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Abstract—Mobile edge computing (MEC) has emerged as
a solution to address the demands of computation-intensive
network services by providing computational capabilities at the
network edge, thus reducing service delay. Due to the flexible
deployment, wide coverage and reliable wireless communication,
unmanned aerial vehicles (UAVs) have been employed to assist
MEC. This paper investigates the task offloading problem in a
UAV-assisted MEC system with collaboration of multiple UAVs,
highlighting task priorities and binary offloading mode. We
defined the system gain based on energy consumption and
task delay. The joint optimization of UAVs’ trajectory design,
binary offloading decision, computation resources allocation, and
communication resources management is formulated as a mixed
integer programming problem with the goal of maximizing
the long-term average system gain. Considering the discrete-
continuous hybrid action space of this problem, we propose a
novel deep reinforcement learning (DRL) algorithm based on
the latent space to solve it. The evaluation results demonstrate
that our proposed algorithm outperforms four state-of-the-art
alternative solutions in terms of task delay and system gain.

Index Terms—Mobile Edge Computing, Unmanned Aerial
Vehicle (UAV), Task Offloading, Deep Reinforcement Learning

I. INTRODUCTION

LATELY, many new computation-intensive and delay-
sensitive network services which require large amounts

of computation resources are emerging. Multi-access/mobile
edge computing (MEC) [1] is an innovative computing
paradigm that provides computational functions at the network
edge to support such services. However, the current MEC
solutions are not suitable for the situations with very high
number of users or when network facilities are sparsely
distributed [2]. In these situations, unmanned aerial vehicles
(UAVs) can be employed to assist the MEC systems with
their flexible deployment and large coverage potential, making
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UAV-assisted MEC systems promising solutions to enable
execution of highly distributed computation-intensive tasks.

In terrestrial MEC networks both the location and service
coverage of edge nodes are fixed and the edge servers can
provide services for users in the local area only [5]. The UAV-
assisted MEC systems have some unique features compared
to the traditional terrestrial MEC systems [3][4]. First of all,
UAVs introduce mobility and offer flexibility, and therefore
can support close-range services and can increase system com-
puting capacity dynamically. When the computation workload
of an edge server is very high or users need support beyond
the coverage area, UAVs’ flight trajectory can be adjusted
flexibly to provide service. Additionally, the scalability of
the UAV-assisted MEC system is also unrivalled. Secondly,
the onboard computing resources and energy supply of UAVs
are very limited when compared with terrestrial edge servers,
making any related task offloading decision very challenging.
Therefore, unfortunately, the task offloading methods designed
for terrestrial MEC-enabled networks can not be applied
directly to the UAV-assisted MEC systems and new solutions
are sought.

The single UAV-assisted task offloading problem has been
extensively studied [6]-[10]. Due to its limited resources, a
single UAV is adaptable to scenarios with small tasks, and
the improvement provided to any task performance is limited.
Also, it is often hard to meet the requirements for increasing
task demands for computation resources. Instead, a more com-
plex system which relies on collaboration of multiple UAVs
is worth investigating [11]. It can provide rich computation
resources and large service coverage. However, there are many
challenges in relation to the task offloading problem in a multi-
UAV MEC system, including trajectory design of multiple
UAVs to avoid collisions of UAVs, management of commu-
nication resources between UAVs to improve transmission
efficiency, collaborative task offloading to balance computation
workload of UAVs, and so on.

In this context, few works on UAV-assisted MEC systems
consider task priority. Diverse tasks have different tolerance
of delay and their related services have diverse consequences
[12]. For example, failure to complete navigation or road
sensing tasks within the allowed delay threshold can have
serious consequences (i.e. car accidents), while failure during
live video streaming only affects user experience. Tasks with

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3350078

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



strict delay constraints should have high priority and need
to be processed first to meet their delay requirements. Using
preemptive scheduling methods makes it difficult for the low-
priority tasks to get their required computing resources from
UAVs, causing high delay and low quality services. A different
approach should be used in order to avoid the starvation of
low-priority tasks. Therefore, the task offloading decision in
a UAV-assisted MEC system should be carefully designed to
satisfy the different task requirements.

Most existing UAV-assisted task offloading schemes focus
on partial offloading, allowing some flexibility in allocating
resources for smaller sub-tasks and further reducing task
processing delay [3][13]. Although partial offloading has many
advantages, it may be difficult to be applied to indivisible
computation tasks [14]. Binary offloading may not be suitable
to all cases, but is worth investigating as a complement to
partial offloading, as it may provide more choices in the
quest to achieve a good performance of task offloading in
many scenarios. However, employing binary offloading may
turn the task offloading problem into a joint optimization
problem of continuous and discrete variables, which further
increases the difficulty of solving the problem. Besides, both
the requests and resource requirements associated with each
UAV are highly time-varying. In this context, to improve
the system performance, long-term average optimization is
essential. However, it is hard to solve this problem of a non-
convex nature, in a dynamic environment and with incom-
plete future information. Following the recent improvements
of artificial intelligence (AI) approaches, deep reinforcement
learning (DRL) has demonstrated good results in long-term
optimization problem solving, which is very useful in wire-
less communications. Through training on historical data and
exploring the dynamic environments, DRL can help take ap-
propriate actions to get the optimal long-term average reward
and make intelligent decisions under uncertainty, which can
help solve our problem.

In order to address the above challenges, this paper focuses
on task offloading in collaborative UAV-assisted MEC systems
while considering task priorities and binary offloading. We
optimize the long-term average system gain which is defined
as being composed of task delay and energy consumption. The
problem is formulated as a Markov Decision Process (MDP)
with a discrete-continuous hybrid action space, and a novel
DRL algorithm is proposed to solve it. The major contributions
of this paper are as follows:
• We investigate the priority-aware task offloading problem

in a collaborative multi-UAV-assisted system, whose goal
is to maximize the long-term average system gain. The
joint optimization of UAVs’ trajectory design, offloading
decision, computation resources allocation, and commu-
nication resources management is formulated as a mixed
integer programming problem with the constraints of
transmit power, computation capacity and task delay.
Furthermore, this problem is transformed into a MDP.

• Considering that the traditional DRL algorithms are
not compatible with a discrete-continuous hybrid action

space, we introduce an embedding table for discrete
actions and a conditional variational auto-encoder for
continuous actions. Using the encoder, we construct a
latent space for hybrid actions. Combining the latent
space and a twin delayed deep deterministic policy gradi-
ent (TD3) algorithm, a novel DRL algorithm which can
deal with a discrete-continuous hybrid action space is
proposed to solve our joint optimization problem.

• We evaluate comparatively the proposed algorithm and
experimental results show that our algorithm has better
performance than four alternative solutions in terms of
task delay and system gain.

The rest of this paper is organized as follows. The re-
lated works are discussed in Section II. The system model
is introduced in Section III and the optimization problem
formulation is shown in Section IV. Algorithm design and
analysis of solutions are given in Section V. Section VI
shows the performance of the proposed algorithm in terms of
experimental results. Finally, Section VII concludes this paper.

II. RELATED WORKS

Employing UAV-assisted MEC systems is a promising ap-
proach to dynamically expand network computing capacity
and support emergency events. Task offloading in a UAV-
assisted MEC system is a key issue and is becoming the focus
of the latest research. From the optimization scenario point of
view, the existing works can been mainly divided into single
UAV solution and multi-UAV cooperative approaches.

For single UAV-assisted MEC networks, authors of [6]
designed a resource allocation framework, which maximizes
the computation rate by jointly optimizing computation re-
sources, communication resources and UAV trajectory. An
alternative algorithm was proposed to solve the non-convex
problem, and the successive convex approximation (SCA)
method was used to optimize the UAV trajectory. Authors of
[7] designed a UAV-assisted MEC system to reduce terrestrial
signal blockage and shadowing. The joint optimization of UAV
position, task offloading decision and resource allocation was
formulated as a problem with the goal of minimizing task
delay and UAV energy consumption. To solve the problem,
an algorithm based on SCA was proposed. In [8], UAVs
were applied to a 5G-enabled community task offloading
system. The authors clustered users into communities based
on geographic locations, and formulated the UAV-assisted task
offloading problem as a mixed integer non-linear programming
problem to maximize the average throughput. Researchers in
[9] proposed an evolutionary multi-objective reinforcement
learning algorithm to solve the UAV trajectory design and task
offloading problem. They focused on three optimization sub-
problems: minimize task delay, minimize energy consumption
of UAV, and maximize the number of tasks collected by the
UAV. The dependency among different tasks was highlighted
in [10]. The joint optimization problem of resource allocation
and trajectory design was formulated to minimize the system
energy consumption with the constraints of task delay and
dependency. The problem was further decomposed into two

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2024.3350078

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



sub-problems iteratively and a joint dynamic programming
and convex optimization algorithm was proposed to solve it.
However, as mentioned, single UAV has limited power and
computation resources, and may not significantly improve the
system performance to meet users’ requirements.

Multiple UAVs collaborative MEC systems which can uti-
lize the resources of multiple UAVs have attracted increasing
attention. Authors of [15] focused on the task offloading
optimization problem in multiple UAV-enabled wireless net-
works. A two-layer cooperative framework based on software-
defined networks to optimize the computation resources was
designed, and a queue-based algorithm was proposed to min-
imize task delay. Authors of [16] formulated a delay mini-
mization problem for the multi-UAVs enabled MEC networks.
The load balancing of multiple UAVs was formulated as a
no-convex problem. To get online task offloading decisions,
authors further transformed the problem and utilized Lyapunov
stochastic optimization to address it. DRL was used for the
multi-UAV MEC systems in [17]. Authors formulated a MDP
by jointly optimizing UAV trajectories, task offloading and
transmit power. Considering the high-dimensional continuous
action space, a multi-agent DRL based on the TD3 algorithm
was proposed to minimize total system cost. In addition to
the task offloading problem in UAV-enabled systems, service
caching problem was also taken into account in [18]. UAVs
made task offloading decision and service caching decision
at different time frequencies where caching decision had a
longer time window. The energy consumption is formulated
as a virtual queue and an algorithm based on the Lyapunov
optimization was proposed to minimize the long-term average
service delay. The vehicular fog computing based UAV system
which combined unmanned ground vehicles and UAVs was
introduced in [19]. The task offloading was transformed into
a two-sided matching problem, then the authors designed a
distributed algorithm by the dynamic of UAVs to reduce task
delay. The UAVs-assisted MEC technology was combined
with intelligent transportation systems in [20]. The authors
proposed a UAV-enabled multi-hop collaborative framework
to maximize user experience and task delay in each time slot.
However, the above works do not consider the priority of tasks
when making task offloading decisions. Different tasks have
different delay requirements. If we schedule all tasks equally,
some important tasks may not be finished within the allowed
delay threshold, which has serious consequences.

Few works on computing offloading consider task priority.
The authors of [21] assigned a priority to each task based
on its deadline and proposed a new delay-dependent priority-
aware task offloading strategy for scheduling tasks, which
can reduce the waiting time of the delay-sensitive tasks. The
researchers who published [22] studied the priority-aware task
offloading problem in a vehicular fog computing context. They
formulated this problem as a MDP and proposed a DRL
algorithm to solve it. Unfortunately, the research solutions
proposed these papers rely on the fog computing framework
and cannot be directly applied to UAV-enabled MEC networks.
The authors of [23] studied the priority-aware task offloading

UEs

UAVs

EC

Fig. 1: UAV-assisted MEC system

problem with one UAV providing service. They employed a
deep Q-learning algorithm for the problem and considered
the scenario of a single UAV only, without any cooperation
between multiple UAVs. The authors of [24] paid more at-
tention to users’ satisfaction of servers in UAV-enabled MEC
networks and considered the task priority based on the delay
requirements of users’ tasks and remaining energy status of
users. By jointly optimizing task offloading decisions and UAV
scheduling strategy, the multi-UAVs enabled task offloading
problem is formulated to maximize the total user satisfaction
with constraints related to UAV energy consumption. This
work mainly focused on the design of offloading decisions and
UAV scheduling strategy, but did not consider the allocation
of transmit power and computation resources. Additionally,
the authors of [24] studied the partial task offloading problem,
which applies to many scenarios. In real world, there are many
indivisible computation tasks, and the study of binary task
offloading is still highly valuable.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A UAV-assisted MEC-based system with N UAVs, M user
equipments (UEs) and access to an edge cloud server (EC)
is considered as shown in Fig. 1. UAVs have two main roles
related to data transmission and computation, respectively. On
one hand, UAVs can forward computing tasks to other UAVs or
the EC. On the other hand, UAVs can also provide computation
resources to help UEs accomplish their tasks. Without loss
of generality, the time is slotted, i.e., T = {1, 2, ..., T}. A
time slot refers to a short period of time, which can be in the
region of several hundred milliseconds. Time slots are used to
describe small time intervals in the proposed model design.
Each UE m needs to handle computation-intensive tasks in
each time slot. This can be defined via a four tuple qm(t) =
(cm(t), um(t), vm(t), om(t)), where cm(t) is the computing
workload (the number of CPU cycles), um(t) is the transmitted
data size, vm(t) is the allowed delay threshold and om(t) is
the task priority.

UAVs are equipped with multiple antennae, and can serve
multiple UEs at the same time [25]. There are three trans-
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mission modes: ground-to-air (G2A) transmission from UE to
UAV, air-to-air (A2A) transmission from UAV to UAV, and
air-to-ground (A2G) transmission from UAV to EC.

A. UAVs Movement

We design the 3D coordinate of UAV n as wn(t) =
[xn(t), yn(t), zn(t)]T , where xn(t), yn(t) and zn(t) are the
X, Y, Z coordinates of UAV n at time slot t, respectively.
Denote the vn(t) = [xn(t), yn(t)]T as the 2D coordinate of
UAV n. UAVs always have limited flight distances because of
their limited horizontal and vertical flight speeds, which can
be given by:

4vn(t) = ||vn(t+ 1)− vn(t)|| ≤ Lhmax (1)
4zn(t) = |zn(t+ 1)− zn(t)| ≤ Lvmax (2)
Zmin ≤ zn(t) ≤ Zmax (3)

where 4vn(t) and 4zn(t) denote the horizontal travel dis-
tance and vertical travel distance, respectively; Lhmax and
Lvmax are the maximum horizontal and vertical distances of
the UAVs, respectively; Zmin and Zmax denote the minimum
and maximum heights of UAVs.

To avoid collision between any two UAVs, the distance
between UAVs should not be less than a minimum distance
Dmin. The collision constraint is:

||wn(t)−wj(t)|| ≥ Dmin,∀n, j, n 6= j (4)

When a rotary-wing UAV flies, its flight energy power is
related to the speed v [26], which is defined as:

P flyn (v) =
Wn

2
v2 (5)

where Wn is the mass of UAV n. The flight energy consump-
tion of UAV is obtained by:

Eflyn (t) = P flyn (
||wn(t+ 1)−wn(t)||

4t
)4t (6)

where 4t is the interval duration of time slot.

B. Communication Model

We consider a UAV-enhanced MEC system which involves
collaboration between multiple UAVs, which can communicate
with each-other. We denote the bandwidths of the three main
links as follows: BG for the G2A links, BA for the A2A links
and BE for the A2G links. As the output data size of sub-tasks
is usually much smaller than the input data, next we ignore the
cost of result downloading [8]. Beside, the cross-interference
between UAVs and UEs is also neglected in this paper [27].
This can be the focus of future work.

1) G2A Transmission: For G2A communication links, there
are many scatters or obstacles in the real environment. So the
radio signals do not propagate in free space because of the
shadowing or scattering caused by obstacles, which results in
additional path loss. As a result, the use of the simplified free
space path loss (FSPL) model [26] is not accurate enough
to model the communication between ground UEs and air
UAVs. Instead, a probabilistic path loss model which considers

the occurrence probabilities and path loss of LoS and Non-
LoS (NLoS) communication is introduced to model the G2A
communications.

The occurrence probabilities of LoS and NLoS communi-
cations between UE m and UAV n are:

PLoSm,n (t) =
1

1 + ae−b((180/π)arcsin(zn(t)/dm,n(t))−a)
(7)

PNLoSm,n (t) = 1− PLoSm,n (8)

where dm,n(t) = ||wn(t) − wm(t)|| is the distance between
UE m and UAV n, a and b are constant values related to the
environment. Thus, the path loss between UE m and UAV n
for LoS and NLoS communication is modeled as follows:

PLζm,n(t) = Lm,n(t) + ηζ , ζ ∈ {LoS,NLoS} (9)

where Lm,n(t) = 20lg(4π/c) + 20lg(frc) + 20lg(dm,n(t))
denotes the free space path loss, lg is log10, frc means
the carrier frequency, c means the speed of light, and ηζ is
excessive path loss of LoS or NLoS links. We get the average
path loss for the G2A links next:

P̄Lm,n(t) = PLLoSm,n(t)PLoSm,n (t) + PLNLoSm,n (t)PNLoSm,n (t) (10)

The channel gain between UE m and UAV n is

gm,n(t) = 1/P̄Lm,n(t) (11)

Therefore, we denote uplink transmission rate from UE m
to UAV n as follows:

rG2A
m,n (t) = BGlog2(1 +

pm(t)gm,n(t)

INm,n +NG
) (12)

where INm,n =
∑m0∈Nn
m0 6=m pm0

(t)gm0,n(t) is the interference
power signal from other UEs in the coverage area of UAV n,
pm(t) is the transmit power of UE m, and NG is the noise
power.

Due to the limited coverage of a UAV, if UE m commu-
nicates with UAV n, the distance between UE m and UAV
n cannot exceed the specified communication distance RG2A,
which is expressed as follows:

dm,n(t) ≤ RG2A (13)

2) A2A Transmission: When the offloading target of UE
m is UAV n′ rather than UAV n which it belongs to, UE
m transmits data to UAV n and UAV n forwards it to UAV
n′. As UAVs can communicate in full duplex mode. UAV
n can receive data from UE m while forwarding data to
UAV n′. Considering the high hovering altitude of UAVs,
the LoS link is the dominant one in A2A communications,
and the communication environment between UAVs can be
approximated as a free space. So, we apply the FSPL model
to describe the A2A communications [28], where the path loss
between UAV n and UAV n′ is given as

PLA2A
n,n′ = 32.45 + 20lg(frc) + 20lg(dn,n′(t)) (14)

where dn,n′(t) = ||wn(t) −wn′(t)|| is the distance between
UAV n′ and UAV n.
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The data rate between UAV n and n′ is expressed as

rA2A
n,n′ (t) = BAlog2(1 +

pn(t)10−
PLA2A

n,n′
10

NA
) (15)

where pn(t) is the transmit power of UAV n, NA is the noise
power.

3) A2G Transmission: We denote the fixed location of EC
as wEC = [xEC , yEC , zEC ]T . The distance between UAV n
and EC at time slot t is:

dECn (t) = ||wn(t)−wEC || (16)

Similar to the G2A transmissions from UEs to UAVs, the
channel gain between UAV n and the EC at time slot t is:

gn(t) =
1

PLLoSn PLoSn + PLNLoSn PNLoSn

(17)

where PLLoSn and PLNLoSn are the path loss of LoS and
NLoS, PLoSn and PNLoSn are the occurrence probabilities of
LoS and NLoS communication between UAV n and the EC,
respectively. For the calculation of these parameters, refer to
eq. (7)-(9).

The transmission rate from UAV n to the EC is:

rA2G
n (t) = BElog2(1 +

pn(t)gn(t)∑n0∈N
n0 6=n pn0

(t)gn0
(t) +NE

) (18)

where NE is the noise power.

C. Computation Model

We denote the task offloading decision as γnm(t) ∈ {0, 1},
where γnm(t) = 1 if UE m offloads task to computation
location n at time t, otherwise, γnm(t) = 0. Here, n ∈
{0, 1, ..., N,N + 1} indicates the computation location. If
n = 0, the location is UE itself; if 1 ≤ n ≤ N , the location is
UAV n; if n = N + 1, the location is EC. For example, if UE
m completes the task locally, then γ0

m(t) = 1. So, the tasks
from UE m have N + 2 options for computation locations:
local device, anyone of N UAVs, and edge cloud server. In
other words, a UAV can offload computing tasks from users
within its own coverage area to other UAVs; this illustrates
the collaboration between multiple UAVs. In a classic model
without the collaboration between UAVs, tasks have three
options only for computation locations: local device, the UAV
they belongs to, and edge cloud server. In that case, a UAV
cannot offload any task to other UAVs, even if they are free.

We assume that computing tasks are indivisible, and a task
can only be processed at one location in each time slot. The
constraints of tasks are as follows:

N+1∑
n=0

γnm(t) = 1 (19)

The computation delay of UEs is:

tUEm (t) =
γ0
m(t)cm(t)

f0
m

(20)

where f0
m is the computing capability of UE m. The compu-

tation delay of UAVs is

tUAVm (t) =

N∑
n=1

γnm(t)cm(t)

fnm(t)
(21)

where fnm(t) is the computing capability that UAV n allocates
to UE m at time slot t. UAV n has limited computing resources
[29], the constraint is:

M∑
m=1

fnm(t) ≤ Fn (22)

where Fn is the computing capacity of UAV n. If tasks are
offloaded to EC, the computation delay is:

tECm (t) =
γN+1
m (t)cm(t)

fN+1
m

(23)

where fN+1
m is the fixed computing power allocated to UE m

by the EC.

D. Task Priority Model

Tasks are classified into high-priority tasks and low-priority
tasks according to their allowed delay threshold. High-priority
tasks have strict delay constraint (i.e. navigation, road-sensing
in vehicular). If we cannot finish a high-priority task within its
maximum tolerable delay, the task will be failed and results
in severe impact. The tasks with tolerant delay are classified
as low priority tasks, such as entertainment applications. If
the allotted time for a low-priority task surpasses the allowed
delay threshold, it might solely impact the user experience
without compromising the overall usefulness of the result.

To prevent low-priority computational tasks from starvation,
we utilize distinct utility functions to represent task priorities,
rather than employing preemptive scheduling methods directly.
Similar to [22][30], we consider a definition of task utility
based on priority, completion time (task delay), and allowed
delay threshold. For high-priority tasks, it is mandatory that
they are completed within the designated delay threshold.
When a high-priority task satisfies its allowed delay threshold,
it is considered available, and its utility is non-negative and
inversely proportional to the completion time. However, if a
high-priority task exceeds the allowed delay threshold and
cannot be completed in time, it is deemed a failure and incurs a
negative utility as a penalty. We establish the utility function of
a high-priority task following the principles mentioned above,
as follows:

UHm (t) =

{
log2(1 + vm(t)− Tm(t)), Tm(t) ≤ vm(t)
−PH , Tm(t) > vm(t)

(24)

where Tm(t) is the completion time, and −PH is a negative
constant, which represents the penalty for not completing the
high-priority task within its allowed delay threshold.

For a low-priority task, the completion time requirement
is relatively lenient. If a low-priority task cannot be com-
pleted within its allowed delay threshold, it is still considered
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available, but the utility decreases exponentially with time. On
the other hand, if a low-priority task is completed before the
deadline, the utility is a positive constant as a reward. We
define the utility function for a low-priority task next:

ULm(t) =

{
PL, Tm(t) ≤ vm(t)
PLe−ρ(Tm(t)−vm(t)), Tm(t) > vm(t)

(25)

where PL is a fixed positive value that represents the reward
for successfully completing a low-priority task within its
specified time limit, and ρ > 0 is a constant. Specifically,
if a low-priority task cannot be completed (i.e. tn = −∞),
then the utility is zero.

The task priority model employed, which uses logarithmic
and negative exponential expressions, is appropriate. Loga-
rithmic and negative exponential forms have long tail effects
which are close to how user experience manifests. For exam-
ple, if the latency of a service changes from 0.1s to 1s, it
will have a big impact on the user experience. However, if
the latency of a service changes from 10.1s to 11s, it will
have little impact on the user experience. Logarithmic and
negative exponential forms can describe this property very
well. Besides, the minimum value of a logarithmic expression
is 0 if the high-priority task can been completed within the
allowed delay threshold, which guarantees that the utility of
on-time completion is higher than the utility of a task over-
time. Similarly, the maximum value of a negative exponential
expression is 1 if the low-priority task cannot be completed
within the allowed delay threshold, which guarantees that the
utility of a task overtime is lower than the utility of the on-time
completion.

IV. PROBLEM OPTIMIZATION

A. Multi-UAV Cooperative Computation Model

Based on location, there are three computation types: com-
putation at UEs, computation at UAVs and computation at the
EC.

1) Computation at UEs: There is no transmission delay if
UEs finish tasks locally, so the total delay is equal to the
computation delay T 0

m(t) = tUEm (t). There is only energy
consumption of local computation.

E0
m(t) = κ0(f0

m)3tUEm (t) (26)

where κ0 ≤ 0 is the effective switched capacitance of UEs.
2) Computation at UAVs: We assume that UE m offloads

data to UAV n′ in time slot t. UE m first needs to transfer the
data to UAV n that it belongs to. If the data target is not n,
which means n′ 6= n, UAV n has to further transfer the data
to UAV n′. As the UAVs communicate in full duplex. UAV
n can receive the data from UE m while also can forward
the received data to the target UAV n′. In this process, UAV
n assumes the role of a transmission relay, and the G2A
and A2A data transmissions are done in parallel. Therefore,
the transmission delay takes the maximum values of the
time needed for G2A and A2A communications. Otherwise,

UAV n allocates computing resource to UEs m directly. The
transmission delay is:

tn
′

m(t) = max{ ok
rG2A
m,n (t)

,
ok

rA2A
n,n′ (t)

} (27)

where ok/rA2A
n,n′ (t) = 0 if n = n′. The total delay is:

Tn
′

m (t) = tn
′

m(t) + tUAVm (t) (28)

The transmission energy consumption from UE m to UAV
n can be obtained as follows:

enm(t) =
pm(t)ok
rG2A
m,n (t)

(29)

Similarly, if the target UAV n′ is not n, the transmission
energy consumption from UAV n to UAV n′ can be obtained
as follows:

en
′

n (t) =
pn(t)ok
rA2A
n,n′ (t)

(30)

The computation energy consumption of UAV n′ is:

eUAVm,n′ (t) = κn′ [fn
′

m (t)]3tUAVm (t) (31)

where κn′ is the effective switched capacitance of UAV n′.
The total energy consumption if UE m offloads task to UAV

n′ can be obtained as follows:

En
′

m (t) = enm(t) + en
′

n (t) + eUAVm,n′ (t) (32)

3) Computation at EC: Similar to computation at UAVs, UE
m transmits data to the EC through UAV n. The transmission
delay is:

tN+1
m (t) = max{ ok

rG2A
m,n (t)

,
ok

rA2G
n (t)

} (33)

and the total delay is:

TN+1
m (t) = tN+1

m (t) + tECm (t) (34)

The transmission energy consumption from UAV n to the
EC is as follows:

en(t) =
pn(t)ok
rA2G
n (t)

(35)

Considering that the EC has sufficient power, we do not in-
corporate the energy consumption of EC into the optimization.
The total energy consumption is then:

EN+1
m (t) = enm(t) + en(t) (36)

B. Problem Design

The service delay of UE m at time slot t is:

Tm(t) = γ0
m(t)T 0

m(t) + γN+1
m (t)TN+1

m (t) (37)

+

N∑
n′=1

γn
′

m (t)Tn
′

m (t)

As previously mentioned, computational tasks of varying
priorities have distinct requirements regarding task delay.
Rather than directly optimizing task delay, we optimize the
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priority-based utility function of task delay, which is defined
as follows:

Um(t) = (1− om(t))UHm (t) + om(t)ULm(t) (38)

where om(t) = 0 is the high-priority task, and om(t) = 1 is
the low-priority task.

The total energy consumption is:

Em(t) = γ0
m(t)E0

m(t) + γN+1
m (t)EN+1

m (t) (39)

+

N∑
n′=1

(γn
′

m (t)En
′

m (t) + Eflyn (t))

Task delay and energy consumption are two main factors in
UAV-assisted MEC systems, which are also our optimization
objectives. Similar to [7][15][17], we define the system gain
as a weighted sum of the energy consumption Em(t) and
the priority-based utility function Um(t) which combines task
delay and priority. The utility function of system gain is
defined as follows:

Fm(t) = w1Um(t)− w2Em(t) (40)

where w1 and w2 are weight parameters. We can adjust
the weight parameters according to the system deployment
scenario. For example, in delay-sensitive systems, we can
increase the weight parameter w1 or decrease the weight
parameter w2. Even we can optimize the task delay only by
setting w2 = 0.

Thus, by jointly optimizing offloading decision γ, UAVs
position w, transmit power p, and the computation resource
allocation of UAVs f , the task offloading optimization problem
can be designed to maximize the total system gain. The
problem is formulated as follows:

max
γ,w,p,f

lim
T→∞

1

T

T∑
t=1

M∑
m=1

Fm(t)

s.t. 0 ≤ pn(t) ≤ PUAVmax , ∀n ∈ N (41a)

0 ≤ pm(t) ≤ PUEmax, ∀m ∈M (41b)
γnm(t) ∈ {0, 1} (41c)
xmin ≤ xn(t) ≤ xmax, ymin ≤ yn(t) ≤ ymax (41d)
4wn(t) ≤ vmax4t (41e)
(1)− (4), (13), (19), (22) (41f)

where the optimization goal is to maximize the long-term
average system gain. Constraints (41a) and (41b) indicate that
the transmit power of UAVs and UEs are limited. Constraint
(41c) denotes the constraints of task offloading, eq. (41d) and
eq. (41e) are the constraints related to the movement area and
movement speed of UAVs, respectively. Eq. (1)-(4) describe
the position constraints of UAVs, (13) denotes UE is within the
coverage range of the UAV, (19) denotes that there is one and
only one device available to process the task, and (22) is the
constraints about the limited computing resources of UAVs.

Generally, it is intractable to solve the optimization problem
(41). The optimization objective is the long-term average
system gain, which always need the future information in

traditional methods (i.e. dynamic programming). However, it
is challenging to predict system state in dynamically networks.
Moreover, DRL can achieve model-free learning by data sam-
pling instead of state transition. Although DRL is an effective
method to solve long-term average optimization problem, this
is a discrete-continuous hybrid optimization problem. There
are scalability issue and additional approximation difficulty
which may decrease the model performance if we use tra-
ditional DRL methods directly. To address these challenges,
a novel DRL method will be investigated to learn the near-
optimal policy with discrete-continuous hybrid action space
in the next section.

C. MDP Formulation

In UAV-assisted MEC systems, we optimize the offloading
decision, UAVs position, transmit power and computation
resource allocation to maximize the system gain. The system
state in the next time slot depends on the state and action at the
current time only. In this case, the UAV-assisted task offloading
problem (41) can be formulated as a MDP. In time slot t, we
observe system state and then select the action. The system
will generate a corresponding reward to reflect the action. The
goal is to maximize the long-term system reward by employing
an optimization strategy that maps states to actions.

1) State Space S: If we add the channel quality of each
transmission link into the state space, the state space will
increase rapidly with the number of UAVs, increasing the
complexity of any associated algorithm to O(N2). In order to
reduce the size of the state space, we noted that the channel
quality is related to the positions of UAVs due to the time-
invariant signal interference (i.e. noise power) between two
positions in the model. In other words, the channel quality of
links varies with the positions of UAVs, and we can calculate
the channel quality of links according to the positions of UAVs
if the signal interference is fixed. Therefore, we only add the
positions of UAVs into the state space to describe the channel
quality and the associated complexity is O(N). Additionally,
we do not add the variables that are not time-varying (such as
Lhmax and Lvmin) to the state space. We can use these variables
directly during training without them being part of the state
space. Therefore in the optimization problem, the state s(t) is
composed of properties of computing tasks and 3D coordinate
positions of UAVs, that is:

s(t) = {q(t),w(t)} (42)

where q(t) = [q1(t),q2(t), ...,qM (t)] and w(t) =
[w1(t),w2(t), ...,wN (t)]. Since the total dimension of com-
puting tasks’ properties is 4M and the total dimension of
UAVs’ positions is 3N , the total dimension of state s(t) is
4M + 3N , where N is the number of UAVs and M is the
number of UEs.

2) Action Space A: If we directly use the γnm(t) as the
action, the action space is M(N + 2). This both increases the
number of output neurons and leads to additional consideration
of constraint (19), which increases the complexity of training.
For each computing task of UE m, there are N + 2 positions
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to choose from. We can complete it in UE locally, or offload it
to UAV n, or offload it to EC. To simplify the discrete action
in action space, we use im(t) ∈ {0, 1, ..., N+1} to denote the
computation position, where im(t) = 0 means we complete
the task at the UE locally, im(t) = N + 1 means the task
is offloaded to EC, otherwise, the task is offloaded to UAV
im(t). In this way, we can reduce the number of neurons for
task offloading variable to M , and do not need to consider
constraint (19) during training.

In addition to task offloading variable, we have to determine
the mobility of UAVs , the transmit power and the allocation
of computation resources. To be specific, the action at time
slot t is defined as:

a(t) = {i(t),4w(t),p(t), f(t)} (43)

where i(t) = [i1(t), i2(t), ..., iM (t)] is the decision of task
offloading, 4w(t) = {4w1(t),4w2(t), ...,4wN (t)} is the
mobility of all UAVs, p(t) = [p1(t), i2(t), ..., pM+N (t)] is the
transmit power of all UEs and UAVs, f(t) = [fnm(t)],∀m ∈
{1, ...,M},∀n ∈ {1, ..., N} is the allocated computation
resources from UAV n to UE m. The dimension of action
a(t) is M + 3N + (M +N) +MN = 4N + 2M +MN .

3) Reward Function: The goal of the formulated task of-
floading optimization problem (41) is to maximize the system
gain while satisfying certain constraints. Therefore, an action
has a larger reward if it can bring a higher system gain and
satisfies all constraints [31]. Otherwise, if certain constraints
are not satisfied, there will be corresponding penalties in the
reward function. The reward function is defined as follows:

r(t) =

{ ∑M
m=1 Fm(t), if sastifies constraints

−Pu, otherwise
(44)

where Pu is a positive value and −Pu is the penalty for
actions that do not satisfy constraints. Notable is that, we can
influence the reward function by adjusting the value of PH in
Eq.(24) and PL in Eq.(25), which affect the completion ratio
of high-priority tasks and low-priority tasks. For example, if
we increase the value of PL, the reward for completing a
low-priority task increases, and the model will allocate more
resources to low-priority tasks. As a result, the completion
rate of low-priority tasks will increase. However, as the total
amount of resources is limited, improving the completion rate
of low-priority tasks is expected to reduce the completion rate
of high-priority tasks.

V. DRL-BASED ALGORITHM DESIGN

Because the above-described MDP has a discrete-
continuous hybrid action space, conventional DRL algorithms
are not suitable for it. If we convert the hybrid action space
into either a discrete or a continuous action space directly,
it may lead to a degradation in model performance due to
scalability issues and increased approximation complexity. To
address this problem, we propose a novel algorithm, which is
based on a hybrid action representation, as introduced in [32].

A. Latent Space

In terms of the formulated MDP, there are discrete variable
i(t) and continuous variables {w(t),p(t), f(t)}. Hybrid action
representation can convert the discrete-continuous hybrid ac-
tion space problem into a continuous policy learning problem
which considers the dependence between the two heteroge-
neous components. With some abuse of notation, we use p to
uniformly refer to continuous actions, and we get rid of the
subscript t (i.e., action a = (i1, i2, ..., iM , p)) to help clarify
the algorithm. We detail the method from dependence-aware
encoding and decoding of hybrid action.

There are N + 2 locations for computation offloading
for each task. We first establish an embedding table Gω ∈
R(N+2)×l1 with learnable parameters ω to denote the N + 2
discrete actions. In the table, each row gω,im = Gω(im) is a l1-
dimensional continuous vector for the discrete action i. Note
that there are M UEs to make decisions in each time slot,
so M embedding tables should be established for learning.
However, the action space for each UE and the meaning
represented by each action are both consistent, which means
all UEs can share a common embedding table.

To construct a l2-dimensional latent representation space
for the continuous parameters, a conditional Variational Auto-
Encoder (VAE) [33] is utilized. In the mathematical for-
mulation, given a hybrid action a = (i1, i2, ..., iM , p) and
a state s, the encoder qφ(z|p, s, gω,im) with parameters φ
maps p to the latent variable z ∈ Rl2 conditioned on s and
gω,im . In this case, a Gaussian latent distribution Γ(µq, σq)
is employed to describe the encoder qφ(z|p, s, gω,im). The
encoder outputs the mean µq and standard deviation σq of
the latent distribution. By sampling from this distribution, we
obtain the latent representation z ∼ Γ(µq, σq).

Under the same condition, the decoder qψ(p̃|z, s, gω,im)
with parameters ψ reconstructs the continuous parameter p̃
from z. Given a sample z ∼ Γ(µq, σq), the decoder determin-
istically decodes it, resulting in p̃ = qψ(z, s, gω,im). Further-
more, through nearest-neighbor lookup in the embedding table
for gω,im , we can decode the discrete parameter im.

We use the encoder to construct a hybrid action represen-
tation space (∈ RMl1+l2) for hybrid actions. Additionally, we
can decode latent variables g ∈ RMl1 and z ∈ Rl2 into a
hybrid action (i1, ..., iM , p) based on the decoder. To formalize
this, the encoding and decoding processes are summarized as
follows:
Encoding:

gω,im = Gω(im), z ∼ qφ(·|p, s, gω,im) (45)

Decoding:

im = argmini′∈I ||gω,i′ − g||2, p̃ = qψ(z, s, gω,im) (46)

We train Gω and qφ, qψ together using experiences from
buffer D by minimizing the loss function:

LV (ψ, φ, ω) = E[||p− p̃||22 + (47)
DKL(qφ(·|p, s, gω,im)||Γ(0, I))]
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where the first term represents the squared L2-norm recon-
struction error, and the second term represents the Kullback-
Leibler divergence (DKL) between the variational posterior of
the latent representation z and the standard Gaussian prior.

Because hybrid actions have varying impacts on the envi-
ronment, we incorporate a cascaded structure that follows the
transformation network of the conditional VAE decoder. For
any experience sample (s, a, s′), we define the state residual
as δs,s′ = s′ − s. By introducing the cascaded structure into
the decoder, we can generate predictions according to the
following process:

δ̄s,s′ = qψ(z, s, gω,im), for z, s, gω,im (48)

Then the L2-norm square prediction error is:

LD(ψ, φ, ω) = E[||δ̄s,s′ − δs,s′ ||22] (49)

So, we minimize the ultimate training loss:

LH(ψ, φ, ω) = LV (ψ, φ, ω) + αLD(ψ, φ, ω) (50)

where α is a weight parameter that depends on the importance
of the loss associated with the dynamics predictive represen-
tation. We denote the dimension of the system state s as dim,
and the dimension of the continuous policy p as Xp. The
network structures of the encoder and decoder are illustrated
in Table I.

Although the latent space for hybrid action representation
increases the complexity of the algorithm, it is necessary.
Take the DRL algorithm DDPG as an example. The actions
outputted by DDPG are continuous. For the discrete variable
in hybrid action, we need to convert the continuous actions
outputted by the model into discrete values by crude methods
such as rounding. In this case, even though the model outputs
for instance 4.6 and 4.9, the results will be the same (both
are rounded to 5), which leads to a degradation in the
model’s performance. Therefore, using a latent space which
can convert between continuous output values and discrete
variables is more accurate. Considering that discrete variables
and continuous variables in a hybrid action space are coupled
with each other, we did not encode only discrete variables, but
the whole hybrid action, to ensure the correlation of variables

B. Cooperative Long-term Average Optimization Algorithm

In the previous section, we discussed the construction of the
hybrid action representation space. Now, this representation
space will be combined with the model-free TD3 algorithm
[34] to solve the task offloading problem.

TD3 is an algorithm for deterministic strategy reinforcement
learning that is well-suited for continuous action spaces with
high dimensions. It utilizes two types of networks: the actor
and the critic. The actor network maps various states to
their corresponding actions, influencing the decision-making
process. The critic network estimates the potential rewards
associated with different actions given specific states, influ-
encing the action’s value. The actor and critic networks are
implemented separately using distinct neural networks, which
are shown in Table II.

TABLE I: Network Structures of Encoder and Decoder

Component Layer Structure

Discrete
Action

Embedding
Table
Gω

Parameterized Table (RN+2,Rl1 )

Conditional
Encoder
Network
qφ

Fully Connected(encoding)
Fully Connected(condition)

Element-wise Product
Fully Connected

Activation
Fully Connected(mean)

Activation
Fully Connected(log std)

Activation

(Xp, 512)
(dim+ RMl1 ,512)

ReLU · ReLU
(512,512)

ReLU
(512,Rl2 )

None
(512,Rl2 )

None

Conditional
Decoder

&
Prediction
Network
qψ

Fully Connected(latent)
Fully Connected(condition)

Element-wise Product
Fully Connected

Activation
Fully Connected
(reconstruction)

Activation
Fully Connected

Activation
Fully Connected(prediction)

Activation

(Rl2 , 512)
(dim+ RMl1 ,512)

ReLU · ReLU
(512,512)

ReLU
(512,Xp)

None
(512,512)

ReLU
(512,dim)

None

TABLE II: Network Structures of TD3

Model Component Layer Structure

Actor Network
πζ

Fully Connected
Activation

Fully Connected
Activation

Fully Connected
Activation

(dim, 512)
ReLU

(512,512)
ReLU

(512,RMl1+l2 )
Tanh

Critic Network
Qθj

Fully Connected
Activation

Fully Connected
Activation

Fully Connected
Activation

(dim+ Xp +M, 512)
ReLU

(512,512)
ReLU
(512,1)
None

The actor network takes the state s as input and produces a
latent action vector, represented as g and z, (i.e. g, z = πζ(s)
where g ∈ RMl1 , z ∈ Rl2 ). Next, we utilize a decoder to
decode this latent action vector (g, z) into a corresponding
discrete-continuous hybrid action a = (i1, ...iM , p). To ap-
proximate the hybrid-action value function Qπζ , we employ
twin critic networks Qθ1 , Qθ2 . These networks take the hybrid
action a as input. In training, we use the collected experience
(s, a, r, s′) stored in the buffer D to train the critics using the
Clipped Double Q-Learning algorithm. The loss function for
training the critics is as follows:

LCDQ(θj) = E[(ς −Qθj (s, g, z))2], for j = 1, 2 (51)

where ς = r + γminQθ̄j (s
′, πζ̄(s

′)) and θ̄j , ζ̄ are the target
network parameters. The actor (latent policy) is updated with
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Deterministic Policy Gradient [35] as follows:

∇ζJ(ζ) = E[∇πζ(s)Qθ1(s, πζ(s))∇ζπζ(s)] (52)

Algorithm 1 CLP training Algorithm

1: Initialize actor πζ and critic networks Qθ1 , Qθ2 with
random parameters ζ, θ1, θ2;

2: Initialize discrete action embedding table Gω and condi-
tional VAE qφ, qψ with random parameters ω, φ, ψ;

3: Initialize state information s1;
4: Prepare replay buffer D;
5: while not reach maximum warm-up training times do
6: Update ω, φ, ψ using samples in D by Eq.(50);
7: end while
8: while not reach maximum total environment steps do
9: Observe current system state s;

10: /* select latent actions by actor network */
11: g, z = πζ(s) + εg with εg ∼ Γ(0, σ);
12: /* decode into original hybrid actions */
13: Decode i = fD(g), p = qψ(z, s, g) by decoder;
14: Execute (i, p), get reward r and new state s′;
15: Store (s, i, p, g, z, r, s′) in replay buffer D;
16: /* evaluate hybrid actions by critic network */
17: Sample a mini-batch experience from D;
18: Update Qθ1 , Qθ2 according to the loss function Eq.(51);
19: Update πζ with policy gradient according to Eq.(52);
20: while not reach representation training times do
21: Update ω, φ, ψ using samples in D by Eq.(50);
22: end while
23: end while

Combining the latent representation space and TD3, we
propose the Cooperative Long-term average oPtimization
(CLP) algorithm to solve the joint optimization problem of
UAV placement and resource allocation in UAV-assisted MEC
system. The proposed CLP algorithm is detailed in Algorithm
1. We first initialize the parameters of networks and embedding
table randomly, and initialize the system state s(1) with the
UAV start positions. There are two major stages in training:
warm-up stage and learning stage. In the warm-up stage, the
encoder and decoder are pre-trained by experiences found in
the replay buffer D (line 5-7). In the learning stage, the actor
outputs a latent action g, z perturbed by a Gaussian exploration
noise based on current s. Then the decoder decodes the latent
action g, z into the original hybrid action i, p to interact with
the environment and get the reward r and the new state s′.
The experience (s, i, p, g, z, r, s′) is stored in the replay buffer
D. To avoid the correlation of input samples, we randomly
sample a mini-batch experience from D. We will calculate
the loss function according the evaluation of critic network,
and update parameters of the actor network and critic network
with a policy gradient (lines 18-19). In addition, the encoder
and decoder are updated concurrently in the training stage to
adapt the change of data distribution as shown in lines 20-
22. Note that the actor network can be used without the critic
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Fig. 2: Framework of CLP Algorithm

network (lines 9-15) when the model has been trained. The
CLP framework is illustrated in Fig.2.

C. Complexity Analysis

The complexity of our proposed algorithm can be analysed
after considering its two main aspects. First, there is the
complexity related to the encoding and decoding of hybrid
actions. Secondly, there is the complexity associated with
training the actor and critic networks. As referenced in [36],
the computational complexity of back-propagation algorithm
for a fully-connected neural network with fixed number of
hidden layers and neurons is proportional to the product of
input size and output size.

In the encoding and decoding of hybrid actions, the input
size of encoder is dim+Ml1 +Xp = MN+Ml1 +5M+7N
where dim = 4M + 3N and Xp = MN + 4N + M . The
output size of encoder is l2, so the computational complexity
of encoder is O((MN + Ml1)l2). The input size of decoder
is dim+Ml1 + l2 = 4M+3N+Ml1 + l2, and the output size
is dim+Xp = 3MN +5M +7N . So the decoder complexity
is O(M2Nl1 +MNl2 +MN2).

In the training actor and critic networks, the input size of
actor is the dimensions of system space dim = 4M+3N , the
output size is the dimensions of hybrid action representation
space Ml1 + l2, so the complexity of the actor is O((Ml1 +
l2)(N +M)). The input size of critic is dim+ Xp +M , the
output is 1, so the critic complexity is O(MN).

Finally, the overall complexity of our algorithm is
O((MN+Ml1)l2)+O(M2Nl1+MNl2+MN2)+O((Ml1+
l2)(N + M)) + O(MN) = O(M2Nl1 + MNl2 + MN2 +
Ml1l2).
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TABLE III: Parameter Settings for Simulations

Parameters Value
Number of UEs M 10, 20, 30, 40, 50, 60
Number of UAVs N 1,2, 3, 4, 5, 6

Minimum height of UAVs Zmin 50m
Maximum height of UAVs Zmax 100m

Maximum horizontal distance Lhmax 49m
Maximum vertical distance Lvmax 12m
Minimum distance of UAVs Dmin 50m

Maximum transmit power of UAVs PUAVmax 5W
Maximum transmit power of UEs PUEmax 1W

Computation resource of UAVs Fn [10,20] Gigacycles
Computation resource of UEs F 0

m 1.5 Gigacycles
Data size of tasks um(t) [1,3] MB

Computing workload of tasks cm(t) [300,500] Megacycles
Allowed delay threshold vm(t) [250,300]ms

Channel Bandwidth of G2A BG 20MHz
Channel Bandwidth of A2A BA 40MHz
Channel Bandwidth of A2G BE 10MHz
Effective switched capacitance κ 10−28

Noise power Ng ,NA,NE -100dBm
Constant values a,b 9.61, 0.16

Excessive path loss ηLoS , ηNLoS 1, 20
Actor learning rate (γ1) 10−2, 10−3, 10−4

Critic learning rate (γ2) 10−3, 10−2, 10−4

Representation model learning rate (γ3) 10−2, 10−3, 10−4

Penalty for actions unsatisfy constraints (−Pu) −1000

VI. PERFORMANCE EVALUATION

In this section, we describe the experimental setup and
introduce the alternative solutions used for comparison-based
assessment. Then the experimental results and related analysis
are presented to validate the performance of the proposed
algorithm.

A. Experimental Setup

We consider a UAVs-assisted MEC scenario with 30 UEs
randomly distributed in an area of 1000 × 1000m2 as set in
[37]. Three UAVs with random initial positions can help UEs
to complete their computing tasks. For UE tasks, the data size
um(t) is set from 1 to 3 MB [37] and the computing workload
cm(t) is generated randomly within [300,500] Megacycles
[38]. For the UAVs, the computing capability Fn is set from 10
to 20 Gigacycles [16]. According to [17], we set the minimum
height for UAVs Zmin to 50m, maximum height Zmax to
100m, maximum horizontal distance Lhmax to 49m, maximum
vertical distance Lvmax to 12m, the maximum transmit power
PUAVmax to 5W, effective switched capacitance κ to 10−28, and
noise power Ng ,NA,NE to -100dBm. Constant values and
excessive path loss a, b, ηLoS , and ηNLoS are set to 9.61,
0.16, 1, and 20, respectively [37]. The channel bandwidth
values for G2A, A2A, and G2A communications are set to
20MHz, 40MHz, and 10MHz, respectively [15][38]. The actor
learning rate γ1, critic learning rate γ2 and representation
model learning rate γ3 are set based on [32]. Table III presents
the values of system parameters, the numbers in bold are the
default values.

B. Alternative Solutions

CLP, our proposed algorithm, is compared with the follow-
ing four alternative algorithms.
• Optimization of Single UAV (OSU) [39]: This solution

studies the task offloading problem in a single UAV sce-
nario, which takes the energy consumption as a constraint
and task delay as the optimization objective. It employs
an algorithm based on deep deterministic policy gradient
(DDPG) to search for near-optimal solutions in highly
dynamic environments.

• No cooperation between UAVs (NCO) [9]: This solution
also considers a single UAV scenario and therefore there
is no cooperation between multiple UAVs. Its optimiza-
tion objective considers task delay, energy consumption
and number of tasks collected by the UAV. The proposed
solution is based on the multi-task multi-objective prox-
imal policy optimization (PPO) algorithm.

• Cooperation without long-term optimization (CNL) [40]:
This solution involves some cooperation between UAVs.
Its authors decomposed the UAV-assisted MEC problem
into three subproblems and proposed a greedy approxi-
mation algorithm as a solution. Rather than optimizing
the long-term average system performance, this solution
only focuses on achieving the optimal performance in the
current time slot.

• Cooperation with multi-agent reinforcement (CMA) [17]:
This solution employs a partial task offloading strat-
egy which considers cooperation between UAVs and
optimization of long-term performance. A multi-agent
TD3 algorithm is designed to find the efficient UAVs’
movements, task offloading allocation, and communi-
cation resource management based on dynamic MEC
environments. In order to accommodate binary computing
offloads, the node with the largest offload proportion to
offload is chosen.

C. Experiment Results

We show the convergence of our proposed CLP algorithm
with different learning rates in Fig. 3. Different learning rates
lead to different training performance results. When learning
rates are very large (i.e. 10−2), there are great fluctuations
in the process of model convergence. Additionally, the con-
vergence points are also often local optimal solutions. When
learning rates are very small (i.e. 10−4), the convergence state
is stable, but the convergence is slow, taking about 1500
episodes. When learning rates are set to 10−3, the model
converges quickly (almost 600 episodes) and has a relatively
stable convergence state. Therefore, the learning rates are set
to γ1 = 10−3, γ2 = 10−3, γ3 = 10−3 in our model training.

To show the effectiveness of the hybrid action representa-
tion method in CLP, we perform ablation experiments. The
representation method is to transform discrete variables in
action space into continuous values to improve the training
performance of the model. Considering that discrete variables
and continuous variables in the action space are interrelated,
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the hybrid action representation method in CLP jointly trains
the whole action space. Therefore, we use two compari-
son methods in our ablation experiments. Comparison one
employs a no action representation (NAR) method. NAR
only discretizes the variables directly by rounding, without
any action representation algorithm. Comparison two uses
an ORD method, which only represents discrete variables.
The method ignores the correlation between discrete variables
and continuous variables in the action space, and only rep-
resents discrete variables instead of the whole action space.
Considering that the goal of the optimization problem is to
maximize average system gain, we show the system gain in
each time slot for the three algorithms in Fig. 4. We note
that NAR has the worst performance and greatest fluctuations,
as the crude approximation method leads to a degradation in
model performance. ORD only represents discrete variables
and ignores the correlation between discrete variables and
continuous variables in the action space, so it performs better
than NAR, but not as well as CLP. CLP represents the whole
action space and has the best performance in terms of system
gain from the three methods.

Fig. 5 shows the impact of weight parameters. The opti-

mization objective of our problem is the combination of task
delay and system energy consumption by weight parameters.
When w1/w2 is larger, task delay accounts for more weight
and becomes more important. Accordingly, the task delay
is reduced but the system energy consumption is increased.
When w1/w2 is smaller, system energy consumption is more
important. Our solution tends to sacrifice the task delay to
obtain smaller system energy consumption. In practice, the
weight parameters can be adjusted according to the system
requirements.

The system gains of the five algorithms in the experiment
are illustrated in Fig. 6. The subfigures of Fig. 6 show that
the average system gain of CLP in 200 time slots is around
78, CMA’s is around 70, CNL’s is about 64, NCO’s is around
58, and OSU’s is approximately 54. Our optimization goal is
to maximize the long-term average system gain. The average
system gain of CLP is the largest of the five algorithms,
demonstrating that our algorithm CLP has the best perfor-
mance. As OSU is a task offloading algorithm in a single
UAV scenario and its goal is to optimize task delay only, it has
the worst system gain of all tested solutions. NCO also lacks
the cooperation between multiple UAVs, but optimizes both
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task delay and energy consumption, so it has better perfor-
mance than OSU. CNL considers the multi-UAV cooperative
scenario, but only optimizes the current time decision, which
easily leads to finding local optimal solutions only. CMA takes
both the cooperation between UAVs and long-term average
optimization into account, and has the best performance among
the alternative solutions. Unfortunately, some performance is
lost when converting partial offloading to binary offloading,
so CMA is slightly worse than CLP.

Fig. 7 presents the effects of variations in the numbers
of UAVs and UEs. Considering that tasks with different
priorities have different performance in our algorithm, we
will analyze separately the high-priority tasks in CLP (CLP-
H) and low-priority tasks in CLP (CLP-L). Fig. 7(a) and
Fig. 7(b) show the impact of the number of UAVs on the
task delay. In general, as the number of UAVs increases,
the task delay gradually decreases. More UAVs means more
edge computation resources, and consequently more tasks
can be completed on UAVs, which determines a reduction
in task delay. It is worth noting that CLP-L performs the
worst among all algorithms when the number of UAVs is 1.
When there is a single UAV, the available computing resources
are very limited. To ensure the completion of high priority
tasks, CLP allocates most resources to high-priority tasks
which leads to the best performance when completing these
tasks. Unfortunately, low-priority tasks cannot be allocated
sufficient computing resources, so the task delay associated
with these tasks is the highest. As the number of UAVs
increases, so do computing resources. Although CLP still
allocates most resources to high-priority tasks, lower-priority

tasks can also receive more resources. Therefore, the task
delay of CLP-L gradually approaches the values experienced
by other algorithms.

To show the effect of the number of UEs, we set different
numbers of users in the experiment, with a maximum value
of 240. Fig. 7(b) shows that the increase in the number of
UEs leads to an increase in task delay. More UEs imply more
tasks, but due to the limited computing resources of UAVs,
some tasks must be offloaded to the remote cloud server,
which determines longer task delay. It is worth noting that
OSU focuses on the optimization of task delay, while NCO
optimizes both task delay and energy consumption, so OSU
performs better than NCO in terms of task delay, but worse
in terms of system gain. Additionally, OSU and NCO only
consider the scenario with a single UAV, so they cannot be
compared against when analyzing the impact of the number
of UAVs.

We define the completion rate as the number of tasks
completed within the allowed delay threshold divided by the
total number of tasks. A similar metric is the task completion
rate, as shown in Fig. 7(c) and Fig. 7(d). The increase in
the number of UAVs improves the completion rate, while
the increase in the number of UEs decreases the completion
rate. However, as the number of users continues to increase,
the completion rate will also level off. The reason is that
limited resources of UAVs are difficult to meet the needs of
a large number of users. As the number of users increases,
most computing tasks will be offloaded to cloud servers and
the completion rate will be stable. Note that the high-priority
tasks in our algorithm benefit in terms of performance in both
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task delay and completion rate, while low-priority tasks in
our algorithm perform worse in many cases. This is because
we set different reward functions for different priority tasks,
and the CLP algorithm is more inclined to complete the
high-priority tasks first, which sacrifices the performance of
low-priority tasks. However, the alternative solutions have
no priority consideration, and there is no difference in task
performance. Considering that the system gain is the sum of
all UEs

∑M
m=1 Fm(t), which is related to the number of UEs,

we use the average performance
∑M
m=1 Fm(t)/M to show the

impact of the number of UAVs and UEs, as shown in Fig. 7(e)
and Fig. 7(f), respectively. Similar, the increase of UAVs will
improve average system gain and the increase of UEs will
decrease average system gain.

Fig. 8 compares our CLP with the four alternative solutions
in terms of four performance indicators. We find that our
proposed CLP algorithm has obvious advantages in terms of
task delay, completion rate and system gain. In terms of energy
consumption, CLP is better than CMA and CNL, but is inferior
to NCO and OSU. Note that NCO and OSU consider the
scenario with only one UAV, so they have the lowest energy
consumption. This also causes the task delay of NCO and OSU
to be far inferior to that of the other algorithms. OSU focuses
on optimizing task delay, so it performs better than NCO in
terms of task delay and completion ratio, but worse in terms
of system gain and energy consumption. The performance
of CMA is better than that of CNL due to its long-term
average optimization. Our CLP considers task priority, long-
term average optimization and binary optimization, which
leads to the maximum system gain, and is an excellent result.

VII. CONCLUSIONS

In this paper, we focused on the UAV-assisted task offload-
ing problem with task priority. A long-term average problem
with the collaboration between multiple UAVs was formulated
to optimize task delay and energy consumption by jointly
designing the UAV trajectories, task offloading, computation

resources allocation, and communication resource manage-
ment. To solve this problem, we transformed it to a MDP.
Considering a discrete-continuous hybrid action space, the
Cooperative Long-term average oPtimization (CLP), a novel
DRL algorithm was proposed. Following detailed experimental
testing, our algorithm CLP outperforms four state-of-the-art
optimization approaches in terms of task delay, system gain
and system energy consumption.
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