
SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Efficient Deployment Strategies for
Network Localization with Assisting Nodes
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Abstract—Location awareness is crucial for a variety of emerging applications. The accuracy of localization depends heavily on the

spatial topology of the network, especially in complex and infrastructure-limited wireless environments. In these environments,

assisting nodes can be deployed to achieve desirable performance. This paper presents efficient strategies for deploying assisting

nodes to improve the localization accuracy of a target agent. Specifically, it provides a methodology to determine a finite set of

candidate positions for the assisting nodes. Based on this methodology, we present a convex relaxation to select near-optimal positions

for the assisting nodes and establish a theoretical limit on the localization accuracy provided by assisting nodes. We also propose an

approximate dynamic programming algorithm to deploy assisting nodes with amenable complexity. A case study validates the

proposed strategies and shows the benefits of deploying assisting nodes for accurate localization.

Index Terms—Localization, assisting nodes, node deployment, network operation, wireless networks
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1 INTRODUCTION

N ETWORK LOCALIZATION [1] is a promising paradigm
for providing ubiquitous position information of

nodes in wireless networks [2], [3], [4], [5], [6], [7], [8], [9],
[10], [11]. Such information is crucial for several applications
in fifth generation (5G) and beyond ecosystems [12], [13],
[14], including autonomy [15], [16], [17], [18], [19], crowd-
sensing [20], [21], [22], [23], [24], [25], [26], smart cities [27],
[28], [29], [30], [31], [32], [33], and Internet-of-Things [34],
[35], [36], [37], [38]. The 3rd Generation Partnership Project
(3GPP) has defined performance requirements for seven
positioning service levels [13], [39], [40]. Location-aware
networks must satisfy service-level requirements regardless
of the operation conditions. However, meeting the required
performance is challenging in complex wireless environ-
ments, especially if the network infrastructure is limited.

Location-aware networks consist of anchors with known
positions and agents with unknown positions. The accuracy
of localization depends on the wireless resources, propaga-
tion conditions, and nodes’ deployment [41]. In particular,
the exploitation of soft information [34] enables accurate
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Fig. 1. Network localization with an assisting node. The agent receives
insufficient position information from anchors due to the complex wire-
less environment and limited network infrastructure. The assisting node
moves from an initial position (faded annulus) to an optimal position
(bright annulus) determined by a node deployment strategy.

localization in complex wireless environments, and its per-
formance gain has been demonstrated in 5G and beyond
ecosystems [12], [14], [42]. Furthermore, location-aware net-
works benefit from strategies for allocation of wireless re-
sources [43], [44], [45] and coordination of nodes’ trans-
missions [46], [47], [48]. Nonetheless, localization accuracy
degrades in infrastructure-limited environments where the
measurements and geometric relationships among nodes
are inadequate for positioning. In these environments, as-
sisting nodes [49] can be deployed to meet desirable perfor-
mance (see Fig. 1). For example, the deployment of assisting
nodes for public safety applications (e.g., via unmanned
aerial vehicles (UAVs) [50], [51], [52] relying on spatial
cooperation and heterogeneous measurements [53], [54],
[55]) will enable reliable localization of victims and first
responders in challenging environments [40, Section 5.4].

The deployment of wireless networks is mainly driven
by communication demands [56], [57], [58], [59], [60], [61],
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[62], [63], [64]. In particular, the role of the network topology
in the position error has been studied in [65], [66], [67]
and node deployment strategies for localization have been
developed in [68], [69], [70], [71], [72], [73], [74]. The de-
sign of node deployment strategies relies on optimizing a
performance metric expressed as a function of the nodes’
positions. Localization performance metrics are defined in
terms of the Fisher information matrix (FIM) [75], which
describes the position information that agents obtain from
measurements [76]. The structure and interpretation of the
FIM (or equivalent forms such as the covariance matrix [77],
[78]) can be exploited to design node deployment strategies
under different optimality criteria [41].

Conventional node deployment strategies for localiza-
tion focus on the anchor placement [69], [70], [71], [72],
[73]. Such strategies are typically based on the assumption
that anchors are placed on the boundary of a convex region
containing the target agent and rely on standard optimiza-
tion methods [79], [80]. While conventional node deploy-
ment strategies provide desirable anchor placements, new
strategies to deploy possibly cooperative assisting nodes
can enable efficient high-accuracy localization in complex
wireless environments. In particular, the 3GPP has con-
sidered in-coverage, partial-coverage, and out-of-coverage
use cases for localization in 5G and beyond ecosystems
enabled by spatial cooperation among agents via sidelink
communication [81], [82], [83], [84]. Hence, efficient network
localization calls for general strategies to deploy assisting
nodes considering knowledge from existing infrastructure,
if any. The computational complexity of such strategies
must be amenable to meet positioning latency requirements
without compromising localization accuracy [12], [13].

The fundamental questions related to the deployment of
assisting nodes are: (i) how does the localization accuracy
of a target agent depend on the positions of assisting nodes;
and (ii) how to determine optimal assisting node positions?
The answers to these questions will provide guidelines for
the deployment of assisting nodes. The goal of this paper
is to develop node deployment strategies with amenable
complexity to improve localization accuracy with assisting
nodes. The key idea consists of determining a finite set of
candidate positions to select near-optimal locations for the
assisting nodes.

This paper presents near-optimal strategies to deploy
assisting nodes for efficient network localization. Specifi-
cally, we introduce a methodology to determine a finite set
of candidate positions and develop efficient strategies for
deploying assisting nodes based on convex optimization
and approximate dynamic programming (ADP). The key
contributions of this paper are as follows:

• introduction of a methodology to determine candi-
date positions for the assisting nodes;

• development of efficient strategies for deploying as-
sisting nodes; and

• quantification of the benefits provided by deploying
assisting nodes for accurate localization.

The remaining sections are organized as follows: Sec-
tion 2 formulates the node deployment problem. Section 3
provides the methodology to determine a finite set of can-
didate positions for the assisting nodes. Section 4 presents

a convex relaxation to select near-optimal positions for the
assisting nodes and establish a theoretical limit on the local-
ization accuracy provided by assisting nodes. Section 5 de-
velops an ADP algorithm for deploying assisting nodes with
amenable complexity. Section 6 discusses the inverse node
deployment problem of assisting nodes. Section 7 presents
a case study. Finally, Section 8 gives our conclusions.

Notations: Random variables are displayed in sans serif,
upright fonts; their realizations in serif, italic fonts. Vectors
and matrices are denoted by bold lowercase and uppercase
letters, respectively. For example, a variable is denoted by
x; a random vector and its realization are denoted by x

and x, respectively; a matrix is denoted by X . Sets are
denoted by calligraphic font. For example, a set is denoted
by X . The m-dimensional vector of zeros (resp. ones) is
denoted by 0m (resp. 1m): the subscript is removed when
the dimension of the vector is clear from the context. For
a vector x and a matrix X , the transpose is denoted by
xT and XT, respectively. The trace and determinant of a
matrix X are denoted by tr{X} and det{X}, respectively.
The Euclidean norm and direction of a vector x are denoted
by ‖x‖ and ∠x, respectively. The inequalities a 4 b and
a < b denote element-wise inequalities between vectors a

and b. Notation diag{·} represents a diagonal matrix with
the arguments being its diagonal elements.

2 PROBLEM FORMULATION

This section presents the system model, describes the lo-
calization performance metrics, and formulates the node
deployment problem of assisting nodes.

2.1 System Model

Consider a location-aware network with a target agent
and Nb anchors. The goal is to improve the localization
accuracy of the target agent by deploying Nc assisting
nodes (see Fig. 2). The assisting nodes may be subject to
position uncertainty and perform measurements with the
target agent and neighboring anchors. The index sets of
anchors and assisting nodes are Nb = { 1, 2, . . . , Nb} and
Nc = {Nb + 1, Nb + 2, . . . , Nb + Nc}, respectively. The
target agent is indexed as the node zero. The position of
node i is denoted by pi ∈ R

2. The distance and angle
between the positions of nodes i and j are denoted by
di,j = ‖pi − pj‖ and φi,j = ∠(pi − pj), respectively. The
node deployment strategy aims to determine the assisting
node positions, pc = [pT

Nb+1,p
T
Nb+2, . . . ,p

T
Nb+Nc

]T, that
maximally improve the localization accuracy of the target
agent. The positions of assisting nodes are restricted by K
disjoint deployment regions, R1,R2, . . . ,RK , enumerated
in counterclockwise direction. The set of possible assisting
node positions is denoted by S = ∪Kk=1Rk. This set excludes
all the positions where assisting nodes cannot be deployed
due to delimitation or blockages given map information and
knowledge of the line-of-sight (LOS) and non-line-of-sight
(NLOS) conditions in the environment.

Let J(p0,pc) denote the equivalent Fisher information
matrix (EFIM) [76] for the positions of the target agent and
assisting nodes, given by (1) shown at the bottom of next
page. In (1), the matrix JA

e (pi) represents the position infor-
mation that node i obtains from anchors; and the matrix Ci,j
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Fig. 2. Node deployment scenario: assisting nodes are deployed to
improve the localization accuracy of a target agent. The positions of
assisting nodes are restricted by K deployment regions (gray areas).

represents the position information that node i obtains from
spatial cooperation with node j. Such matrices are given,
respectively, by

JA
e (pi) =

∑

j∈Nb

λi,j Jr(φi,j) (2a)

Ci,j = Cj,i = (λi,j + λj,i)Jr(φi,j) (2b)

where λi,j is referred to as the range information intensity
(RII) between nodes i and j; and Jr(φ) is referred to as the
range direction matrix (RDM) with angle φ [76].

The RII and RDM depend on the deployment of nodes i
and j, and are given by

λi,j = Λ(di,j) =
8π2β2

c2
(1− χi,j) γi,j(di,j) (3a)

Jr(φ) =

[

cos2(φ) cos(φ) sin(φ)
cos(φ) sin(φ) sin2(φ)

]

(3b)

respectively. In (3a), the RII is expressed as a function of dis-
tance di,j in which β and c are the effective bandwidth and
propagation speed of the transmitted signal, respectively;
χi,j ∈ [0, 1) is a realization of the path-overlap coefficient
(POC) describing the degradation of the RII due to mul-
tipath propagation from node j to node i;1 and γi,j(di,j) is
the signal-to-noise ratio (SNR) of the first path received from

1. The POC depends on the inter-arrival delays of the multipath
components in the first contiguous cluster of the received signal [76].

node j at node i as a function of di,j . The SNR of the first
path received from node j at node i is given by

γi,j(di,j) = G
Pj

dαi,jN0
(4)

where Pj is the transmitting power level of node j, α > 0
is the path-loss exponent, N0 is the one-sided power spec-
tral density of the noise component, and G is a gain that
depends on the center frequency and antenna directivity.
We consider that the target agent and assisting nodes have
transmitting power Pc.2

To design strategies for deploying assisting nodes, con-
sider the position information of the target agent. From (1),
the 2 × 2 EFIM for the position of the target agent as a
function of the assisting node positions is given by

Je(pc;p0) = JA
e (p0) +

∑

j∈Nc

ξ0,jJr(φ0,j) (5)

where ξ0,j = ς(d0,j , φ0,j) denotes the equivalent ranging
coefficient (ERC) obtained from spatial cooperation be-
tween the target agent and the assisting node j. The ERC
is given by

ς(d0,j , φ0,j) =
r0,j

1 + r0,j∆0,j
(6)

where r0,j = λ0,j + λj,0 depends on the deployment of the
target agent and assisting node j according to (3a), and

∆0,j = tr
{

Jr(φ0,j)
[

JA
e (pj)

]−1
}

. (7)

The term ∆0,j penalizes the ERC from spatial cooperation
with assisting node j due to its position uncertainty, and, as
a special case, ∆0,j = 0 if it has perfect knowledge of its
own position. In this special case, the assisting node j may
be viewed as an assisting anchor with r0,j = λ0,j .3

2.2 Localization Performance Metrics

The localization accuracy of the target agent can be quan-
tified by the mean-square error (MSE) of its position es-
timator. Let p̂0 denote an unbiased estimator of p0 based
on the noisy measurements that the target agent obtains
from anchors and assisting nodes. From the information
inequality, the MSE of the position estimator p̂0 is lower
bounded by the squared position error bound (SPEB) [76],
which is given as

P(pc;p0) = tr
{

[

Je(pc;p0)
]−1

}

. (8)

2. The transmitting power of cooperative nodes (e.g., target agent and
assisting nodes) is smaller than that of anchors.

3. Even though the problem formulation includes this special case,
the assumption of assisting nodes without position uncertainty may
not be valid in most practical systems.

J(p0,pc) =





















JA
e (p0) +

∑

j∈Nc

C0,j −C0,Nb+1 −C0,Nb+2 · · · −C0,Nb+Nc

−CNb+1,0 JA
e (pNb+1) +CNb+1,0 0 · · · 0

−CNb+2,0 0 JA
e (pNb+2) +CNb+2,0 · · · 0

...
...

...
. . .

...

−CNb+Nc,0 0 0 · · · JA
e (pNb+Nc) +CNb+Nc,0





















(1)
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Fig. 3. Geometric interpretation of the EFIM for the position of a target
agent. Arrows denote the direction of inter-node measurements, and
the length of an arrow represents the amount of wireless resources
employed. The red ellipse represents the position information obtained
from anchors; the green ellipse represents the position information
obtained from spatial cooperation with assisting nodes; and the purple
ellipse represents the position information obtained from anchors and
spatial cooperation with assisting nodes. The purple shade represents
the area where the information ellipse can exist given the possible
assisting node positions.

This lower bound is asymptotically achievable by maxi-
mum likelihood estimators in high SNR regimes and can
be adopted as the localization performance metric for the
design of node deployment strategies [41]. Furthermore, a
measure of the confidence of p̂0 based on the geometric
interpretation of the EFIM as an information ellipse can also
be employed as localization performance metric [76].

Consider the eigenvalue decomposition of the 2×2 EFIM
for the position of the target agent given by

Je(pc;p0) = Uϑ

[

µ 0
0 η

]

UT
ϑ (9)

where µ and η are the eigenvalues of Je(pc;p0) and Uϑ is
a rotation matrix [76]. From (9), the SPEB of the target agent
can be expressed as

P(pc;p0) = tr

{

[

µ 0
0 η

]−1
}

= µ−1 + η−1 . (10)

The information ellipse of a 2×2 EFIM Je(pc;p0) is defined
as the set of points [76]

{

w ∈ R
2 : wT[Je(pc;p0)]

−1w = 1
}

. (11)

Fig. 3 illustrates the geometric interpretation of the
EFIM for the position of a target agent as an information
ellipse with major and minor axes equal to

√
µ and

√
η,

respectively. This ellipse represents the position information
obtained by the target agent from anchors and spatial coop-
eration with assisting nodes.

The area of the information ellipse can be used as a
measure of the confidence of p̂0. In particular, a large
information ellipse is desirable for accurate localization.
Nevertheless, the largest information ellipse does not nec-
essarily provide the lowest SPEB [76]. Since the area of the

information ellipse is related to the determinant of the EFIM,
we consider the alternative performance metric given by

Q(pc;p0) = det
{

Je(pc;p0)
}

. (12)

2.3 Node Deployment Problem of Assisting Nodes

The goal of the node deployment strategy is to determine
the positions where assisting nodes should be placed to
maximally improve the localization accuracy of a target
agent. Since the possible assisting node positions are de-
scribed by the set S, the node deployment problem can be
formulated as

P : minimize
pc

P(pc;p0)

subject to pi ∈ S, i ∈ Nc .

Alternatively, the problem can be formulated by considering
Q(pc;p0) with the goal of maximizing the confidence of
the position estimator p̂0 rather than minimizing the SPEB
directly. In this case, problem P would be formulated by
replacing the objective function with −Q(pc;p0).

Solving P is difficult because its objective function is,
in general, not convex with pc due to symmetrical patterns
caused by permutations of the positions and because S can
describe complicated problem instantiations.4 Moreover, the
solutions to P can describe clusters of assisting nodes, i.e.,
assisting nodes deployed in close proximity to each other.
To provide a more tractable solution to this problem, we
consider a finite set of candidate positions from which the
node deployment strategy selects near-optimal locations for
the assisting nodes. The following section will introduce a
methodology to determine a finite set of candidate positions
for the assisting nodes.

3 DISCRETIZATION OF DEPLOYMENT REGIONS

Consider the polar coordinates of the assisting node posi-
tions relative to the position of the target agent p0 as refer-
ence point. Let d = [ d0,Nb+1, d0,Nb+2, . . . , d0,Nb+Nc ]

T and
φ = [φ0,Nb+1, φ0,Nb+2, . . . , φ0,Nb+Nc ]

T denote the vectors
of distance and angle components of the polar coordinates
of the assisting nodes with respect to p0, respectively. More-
over, consider the function g(d, φ) = p0+d [cos(φ), sin(φ)]T

to obtain the Cartesian coordinates of the position repre-
sented by the polar coordinates (d, φ). The EFIM for the
position of the target agent can be rewritten in terms of d
and φ as

Je(d,φ;p0) = JA
e (p0) +

∑

j∈Nc

ς(d0,j , φ0,j)Jr(φ0,j) (13)

in which pj = g(d0,j , φ0,j) for j ∈ Nc.
The optimization of a performance metric equivalent to

(8) based on Je(d,φ;p0) can be performed by first establish-
ing the distance components for a given set of angles and
then determining the appropriate angles [41]. The distance
component for a fixed angle φ0,j is given by

d∗0,j = arg max
{d0,j : g(d0,j ,φ0,j)∈S}

ς(d0,j , φ0,j) . (14)

4. The optimization of non-convex functions is challenging due to the
existence of locally optimal solutions that are not globally optimal [80].
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This problem can be solved by one-dimensional optimiza-
tion methods since the objective function only depends
on a single variable. Note that ς(d0,j , φ0,j) also depends
on the propagation conditions that an assisting node will
experience if it is deployed at the position described by
g(d0,j , φ0,j) ∈ S. We consider that the POCs describing the
propagation conditions for such positions are known.5

The next step consists of optimizing the angle compo-
nents given the corresponding distances. This step is dif-
ficult because the possible angles are described by disjoint
intervals and the objective function is not convex with φ.
Hence, we consider that the angles φ0,j belong to a fi-
nite set of M possible directions Θ = { θ0, θ1, . . . , θM−1}.
The discretization of the angles describes a reduced ver-
sion of the set S. The reduced set of possible assisting
node positions is denoted by Š = ∪M−1

m=0 (Dm ∩ S), where
Dm =

{

z ∈ R
2 : ∠(z − p0) = θm

}

is the set of positions
described by the angle θm with respect to p0 (see Fig. 2).

A discretization method to determine the angles θm is
described next. Let θLk and θUk denote the lower and upper
angle constraints of the deployment region k with respect to
p0 as reference point. Moreover, let ak = θUk −θLk denote the
length of the interval of angles over which assisting nodes
can be placed in the deployment region k, which is referred
to as the aperture of the deployment region k. The apertures
of the deployment regions are concatenated and considered

as a single interval with total aperture A =
∑K

k=1 ak.
Then, the set of angles { θ̌0, θ̌1, . . . , θ̌M−1} is obtained with
θ̌m given by

θ̌m = (m+ 1)
A

M + 1
. (15)

To determine the possible angles θm, the values θ̌m are
mapped to the intervals described by the deployment re-
gions. This mapping is given by

h(θ̌m) =































θ̌m + θL1 if 0 < θ̌m 6 a1

θ̌m + θL2 − a1 if a1 < θ̌m 6 a1 + a2
...

θ̌m + θLK −
K−1
∑

k=1

ak if
K−1
∑

k=1

ak < θ̌m 6
K
∑

k=1

ak .

(16)
The angle discretization enables establishing a finite set

of possible assisting node positions. The positions in this
set are referred to as candidate positions since the node
deployment strategy will select the locations of assisting
nodes among them. Specifically, each possible angle θm is
paired with a distance dm, which, from (14), is given by

dm = arg max
{d:g(d,θm)∈Š}

ς(d, θm) . (17)

The polar coordinates (dm, θm) determine the candidate
position p̌m = g(dm, θm). An assisting node deployed at
p̌m will provide position information to the target agent
with ERC ξ̌m = ς(dm, θm). The vectors of candidate posi-
tions and ERCs are denoted by p̌c = [ p̌T

0 , p̌
T
1 , . . . , p̌

T
M−1]

T

and ξ̌c = [ ξ̌0, ξ̌1, . . . , ξ̌M−1]
T, respectively. Algorithm 1

describes the steps to discretize the deployment regions and
establish a finite set of candidate positions.

5. Realizations of the POCs can be obtained by generating the re-
ceived waveform or by means of a statistical model [85].

Algorithm 1 Discretization of Deployment Regions

Input: Target agent position p0, deployment regions
R1,R2, . . . ,RK , and number of candidate positions M .

Output: Candidate positions p̌c and ERCs ξ̌c .
1: for k = 1 to K do
2: Determine the angle constraints θLk and θUk .
3: ak ← θUk − θLk .
4: end for

5: A←
K
∑

k=1

ak .

6: for m = 0 to M − 1 do
7: θ̌m ← (m+ 1) [A/(M + 1)] .
8: θm ← h(θ̌m) .
9: dm ← arg max

{d: g(d,θm)∈Š}

ς(d, θm) .

10: p̌m ← g(dm, θm) .
11: ξ̌m ← ς(dm, θm) .
12: end for
13: p̌c ← [ p̌T

0 , p̌
T
1 , . . . , p̌

T
M−1]

T .

14: ξ̌c ← [ ξ̌0, ξ̌1, . . . , ξ̌M−1]
T .

By considering the finite set of candidate positions
{ p̌0, p̌1, . . . , p̌M−1}, the EFIM for the position of the target
agent can be rewritten as

J̌e(u;p0) = JA
e (p0) +

M−1
∑

m=0

umξ̌mJr(θm) (18)

where u = [u0, u1, . . . , uM−1]
T with um ∈ {0, 1} encoding

whether an assisting node is deployed (um = 1) at the
position p̌m or not (um = 0). Then, the performance metrics
introduced in Section 2.2 can be rewritten as

P̌(u;p0) = tr
{

[

J̌e(u;p0)
]−1

}

(19a)

Q̌(u;p0) = det
{

J̌e(u;p0)
}

(19b)

which are the counterparts of (8) and (12), respectively,
considering the EFIM for the position of the target agent
as a function of u. The node deployment strategy based on
(19a) (or (19b)) aims to select the Nc positions where assist-
ing nodes should be deployed to maximally improve the
localization accuracy of the target agent. This is expressed
by the problem

Ps : minimize
u

P̌(u;p0) (20a)

subject to 1
Tu = Nc (20b)

um ∈ {0, 1}, m = 0, 1, . . . ,M − 1 (20c)

where Ps denotes the formulation of the node deployment
task as a selection problem [77]. In Ps, (20b) represents the
constraint on the total number of available assisting nodes

for deployment, i.e.,
∑M−1

m=0 um = Nc, and (20c) represents
the Boolean constraints for the selection variables. Hence,
the optimization problem requires M > Nc candidate posi-
tions. Note that the assisting node positions pc correspond
to the candidate positions p̌m with um = 1.

The selection problem Ps may be viewed as a relaxation
of P since it considers a finite subset of possible assisting
node positions. Nonetheless, approximate solutions to the
node deployment problem of assisting nodes (which is
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generally difficult to solve in its conventional form P) can
be obtained by considering the form of Ps. Note that the
choice of the parameter M involves a tradeoff between the
accuracy of the approximation and the complexity of solv-
ing Ps. Furthermore, the problem can also be formulated
by employing−Q̌(u;p0) as objective function with the goal
of maximizing the confidence of the position estimator.

4 CONVEX RELAXATION

The objective function P̌(u;p0) in (20a) is convex for u < 0

[41]. This allows to obtain a convex relaxation of the combi-
natorial problem Ps by replacing the Boolean constraints in
(20c) with the box constraints 0 6 um 6 1. Let Psc denote
the convex relaxation of Ps expressed as

Psc : minimize
u

P̌(u;p0)

subject to 1
Tu = Nc

0 6 um 6 1, m = 0, 1, . . . ,M − 1 .

This problem is a convex program since the objective is
convex and the constraints are linear.6 Hence, Psc can be
solved using conventional convex optimization methods.
In particular, such a problem can be transformed into a
semidefinite program (SDP) or a second order cone program
(SOCP) [41], which are more favorable formulations due to
their efficient solvers [80]. The transformation of Psc into
an SOCP will be described later on in this section.

Let u∗ = [u∗
0, u

∗
1, . . . , u

∗
M−1]

T denote the optimal solu-
tion of Psc. This solution can contain fractional elements
due to the relaxation of the Boolean constraints and may
not be feasible for Ps. Nonetheless, the optimal solution
u∗ can be employed to obtain a near-optimal selection of
the assisting node positions. Consider the feasible solution
ů = [ ů0, ů1, . . . , ůM−1]

T whose elements are given by

ům =

{

1 if u∗
m is one of the Nc largest elements of u∗

0 otherwise
(21)

in which ties are broken arbitrarily.7 In addition to deter-
mining a near-optimal solution to the node deployment
problem by means of the rounding function in (21), solving
the convex relaxation also provides a theoretical limit on the
localization accuracy provided by assisting nodes given a
finite set of candidate positions. In particular, the optimal
objective of Psc cannot be greater than that of Ps since the
set of feasible solutions of Ps is a subset of that of Psc.
Hence, we have the theoretical limit

P̌(ů;p0) > P̌(u∗;p0) . (22)

This lower bound is useful to evaluate the near-optimal
selection of assisting node positions determined by ů. For a
certain instance of Ps, the gap between the position errors
described by ů and u∗ is given by

∆c =
√

P̌(ů;p0)−
√

P̌(u∗;p0) . (23)

Note that ů is the optimal solution of Ps if ∆c = 0.

6. In convex optimization problems, any locally optimal solution is
also globally optimal [80].

7. More sophisticated methods can be used to generate a feasible
solution for Ps based on the solution of its convex relaxation [77].

Next, we describe the transformation of Psc into an
SOCP. First, the SPEB is rewritten in a matrix form as shown
in the following proposition.

Proposition 1. The SPEB P̌(u;p0) can be written as

P̌(u;p0) =
4 (1TRv)

vTRT(11T − ccT − ssT)Rv
(24)

where

R = diag{ ξ̌0, ξ̌1, . . . , ξ̌M−1, λ0,1, λ0,2, . . . , λ0,Nb
}

v = [uT,1T
Nb

]T

c = [ cTc , c
T
b ]

T

s = [ sTc , s
T
b ]

T

cc = [ cos(2θ0), cos(2θ1), . . . , cos(2θM−1)]
T

cb = [ cos(2φ0,1), cos(2φ0,2), . . . , cos(2φ0,Nb
)]T

sc = [ sin(2θ0), sin(2θ1), . . . , sin(2θM−1)]
T

sb = [ sin(2φ0,1), sin(2φ0,2), . . . , sin(2φ0,Nb
)]T .

Proof: The 2× 2 EFIM J̌e(u;p0) can be written as

J̌e(u;p0) =

[

ae be
be de

]

where

ae =
M−1
∑

m=0

umξ̌m cos2(θm) +
Nb
∑

i=1

λ0,i cos
2(φ0,i)

be =
M−1
∑

m=0

umξ̌m cos(θm) sin(θm) +
Nb
∑

i=1

λ0,i cos(φ0,i) sin(φ0,i)

de =
M−1
∑

m=0

umξ̌m sin2(θm) +
Nb
∑

i=1

λ0,i sin
2(φ0,i) .

Considering the formula for the inverse of a 2 × 2 matrix,
the SPEB is given by

P̌(u;p0) =
ae + de
aede − b2e

. (25)

We obtain (24) after some algebra considering trigonometric
identities and rewriting in terms of R, v, c, and s.

The following proposition provides the transformation
of Psc into an SOCP.

Proposition 2 (SOCP). The problem Psc is equivalent to the
SOCP

P
SOCP
sc : minimize

u, ̺, σ
̺

subject to ‖ARv + b‖ 6 1
TRv − 2σ

∥

∥

∥

[

σ, ̺,
√
2
]T

∥

∥

∥ 6 σ + ̺

1
Tu = Nc

− u 4 0

u 4 1

where A = [c, s,0]T and b = [0, 0, 2σ]T.

Proof: The problem Psc can be rewritten as

minimize
u, ̺

̺

subject to P̌(u;p0) 6 ̺

1
Tu = Nc

− u 4 0

u 4 1 .
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Algorithm 2 SOCP-based Node Deployment Strategy

Input: Target agent position p0, deployment regions
R1,R2, . . . ,RK , number of candidate positions M , and
number of assisting nodes Nc .

Output: Assisting node positions pc .
1: Determine candidate positions p̌c and ERCs ξ̌c based on

Algorithm 1.
2: Solve PSOCP

sc to determine the solution u∗ .
3: Generate the near-optimal feasible solution ů based on

u∗ by evaluating (21).
4: Determine pc based on p̌c and ů .

From (24), the constraint on P̌(u;p0) can be rewritten as

4

̺
(1TRv) 6 (1TRv)2 − (cTRv)2 − (sTRv)2 .

Then, we have

(cTRv)2 + (sTRv)2 6 (1TRv)2 − 4

̺
(1TRv)

and, by completing the square in the right side

(cTRv)2 + (sTRv)2 +
4

̺2
6 (1TRv)2 − 4

̺
(1TRv) +

4

̺2
.

Since 1
TRv − 2/̺ > 0, this inequality can be rewritten as

∥

∥

∥[ cTRv, sTRv, 2σ ]T
∥

∥

∥ 6 1
TRv − 2σ (26)

where σ = 1/̺. The constraint σ = 1/̺ can be transformed,
without changing the optimal solution, into

∥

∥

∥[σ, ̺,
√
2 ]T

∥

∥

∥ 6 σ + ̺ .

The proof is completed by rewriting the inequality (26) in
terms of A and b.

Algorithm 2 presents the SOCP-based node deployment
strategy. Specifically, solving the SOCP requires the imple-
mentation of an iterative optimization algorithm (e.g., an
interior-point method) or the use of a convex optimization
engine (e.g., CVX [86]).

Remark 1 (Complexity). Standard form SOCPs can be solved
efficiently via interior-point methods [80]. In particular,
solving PSOCP

sc with an interior-point method has a
worst-case complexity of O((M + Nb)

3) since the di-
mension of v is M +Nb [87].

5 ADP ALGORITHM

The SOCP-based node deployment strategy described in
Section 4 requires a convex optimization engine and a
rounding function to determine near-optimal assisting node
positions. While such a strategy can provide reliable solu-
tions for the near-optimal deployment of assisting nodes,
other approaches can be employed to design approximate
algorithms with more amenable complexity and without
relying on sophisticated optimization solvers. Next, we de-
velop an ADP algorithm for deploying assisting nodes.8

8. While the focus remains on the node deployment problem of
assisting nodes, the ADP algorithm developed in this section can be
applied to other selection problems.

Consider the formulation of the node deployment prob-
lem after discretizing the set of possible positions and with
the determinant of the EFIM for the position of the target
agent as localization performance metric. This optimization
problem is expressed as

minimize
u

−Q̌(u;p0)

subject to 1
Tu = Nc

um ∈ {0, 1}, m = 0, 1, . . . ,M − 1 .

With this problem formulation, the node deployment strat-
egy aims to select the Nc positions where assisting nodes
should be deployed to maximize the confidence of the
position estimator p̂0. We propose solving this problem
approximately via dynamic programming.

In dynamic programming algorithms, decisions are
made in stages [88], [89], [90]. In our formulation, stages are
related to the indices of the candidate positions. Consider a
finite horizon problem with M + 1 stages in which the last
stage incorporates the position information obtained from
anchors. Let xm for m = 0, 1, . . . ,M and um ∈ Um(xm) for
m = 0, 1, . . . ,M − 1 denote the state and decision variables,
where Um(xm) is the constraint set at stage m. Specifically,
xm is a non-negative integer that encodes the number
of available assisting nodes at stage m; and um encodes
whether an assisting node is deployed at the candidate
position p̌m or not. The initial condition is x0 = Nc assisting
nodes. In addition, the constraint set at stage m is given by

Um(xm) =

{

{0, 1} if xm > 0

{0} otherwise
(27)

and the state transitions are given by xm+1 = xm − um.

A key aspect of dynamic programming is that it requires
an additive objective function of the form [88], [89], [90]

G(x0;u0, u1, . . . , uM−1) = gM (xM ) +
M−1
∑

m=0

gm(xm, um)

(28)
where gM (xM ) is the terminal objective incurred at the
last stage, and gm(xm, um) is the objective at stage m.
Fig. 4 illustrates the transition graph of the node deploy-
ment problem for two assisting nodes, (i.e., x0 = 2). In
this diagram, nodes and arcs represent states and possible
state transitions, respectively. The state transitions have an
associated objective gm(xm, um) (or gM (xM ) for the final
stage). Note that an artificial node representing the terminal
state, T , is added to incorporate the terminal objective.
Furthermore, possible solutions correspond to trajectories
from the initial stage to the last stage. For example, the
possible decisions at the first stage are: (a) to not deploy an
assisting node at p̌0 with objective g0(2, 0), or (b) to deploy
an assisting node at p̌0 with objective g0(2, 1); which will
result in having either two or one assisting nodes available
at the next stage, respectively. After choosing a decision, the
sequence proceeds similarly until the last stage adding the
terminal objective.

The matrix determinant lemma [91] provides a useful
expression to develop the ADP algorithm. For an invertible
n × n matrix Λ and n-dimensional vectors x and y, the
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Fig. 4. Transition graph for the node deployment problem with x0 = 2 assisting nodes and M candidate positions. Notation x
(k)
i

denotes the state
xi = k. Black solid lines represent a solution to the problem, and the functions on its arcs are the objectives of the corresponding state transitions.

logarithmic form of the matrix determinant lemma provides
an additive expression given by

log
[

det{Λ+ xyT}
]

= log
[

1 + yTΛ−1x
]

+ log
[

det{Λ}
]

.
(29)

Expressions of this form can be used recursively to compute
the log-determinant of J̌e(u;p0), i.e., log[Q̌(u;p0)]. Note
that Jr(φ) can be rewritten as [76]

Jr(φ) = q(φ)q(φ)T (30)

where q(φ) = [cos(φ), sin(φ)]T. An assisting node placed at
the candidate position p̌m will provide the target agent with
position information equal to ξ̌mq(θm)q(θm)T.

Since the goal is to maximize the area of the information
ellipse, consider the minimization of − log

[

Q̌(u;p0)
]

over
M + 1 stages as described by (28). Considering that JA

e (p0)
is non-singular, the terminal objective is given by

gM (xM ) = − log
[

det
{

JA
e (p0)

}

]

. (31)

Then, the objective of stage m can be formulated considering
the EFIM that accumulates from stage m+ 1 to stage M as

gm(xm, um) =

− log
[

1 + umξ̌mq(θm)T{J̌m+1(xm − um)}−1
q(θm)

]

(32)

for m = 0, 1, . . . ,M − 1, where J̌m+1(xm−um) is the EFIM
that accumulates from stage m+1 to stage M when xm−um

assisting nodes are available at stage m+ 1. In particular,

J̌m+1(xm − um) = JA
e (p0) +

M−1
∑

i=m+1

uiξ̌iJr(θi) (33)

where ui is the decision made at stage i.
The starting point of the ADP algorithm is given by

DM (xM ) = gM (xM ) (34)

for xM = 0, 1, . . . , Nc. Moreover, the tail subproblems for
the rest of the stages take the form

Dm(xm) = min
um∈Um(xm)

{

gm(xm, um) +Dm+1(xm − um)
}

.

(35)

For the intermediate stages, m = 1, 2, . . . ,M − 1, the state
xm can take the values in the set { 0, 1, . . . , Nc}. Since the
optimal objective of the problem is equal to D0(x0), the tail
subproblem at the first stage is solved only for x0 = Nc

assisting nodes. The solution of the ADP algorithm, denoted
by ǔ = [ ǔ0, ǔ1, . . . , ǔM−1]

T, is determined starting from the
first stage and proceeding forward [88], [89], [90].

We can compare the position error determined by the so-
lution of the ADP-based node deployment strategy with the
theoretical limit provided by solving the convex relaxation
presented in Section 4. The gap between the position errors
determined by ǔ and u∗ is given by

∆ADP =
√

P̌(ǔ;p0)−
√

P̌(u∗;p0) . (36)

Note that ǔ is the optimal solution to the node deployment
problem of assisting nodes in terms of the position error if
∆ADP = 0.

Algorithm 3 presents the ADP-based node deployment
strategy. Specifically, solving the proposed ADP recursion
requires the evaluation of arithmetic operations and the
storage of intermediate results. Note that the ADP algorithm
does not require evaluating all the possible solutions of the
combinatorial problem as in an exhaustive search approach.

Remark 2 (Complexity). The complexity of the ADP al-
gorithm can be analyzed by considering the number
of tail subproblems that need to be solved. In the last
stage, DM (xM ) is computed only once with a constant
running time since gM (xM ) is invariant with xM . For the
intermediate stages, M − 1 tail subproblems of the form
of (35) need to be solved for Nc + 1 possible states, i.e.,
for a total of (M − 1)(Nc + 1) tail subproblems. Finally,
a single tail subproblem is solved at the first stage.
Considering that all the tail subproblems are solved with
worst-case complexity, the ADP algorithm has worst-
case complexity of O(MNc). Thus, for a given Nc, the
complexity of the ADP algorithm is linear on M . Note
that the worst-case complexity of the ADP algorithm
is upper bounded by O(M2) since Nc 6 M from the
problem formulation. Therefore, the ADP-based node
deployment strategy has a more amenable complexity
compared to the SOCP-based strategy with worst-case
complexity of O((M +Nb)

3).
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Algorithm 3 ADP-based Node Deployment Strategy

Input: Target agent position p0, deployment regions
R1,R2, . . . ,RK , number of candidate positions M , and
number of assisting nodes Nc .

Output: Assisting node positions pc .
1: Determine candidate positions p̌c and ERCs ξ̌c based on

Algorithm 1.
2: Compute DM (xM ) for the last stage given by (34).
3: Perform the ADP recursion (35) backward for the inter-

mediate stages starting from DM (xM ) .
4: Solve D0(Nc) and determine ǔ proceeding forward.
5: Determine pc based on p̌c and ǔ .

6 INVERSE NODE DEPLOYMENT PROBLEM

The methodology developed in this paper is also applicable
to other formulations of the node deployment problem.
Consider the inverse node deployment problem in which
the goal is to determine the minimum number of assisting
nodes that are needed to meet a localization performance re-
quirement. The solution to this problem not only establishes
how many assisting nodes are needed, but also dictates

where to deploy them. Let
←−
P denote the inverse node

deployment problem of assisting nodes expressed as

←−
P : minimize

Nc,pc

Nc (37a)

subject to P(pc;p0) 6 ̺r (37b)

pi ∈ S, i ∈ Nc (37c)

where the constraint (37b) establishes the localization per-
formance requirement in terms of the SPEB. In this con-
straint, ̺r is a predefined performance threshold describ-
ing the required SPEB. Furthermore, the localization per-
formance requirement can also be expressed in terms of
Q(pc;p0). In the latter case, the constraint (37b) is replaced
by Q(pc;p0) > ζr, where ζr is a predefined performance
threshold describing the required determinant of the EFIM
for the position of the target agent. Next, we describe two
approaches for solving the inverse node deployment prob-
lem based on convex optimization and ADP, respectively.

6.1 Convex Relaxation

Consider the formulation of the inverse node deployment
problem after the discretization of the set of possible assist-
ing node positions. This problem is expressed as

←−
Ps : minimize

u
1
Tu (38a)

subject to P̌(u;p0) 6 ̺r (38b)

um ∈ {0, 1}, m = 0, 1, . . . ,M − 1 (38c)

where
←−
Ps denotes the formulation of the problem

←−
P as

a selection problem. This problem may be viewed as a

relaxation of
←−
P since it considers a finite subset of possible

assisting node positions. Note that the objective of
←−
Ps is

upper bounded by M , which is the dimension of u.
Since P̌(u;p0) is convex for u < 0, the convex relaxation

of the inverse node deployment problem can be obtained
by replacing the Boolean constraints in (38c) with the box

constraints 0 6 um 6 1. Let ←−u ∗ denote the optimal

solution to the convex relaxation of
←−
Ps. This solution may

not be feasible to the integer problem since it can contain
fractional elements. We consider the near-optimal feasible
solution whose elements correspond to the entries of ←−u ∗

after applying an element-wise ceiling function. The optimal

objective of
←−
Ps is lower bounded by 1

T←−u ∗ since the set of
feasible solutions of the integer problem is a subset of that
of its convex relaxation.

The convex relaxation of the problem
←−
Ps can be trans-

formed into an SOCP as shown in the next proposition.

Proposition 3 (SOCP for the inverse problem). The convex

relaxation of
←−
Ps is equivalent to the SOCP

←−
P

SOCP
s c : minimize

u

1
Tu

subject to ‖ARv + b‖ 6 1
TRv − 2/̺r

− u 4 0

u 4 1

where A = [c, s,0]T and b = [0, 0, 2/̺r]
T.

Proof: The proof follows the same approach of that for
Proposition 2.

6.2 ADP Algorithm

The inverse node deployment problem can also be formu-
lated with Q(pc;p0) as localization performance metric. Af-
ter discretizing the set of possible assisting node positions,
the inverse node deployment problem can be formulated

similarly to
←−
Ps by replacing (38b) with Q(pc;p0) > ζr.

This optimization problem can be solved using the ADP
recursion described by (34) and (35) considering a range of
initial conditions. Let Ň be an upper bound for the state x0.
The starting point of the ADP algorithm for the inverse
deployment problem is given by (34) for xM = 0, 1, . . . , Ň ,
and the tail subproblems take the form of (35) for the rest of
the stages. In the inverse node deployment problem, the
state xm can take the values in the set {0, 1, . . . , Ň} for
m = 0, 1, . . . ,M − 1. After computing the tail subproblems
at the first stage, the next step consists of searching for
the smallest value of x0 that satisfies D0(x0) 6 − log(ζr),
i.e., the minimum number of assisting nodes that meet the
required performance. Finally, the solution is determined
starting from that initial condition and proceeding forward.

7 CASE STUDY

This section evaluates the performance of the developed
node deployment strategies in a case study.

Consider a location-aware network composed of ultra-
wideband (UWB) nodes. The UWB technology [92], [93],
[94], [95], [96] is readily available in consumer devices, and
the deployment of UWB assisting nodes can enable high-
accuracy localization in 5G and beyond ecosystems [12],
[13], [97]. Specifically, we consider a 3GPP indoor open
office scenario in which anchors are placed according to the
layout in [98], and assisting nodes are additionally deployed
therein to improve the localization accuracy of a target
agent. Consider the cases: (C1) full anchor deployment, in
which all anchors in the standard indoor open office layout
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(a) Full anchor deployment with predefined deployment areas.
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(b) Partial anchor deployment with predefined deployment areas.
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(c) LOS map describing the number of anchors in LOS.
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(d) LOS map describing the number of anchors in LOS.
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(e) Simulation scenario after determining the deployment regions.
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(f) Simulation scenario after determining the deployment regions.

Fig. 5. Simulation scenarios for cases C1 (left column) and C2 (right column). The predefined deployment areas (top) and realizations of the LOS
map describing the number of anchors in LOS conditions observed from each position (center) determine the deployment regions (bottom). The four
shades of lilac in the LOS maps depict the positions with zero (lightest), one, two, and at least three (darkest) anchors observed in LOS conditions.

are placed; and (C2) partial anchor deployment, in which
half of those anchors are considered (see Fig. 5). Unless
otherwise indicated, the results correspond to case C1. The
nodes emit UWB root raised cosine pulses compliant with
the IEEE 802.15.4a standard [99]. The multipath channels
are modeled according to the IEEE 802.15.4a channel model
for the indoor office scenario [100]. The noise figure, center
frequency, and maximum power spectral density are 10 dB,
6.489 GHz, and −41.3dBm/MHz, respectively [99]. The
transmitting power of the target agent and assisting nodes
is set to fractions of that of anchors, which is denoted as Pb.

Furthermore, we consider spatially-consistent wireless
channels [101], [102].9 Specifically, we consider spatially-
consistent LOS/NLOS states and POCs.10 The RII between
nodes in NLOS conditions is set to zero. The deployment re-

9. Spatial consistency is not considered in the IEEE 802.15.4a channel
model. We consider the parameters in [98].

10. Spatially-consistent POCs can be obtained by following the same
approach of small-scale parameters [102].

gions are determined as follows. First, maps of LOS/NLOS
states from anchors and target agent are generated for
the indoor open office scenario according to [101]. Then,
the deployment regions are determined by the intersection
between predefined deployment areas and the locations
where assisting nodes will be in LOS conditions with the
target agent and at least two anchors. In addition, POCs
are generated for the IEEE 802.15.4a indoor office scenario
following [85] and [102].

Fig. 5 shows realizations of the simulation scenario for
the two considered cases. Anchors are deployed according
to the indoor open office scenario, and ten predefined de-
ployment areas are considered as map constraints for the
positions of assisting nodes (see Figs. 5(a) and 5(b)). To
determine the deployment regions, we consider realizations
of LOS maps describing the number of anchors in LOS con-
dition observed from each position (see Figs. 5(c) and 5(d)).
These LOS maps show the areas where deploying assist-
ing nodes can benefit accurate localization. For example,
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Fig. 6. ECDF of the position error metric for different node deployment
strategies with Nc = 2 (solid line) and 8 (dashed line) assisting nodes.
The performance is evaluated with M = 16 candidate positions. For the
lower bound of the convex relaxation, M = 128 is considered.

agents may have inadequate localization performance in
areas where less than three anchors are in LOS conditions.
The deployment regions are determined by considering the
intersection between the predefined deployment areas and
the positions from which the target agent and at least two
anchors will be observed in LOS conditions (see Figs. 5(e)
and 5(f)). Note that these 3GPP scenarios highlight the
importance of a general problem formulation with multiple
deployment regions.

The case study focuses on revealing the benefits of
assisting nodes for accurate localization in complex and
infrastructure-limited wireless environments, especially if
deployed according to near-optimal strategies. Furthermore,
we evaluate the impact of different parameters on the lo-
calization performance provided by assisting nodes. The
localization performance is evaluated using the empirical
cumulative distribution function (ECDF) of the position
error metric (the square root of the SPEB) over many instan-
tiations of target agent positions and channel conditions. For
the SOCP-based node deployment strategy, the optimization
problems are solved using CVX [86]. We compare the perfor-
mance of the developed strategies against both the baseline
performance without deploying assisting nodes and the
performance of the random deployment strategy in which
assisting nodes are at uniformly random positions within
the deployment regions. The baseline performance reveals
the possible benefits of deploying assisting nodes since it
is based only on the existing infrastructure. The random
deployment strategy provides a benchmark to compare the
performance with assisting nodes placed using near-optimal
strategies. For these benchmarks, we consider that the target
agent performs measurements with three active anchors
and assisting nodes, if any. In contrast, the target agent
performs measurements with at most two active anchors,
which represents a worse case, and assisting nodes for the
near-optimal node deployment strategies.

Fig. 6 shows the performance of the random, SOCP-
based, and ADP-based strategies for deploying assisting
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Fig. 7. ECDF of the position error metric for the ADP-based node
deployment strategy with M = 8 and 32 candidate positions, and
Nc = 2 (solid line) and 4 (dashed line) assisting nodes. For the random
deployment strategy, Nc = 2 assisting nodes are considered.

nodes with the baseline performance and the theoretical
limits provided by the solutions to the SOCP. The perfor-
mance is evaluated for Nc = 2 and 8 assisting nodes with
M = 16 candidate positions and Pc = 0.5Pb. Note that
the proposed strategies provide a significant performance
improvement over the baseline and the random deployment
strategy. For example, the position errors for the baseline
performance, and the random and ADP-based deployment
strategies with Nc = 2 assisting nodes are below 1.17 m,
below 0.90 m, and below 0.46 m, respectively, for 90% of the
cases. At this mark, the random and ADP-based strategies
reduce the position error by 23% and 61% over the baseline
performance, respectively. In addition, note that the ADP-
based strategy provides adequate performance since the
gaps with respect to the SOCP-based strategy and the lower
bound are small. In particular, the sample mean values of
∆ADP with M = 16 are 0.02 m and 0.01 m for Nc = 2 and 8
assisting nodes, respectively. Note that, regardless the spe-
cific choice of technology, the performance improvements
provided by the proposed strategies are due to the near-
optimal selection of the assisting nodes positions. In the
following, the results focus on the ADP-based strategy.

Fig. 7 shows the performance of the ADP-based strategy
for deploying assisting nodes with M = 8 and 32 candidate
positions. The performance is evaluated for Nc = 2 and 4
assisting nodes with Pc = 0.5Pb. The baseline performance
and the random deployment strategy with Nc = 2 assist-
ing nodes are shown as benchmarks. Note that increasing
the number of assisting nodes reduces the position error.
However, a significant performance improvement can also
be obtained with a small number of assisting nodes (e.g.,
Nc = 2). Observe also that increasing M can improve the
performance further due to a better approximation of the
deployment problem. Nonetheless, adequate performance
can be obtained with small values of M (e.g., M = 8).
For example, the position errors using Nc = 4 assisting
nodes with M = 8 and 32 are below 0.38 m and below
0.36 m, respectively, for 90% of the cases. This represents
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Fig. 8. ECDF of the position error metric for the ADP-based node
deployment strategy with Pc = 0.2Pb and 0.8Pb, and Nc = 2 (solid
line) and 4 (dashed line) assisting nodes. For the random deployment
strategy, Nc = 2 assisting nodes are considered.

position error reductions of 67% and 69% for M = 8 and
M = 32, respectively, over the baseline performance. While
increasing M provides slight performance improvements,
smaller values of M favor amenable complexity. Hence, de-
ployment strategies with lower computational complexity
can be implemented incurring in a small performance loss.

The impact of the transmitting power of assisting nodes
on the localization performance is evaluated next. Fig. 8
shows the performance of the ADP-based strategy for de-
ploying assisting nodes with Pc = 0.2Pb and 0.8Pb. The
performance is evaluated for Nc = 2 and 4 assisting nodes
with M = 16. The baseline performance and the random
deployment strategy for Nc = 2 assisting nodes with
Pc = 0.2Pb and 0.8Pb are shown as benchmarks. Note
that increasing the transmitting power of assisting nodes
reduces the position error. Nonetheless, near-optimal node
deployment strategies can provide adequate performance
even with low transmitting resources (e.g., Pc = 0.2Pb). For
example, the position errors using Nc = 4 assisting nodes
with Pc = 0.2Pb and 0.8Pb are below 0.45 m and below
0.34 m, respectively, for 90% of the cases. This corresponds
to position error reductions of 62% and 70%, for Pc = 0.2Pb

and Pc = 0.8Pb, respectively, over the baseline perfor-
mance. These results show that a near-optimal deployment
of assisting nodes is beneficial for efficient localization.

Fig. 9 shows the performance of the ADP-based strategy
for deploying assisting nodes with Pc = 0.2Pb and 0.8Pb, in
case study C2. The performance is evaluated for Nc = 2 and
4 assisting nodes with M = 16. The baseline performance
and the random deployment strategy for Nc = 2 assisting
nodes with Pc = 0.2Pb and 0.8Pb are shown as benchmarks.
Note that the performance worsens compared to the sce-
nario with the full anchor deployment due to the limited
network infrastructure available (cf. Fig. 8). However, the
proposed strategies also provide a significant performance
improvement in this scenario. For example, the position
errors for the baseline performance, and the random and
ADP-based deployment strategies using Nc = 2 assisting
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Fig. 9. ECDF of the position error metric for the ADP-based node
deployment strategy with Pc = 0.2Pb and 0.8Pb, and Nc = 2 (solid
line) and 4 (dashed line) assisting nodes in case C2. For the random
deployment strategy, Nc = 2 assisting nodes are considered.
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Fig. 10. Number of assisting nodes needed to meet given localization
performance requirements using different node deployment strategies.

nodes with Pc = 0.2Pb are below 1.55 m, below 1.17 m, and
below 0.71 m, respectively, for 80% of the cases. Here, the
random and ADP-based deployment strategies reduce the
position error by 24% and 54%, respectively, over the base-
line performance. Hence, the developed strategies are also
suitable for infrastructure-limited wireless environments.

Next, consider the inverse node deployment problem
of assisting nodes. Fig. 10 shows the number of assisting
nodes needed to meet position error metrics,

√
̺, below

0.20, below 0.50, and below 0.80 m for 50% and 90% of the
cases employing the SOCP-based, ADP-based, and random
deployment strategies.11 The strategies are evaluated with
M = 64 and Pc = 0.5Pb for both case studies C1 and
C2. For the ADP-based strategy, the performance thresholds
are set empirically to meet the requirements in terms of the

11. In particular, we consider the percentiles of the feasible instances
of the problem.
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position error metric with Ň = 30 assisting nodes. Such a
value of Ň is also considered to limit the number of assisting
nodes in the random deployment strategy. In this figure, we
consider only the number of assisting nodes for the SOCP-
based strategy when it coincides with that for the ADP-
based strategy. Similarly, the number of assisting nodes
for the random deployment strategy is considered only
when achieving the required performance is possible. For
example, the random deployment strategy does not meet
the requirement of position error below 0.20 m. Note that
the developed near-optimal strategies reduce significantly
the number of assisting nodes compared to the random de-
ployment strategy. The number of assisting nodes increases
as the performance requirements are more stringent either
in terms of localization accuracy or percentage of cases. In
case C2, the number of assisting nodes increases compared
to case C1 due to the limited network infrastructure. The
gaps between the SOCP- and ADP-based node deployment
strategies are due to the use of different performance met-
rics. In particular, setting a threshold for the determinant
of the EFIM for the position of the target agent is difficult
because it cannot be related to a single localization error.
Hence, employing the SPEB as performance metric for the
inverse node deployment problem is more reasonable.

8 CONCLUSION

This paper presented near-optimal strategies to deploy as-
sisting nodes for efficient network localization. Specifically,
it introduced a methodology to determine a finite set of
candidate positions and developed near-optimal strategies
for deploying assisting nodes based on convex optimization
and ADP for different problem formulations. A case study
was presented to validate the proposed node deployment
strategies and show the benefits of deploying assisting
nodes in 3GPP scenarios. The results show that the devel-
oped near-optimal strategies provide a significant perfor-
mance improvement and outperform the random deploy-
ment strategy. The amenable complexity of the ADP-based
strategy makes it suitable for location-based services with
stringent positioning latency requirements. Indeed, such
a strategy aims to deploy assisting nodes with amenable
complexity. The proposed strategies unleash the benefits
of assisting nodes for accurate localization in complex and
infrastructure-limited wireless environments.
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[43] E. Maşazade, R. Niu, P. K. Varshney, and M. Keskinoz, “Energy
aware iterative source localization for wireless sensor networks,”
IEEE Trans. Signal Process., vol. 58, no. 9, pp. 4824–4835, Jun. 2010.

[44] Y. Shen, W. Dai, and M. Z. Win, “Power optimization for network
localization,” IEEE/ACM Trans. Netw., vol. 22, no. 4, pp. 1337–
1350, Aug. 2014.

[45] H. Godrich, A. P. Petropulu, and H. V. Poor, “Power allocation
strategies for target localization in distributed multiple-radar
architectures,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3226–
3240, Jul. 2011.

[46] T. Wang, Y. Shen, A. Conti, and M. Z. Win, “Network navigation
with scheduling: Error evolution,” IEEE Trans. Inf. Theory, vol. 63,
no. 11, pp. 7509–7534, Nov. 2017.

[47] S. Dwivedi, D. Zachariah, A. De Angelis, and P. Händel, “Co-
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Spain, in 2005, the M.S. degree in electronics
and telecommunications from CICESE, Mexico,
in 2006, and the Ph.D. degree in mobile commu-
nication systems from the University of Agder,

Norway, in 2009.
From 2009 to 2011, he was with the School of Engineering, Univer-

sidad Panamericana, Aguascalientes, Mexico. Since January 2012, he
has been with the Faculty of Science, Universidad Autónoma de San
Luis Potosı́, Mexico. His research interests include modeling, simula-
tion, and measurement of wireless channels; antenna design; vehicular
communications; and wireless perception systems for human activity
recognition.

Dr. Gutiérrez is a member of the Technical Committee on Propagation
of the IEEE Vehicular Technology Society. His publications received
three best paper awards. He has held different positions in organizing
and technical program committees of various international conferences.
He has served as an Expert Evaluator for the European Commission
and CONACYT (Mexico); an associate editor for the IEEE Vehicular
Technology Magazine; and a guest editor for international journals.

Moe Z. Win (Fellow, IEEE) is a Professor at the
Massachusetts Institute of Technology (MIT) and
the founding director of the Wireless Informa-
tion and Network Sciences Laboratory. Prior to
joining MIT, he was with AT&T Research Labo-
ratories and with NASA Jet Propulsion Labora-
tory.

His research encompasses fundamental the-
ories, algorithm design, and network experimen-
tation for a broad range of real-world prob-
lems. His current research topics include ultra-

wideband systems, network localization and navigation, network inter-
ference exploitation, and quantum information science. He has served
the IEEE Communications Society as an elected Member-at-Large on
the Board of Governors, as elected Chair of the Radio Communications
Committee, and as an IEEE Distinguished Lecturer. Over the last two
decades, he held various editorial positions for IEEE journals and orga-
nized numerous international conferences. Recently, he has served on
the SIAM Diversity Advisory Committee.

Dr. Win is an elected Fellow of the AAAS, the EURASIP, the IEEE,
and the IET. He was honored with two IEEE Technical Field Awards: the
IEEE Kiyo Tomiyasu Award (2011) and the IEEE Eric E. Sumner Award
(2006, jointly with R. A. Scholtz). His publications, co-authored with
students and colleagues, have received several awards. Other recog-
nitions include the MIT Everett Moore Baker Award (2022), the IEEE
Vehicular Technology Society James Evans Avant Garde Award (2022),
the IEEE Communications Society Edwin H. Armstrong Achievement
Award (2016), the Cristoforo Colombo International Prize for Communi-
cations (2013), the Copernicus Fellowship (2011) and the Laurea Honoris
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