred to in the placement step. In addition to the sensing
data from inertial sensors, occasionally captured GPS signals
can be used to label RSSI measurements [12]. Although these
methods can reduce the efforts of participants to some
extent, they raise new issues, such as power consumption,
availability, device heterogeneity, and accuracy of sensors,
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because of the engagement of additional sensors. Further-
more, some sensor readings should be adjusted to user-spe-
cific features (e.g., the step length). These issues limit the use
of additional sensor-based systems in real fields.

UCMA does not require any knowledge of AP deploy-
ment, labels of RSSI measurements, or deliberate handling
of additional sensors. Because of this advantage, UCMA
can dramatically reduce the cost of training a localization
model to almost zero.

3 UNSUPERVISED CALIBRATION USING
UNLABELED USER TRACES

3.1 Problem Statement

Consider a localization problem in the three-dimensional
indoor space of a multistory building. Formally, we model
the physical area as a finite location-state space L, which is a
set of physical locations with x, y, and z coordinates:

L= {ll = (1‘17211,2’1)712 = (33271/2’752), e 'aln = ('r’rhyﬂwzn)}a

where coordinates denote the center of a location cell.

All possible RSSI measurements are modeled as a finite
observation space O = {01,09,...,0,}. Suppose k APs are
installed in the building. Each observation ois represented
as a vector of RSSI values from the APs, i.e., a k-dimensional
vector,

0 =< 18811, 178812, ...,TS81 >,

where rssi; is the RSSI value of AP i. The RSSI value typi-
cally ranges from 0 to -100 dBm for 802.11 wireless signals.

To train a localization model, an observation o should be
labeled with I, where [ is the location in which o is scanned.
Manual labeling is labor-intensive, whereas collecting just
observations is relatively easy because they can be extracted
from user traces obtained while the localization service is
provided. A user trace is a sequence of unlabeled observa-
tions, and it can be represented by a vector u = <o},
oy,...,0;> ,wheret is the time index.

If the collected location information is not available, user
traces cannot be directly used as calibration data for the
model training. Therefore, the issue to address is to build a
localization model without location labels, or to assign cor-
rect location labels to unlabeled observations.

The proposed method solves these issues by finding a
hidden structure of user traces that fits into the inner struc-
ture of a building. We adopt Hidden Markov Model
(HMM) to describe user traces constrained by the inner
structure. The structural relation of indoor locations are
modeled by a set of finite location-states with their con-
strained transitions in an HMM. The problem is then
reduced to the HMM training problem, a problem of esti-
mating HMM model parameters that best describe the given
set of unlabeled traces.

3.2 Modeling User Traces Using HMM

HMM is a well-known technique in temporal pattern recog-
nition, and it has been successfully applied to indoor locali-
zation and tracking [30], [31]. An HMM is a stochastic finite
state machine in which the internal states are hidden, and
only the outputs of the states are observable. In HMM
modeling for RSSI-based indoor localization, the hidden
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TABLE 1
Summary of HMM Notations
L The location-state space for n locations in an environment,
L= {llal27 cee 7171}
O The observation space, O = {01, 09,...,0p,}
T An initial probability distribution on the location-states,

w={m,, ..., m,}

A A transition probability matrix, A = (a;, J')i, jer

B A set of emission probabilities, B = { Pr(o;|l;)|o; € O,1; € L}
A HMM model parameter set, A = <m, A, B>

u Unlabeled user trace, u = <of{, 03,...,0/ >, 0} € O

u Set of unlabeled user traces

p Sequence of locations, simply called path

p* Viterbi path, px = <", 15", ... I >

P Set of Viterbi paths for U

rssit  RSSI value of AP iin an observation x
m Set mean observations for L, u = {i;, ft,, - - -, iy, }
M, Set of observations assigned with [

states represent the possible locations in the space of inter-
est, and RSSI measurements of a user trace are treated as a
sequence of observations emitted from the hidden states
[13]. More formally, an HMM model for an indoor environ-
ment is defined by a quintuple <L, O, w, A, B>, where each
element is defined in Table 1. For clarity, all the HMM nota-
tions used in this paper are summarized in Table 1.

The model is defined on location-state space L and obser-
vation space O, both of which have been discussed in Sec-
tion 3.1. The initial probability distribution 7 provides
information on the starting probability of each state; 7 was
equally set in our model because we assumed that every
location is equally likely to be a starting point.

The transition probability matrixA specifies how a user
moves around in the space. In an indoor environment, user
movement is subject to the constraints imposed by the indoor
layout, (i.e., a user cannot walk through walls and other bar-
riers). In addition, since users have limited mobility, they
can move from a location only to its nearby locations in a
time interval of two successive observations. Therefore, with
the prior knowledge given by an indoor map and from
human mobility settings, a transition probability matrix A
can roughly be defined by assigning equal probability to the
possible transitions out of a location-state. The set of emis-
sion probabilitiesB gives the likelihood of an observation
o € O at a location [ € L, which will be defined in the next
section. In an HMM, a triple A =<, A, B> denotes the
model parameter, and it is adjustable through training.

When a model parameter A = <x, A, B> is given, a user
trace u = <oY, 0}, ..., 0} > can be tracked in the model by the
well-known Viterbi algorithm. The algorithm finds the most
likely state sequence px =<I{", 15", ... I > called a Viterbi
path, which satisfies (1). The function (1) is called state opti-
mized likelihood function [27].

Pr(u,p*|\) = max Pr(u, p|\) o))
p

4 HyBRID GLOBAL-LocAL OPTIMIZATION
SCHEME FOR UNSUPERVISED CALIBRATION

In conventional HMM-based localization, HMM model
parameters are calculated by supervised or semi-supervised
learnings using location-labeled samples [13], [30], [31].
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However, in the case of employing user traces, an HMM
should be trained in an unsupervised manner because loca-
tion labels are not included in the traces. When a set of unla-
beled observation sequences is given for training, the HMM
training has to address the problem of finding the Maxi-
mum of the Likelihood function (ML) of the observations.
Although there is no analytical method to compute the
global ML, it is possible to find a local ML if an initial guess
of HMM model parameters \’ = <z, A°, B> is given [27].
Several heuristic algorithms such as the Baum-Welch [28]
and the Segmental K-means (SK) [29] have been developed
to train an HMM from unlabeled samples. We adopt the SK
algorithm because it spontaneously solves the location-label
assignment problem, which is of our main interest, during
the HMM training procedure.

Typically, SK is executed several times with random initial
parameters to avoid being stuck in local optima far from the
global optimum [27]. However, such a scheme often fails
when a complex model like localization model is involved.
To overcome this local-optima problem, we developed a
more advanced method based on MA, called Unsupervised
Calibration using MA (UCMA). UCMA is a hybrid global-
local optimization process where a global evolutionary
search constructs and iteratively improves initial models,
and SK performs local optimizations with the constructed ini-
tial models. More specifically, the global search is responsible
to provide B’ because the other initial parameters, 7° and A°,
has been determined for an indoor area in Section 3.2.

4.1 Likelihood Function

As in a general HMM training, the likelihood function of an
HMM is used as an evaluation function in UCMA. In a gen-
eral HMM scheme, the likelihood of an observation sequence
u and a state sequence p is defined asPr(u,p|)), the joint
probability with respect to a model parameterA. It is equal to
Pr(u|p, \) Pr(p|\), and calculated using (2) and (3) [27].

Pr(ulp,\) = []._, Pr(otIi)). @)

t
Pr(plh) = mp [T, aw - ®)

i—1"

While (3) is computed using 7 and A, the calculation of
(2) needs Pr(o|ll) € B to be known. Usually, localization
approaches using probabilistic matching calculate Pr(o|l)
based on RSSI distributions for each AP at location [ [13],
[24]. Utilizing RSSI distributions has advantages in dealing
with the uncertainty in wireless signals, but it requires a
large amount of training data and a long computation time,
which are the main concerns in the current study. Therefore,
we calculate Pr(o|l) based on the Euclidian distance, which
is one of the simplest and most widely used metrics for fin-
gerprinting [2].

The Euclidian distance between observation o and loca-
tion I can be computed in the signal space with the mean
observation w; =<rssi|! rssiy',... rssij! > assigned at
location I, as follows:

Dist(o,1) = \/Z; (rssi? — rssitl)’. 4)
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In this equation, rssi} refers to the RSSI value of AP i in
observation x.

For indoor localization, the estimated location is the one
that can yield the minimum value of (4). In our model, in
contrast, the Euclidean distance is transformed further to a
probability Pr(o|l) for the HMM scheme. First, the Euclidian
distance for a certain o is converted to a similarity measure
ranging from 0 to 1 as follows:

| B 1
Sim(o,1) = 1+ Dist(o,1) K

Based on Sim(o,1), a probability Pr(l|o) is derived by nor-
malization as follows,

Sim(o, 1)

Frilo) =S Simfo, )

(6)

which is the probability that observation o has been
obtained at location I. The probability Pr(o|l) at location [ is
then calculated using Bayes rules, as follows:

_ Prllo)Pr(o)

Prioll) = =5

(7)

Pr(l) encodes prior knowledge about where a device
may be located, and it usually is set as a uniform distribu-
tion assuming every location is equally likely to be decided.
For an observation o, Pr(o|l)at any location [ is then can be
calculated using Euclidian distance (4), if the set of mean
observations w = {{,, iy, ---, 1y, } is given for location-
states.

Using (7), equation (2) can be rewritten as follows:

7 Pr(if|of) Pr(o})

Pr(ulp,\) = H ) i
1:1t 1 (8)
=c[[Pr®lol)
i=1
where cis
RS SA D)
c= 11 () )

For a user trace u, ¢ is a constant for any choice of p,
because Pr(l) is uniform at all locations, and Pr(o}") is a con-
stant related only to the given u. Since we are interested in
the comparative probability of taking a location-state
sequence to find the optimal state sequence of u, a constant
offset is not important and can be ignored. Accordingly, for
the likelihood function, the scaled probability Pre(u,p|\)
defined as (10) is used instead of Pr(u, p|\).

X 1

. (10)
= ([T, Pr®lo)) Privl).

4.2 Local Optimization via Segmental

K-means Algorithm
When a set of unlabeled user traces U is given, the SK
adjusts A\’ to find the A\* which maximizes Pr*(U, P*|\*),
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where p; € P is the optimal state sequence of u; € U, as given
by the Viterbi algorithm on A*. We are interested in P* as well
as the optimized parameter \* itself because P* denotes the
location-label estimation of the unlabeled training data.

The SK repeatedly improves the model parameter from
A1 to A such that Pré(U, P AL < Prs (U, PHAY) until
P'~1 = P! When an initial parameter \" = <z, A%, B> is
given, the algorithm consists of the following steps:

1. Find the Viterbi path p! for each user trace u; € U
conditioning on \".

2. Reassign the optimal location-state for each observa-
tion in U if it differs from that in P'~'. Otherwise, if
Pi=1 = P!, stop the iteration. (Henceforth, we denote
with M/ a set of observations that are assigned with
state [ at time t)

3. Update the model parameter A\ =<zl A
B> for the next iteration.

3.1 Calculate the initial probabilities and the transi-
tion probabilities:
Foreachl e L,

i _ Hot € Miju e U}|

= 11
I U] 1)
Fori,je L,
o [{ <o, 0> |of € M}, o0}, € Mj,uc U}
7]
(12)
3.2 Calculate the mean observation set pu/*!:
Foreachl e L,
A — > o (13)
|Mj|

d oele

3.3  For each location, calculate an emission probabil-
ities of every observations in U. This is done by
4), (5), (6), and (7) defined in Section 4.1, based
on the mean observations /™! given by (13).

4. Repeat the iteration from Step 1.

Eventually, for the given \’, the SK produces a local opti-
mal model A\* describing unlabeled user traces U. In our
modeling, A\’ is specified by u” with the predetermined
probabilities 7 and A°. On an arbitrary input ., we denote
it with SK(u° U), the SK local optimization procedure
using user traces U. Along with \*, SK(u",U) produces
local optimal mean observations ©*, local optimal location-
state sequences P*, and a scaled probability Pr®(U, P*|\*).
These outputs are referred to in the later steps.

Let n be the number of location-states and m be the num-
ber of observations in U. The time complexity of an SK is
generally O(n*m) + Typaare for each iteration, where O(n*m)
is the time required for the Viterbi algorithm and 7T’pgus. is
the time required to update the model parameters. In our
model, because the possible state transitions are limited to a
small size by the prior knowledge on an indoor map, the
time complexity of the Viterbi algorithm is O(cnm), where ¢
is the average number of possible transitions starting from a
location (¢< 7 in our experiments).
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Local search
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| Local optimization |
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| Chromosome update criterion satisfied?

Fig. 1. Flowchart of a memetic algorithm.

The time complexity of Tu., especially for (4) in the
emission probability calculation, is O(knm), where k is the
number of APs found in the environment. Hundreds of APs
could be found in a large building, which increases T’ qqte-
In order to reduce the time complexity, we modified the
algorithm to compute the emission probability based on
medoids instead of the mean observations. The medoid of a
location [ is one of the observations in M/ that is closest to
the mean observation y;. For this purpose, x/™* in Step 3.2 is
replaced by a medoid after the calculation of (13) as follows:

w it = argmin Dist(o|l).
oeM}

(14)

It is not necessary to recalculate distances using (4) at
each iteration because a medoid is one of the observations
in U. Instead, a pre-processed distance matrix can be
reused. Consequently, the time complexity of the SK
becomes O(cnm) for each iteration cycle, which is linearly
proportional to the number of observations and locations. It
also is linearly proportional to the number of possible tran-
sitions which is the multiple of ¢ and n.

4.3 Global Optimization via UCMA
MA 1is a population based evolutionary algorithm aug-
mented with a local search [20]. Fig. 1 presents the flowchart
of a general MA process. It consists of two parts: Genetic
Algorithm (GA) operations and a local search. The initial
population is usually generated randomly or by a specific
manner. For one generation, an evolutionary process is car-
ried out on the population by the GA operations, including
selection, crossover, and mutation. After completing the GA
operations, each individual in the population is further
enhanced during the local search procedure. By doing so,
the individuals become much closer to the global optimal
solution. The enhancement of an individual is then updated
to its chromosome, so that its descendants can inherit the
enhanced trait, unlike usual GAs. Finally, the evolutionary
process is terminated if a termination criterion is satisfied.
In the population, every individual represents a solution
with a corresponding fitness value derived from a fitness
function that evaluates the quality of the solution. The crite-
rion used in the SK, Pré(U, P*|)\), is the fitness function in
UCMA.
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4.3.1 Genetic Representation

Designing a genetic representation adapted to a specific
problem is essential for MAs and GAs. A better genetic
representation can improve the performance of evolution.
With a genetic representation, a solution is encoded in a
genotype (i.e., a chromosome of an individual), and inversely
the genotype also can be decoded to a solution (i.e. a
phenotype).

To address the local-optima problem of the SK, a candi-
date phenotype considered in UCMA is the set of mean
observations u = {4, iy, , - - -, iy, }, where each element is a
vector of mean RSSI values for k APs detected in a target
indoor environment. A genotype may have the same format
as that of the phenotype with a limited range of RSSI values.
In this case, however, the genotype space is extremely large.
Dealing with such a huge genotype space may not be practi-
cal, especially in the case that the environment includes a
large number of locations and APs. A compact genotype
representation that can enhance the evolvability and perfor-
mance of UCMA is required.

UCMA referred to the physics of signal propagation to
design a compact genotype representation. Wireless signals
are likely to follow some propagation model in an indoor
space, and therefore a signal propagation model with
parameters specifying the disposition of APs can approxi-
mately describe the WLAN environment in the indoor area.
Such an abstract model may not be precise enough to be
used as a localization model, because signals are usually
distorted from their ideal forms indoors. Fortunately, how-
ever, an initial model for the SK does not need to be precise
because it will be further improved through the local opti-
mization procedure. Based on this feature, we configure the
optimization process of UCMA so that the GA explores the
possible abstract models, and the SK is responsible for dis-
covering their distortions after converting to a more sophis-
ticated model, HMM. Under this configuration, only the
solutions that do not violate the nature of radio propagation
are discovered and evaluated, and therefore the complexity
of the learning task is effectively reduced. Another advan-
tage of this strategy is that the efficiency of the learning task
can be further improved by incorporating an AP selection
technique that reduces the number of features defining the
abstract model.

To support the above process, a genotype encodes an AP
deployment L and a propagation model PM. The AP
deployment L? is a location (location-state) assignment
L =<U{P 157, ..., [}’ > for k APs found in the training data
set. For the propagation model, we use a standard radio
propagation model [21], defined by,

l 1
PW, = PW; + 20 log <Z’—H> + 10e log <—) (15)

d

where PW; is the transmit power of an AP in dBm; PW, is its
RSSI at a device; wl is the wavelength (wl = 0.125m for
2.4 GHz); e is a path-loss exponent; and d is the distance
between the AP and the device. Given an AP deployment
L%, an attenuated RSSI, PWW,, at a location [ from an AP is cal-
culated based on the variables PW;, wl, d, and e. The transmit
power P, is assumed to be equal to the maximum RSSI
value of the AP in the data set. The wavelength wl is known,
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Fig. 2. Genetic representation in UCMA.

and the distance d is calculated between the location / and the
AP location in L. The only variable depending on the envi-
ronment is then the path-loss exponent e. The value of e is
known to vary from 1.6 to 1.8 for Line-Of-Sight (LOS) and
from 4 to 6 for Non-LOS (NLOS) in indoor environments
[32]. Therefore, the signal propagation model PM can be
defined by the pair of path-loss exponents (e;os, enros) for
LOS and NLOS, where e; g € [1.6,1.8] and enzos € [4, 6].

The genotype representation of UCMA is depicted in
Fig. 2. A genotype (chromosome) consists of two parts,
alleles representing a propagation model PA/ and alleles rep-
resenting an AP deployment L". Alleles ¢; 10 and e; nros
denote the path-loss exponents for LOS and NLOS, respec-
tively, in chromosome i, and the allele l?g denotes the location
of AP j. This type of information encodes a hypothetical
indoor WLAN environment and can be decoded to a pheno-
type, a set of mean observations, by computing attenuated
RSSIs of each AP at each location-state using (15).

Since a genotype is a combination of L and PM, the size
of the genotype space is d., , de,, 7", Whered, is the num-
ber of possible values in the range of z. It can be much
smaller than the size of the phenotype space d'%.,.

We chose the simplest radio propagation model on pur-
pose to evaluate the feasibility of UCMA under general set-
tings. More sophisticated signal models for indoor
environments, such as log-distance path loss model and
ITU model [21], are other options for the genotype represen-
tation. In those cases, GA can generate initial models in a
more precise form, but additional variables are required for
the genotype representation.

SK(u",U) enhances a phenotype 1 into u* in the local
optimization procedure. The enhanced phenotype must be
encoded in a genotype to be updated for the next genera-
tion. To encode a phenotype into a genotype, we approxi-
mate AP deployment L? appearing in the enhanced
phenotype p* as follows.

ap
lij =

arg max (rssil-tl ) , (16)

leL !
where uf € u*, and p* is the enhanced phenotype of chro-
mosome i.

In the prior discussion, we assumed that the transmit
power of an AP is equal to its maximum RSSI value in the
data set. In other words, it is regarded that the AP is located
where the maximal RSSI value is observed. The equation (16)
finds a location whose mean observation x; has maximum
RSSI for AP j, and updates the location to chromosome :.

Path loss exponents (eros,enros) appearing in p* are
also approximated for the update. By minimizing the mean
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square error between the RSSI in p* and the estimation
using (15), the path loss for AP j, ¢;, for chromosome ican be
solved by the equation in the below:

\ 2
fle;) = Z (’rssi?l — PW;; + 20 log (u_d) + 10e; log (l>> ,
leL dr d
1)

where d; is the distance between land updated AP location
l;%, and PW, ; is the transmit power of AP j (the maximum
RSSI value in the data set). By equating the derivative of f (e;)
to zero, an estimate of the path loss for AP j can be found
[21]. In this research, (17) is calculated after dividing locations
L into locations on LOS and NLOS for each AP by referring to
the indoor layout. The estimated path losses for all APs are

then averaged to obtain e;og and exz0g, respectively.

4.3.2 Evolutionary Process

The GA operations comprise selection, crossover, and muta-
tion functions. UCMA adopted a general strategy for each of
these three operations: roulette wheel selection, uniform
crossover, and random mutation respectively.

The evolutionary process of an MA starts with an initial
population of chromosomes. UCMA generates the initial
population randomly and iterates as follows:

1. Compute the phenotype 1° for each genotype by cal-
culating attenuated RSSIs for each AP and at each
location-state using (15).

Enhance each phenotype 1 into * using SK (u°, U).

3. Update each genotype based on the enhanced phe-

notype p* using (16) and (17).

4. Build a new population by means of the GA

operations.

5. Stop if a termination criterion is satisfied, or repeat

the iteration from step 1.

In the process of a local optimization, intermediate and
final changes of a phenotype are evaluated, and the final
evaluation score is transferred to the updated genotype.
Eventually, through the evolution, UCMA finds the best fit
whose phenotype n* is a set of estimated optimal mean
observations for all location-states. At the same time, an
HMM model parameter estimation A\* and a location-label
estimation P* are produced by the local optimization proce-
dure that has found the best fit.

N

4.3.3 AP Selection Automation

The efficiency of the learning task can be improved by using a
small number of selected APs for the genotype representation.
It is known that a small subset of APs can characterize a Wi-F
environment [33]; therefore, indoor localization systems often
adopt an AP selection technique, such as MaxMean or Info-
Gain, to reduce the computational cost of localization. They
select the k best APs based on some criterion with a prede-
fined parameter k, to balance the computational cost and
localization accuracy. Among the techniques, InfoGain, which
utilizes Information Gain (IG) of APs for the criterion, is recog-
nized as one of the best methods for AP selection [33].

The fewer APs are used, the faster GA operations will be
executed. Nevertheless, the selected AP set should be big
enough to characterize the Wi-Fi environment of a building
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Fig. 3. Trilateration in a 2D space. The triangles indicate AP locations.
The black dot or area is the intersection of the possible locations indi-
cated by multiple APs.

so that it can support for location identification to achieve
an acceptable accuracy range. Another requirement, which
is most important in this research, is the automation of
the selection because it is preferred for the unsupervised
calibration to be performed with no human intervention.
In order to satisfy these requirements, together with IG, we
introduce another criterion derived from the mathematical
principle of trilateration.

In the trilateration theory, a location in n dimensions can
be identified by RSSIs from 1+ 1 APs in an ideal environment
as discussed in Section 2.1.1. Fig. 3 illustrates trilateration in a
two-dimensional space. Fig. 3a shows an ideal case in which
a location is identified as an intersection of the circles drawn
from three APs. Signals, however, are noisy in real environ-
ments; the possible locations indicated by an RSSI thus do
not form a circle but occupy the area depicted by the gray
areas in the figure. In such case, the possible locations indi-
cated by two APs would occupy two distinct areas, as shown
by the black areas in Fig. 3c, while those for three APs would
be clustered in the area shown in Fig. 3b. We assume that the
error in the situation of Fig. 3b is acceptable, because the
error seems to be recovered by local optimization. With this
assumption, we acquire a set of APs such that all observa-
tions in training data have RSSI records from at least n+1
APs for an n-dimensional indoor space. (i.e.,, 3 APs in 2D
areas and 4 APs in multistory buildings) As a result, the
selected APs can characterize the Wi-Fi environment in that
the locations of all observations are identified with accept-
able errors. The AP selection algorithm is illustrated in Fig. 4.

The algorithm also uses the IG criterion but does not
require a predetermined parameter k unlike with InfoGain.
In this way, an AP selection is made without human inter-
vention. Once the algorithm defines the set of APs for an
indoor area, GA operates on a compact genotype represen-
tation defined with the selected APs. Meanwhile, SK local
optimization does not need to use only the selected APs,
because SK procedure efficiently handles a large number of
APs by reusing a pre-processed distance matrix.

5 EVALUATION

We evaluated the feasibility of UCMA in terms of efficiency
and effectiveness in the unsupervised calibration of locali-
zation models. First, the efficiency in solving the optimiza-
tion problem for unsupervised calibration was tested. The
effect of the unsupervised calibration on the localization
accuracy was also evaluated under various conditions.
Since UCMA produces location-label estimates of unlabeled
training data, any RSSI fingerprinting-based method can be
used in the localization phase. A simple kNN method (k =
3) [3] was used for the localization test in the evaluation.
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N = dimensionality of the indoor space of interest (2 or 3)
SELECTION = list of APs sorted by /G ascending
O = set of observations

for every AP ap in SELECTION
O = subset of O that has a RSSI record from ap
If all 0 in O has more than N+1 RSSI records from ap s in SELECTION
remove ap from SELECTION
endfor

Return SELECTION
Fig. 4. The proposed AP selection algorithm.

When UCMA generate a calibrated model, the model
can be evaluated directly using the result of the location-
label estimation. The calibrated model can also be evalu-
ated indirectly by a localization test using a test data set.
The results are measured by Average Distance Error
(ADE); ADE™* is used to denote the average distance
between the true locations and their estimations in the
localization test, and ADE®® does this for the location-
label estimation of a calibrated model. Simply, ADES!
represents calibration error and ADE™*® denotes localiza-
tion error. The ADE“" was used to evaluate intermediate
models generated during the optimization process, and
the ADE-°° was used to evaluate the effect of a calibrated
model on localization accuracy.

All programs for the evaluation were implemented in
Java and run on a 3.40 GHz Intel Core i7 CPU with 8 GB of
memory.

MAs and GAs have several parameters that influence
the quality of the convergence process. The very typical
approach was used for the parameter setting of UCMA.
UCMA was parameterized as follows:

The population size was fixed at 100.
One percent of the genes of every genotype were
mutated in each generation.

e Ten percent of new individuals were introduced at

each generation to ensure genetic diversity.

e The number of generations was fixed at 100.

The experiments were conducted in two medium- and
large-scale office buildings, N1 and N5 at Korea
Advanced Institute of Science and Technology (KAIST),
Daejeon, Korea. Fig. 5a depicts the experimental area in
N1 (testbed N1), and Fig. 5b shows the experimental area
in N5 (testbed N5). Testbed N5 included three floors
while testbed N1 included only one floor. Four people
carrying their wireless device (Samsung Galaxy S3)
walked along the hallways and collected user traces con-
sisting of RSSI measurements with a sampling rate of
1Hz. The ground-truth coordinates of the measurements
were obtained using a click-to-map-based annotation pro-
gram. About four-fifths of the collection was used for the
calibration and the rest were left for the localization test.
The specifications of the testbeds and their data collec-
tions are listed in Table 2.

The localization area was composed of one-dimensional
hallways (including stairs). The hallways were then divided
by g meters, denoting location granularity. Another parame-
ter needed for UCMA is for human mobility. We assumed
that people could not move faster than 5 m/sec in the
experiments.
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(b) Testbed N5

Fig. 5. Experimental areas at KAIST, Korea: (a) testbed N1: 7™ floor of N1 building; (b) testbed N5: all three floors of N5 building.

TABLE 2
Experimental Setups

Data collection

Testbed Area Total length ~ # APs detected Calibration data Test data
of corridors
#traces  # measurements #traces # measurements
N1 (80 x 32)m> x 1 floor 196 m 196 50 1,848 14 449
N5 (91 x 83)m? x 3 floors 702 m 257 110 4,184 25 1,041

5.1 AP Selection Evaluation

At first, the effectiveness of the proposed AP selection tech-
nique was tested because it is the starting step of UCMA.
Generally, the effectiveness of an AP selection is evaluated
in terms of the localization accuracy. The ground-truth
model, which was trained with the ground-truth location
labels, was used for the evaluation. The results were com-
pared with those obtained using InfoGain, the most well-
known method for AP selection.

The proposed technique selected nine APs out of 196 in
testbed N1, and 25 APs out of 257 in testbed Nb5. The locali-
zation results using the selected APs are shown in Fig. 6. As
InfoGain requires a parameter for the number of APs, Fig. 6
plots ADE™* for InfoGain depending on the number of APs
used. In contrast, the results of the proposed technique are
shown with a point in the figure because it automatically
defines the number of APs to be used. As shown in the
figure, the ADE"*° values of the proposed technique were
lower than those of InfoGain for the same numbers of APs.

6,
—o— N1, InfoGain
_5r ® N1, Proposed
3 —=a— N5, InfoGain
8 4r m N5, Proposed
=
°
< 3» TEEERgga e
2r . . L UO000000000¢
5 9 15 25 35 45 50

# selected APs

Fig. 6. Effect of AP selection techniques on localization accuracy.

We achieved 3.25 m in testbed N1 and 3.87 m in testbed N5,
whereas InfoGain yielded 4.01 and 4.47 m, respectively.
InfoGain has the advantage of balancing computational cost
and localization accuracy with a parameter, but defining the
parameter can be viewed as onerous, especially for unsuper-
vised learning. Since the proposed AP selection technique
can generate a better subset of APs in terms of localization
accuracy without defining a parameter, it can be considered
as an adequate method for unsupervised calibration.

5.2 Efficiency Comparison
This section shows how efficiently UCMA can solve
the optimization problem for unsupervised calibration. The
results of UCMA were compared with those of SK using
random initialization (henceforth called RanSK for conve-
nience), which is a general scheme for SK-based HMM
training. Similar to UCMA, RanSK can incorporate the pro-
posed AP selection technique. Therefore, four optimization
schemes were compared: UCMA with(+) the AP selection,
UCMA without (-), RanSK with(+), and RanSK without(-).
They are denoted by UCMA+, UCMA-, RanSK+, and
RanSK-, respectively. (Note that UCMA+ is the proposed
unsupervised calibration scheme.) For fair comparison,
RanSK+/- iteratively evaluated the same number of solu-
tions with UCMA+/- (populations x generations).

In this experiment, the location granularity g was set to
3 m. As results, 65 locations and 398 possible transitions
were generated for testbed N1, and 232 locations and 1,238
transitions for testbed Nb5.

Fig. 7 compares the convergence graphs of the four
schemes in testbed N1. Overall, the fitness value increased
with the number of iterations or generations. However, as
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Fig. 7. Convergences of UCMAs and RanSKs in testbed N1.

can be seen in the figure, UCMA+ converged faster than the
others did and found the solution with the highest fitness
value. In addition, the schemes using the AP selection tech-
nique converged faster than the ones without the selection,
even for the cases of RanSK schemes. The effect of the AP
selection on UCMA was not significant, but the convergence
became slightly faster due to the AP selection effect.

Fig. 8 plots the calibration error, ADES?! of the models
generated by UCMAs and RanSKs for the testbed N1. As can
be seen in the figure, better fitness did not necessarily corre-
spond to a better model. Nevertheless, the there was a ten-
dency of generating a better model as fitness and the number
of iterations increased. In particular, ADE of UCMA +
reached below 3.3 m at the 20th generation and stabilized at
that level. UCMA- achieved a similar result to UCMA+, but
was slightly slower. Meanwhile, RanSK+/- yielded the cali-
bration errors of 8 m and 12.2 m, respectively.

As can be seen in Fig. 8, ADE<" of the UCMA schemes
stabilized after a certain generation, whereas their fitness
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Fig. 8. Calibration errors of UCMAs and RanSKs in testbed N1.

2901

10-7600
107709
<
o 107800 i
S
a
Q
— 4077900
[}
[%2]
(0]
=]
i
108000,
RanSK-
107810 s s s s ‘ s ‘ ‘
S S S S S S SSLSSS
N S Q& Q@ Q& Q@ Q‘e QQ Q@ Q@ N
§ &§ § 8 F S I
~° o o w o [ A e 0y QQ*
N

# Solutions (GA generation)

Fig. 9. Convergences of UCMAs and RanSKs in testbed N5.

values slightly but continuously increased as the number of
generations increased as shown in Fig. 7. This indicates that
there are no significant differences in fitness among the
models having ADE“" of less than 3.5 m. Noise in wireless
signals is inevitable, especially in indoor environments, due
to signal distortion and environmental dynamics. This may
distort the correlation between the fitness and the correct-
ness of a calibrated model when the calibrated model is
close to the truth. It may be inferred from this result that
there is a certain limitation in unsupervised calibration due
to the noise in wireless signals.

Figs. 9 and 10 show experimental results in testbed N5.
The convergence graphs in Fig. 9 show similar patterns
with those for testbed N1 shown in Fig. 7. Testbed N5 is
larger than N1 as it accommodates approximately 3.5 times
more number of locations than N1 does (232 and 65 loca-
tions, respectively). This difference in size was reflected
in the calibration errors of the RanSK schemes. While
RanSK+/- yielded calibration errors of 8 m and 12.2 m in
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Fig. 10. Calibration errors of UCMAs and RanSKs in testbed N5.
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TABLE 3
Summary of Experiment for Efficiency Comparison
Best fit

Testbed Scheme CPU time Avg. # iterations
(minute) In SK Fitness ADE (Std.)
N1 UCMA+ 26 10.1 1076463 3.27 m (1.60)
UCMA— 152 10.3 107046° 3.31 m (1.54)
RanSK+ 28 10.5 06510 7.95m (4.31)
RanSK— 162 11.7 107%%%7 12.19 m (4.77)
N5 UCMA+ 266 9.6 107641 3.58 m (1.79)
UCMA— 2,120 10.0 1077654 3.97 m (2.01)
RanSK+ 278 10.4 10-78% 24.13 m (5.41)
RanSK— 2,183 10.8 1077°% 27.52 m (6.06)

testbed N1 (Fig. 8), they could not reduce the error below
20 m in testbed N5 (Fig. 10). Nevertheless, the effect of size
difference on UCMA schemes was not significant. ADE“"'s
of UCMA+/- in testbed N5 were similar to those in N1, as
can be seen in Fig. 10. Also, UCMA + delivered a more accu-
rate model faster than the others, and its error was less than
3.6 m. Detailed evaluation results on this experiment can be
found in Appendix, in the form of CDF plots.

Table 3 summarizes the results of the experiments. It
revealed that the UCMA+ scheme generated the best mod-
els for both the testbeds in terms of fitness value. Mean-
while, there were no significant differences in calibration
errors between UCMA+ and UCMA-. As can be seen in the
table, the running time of the schemes using the AP selec-
tion was much faster than that of the ones not using the AP
selection. Regarding the CPU time of the UCMA schemes,
UCMA+ executed approximately 5.7 times faster than
UCMA- in testbed N1, and eight times faster in testbed N5.
Thus the efficiency improvement by the AP selection will be
a way better than that shown with respect to generations, if
the CPU time were also considered.

5.3 Localization Accuracy Test

We compared the localization accuracy achieved by UCMA
(unsupervised localization) with that of a model built in a
supervised manner using the ground-truth location labels
(supervised localization). The average error distances ADE-
Lo¢ were measured according to the changes of the amount
of training data and location granularity.

Fig. 11 compares the errors of unsupervised and super-
vised localizations in testbed N1 (g = 3) as the increment of
the training data. As shown in the figure, the supervised
localization using more than 400 training samples achieved
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Fig. 11. Effect of the amount of training data on localization accuracy in
testbed N1.

an ADE™° value of less than 2 m, and no significant
improvement was observed when more than 600 samples
were used. In contrast, the error of the unsupervised locali-
zation progressively decreased as more data were used for
the training, and it achieved localization errors of approxi-
mately 3.2~3.5 m with more than 1,200 samples.

The experiment in testbed N5 showed similar results to
those in testbed N1, but, as the area of N5 is bigger than N1, a
larger amount of training data was required to build a pre-
cise localization model. As can be seen in Fig. 12, ADE"° of
the supervised localization reached less than 2.2 m with
more than 1,000 data and stabilized at that level. The unsu-
pervised localization achieved ADE"*° of 3.6 m when more
than 2,800 samples were used for the training. Clearly, both
supervised and unsupervised localizations require some
amount of training data to provide an accurate localization
service, but this experiment has confirmed that an unsuper-
vised calibration scheme requires much more data to
uncover a hidden structure in unlabeled data. In the two test-
beds, at least 18.5 and 12.1 samples were required in average
at each location for successful unsupervised calibration. This
indicates that the required amount of training data would be
dependent on the environmental features of a building.

Fig. 13 plots the CPU time required for UCMA. As dis-
cussed in Section 4.2, the time complexity of an SK iteration
cycle is linearly proportional to the number of observations.
Other factors which affect the running time of UCMA are
the numbers of generations and SK iterations. In our experi-
ment, the number of generations was fixed to 100, and the
number of SK iterations was around 10 (refer to Table 3).
Accordingly, CPU time required for UCMA turned out to
be linearly related to the number of observations as shown
in Fig. 13.
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Fig. 12. Effect of the amount of training data on localization accuracy in
testbed N5.
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Fig. 13. Effect of the amount of training data on training time for UCMA.

Localization accuracy depends on the quality as well as
the quantity of the training data. Location granularity influ-
ences the quality of the training data because it determines
the resolution of the location information to be labeled on fin-
gerprints. Fig. 14 depicts the localization errors in testbed N1
when using both supervised and unsupervised learning
methods for the location granularity parameter g, and Fig. 15
shows those in testbed N5. Overall, the error decreased as the
location granularity became finer. In testbed N1, the unsuper-
vised localization achieved ADE™° values of about 2.7-3.7 m,
whereas the errors of the supervised localization were
observed in a range of 1.6-2.8 m. In testbed N5, the unsuper-
vised localization achieved ADE™* values of about 3.1-4.6 m,
whereas the errors of the supervised localization were
observed in a range of 2.0-3.7 m. Although the unsupervised
localization was not able to outperform the supervised type,
they showed similar error changes depending on g. This
implies that location granularity has a similar effect on both
unsupervised and supervised localizations. CDF compari-
sons on the result of this section can be found in Appendix.

Meanwhile, location granularity affects the training time
for unsupervised calibration. Finer granularity increases the
number of locations. It can also increase the number of
reachable locations from a location considering a given
human mobility. Thus, finer granularity increases the total
number of possible transitions among the locations. Fig. 16
shows the time taken in testbed N1 as the increment of the
possible transitions. In the figure, each dot represents the
result from an experiment for a given granularity g, and it is
annotated with the number of locations, n, and the average
number of transitions out of a location, c, respectively.
As shown in the figure, the training time linearly increased
as the number of the possible transitions increased. This
result has confirmed that the training time of UCMA is line-
arly proportional to the number of possible transitions as
discussed in Section 4.2.
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Fig. 14. Effect of location granularity on localization accuracy in testbed N1.
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Fig. 15. Effect of location granularity on localization accuracy in testbed N5.

6 DiscussiON

6.1 Calibration Effort Reduction

The experiments conducted under various conditions mani-
fested that the proposed unsupervised calibration method,
UCMA, can build a precise localization model without
requiring location labels of training data. The average dis-
tance error of UCMA ranged from 2.7 to 3.7 m in a medium-
scale building and 3.1 to 4.6 m in a large-scale building,
which were only slightly lower than those of fully super-
vised calibration requiring extensive labeling efforts. These
results imply that an indoor localization service will be pos-
sible through implicit crowdsourcing if the data contribu-
tion were made by participants in most areas of a building.

The primary goal of this research is to minimize the cost
of localization model calibration, and the cost can be esti-
mated from the resources required in the calibration. Table 4
shows comparisons between UCMA and the previous
methods for reducing calibration efforts discussed in Sec-
tion 2.2, including resource requirements for each method.
Note that localization accuracies listed in the table are not
important for the comparisons because their accuracies are
highly dependent on their own experimental settings. What
we can conclude from the accuracies is that all of the meth-
ods have been successful in constructing localization mod-
els with the help of unlabeled fingerprints.

The methods for reducing calibration efforts can roughly
be classified into inertial sensor-based and learning-based
methods. Inertial sensor-based methods usually estimate
the locations of unlabeled fingerprints included in user
traces by placing the traces on a floorplan using dead reck-
oning techniques. Learning-based methods also estimate
the placement of fingerprints, but the distribution of RSSI
values is mainly considered in the estimation process.

1 T T T T T T
50 g=1m:n=196, c=6.8 —

120 1
= g=4m: n=59, ¢=3.9
E 90T g=3m: n=165, c=3.9 1
2 e0f .
= < g=2m: n=97, c=4.5
7 301 E
5] : g=5m: n=37, ¢=3.6

0 g=6m: n=35, ¢=3.7
0 200 400 600 800 1000 1200

# possible transitions

Fig. 16. Effect of the number of possible transitions on training time for
UCMA in testbed N1. (g = location granularity, n = the number of loca-
tions, ¢ = the average number of transitions out of a location).
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TABLE 4
Calibration Effort Reduction Methods Using Unlabeled Fingerprints
Method I . Requirements for Calibration Localization Accuracy
Category (author) Calibration Algorithm (except unlabeled fingerprints) | (from literature)
ZEE [8] Dead Reckoning Inertial Sensors, Floorplan 3m
. Dead Reckoning, Manifold Learn- .
LiFS 9], [10] ing (Multidimensional scaling) Inertial Sensors, Floorplan 5.9m
Inertial sensor-based Dead Reckoning, Clustering algo- 86%
WILL[11] fithms (k-means, EM) Accelerometer, Floorplan (Room detection)
i Inertial Sensors, magnetometer,
Unloc[7] Dead Reckonlng, g 1~2m
k-means clustering Floorplan (seed landmarks)
Chai et al. [13] |Expectation Maximization (HMM) gﬁ:tf (azgitirgtogzl)abeled finger- 55%~90% within 3m
Genetic algorithm, Some amount of labeled finger-
EZ[12 - 2m, 7m
(2] Gradient Descent prints (6%, 15%)
Manifold Learning (Laplacian Some amount of labeled finger- e .
LARM[14] Eigenmaps ), Singular Value De- | prints (5%~25%) or AP location giost:r?c/gs()re'a“"e error
composition, Dead Reckoning information, Inertial sensors
Semi- Manifold Learning (Dirichlet’'s
Learning- | Supervised Tran etal. [15] |energy minimizat?o(n) Total Varia- Some amount of labeled finger- | 40~45% (relative error
based - tion-based graph regularization prints (10%~90%) distances)
Sorour Manifold Learning Some amount of labeled finger- |, 4,
etal. [16] (Locally Linear Embedding) prints (10%~50%), Floorplan :
Pulkkinen . . Some amount of labeled finger-
etal. [17] Manifold Learning (Isomap) prints (9%) 2m
WiFi-SLAM [18] | Manifold Learning (GP-LVM) A good initial model (Isomap) 3.97m
Unsupervised |UCMA Memetic Algorithm, Floorplan 2.7m, 3.1m

Segmental K-means

The learning-based methods shown in the table can further
be classified as semi-supervised or unsupervised methods
depending on whether labeled fingerprints are involved in
the learning process or not, respectively.

The comparison table shows that there are three types of
data requirements: data from inertial sensors, floorplans,
and labeled fingerprints. Among these data, the labeled fin-
gerprints are considered as the most expensive ones
because the acquisition of location labels is usually per-
formed through laborious manual efforts. The cost of the
data from inertial sensor is relatively low because the acqui-
sition of these data usually does not require human inter-
vention. The cost for the acquisition of floorplans is also low
and sometimes assumed to be zero in this research area [8],
because the floorplans, regardless of their involvement in
calibrations, are prerequisites for the implementation of
location-based services. In that sense, inertial sensor-based
methods, which depend on inertial sensors and floorplans,
are expected to be more effective in reducing calibration
efforts than semi-supervised learning-based methods,
which mainly depend on labeled fingerprints. The efforts
can be further reduced in UCMA by using only floorplans
to make use of unlabeled fingerprints in the calibration of
localization model. Therefore, we can conclude that UCMA
is the most effective method among the methods listed in
Table 4 for the reduction of calibration efforts.

6.2 Limitations

Training time required for UCMA linearly increases
depending on the number of observations and locations.
When we consider that user traces are collected from

numerous buildings in villages and cities all over the
world, we need to develop a technique to further reduce
the training time. It is better to use a small portion of the
millions of crowdsourced data for unsupervised calibra-
tion and then switch to a semi-supervised learning on the
rest of the data. The proposed method provides the esti-
mated location labels, which are essential to semi-super-
vised learning approaches.

In our modeling, an indoor space is modeled as a set of
finite location-states and constrained transitions where each
state corresponds to a physical location. However, there is no
guarantee of one-to-one correspondence between a model
and a space if the layout of a building is symmetrical, because
a symmetric layout allows multiple mappings between the
model and the space. That is, the calibration may fail because
of the structure of a building. In this case, a few location refer-
ences such as GPS coordinates obtained near windows can
play a critical role in finding a single correct mapping.

The methods that use unlabeled fingerprints for reducing
calibration efforts, including UCMA, usually assume that
the building in which the fingerprints have been collected is
known. The building should be identified in advance if the
methods are to be applied to practical crowdsourcing-based
localization systems. To address this problem, a crowdsourc-
ing-based system can use indoor/outdoor environment
detection techniques [34], [35]. Typically, these techniques
identify the building which a user is located in by referring
to GPS data stored in devices or other ambient features.

Relatively simple model and techniques have been used
for building UCMA, and it has been implemented under
general assumptions. More specifically, the evolutionary
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process of UCMA adopted simple strategies for GA opera-
tions, and a very common way was used for the setting of
its parameters. In the HMM modeling, the simplest likeli-
hood metric, the Euclidian distance, was used instead of
using a more advanced measure. The transition probabili-
ties of the HMM model were initialized using a static
threshold on human mobility. In fact, they can be dynami-
cally inferred using the sensing data from inertial sensors.
The studies of human motion patterns can sophisticate the
mobility setting as well. Furthermore, there are specialized
radio propagation models for indoor environments [21],
which can replace the general model (1) used in UCMA.
Therefore, the proposed method can be improved further, if
the more advanced techniques are used for each step.

7 CONCLUSION

In this paper, we presented UCMA, an unsupervised cali-
bration method that can build an indoor localization system
using unlabeled RSSI measurements. Simple modeling and
optimization techniques were employed in unsupervised
learning on the unlabeled measurements. The evaluation on
the two office buildings confirmed that, under various con-
ditions, the proposed method can build a precise localiza-
tion model without any location reference.

An indoor map and online RSSI measurements are two
essential requirements in the service phase of fingerprint-
ing-based localization systems. UCMA uses only the two
inputs for the calibration, whereas conventional approaches
require extra inputs or extensive efforts. This indicates that
a localization system can be implemented by UCMA with-
out additional cost except computational cost on the server
side. In that sense, the technique has the potential to make
significant progress in indoor localization, especially in real-
izing a global indoor positioning system.
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