
REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 1

An eXtended Reality Offloading IP Traffic
Dataset and Models

Diego González Morı́n, Student Member, IEEE, Daniele Medda, Student Member, IEEE,
Athanasios Iossifides, Member, IEEE, Periklis Chatzimisios, Senior Member, IEEE,

Ana Garcı́a Armada, Senior Member, IEEE, Alvaro Villegas, and Pablo Peréz

Abstract—In recent years, advances in immersive multimedia technologies, such as extended reality (XR) technologies, have led to
more realistic and user-friendly devices. However, these devices are often bulky and uncomfortable, still requiring tether connectivity for
demanding applications. The deployment of the fifth generation of telecommunications technologies (5G) has set the basis for XR
offloading solutions with the goal of enabling lighter and fully wearable XR devices. In this paper, we present a traffic dataset for two
demanding XR offloading scenarios that substantially extend those available in the current state of the art, captured using a fully
developed end-to-end XR offloading solution. We also propose a set of accurate traffic models for the proposed scenarios based on
the captured data, accompanied by a simple and consistent method to generate synthetic data from the fitted models. Finally, using an
open-source 5G radio access network (RAN) emulator, we validate the models both at the application and resource allocation layers.
Overall, this work aims to provide a valuable contribution to the field with data and tools for designing, testing, improving, and extending
XR offloading solutions in academia and industry.

Index Terms—EXtended Reality, 5G Networks, Offloading, Dataset, Traffic Models

✦

1 INTRODUCTION

UNDENIABLY, the advances in immersive multimedia
technologies introduced in the last five years are im-

pressive. Extended reality (XR) technologies, which include
virtual (VR) and augmented reality (AR) technologies, made
huge leaps forward both in terms of realism and user
interaction [1]. A significant factor in the current turmoil
on the topic has undoubtedly been the remarkable interest
of related companies such as Meta (formerly Facebook),
Microsoft, and Sony. In particular, Meta has decided to
focus heavily on the metaverse concept, thus, boosting
the interest in these technologies, their potential use cases,
and related issues [2]. Due to their inherent characteristics,
immersive use cases nowadays play a significant role in
the development of a great multitude of enabling tech-
nologies. The recent interest in XR technologies has led
to enormous investment increments, which have enabled
lighter and cheaper devices to reach unprecedented levels
of resolution. For example, the Varjo XR-3 1 head mounted

• D. González Morı́n, P. Peréz and Alvaro Villegas are with Nokia XR Lab,
Nokia, Madrid - SPAIN
E-mail: {diego.gonzalez morin, pablo.perez, alvaro.villegas}@nokia.com

• D. Medda and A. Iossifides are with the Department of Information and
Electronic Engineering, International Hellenic University, Thessaloniki -
GREECE.
E-mail: {dmedda, aiosifidis}@ihu.gr

• P. Chatzimisios is with the Department of Information and Electronic En-
gineering, International Hellenic University, Thessaloniki - GREECE and
with the Department of Electrical and Computer Engineering, University
of New Mexico, Albuquerque - USA.
E-mail: pchatzimisios@ihu.gr

• A. Garcı́a Armada is with the Department of Signal Theory and Commu-
nications, University Carlos III of Madrid - SPAIN.
E-mail: agarcia@tsc.uc3m.es

1. https://varjo.com/products/xr-3/

display (HMD) provides a visual resolution of 70 pixels per
degree, matching the human eye’s resolution.

Advanced XR requires not only ultra-realistic resolu-
tion but also the implementation or improvement of other
algorithms that aim to enhance user experience [3]. This
goal requires complex and computationally expensive al-
gorithms, such as semantic segmentation [4], [5], to run
in real time. Therefore, to expand the current limits of XR
technologies, HMDs must have access to high-end hardware
with powerful graphical processing units for ultra-realistic
rendering supported by machine learning (ML) processes.
For this reason, advanced XR HMDs such as the Varjo XR-
3 are tethered, uncomfortable and expensive. Consequently,
next-generation wireless systems, such as 5G and 6G, must
support XR technologies that have, as a whole, quickly
become one of the killer use case families [6]. The goal,
toward this end, is to offload XR heavy processing tasks
to a nearby server, or a multi-access edge computing (MEC)
platform, to loosen the in-built hardware requirements of
XR HMDs while increasing their overall computing capabil-
ities. However, XR offloading is a complex task with extreme
requirements in terms of latency and throughput [7], [8],
which requires a well-designed and configured network.

It is not trivial for developers and researchers to have
access to fully developed XR offloading implementations.
The current trend is to rely on pre-recorded or modeled
traffic data, which are then fed to various simulation en-
vironments or actual wireless access network deployments.
Pre-recorded traffic traces allow using extremely realistic
data with simple use case-agnostic tools, such as tcpreplay 2.
On the other hand, traffic models allow the generation

2. https://tcpreplay.appneta.com/

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

diego.gonzalez_morin


REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 2

of longer traffic traces while providing greater flexibility
than pre-recorded traffic data. Even though it is true that
the traffic characteristics for each XR use case can be very
diverse, thus making it difficult to define a general-purpose
model, access to modeled or pre-recorded XR traffic data
can considerably accelerate and simplify the testing and
prototyping steps.

A number of previous works deal with immersive multi-
media traffic capture and modeling or present ready-to-use
models. Authors in [9] provide details on specific use cases
employing AR and VR and how one can approximately
model their behaviors using the models from 5G-PPP [10],
[11]. In [12], cloud rendered AR downlink traffic targeted to
AR glasses is modeled via a classical two-state Markovian
process. Statistical parameters are provided for inter-arrival
times, frame sizes, and the presence or not of displayable
content. Without any doubt, the overall work carried out
by the authors in [13], [14], [15], [16] is highly detailed
and covers the main points related to immersive multime-
dia traffic. In [13], [14], a complete environment aimed at
modeling XR application is presented, alongside an accurate
statistical analysis, an ad-hoc traffic generator algorithm,
and the related generating framework for the ns-3 simulator.
In [15], [16], the same authors carry out a temporal analysis
and characterization of H.264 constant bitrate encoded XR
and VR traffic with the goal of designing predictors to be
used for network slicing optimization purposes. However,
it is most significant to note that the XR traffic modeled
in [13], [14], [15], [16] focuses on VR scenarios that are simple
and have basic requirements in terms of visual quality (e.g.,
Minecraft and Google Earth VR), with up to 50 Mbps on the
downlink side while the uplink traffic consists only of the
estimated head poses. As we have already mentioned, most
XR companies and researchers nowadays focus on more
advanced scenarios in which the uplink traffic includes, at
least, a high-definition stream of a frontal stereo camera
pair accompanied by other sensor data; hence, uplink and
downlink throughput can reach values above 100 Mbps,
particularly for advanced XR scenarios. Furthermore, the
authors consider a maximum update rate of 60 Hz, although
the devices currently available on the market have a mini-
mum refresh rate of 72 Hz (e.g., Meta Quest 2).

Similarly, authors from [17] acquired VR traffic origi-
nating from two games via a cloud-based VR service and
present a detailed analysis both for fixed and adaptive
bitrate encoding, finding that the latter provides more sta-
ble performance in low bandwidth conditions. In addition,
frame size and inter-arrival times for the case of adaptive
encoding are statistically modeled.

Although not strictly related to immersive applications,
some works on cloud-originated gaming traffic analysis
are worth mentioning, as both the approach used and the
final considerations are common to some XR use cases.
Authors in [18], [19], [20] analyze various cloud-based gam-
ing platforms’ key performance indicators, such as received
video bitrate, average rendering time, jitter-induced frame
dropping, and uplink/downlink average throughput. One
of those platforms (Google’s Stadia) is thoroughly studied
in [21]. The authors characterize its traffic statistically to
unveil the main inner cloud mechanisms. They examine the
distributions of real-time transport protocol (RTP) packet

sizes and inter-packet intervals considering various scenar-
ios with different resolutions, video encoders, and network
conditions. In addition, they provide a traffic model for
a specific game at three video resolutions. Similarly, au-
thors in [22] model 3GPP-compliant traffic cases for next-
generation mobile network applications, which include ad-
vanced gaming, but no explicit XR case is considered.

Finally, 3GPP has recently included a fairly complete set
of traffic models for AR and XR in Release 17, differenti-
ated according to the type of data streamed [23]. In this
case, the authors considered more advanced and updated
XR scenarios for both uplink and downlink traffic. How-
ever, they consider scenarios limited to data rates of 45/30
Mbps (downlink/uplink) and update rates up to 60 Hz.
While these values are indeed relevant to many scenarios,
they cannot model the more advanced XR scenarios with
higher requirements. Besides, the authors do not provide
any modeling of the inter-packet interval times, which can
be a relevant parameter for an optimal traffic scheduling
algorithm design.

Overall, the models and datasets proposed in the liter-
ature up to now are focused on scenarios that do not fully
represent the traffic complexity and strict requirements that
currently available advanced XR scenarios require. These
advanced XR scenarios require multiple complex algorithms
to run simultaneously in order to provide the user with
a sufficiently high level of interaction, immersiveness, and
experience. In many cases, a continuous uplink feed from
multiple sensors is required such as a stereo video captured
by a frontal pair of cameras, which are already included in
recently released XR devices such as the Meta Quest Pro.
To the best of our knowledge, advanced XR scenarios that
comply with the requirements we have described have not
been studied yet from a modeling perspective.

In this work, we provide realistic traffic traces and their
associated models for two separate actual state-of-the-art
XR offloading scenarios, both for downlink and uplink,
which include full XR offloading and egocentric human
segmentation, both sitting on the very edge of the current
state of the art. The proposed scenarios aim to fill the
research gap in relevant studies such as the ones described
in [13], [14], [15], [16], [23]. Hence, we provide the raw data,
uploaded to [24], which can be useful for researchers not
only for direct use to support simulation or prototyping
purposes but also for generating other models more suitable
for their use. We also provide and validate a set of XR traffic
models obtained from the traces. These models, including
XR traffic frame size, inter-frame interval, packet size, and
inter-packet interval, a parameter not widely studied in the
relevant literature that, as we show, may impact the resource
allocation step.

Our main contributions can be summarized as:

• An XR offloading traffic dataset for two different
relevant offloading scenarios, captured for multiple
streaming resolutions. To the best of our knowledge,
this is the first attempt in the state of the art to
capture and analyze advanced XR traffic with update
rates above 72 Hz and data rates above 100 Mbps in
both uplink and downlink;

• XR traffic models obtained from the captured traces,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 3

including the inter-packet arrival time, not available
in most of the models provided in the state of the art;

• A thorough validation of the proposed models using
a realistic 5G radio access network (RAN) emulator,
showing how an accurate inter-packet arrival time
can considerably improve the quality of the models
for specific applications.

The remaining of this paper is organized as follows:
Section 2 summarizes the two reference XR offloading sce-
narios; Sections 3 and 4 describe the offloading architecture
and the traffic capture methodology employed in the use
cases, respectively; in Section 5 we focus on the statistical
modeling of the cases by using the previously captured traf-
fic; furthermore, in Section 6 we summarize artificial traffic
generation with the use of the developed statistical models
that we employ, in Section 7.2, in validation experiments
that are carried out by means of simulation, in order to
verify the behavioral compliance of the modeled traffic with
the real captured one; lastly, final conclusions are drawn in
Section 8.

2 XR OFFLOADING SCENARIOS

Our goal is to capture a relevant IP traffic dataset for two de-
manding XR offloading scenarios, that is, full XR offloading
(scenario A) and egocentric human segmentation algorithm
offloading (scenario B). In scenario A, all the processing but
the sensor capture is moved from the XR device to a nearby
server. Differently from [23], we consider the VR HMD to
be a very light device in charge of only capturing the sensor
data. The sensor data are streamed to the server, where they
get processed. The sensor info is used to render a new high-
definition VR frame which is sent back to the device. This is
a very relevant use case for advanced and future networks,
which can enable ultra-light and wearable XR devices. In
our case, we consider the sensor data to be generated by a
stereo camera feed and inertial sensors. The inertial sensors
traffic can be neglected as its associated throughput is much
lower than the stereo camera feed throughput [7], [8]. This
is an extremely demanding use case as the round trip times
should lay below the frame update period, i.e., around 11
ms for a device running at 90 Hz. While there are some
techniques to slightly expand this time budget, such as
XR time warp [25], the latency requirements are still tight,
especially for ultra-high definition XR scenes rendering,
encoding, and transmission.

Scenario B focuses on the particular case of egocentric
body segmentation [26], since this is a promising state-of-
the-art solution for XR applications. The upstream traffic
includes the stereo camera traffic while the server is sending
back simple binary masks to the device in which the white
pixels correspond to the user’s body. The received masks are
used by the XR device to render only the pixels correspond-
ing to the user’s body within the VR scene. While still a
demanding offloading use case, the overall requirements are
much lower than in Scenario A, since the downlink stream
is just composed of single-channel binary masks.

3 OFFLOADING ARCHITECTURE

Our offloading architecture, described in [27], relies on
two main agents to share data between different peers.

Fig. 1. The proposed offloading architecture strategy and simplified data
flow for a general multi-peer scenario (top). Alga data flow for both TCP-
JPEG and RTP-H-264 implemented transmission pipelines (bottom).

On one hand, we have Alga, which connects individual
peers. On the other hand, we have Polyp, a data re-router,
and replicator, in charge of transmitting the data from one
source to one or multiple listening peers. We implemented
a publisher-subscriber approach based on topics. When a
client subscribes to a topic, Polyp is in charge of re-routing
and replicating all the data of the topic toward this client.
Similarly, when a client publishes data to a topic, Polyp
ensures that these data are transmitted to all the peers sub-
scribed to this topic. Our architecture allows direct commu-
nication between end clients without having to use Polyp.
Polyp itself is a peer that can subscribe or publish to a topic.
Alga is in charge of creating all the necessary connections
and transmitting the data. The general representation of our
architecture is depicted in Fig. 1.

The first version of this offloading architecture, imple-
mented Alga using TCP for IP traffic transmission. Besides,
to efficiently avoid TCP disadvantages, we sent each frame
separately encoded in JPEG. This architecture served us
to use our ML egocentric body segmentation algorithm,
running on a nearby server, with a commercial XR HMD,
the Meta Quest 2 3. However, joint JPEG encoding and TCP
transmission, while useful in many scenarios due to their
associated reliability, as described in [27], were not origi-
nally designed to support high throughput and low latency.
Therefore, we extended Alga’s functionality incorporating
H.264 video encoding [28] and RTP over UDP transmis-
sion [29]. To encode the sensor streams in H.264 and pack
the data in RTP frames the architecture uses GStreamer 4.

For traffic control reasons and to preserve compatibility
with Polyp’s in-built functionalities, we need to have control
over the individual video frames and attach the metadata
associated with them, such as the destination topic, times-
tamps, etc. This metadata can also be useful for performance
analysis or bottleneck detection [30].To achieve this goal, we
use RTP extended headers. Thus, the metadata is added to
each video frame as an RTP extended header, which can be
decoded and read on the receiving end. This is achieved
using GStreamer in-built functionality. Alga’s data flow for

3. https://www.meta.com/en/quest/products/quest-2/
4. https://gstreamer.freedesktop.org/

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 4

both TCP and RTP/UDP modes is depicted in Fig. 1.
From the sending peer, the frames are fed to Alga in

raw RGB format. Alga injects the raw frame along with
its associated metadata into the GStreamer encoding and
transmitting pipeline. If there are multiple peers subscribed
to the same topic, the traffic is replicated and routed by
Polyp, leaving this traffic untouched and just accessing the
headers to read the target destination. In both this case
and the case of direct traffic transmission between end
peers using just Alga, the GStreamer pipeline receives and
decodes the RTP frame. Once decoded, the frame can be
accessed by the application layer.

4 TRAFFIC CAPTURE METHODOLOGY

As described in Section 3, our offloading architecture im-
plementation has already been tested on a full end-to-end
offloading solution using a commercial XR device, the Meta
Quest 2. However, we decided to use a high-end laptop to
emulate the XR offloading IP traffic for two main reasons:

• Uncontrollable overhead – our architecture is opti-
mized for wireless offloading via WiFi or advanced
RAN networks such as 5G. We need to capture the
data on the transmitting peer to avoid any over-
head introduced by the wireless transmission, traffic
routing, congestion, etc. These potential sources of
overhead can lead to latencies, jitter, or packet loss
which strongly depend on the used configuration,
wireless technology, and other external factors. It is
out of the scope of this work to model the network
behavior and its associated configuration. However,
we could not find an efficient manner to capture the
IP traffic being transmitted from the XR device.

• Cover demanding XR offloading use cases – the
Meta Quest 2 is not capable of handling demanding
XR offloading use cases due to its limited computa-
tion capabilities. Our target is to cover XR offloading
use cases which are still not possible with current XR
or wireless access points technologies.

Following these considerations, all the data were captured
using a high-end laptop, with an Intel Core i7-10870H CPU
@ 2.20 GHz × 16, and 16 GB of RAM, running Ubuntu 18.04
LTS. The offloading architecture was set up and configured
identically to an actual XR offloading deployment. For sim-
plification and as we were not using an actual XR HMD, the
IP traffic from each stream (scenario A and scenario B uplink
and downlink streams) was captured via separate capture
runs. Therefore, we used prerecorded data to capture the IP
traffic. According to the scenarios described in Section 2 we
recorded data for the following streams:

• Stream 1 – Uplink stereo camera stream: This cor-
responds to the frontal stereo camera data, which are
transmitted in both offloading scenarios A and B. The
recorded data were obtained from the same stereo
camera used in the end-to-end offloading solution
of [26]. We recorded a continuous stereo video stream
of 2560 × 960 resolution at 60 Hz, the maximum
supported by the camera. While XR devices are ex-
pected to run at rates above 90 Hz, the sensor data

TABLE 1
Uplink and downlink resolutions and frame rates used to generate the

proposed XR IP traffic dataset

Resolution @ FPS

Stream 1 Stream 2 Stream 3

High 2560 × 960 @ 60 3840 × 1920 @ 90 2560 × 960 @ 60
Medium 1920 × 720 @ 60 3840 × 1920 @ 72 1920 × 720 @ 60

Low 1280 × 480 @ 60 1280 × 480 @ 60

are not required to be updated so fast [7], [8]. The
prerecorded data had a length of 15 minutes.

• Stream 2 – Downlink rendered frames: This cor-
responds to the immersive frames rendered on the
server in scenario A. In this case, we used a high-
definition stereo video from a first person video
game. The recorded video has a resolution of 3840
× 1920 and an update rate of 90 Hz.

• Stream 3 – Downlink segmentation masks: This
corresponds to the binary pixel classification output
by the egocentric body segmentation ML algorithm
in scenario B. From the stream 1, we estimated the
black and white binary single channel masks for each
frame using the segmentation algorithm described
in [31]. Therefore, the resolution and update rate is
the same as in stream 1 (2560 × 960 @ 60 Hz).

To expand and add extra value to the presented dataset,
we downscaled the three streams to different sets of res-
olutions/update rates that can be useful for potential re-
searchers and applications. A summary of all the resolutions
and update rates we used to generate the traffic data is
shown in Table 1.

Each of the resolution/frames per second (FPS) and
transmission direction (uplink or downlink) streams was
captured separately. To capture the IP traffic, the client reads
the individual raw frames, one by one, from the selected
stream and sends them using the described architecture.
As both the client and server run on the same machine
to accelerate and simplify the capture process, we set a
streaming client connected to a server, which just discards
the incoming packets using GStreamer’s Fakesink module
to avoid any additional overhead. There is no instance of
Polyp and both client and server are directly connected
using Alga in H.264-RTP mode: the raw frames are encoded
using H.264 and packetized as RTP frames to be transmitted
via UDP, in localhost. The IP traffic was captured using
Wireshark, generating an individual packet capture (PCAP)
file for each capture run. The final simplified capturing
setup is depicted in Fig. 2. Each capture run had a duration

Fig. 2. Simplified representation of the final setup used to capture the
XR offloading IP traffic dataset.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 5

Fig. 3. Simplified IP packets (black arrows) representation packed in
several RTP frames. The RTP frame size, inter-frame, and inter-packet
interval times are illustrated.

of 10 minutes, for a total of 110 minutes of data.

5 TRAFFIC MODELING

In addition to releasing the PCAP files publicly, we made
a systematic effort to statistically model the most relevant
video streaming IP traffic parameters: i) RTP frame size,
defined as the size of each individual RTP frame, ii) inter-
frame interval, that is, the time between individual RTP
frames and iii) inter-packet interval, i.e., the time between
successive packets within an individual RTP frame. These
parameters are depicted schematically in Fig. 3. The main
goal is to allow potential researchers, in the context of
wireless communication systems analysis and evaluation,
to generate realistic XR IP traffic, online or offline, based on
the models derived.

5.1 Data Pre-processing
The PCAP files are large and contain a lot of information
that can be useful in future works, such as the transmitted
bytes themselves or other relevant metadata. To derive the
traffic models, we store the payload, timestamps and the
new RTP frame marker bit of the individual IP packets
coming into the arbitrary port used for transmission. This
bit information is necessary to identify a new frame. Data
pre-processing takes place in two steps, as follows.

In the first step, we obtain a list of all the captured IP
packets, ordered according to their timestamp. For each
packet, we keep the payload in bytes, the timestamp, and
a custom boolean indicator, i.e., a combination of the bit
marker and the timestamp separation, which determines if
the IP packet initiates a new RTP frame or not. This first pre-
processing step is implemented using Python and Scapy5

library to parse the PCAP file.
In the second step, we go through all the IP packets

and group them in individual RTP frames according to the
custom boolean indicator. Then we estimate, for each RTP
frame, the total size in bytes (RTP frame size), the time
in between consecutive frames (inter-frame intervals), and
the time in between consecutive IP packets (inter-packet
intervals). These parameters are stored in three separate
arrays and saved as an NPY (Python NumPy format) file.
These NPY files are the ones used to model the IP traffic.
This second step is implemented in Python as well.

These two steps are applied to all the captured PCAP
files. The final outputs are stored as individual files to

5. https://scapy.net/

TABLE 2
RTP frame size, inter-frame interval, inter-packet interval and individual

IP packet sizes basic statistics from the captured data

Stream 1 – Uplink stereo camera

Resolution Mean Std. Dev. 95th perc.

Frame size
(bytes)

Low 34602.44 9529.36 55735
Medium 86149.87 19936.04 132384
High 232084.33 28141.99 269008

Inter-frame
interval (ms)

Low 16.76 0.26 17.12
Medium 16.76 0.50 17.53
High 16.80 2.57 21.29

Inter-packet
interval (µs)

Low 3.94 6.08 17.10
Medium 3.53 5.47 17.27
High 4.55 11.02 6.43

IP packet size
(bytes)

Low 1280.79 356.58 1428
Medium 1364.81 244.83 1428
High 1403.88 154.31 1428

Stream 2 – Downlink rendered frames

Update rate Mean Std. Dev. 95th perc.

Frame size
(bytes)

72 Hz 207968.42 122929.70 396402
90 Hz 163548.89 116837.86 339396

Inter-frame
interval (ms)

72 Hz 13.88 0.05 13.94
90 Hz 11.11 0.04 11.17

Inter-packet
interval (µs)

72 Hz 3.41 9.18 4.85
90 Hz 3.66 9.08 6.91

IP packet size
(bytes)

72 Hz 1400.04 171.38 1428
90 Hz 1392.66 191.91 1428

Stream 3 – Segmentation masks

Resolution Mean Std. Dev. 95th perc.

Frame size
(bytes)

Low 4968.50 2175.03 7708
Medium 8273.98 3921.00 13970
High 24378.90 11440.59 43458

Inter-frame
interval (ms)

Low 16.76 0.20 17.05
Medium 16.75 0.61 17.77
High 17.10 3.30 22.44

Inter-packet
interval (µs)

Low 7.01 6.17 15.04
Medium 5.87 9.61 15.34
High 7.54 24.80 24.63

IP packet size
(bytes)

Low 749.83 517.39 1428
Medium 933.53 527.48 1428
High 1216.27 419.88 1428

easily identify each capture run. In Table 2 we show the
basic statistics, i.e., mean value, standard deviation, and 95th

percentile of all the captured data cases, for the frame size,
inter-frame interval, inter-packet interval, and IP packet
size. The packet size information is useful to generate syn-
thetic data from the fitted models.

5.2 Prior Data Analysis

Before taking any modeling decisions, we studied the his-
tograms of the pre-processed data. In particular, we plotted
the histograms for all the parameters to be modeled for
all the captured data. In Fig. 4 we present examples of
the RTP frame size, inter-frame interval, and inter-packet
interval histograms, for the high-resolution Stream 1 and 3
(at 60 Hz), as well as Stream 2 at 90 Hz.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 6

Fig. 4. Histograms (in blue) and cumulative distribution functions (CDF, in red) from the captured data for Stream 1 (top), 2 (middle), and 3 (bottom)
for the target parameters: inter-packet interval times (left), inter-frame interval times (center) and frame sizes (right).

We observe, in all streams, that the inter-frame intervals
are evenly distributed around a mean value that coincides
with the frame update period according to the selected FPS
value. Due to variable rate encoding, which guarantees low
latency, the coding rate and the frame size may include
peaks and variations. For the 60 Hz captured data, this is
not an issue since the encoder is faster than the frame update
period for all cases and resolutions. However, for very high
resolutions and frame update rates, the coding rate needs to
dynamically adapt, resulting in frame sizes with more than
one peak, as shown for Stream 2 in Fig. 4. This also affects

the standard deviation of the inter-frame interval, which is
reduced in Stream 2 cases due to the stricter encoding time
requirements.

Regarding the potential distributions to model the target
parameters, we observe, that in both Stream 1 and 3, these
parameters can be modeled as unimodal continuous distri-
butions. On the other hand, we observe that the distribution
of the RTP frame sizes of Stream 2 presents two local max-
ima. These local maxima are smaller for the higher frame
update rate (90 Hz) depicted in Fig. 4. Nevertheless, we
decided to model Stream 3 RTP frame sizes as continuous

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 7

Fig. 5. Best KS test scoring models (from left to right) for the target parameters to be modelled: RTP frame sizes (left), inter-frame interval times
(center), and inter-packet interval times (right).

unimodal distributions as well and check if they provide a
sufficiently good fitting before testing multimodal distribu-
tions.

In Fig. 4 we can observe that the inter-packet interval
distribution seems not to be unimodal, since slight changes
in convexity appear. However, the inter-packet intervals lay
in the order of the microsecond, as shown in Table 2. On
that scale, many external sources can affect the measured
value, such as the operating system particular operations,
Wireshark processing, etc. Again, modeling these possible
external factors that can affect the inter-packet intervals is
out of the scope of this work. Therefore, we choose to move
forward with the simple approach of modeling the inter-
packet interval time as a unimodal continuous distribution.

5.3 Traffic Models
There is a wide range of well-established and commonly
used continuous distributions for the parameters under
consideration. To find the best candidate distributions that
fit our data, we used Python’s Scipy library [32]. Scipy
is capable of modeling more than 90 different continuous
distributions. We decided to fit all the distributions available
and evaluate their goodness of fit using the Kolmogorov-
Smirnov (KS) test [33]. The KS test quantifies the distance
between the empirical CDF Fn(x) of a sample and the fitted
CDF of an arbitrary distribution F (x) as

KS = sup
x
|Fn(x)− F (x)|, (1)

where supx is the supremum of all the set of distances across
x values. The lower the KS test value, the better the fitting
of the candidate distribution with the captured data. The
KS test results of the 15 best-fitted distributions for each
parameter and stream type are depicted in Fig. 5, sorted
from best (left) to worst (right). We observe that Johnson’s
SU distribution [34] obtains the best mean KS value across
all the captured data. This distribution was proposed by
N. L. Johnson in 1949 and has been historically used in fi-
nances. The key characteristic of Johnson’s SU distribution is

its flexibility which originates from its four parameters that
allow the distribution to be either symmetric or asymmetric.
The probability density function (pdf) is expressed as

f(x, γ, δ, λ, ε) =
ε

δ ·m(x, γ, δ)
ϕ
{
γ + δ log(x)

· [k(x, γ, δ) +m(x, γ, δ)]
}
,

(2)

where

k(x, γ, δ) =
x− γ

δ
, m(x, γ, δ) =

√
k(x, γ, δ)2 + 1, (3)

with γ and δ being the location and scale parameters, respec-
tively, λ and ε the Johnson’s SU specific shape parameters,
and ϕ(·) the pdf of the normal distribution.

By further inspecting Fig. 5, we notice that for the
RTP frame sizes, the only case that Johnson’s SU does not
provide the best fit is for the Stream 2 @ 90 Hz, for which
the Exponential Normal distribution is the best. However,
as we can see in Fig. 6 the practical differences between the
two distributions for Stream 2 @ 90 Hz are small enough.

Fig. 6. Johnson’s SU and exponential normal fitted distributions’ prob-
ability density functions (PDF) and CDFs for the Stream 2 and 90 Hz
case.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 8

Fig. 7. Histograms (in blue) and CDFs (yellow) from the captured data for Stream 1 for the parameters: inter-packet interval times (left), inter-frame
interval times (center) and frame sizes (right). On top, the Johnson’s SU fitted distribution’s PDF (red) and CDF (green).

Besides, even if Johnson’s SU fit is not as accurate as in
the other RTP frame size distributions (see Fig. 7), the
measured KS values obtained are low enough, with a good
fit for the larger packet sizes. Therefore, we decided to
model and evaluate the RTP frame sizes using Johnson’s SU

distribution for all the captured data. Similarly, we decided

0 25 50 75 100 125 150 175 200
Lag (frames)

−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

Au
to
co

rre
la
tio

n

(a) Uplink stereo camera (medium resolution)

0 25 50 75 100 125 150 175 200
Lag (frames)

−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

Au
to
co

rre
la
tio

n

(b) Downlink rendered frames (90 Hz)

0 25 50 75 100 125 150 175 200
Lag (frames)

−0.50
−0.25
0.00
0.25
0.50
0.75
1.00

Au
to
co

rre
la
tio

n

(c) Downlink segmentation mask (medium resolution)

Fig. 8. Frame size autocorrelation for XR three traffic cases.

to use Johnson’s SU distribution to model the inter-frame
and inter-packet intervals. The parameters of Johnson’s SU

distribution for all the traffic parameters under considera-
tion and captured data are summarized in Table A.1 of the
Appendix.

As briefly discussed in Section 1, recent investigations
have shown that frame size temporal variation and correla-
tion are useful in resource scheduling and network slicing
decisions [15]. Therefore, to provide a basis for compre-
hensive and detailed modeling, we evaluated and present
in Fig. 8, the frame size autocorrelation statistics of the
captured data. Specifically, we illustrate the autocorrelation
of the medium-resolution cases of Streams 1 and 3 as well
as the 90 Hz case of Stream 2. All three autocorrelation
functions present specific periodicity. Stream 1 has a high
correlation every 12 frames with low values in other lags.
Stream 2 presents high correlation values every 3 frames
with somewhat higher peaks every 18 frames while Stream
3 presents a gradual reduction of the correlation with some
peaks every 12 frames. All of them have additional in-
dependent peaks every 75 frames. Overall, it seems that
frame size correlation can be roughly modeled by simple
functions to drive slicing or scheduling decisions. The same
applies to other stream resolutions as well. The autocorrela-
tion functions of all the captured streams are included, for
completeness, in the dataset [24].

6 REALISTIC TRAFFIC GENERATION

Our next goal is to build a tool that allows the generation
of realistic XR offloading IP traffic. Such a tool is useful for
researchers and application developers to generate and use
synthetic data for analysis or incorporate it into complex
link-level or system-level simulations. While other video XR
traffic [23] state-of-the-art models only consider the frame
size and inter-frame interval for generating synthetic data,
we believe that including the inter-packet interval data
extends the applicability of our models to a wider range
of research efforts. For instance, when designing novel or
advanced resource allocation techniques, an accurate inter-
packet interval model might be extremely useful and lead
to better and more appropriate solutions.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 9

Algorithm 1: Synthetic IP packets generation algo-
rithm.

input : NRTP , sRTP

output: A sequence of IP packets
while N

generated
RTP < NRTP do

1. sIP ← FSrandom
2. NIP ← sRTP /sIP
3. while N

generated
IP < NIP do

3.1 ∆tIP ← IPIrandom
3.2 ts ← ts +∆tIP
3.3 Store new IP packet P(ts, sRTP )
3.4 N

generated
IP ← N

generated
IP + 1

4. ∆tIF ← IFIrandom
5. ts ← ts +∆tIF
6. N generated

RTP ← N
generated
RTP + 1

To create synthetic data we have to generate random
values from the fitted distributions. Towards this end, we
used Scipy’s rvs in-build function which generates random
values from a specific distribution. In addition, we need the
size of the individual RTP packets. In the real captured data
this is not constant, as shown in Table 2, in terms of the
IP packet sizes, especially for Stream 3, since the way the
segmentation mask is coded and organized in RTP packets
varies from the regular color video stream (1 and 2). In
general, the packets of each RTP frame have a fixed size
chosen in the encoding/RTP framing pipeline (1442 bytes in
our case). The first (including the RTP header) and the last
are usually different. Depending on the chosen pipeline and
configuration there may be smaller packets also in between,
as in our case. However, these phenomena happen rarely as
we can observe in the packet size histograms. The significant
difference between the mean and the maximum packet sizes
in low throughput streams, such as Stream 3, is expected
because the number of packets between the first and last
within an RTP frame is small (smaller than 5 in the low
resolution Stream 3 case). Therefore, we consider two IP
packet size options: i) the mean size value, as in Table 2
or ii) the 95th percentile value. We refer to case i) as Mean
Packet and case ii) as Max Packet.

Once we have the generators and packet sizes, we can
easily define a procedure for synthetic realistic IP traffic
generation, as described in Alg. 1. For each RTP frame
among the NRTP to be generated, we begin by getting its
size sRTP from the selected RTP generator, and by choosing
the IP packet size sIP equal to Max Packet or Mean Packet.
Then we compute the total number of packets NIP simply
by dividing sRTP by sIP . We continue by generating NIP

packets of size sIP , each with a specific timestamp ts. The
timestamp is computed by adding a random inter-packet
interval ∆tIP to the previous packet timestamp. Once all
NIP packets are generated, a new randomly picked inter-
frame interval ∆tIF is added to the current timestamp.
The random values are generated from the modeled dis-
tributions. The above procedure is repeated for each RTP
frame. To incorporate frame size correlation the randomly
generated frame sizes are appropriately reordered so as to
follow the autocorrelation function of the corresponding

captured data stream.
The described algorithm can be easily implemented in

any programming language and therefore used in any sim-
ulation environment. Additionally, it can be used to create
synthetic traffic traces by storing the generated packets in a
separate PCAP file and utilize them at a later time.

7 MODEL APPLICATION CONSIDERATIONS AND
VALIDATION

7.1 Temporal considerations

As a further step to frame size correlation, presented in 5.3,
we investigate the impact of frame sizes and their tem-
poral variations in a simple resource allocation scenario.

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co

rre
la
tio

n

Correlated
Uncorrelated

0 20 40 60
0.0

0.5

1.0

(a) Uplink stereo camera (medium resolution)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co

rre
la
tio

n

Correlated
Uncorrelated

0 20 40 60
0.0

0.5

1.0

(b) Downlink rendered frames (90 Hz)

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Au
to
co

rre
la
tio

n

Correlated
Uncorrelated

0 20 40 60
0.0

0.5

1.0

(c) Downlink segmentation mask (medium resolution)

Fig. 9. Slot allocation autocorrelation for a fixed number of allocated RBs
per slot with synthetic traffic realization for the three traffic cases.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 10

Suppose that frames are scheduled in successive slots after
they are completely received by the lower layers6. Fixed
resource allocation, in terms of resource blocks (RBs) per
slot is assumed and each frame is scheduled in a number
of successive slots, according to its size. Fig. 9 shows the
autocorrelation of slot scheduling of traffic duration of 1
s for the three cases presented in Fig. 8 when frame size
correlation is taken into account or not. The correlation
functions were averaged over 50 independent trials. Slots
of 0.5 ms, with a fixed allocation of 100, 200, and 50 RBs,
respectively, for the three streams under consideration were
simulated. A modulation and coding scheme (MCS) index
equal to 15 with two MIMO layers was engaged in all
cases. A 10% block error rate is considered to incorporate
rescheduling. Evidently, the differences observed between
correlated and uncorrelated frame sizes, in terms of slot
scheduling, are not significant. Rendered frames in down-
link present some autocorrelation peaks when correlated
frame sizes are considered to generate traffic (Fig. 9b). Note
that for smaller RB allocations, the correlation gets a higher
value and the peaks are getting wider due to more slots
allocated. In any case, it cannot be concluded that frame size
correlation impacts successive slot allocation significantly in
any of the cases. What is clear (and expected) in all cases is
that correlation peaks always exist at inter-frame intervals
(see zoomed windows), which on average are equal to 16.76,
11.11, and 16.75 ms, respectively, for the three traffic cases
(Table 2). Hence, from a temporal point of view, inter-frame
interval is critical to predict future allocations while frame-
size correlation may further help in estimating the amount
of resources to be allocated.

7.2 Validation experiments

As a final step, we test the traffic generated with the method-
ology described in the previous section, over a realistic
RAN scenario, to determine its ability to accurately mimic
the behavior of the captured XR offloading data traffic. To
do this, we first compare the average throughput obtained
from the captured data with the corresponding generated
synthetic data obtained. Then, we study the behavior of
the different synthetic data models in terms of application
layer throughput and latency in the most relevant offloading
scenarios using a real-time 5G RAN emulator. Finally, we
thoroughly examine the impact of the type of traffic model
used on resource allocation by comparing synthetic data
from different models with actual XR traffic. Based on the
results and discussion of the previous subsection, we focus
on uncorrelated frame size modeling.

The first step is to compare the generated mean through-
put of the synthetic data using the modeled Johnson’s SU

distribution with the captured data. The mean throughput
results of the captured and synthetic data, for both Max
Packet and Mean Packet cases (IP packet sizes), are shown in
Table 3. The differences between the synthetic and captured
data throughput are also included as percentage differences.

6. This is a normal assumption for 5G numerologies µ = 0 and 1,
since the duration of individual frames does not regularly exceed 1 ms.
For higher numerologies, scheduling should take place before the frame
is fully received by the lower layers, so scheduling at the IP packet level
has to be considered – see also subsection 7.2.

TABLE 3
Mean throughput of the generated synthetic data in comparison with

the captured traffic’s throughput

Stream 1 – Uplink stereo camera

Captured Max Packet model Mean Packet model
(Mbps) (Mbps) Error (%) (Mbps) Error (%)

Low 16.51 16.49 0.12 16.49 0.12
Med. 41.11 41.15 0.09 40.96 0.36
High 110.55 110.50 0.05 110.27 0.25

Stream 2 – Downlink rendered frames

Captured Max Packet model Mean Packet model
(Mbps) (Mbps) Error (%) (Mbps) Error (%)

72 Hz 119.79 121.36 1.29 120.83 0.86
90 Hz 117.76 117.74 0.02 118.60 0.71

Stream 3 – Downlink segmentation mask

Captured Max Packet model Mean Packet model
(Mbps) (Mbps) Error (%) (Mbps) Error (%)

Low 2.37 2.35 0.89 2.36 0.51
Med. 3.95 3.92 0.66 3.94 0.35
High 11.4 11.44 0.38 11.44 0.32

We can observe that the throughput differences are low in
all cases, with a peak of 1.29% for Stream 2 and 72 Hz case.
All other cases present differences below 1%, for both IP
packet sizes, with an average error of 0.435%, and 0.438%,
for Max Packet, and Mean Packet cases, respectively.

The next evaluation step is to compare the behavior of
both synthetic and captured data on a realistic advanced
5G RAN deployment. Towards this end, we used the open-
source 5G RAN real-time emulator, named FikoRE [24],
[35]. FikoRE has been specifically designed for application
layer researchers and developers to test their solutions on a
realistic RAN setup. It supports the simulation of multiple
background user equipment (UE) while handling high ac-
tual IP traffic throughput (above 1 Gbps). For our validation
experiments, FikoRE runs as a simulator since we are not
injecting actual IP traffic, but the traces from the captured
or synthetic data. We tested the two scenarios described in
Section 2, with the following setup:

• Scenario A – Full Offloading: On the downlink side,
we chose to evaluate the 72 Hz rendered frames
stream since it represents the current rendering of-
floading possibilities of commercial XR devices such
as the Meta Quest 2. The Meta Quest 2 devices are
capable of performing offloaded rendering, via a
WLAN network, to a laptop in charge of rendering
the immersive scene. The recommended setup is
72 Hz, being the rendering resolution of 1832 × 1920
per eye, which is slightly smaller than our captured
data for the rendering frames stream. The uplink
corresponds to the sensor stream (Stream 1) with a
stereo resolution of 1920 × 720.

• Scenario B – Egocentric Human Body Segmen-
tation: Successful deployment of this scenario was
achieved in previous works [26]. While our deploy-
ment uses smaller resolutions, we evaluated the sce-
nario in which both Stream 1 and 3 use a resolution

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 11

of 1920 × 720.

Both offloading scenarios were evaluated in three differ-
ent network configurations:

• Configuration A – Multiple background UEs and
a single immersive UE with proportional fair (PF):
In this scenario we simulated multiple UEs which
are transmitting 5 Mbps of traffic in each direction.
The throughput is not continuous, but is syntheti-
cally generated using the video streaming models
from [36] applicable for streaming applications such
as Netflix. The emulator is set up with a single carrier
of 100 MHz bandwidth on the 26.5 GHz millimeter
wave (mm-wave) frequency band. Resource alloca-
tion takes place based on the PF metric [37], using 1:1
(downlink:uplink) time division duplexing (TDD).
We tested this network with a single immersive UE
and 0, 20, 40, 60, 80 and 100 background UEs with
5 Mbps traffic in each direction. The network starts
saturating around 80 simultaneous UEs.

• Configuration B – Mutiple immersive UEs with PF:
In this scenario we have multiple immersive UEs, all
using the same synthetic data. The throughput per
UE is much higher than in Configuration A, so we
increased the total bandwidth to 200 MHz in order
to be able to simulate more UEs before reaching
network UE saturation.

• Configuration C – Mutiple immersive UEs with
maximum throughput (MT): this setup is identical
to Configuration B only changing the resource allo-
cation metric used from PF to MT [37].

All three configurations have in common the simulation
parameters included in Table 4. Each individual simulation
run has a duration of 500 seconds and is repeated for each
combination of configuration, number of UEs, offloading
scenario (A and B), and type of data (synthetic with both
packet types and captured data). In all cases, there is a
“principal” immersive UE closer to the emulated gNB than
the other simulated UEs, from which we obtained the
measurements used in this analysis. The goal is to study
and compare the behavior of each type of IP traffic data
at the application level, so we evaluated the application
layer throughput and latency. The throughput is measured
as the total mean throughput transmitted by all UEs. The
latency, is measured only for the principal immersive UE.
All the stochastic models, including the initial position of the
non-principal UEs, have the same random seed across the
experiments. The principal UE is placed 100 m away from
the gNB to ensure it has priority regardless of the metric

TABLE 4
Common simulation parameters used in all the experiment runs

Simulation Parameters

TDD Configuration 1(UL):1(DL)
Modulation 256-QAM

Frequency Band 26.5 GHz
UE MIMO Layers 2
Allocation Type 0

Allocation Configuration 1
Scenario Rural Macrocell

0 2 4 6 8 10
Number of Immersive UEs

0

300

600

900

1200

Th
ro
ug

hp
ut
 (M

bp
s)

Sce
na
rio
 A 
- C
on
fig
. C
 - D

L

Sce
na
rio
 A 
- C
on
fig
. C
 - D

L

Sce
na
rio
 A 
- C
on
fig
. C
 - D

L

Scenario B - Config. C - DLScenario B - Config. C - DLScenario B - Config. C - DL

Johnson-SU Model - Max. Size
Johnson-SU Model - Mean Size
Real IP Traffic

0 2 4 6 8 10
Number of Immersive UEs

0

300

600

900

1200

Sce
na
rio
 A 
- C
on
fig
. C
 - D

L

Sce
na
rio
 A 
- C
on
fig
. C
 - D

L

Sce
na
rio
 A 
- C
on
fig
. C
 - D

L

Scenario B - Config. C - DLScenario B - Config. C - DLScenario B - Config. C - DL

Johnson-SU Model - Max. Size
Johnson-SU Model - Mean Size
Real IP Traffic

Fig. 10. Mean downlink throughput measured for Scenario A and B
along with configuration C for the captured and synthetic data.

used for allocation, while the rest are placed randomly, at a
longer distance.

The application layer mean throughput results obtained
for the downlink transmission of Scenario A for Configura-
tion C, are depicted in Fig. 10. It is evident that the difference
between the real, and the modeled data, for the total of
UEs, is very low. We observe that from 8 UEs onward,
the network starts saturating and the throughput does not
increase linearly. This is because UEs with worse channel
quality get fewer allocation grants. The measured latency
behaves similarly showing low differences. Furthermore,
similar results were obtained for all other configurations
and scenarios. Overall, the throughput and latency differ-
ences between the captured and synthetic data obtained
from FikoRE simulations are gathered in Table 5. These
differences are expressed by the relative mean error across
emulation runs with different numbers of UEs. We observe
that they are very low, below 2%, in all cases. Besides, the
differences between the Max Packet and Mean Packet cases
of the IP packet sizes are negligible, with a mean difference
of less than 0.04%. These results validate the goodness
of the fitting of the proposed models for application-level
simulations.

As a further step, we assess how well the synthetic traffic
data generated with our model behave on the lower layers
of the stack compared to the captured data. In particular,
we study the resource allocation differences when using
the captured or synthetic data as input for the simulator.
Besides, we highlight the necessity of an accurate model
which includes also the inter-packet intervals, contrary to
the models proposed in [23]. In this context, we generated
synthetic data using a simple Normal model using the sta-
tistical metrics from the captured data included in Table 2.
However, instead of generating multiple IP packets within
an RTP frame, we generated all the bits within the RTP
frame in the same timestamp. By doing so we do not only
highlight the necessity of an accurate model in terms of RTP
frame size and inter-frame interval, but also the relevance
of the inter-packet interval models. We refer to this simpler
model as “Norm” model.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 12

TABLE 5
Emulated application level throughput and latency comparison between captured and synthetic traffic. The synthetic experiments are repeated

using the maximum and mean packet sizes

Configuration A – Multiple background UEs and a single immersive UE with PF

Scenario A: Full offloading Scenario B: Deep learning offloading

Throughput error Latency error Throughput error Latency error

Downlink Uplink Downlink Uplink Downlink Uplink Downlink Uplink

Max Packet size (%) 0.85 0.06 0.07 0.27 0.28 0.06 1.48 0.23
Mean Packet size (%) 0.59 0.13 0.58 0.38 0.35 0.13 1.55 0.51

Configuration B – Multiple immersive UEs with PF

Scenario A: Full offloading Scenario B: Deep learning offloading

Throughput error Latency error Throughput error Latency error

Downlink Uplink Downlink Uplink Downlink Uplink Downlink Uplink

Max Packet size (%) 0.57 0.23 0.71 0.15 1.55 0.16 0.04 0.48
Mean Packet size (%) 0.65 0.46 0.29 0.32 1.50 0.28 0.03 0.36

Configuration C – Multiple immersive UEs with MT

Scenario A: Full offloading Scenario B: Deep learning offloading

Throughput error Latency error Throughput error Latency error

Downlink Uplink Downlink Uplink Downlink Uplink Downlink Uplink

Max Packet size (%) 1.72 0.23 0.83 0.34 1.55 0.16 0.06 0.20
Mean Packet size (%) 1.28 0.46 0.42 0.38 1.92 0.28 0.03 0.12

DL

Total Error: 2.51%
Real vs. Normal

Fr
eq

ue
nc

y 
RB

s

Total Error: 2.09%
Real vs J-SU Max.

UL

Total Error: 1.2%

Time Allocation Slots

Fr
eq

ue
nc

y 
RB

s

Total Error: 0.61%

0.0

62.8

125.5

188.3

251.1

313.9

Al
lo

ca
tio

n 
Er

ro
r (

Kb
ps

)

0.00

16.16

32.33

48.49

64.66

80.82

Al
lo

ca
tio

n 
Er
ro
r (

Kb
ps

)

Fig. 11. Example of allocation error matrices for both transmission
directions (UL and DL) between the captured and synthetic data. The
error is estimated for the entire grid. This case corresponds to Scenario
A and Configuration B.

For this validation step, we also used FikoRE which
is capable of logging every single allocation step, that is,
how the resources are allocated at each subframe. We use
this information to compare the differences in terms of the
allocated throughput, for each RB within the allocation grid.
More specifically, we measure the number of bits allocated

for each RB and each UE. The number of RBs along the
time and frequency axes depend on the bandwidth and
selected numerology. The allocation error is estimated by
comparing the bits allocated to each RB and UE when
using the synthetic data from different models and using the
actual XR traffic. We can build, for each UE, the allocation
matrices illustrated in Fig. 11. These matrices express the
resource allocation differences, or allocation errors, between
a selected model and the actual XR traffic in bits per second,
so the metric does not depend on the total duration of the
simulation run. To estimate the allocation error of the entire
grid as a percentage of the total transmitted error, we use
the formula

e(%) = 100

∑K
i=1 |tc(i)− tm(i))|∑K

i=1 tc(i)
, (4)

where tm(i) and tc(i) denote the allocated throughput of the
model being evaluated, and the captured data, respectively,
for the ith RB (1 ≤ i ≤ K) along the total simulation
time, with K the total number of RBs. To really understand
how the different sources of traffic data are being allocated,
we decided to simulate a single UE, the principal one, in
each run. By doing this, we avoid the effects of the selected
configuration (such as the allocation metric, UEs channel
quality, etc.) that directly affect the resource allocation pro-
cedure and can lead to inaccurate conclusions.

Using the same configuration parameters described in
Table 4, we tested multiple combinations of total bandwidth
and numerology µ, which directly affect how the resource
allocation grid is built, for a single immersive UE. In specific,
we tested bandwidths of 40 MHz with µ = 1, 100 MHz with
µ = 2, 200 MHz with µ = 2, and 200, 400, 800 MHz with µ =
3. Each simulation run had a duration of 500 seconds. The
simulations were repeated for each configuration, scenario

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 13

(A and B), and source of data (captured, Jonhson’s SU with
Max Packet size, and Norm). The synthetic data generated
using the Mean Packet size presented no evident differences
with the Max Packet size option.

Observing the measured allocation errors depicted in
Fig. 12 we can extract several conclusions. First, we notice
that the allocation error is considerably higher for the Norm
simpler model compared to the proposed Johnson’s SU

model. Besides, the error difference increases rapidly in
favor of Johnson’s SU model as we configure the emulator
with more total bandwidth. Increasing the numerology also
negatively impacts the performance of the Norm model.
For low bandwidths, the error difference is low, as an RTP
frame does not fit in a single subframe and has to be
transmitted along several subframes. Therefore, the entire
resource allocation grid gets saturated and the allocation
differences, being estimated in comparison with the total
allocated throughput in each RB, become hard to measure.
On the contrary, for higher bandwidths, not all the RBs are
allocated for each RTP frame and the differences become
more noticeable. Our intuition is that the difference that
we observe for higher bandwidths could also be observed
if we could discard the saturated subframes. In addition,
the allocation error of the proposed Johnson’s SU models
remains almost constant along the test configurations, which
clearly is not the case for the Norm model. Thus, we get a
strong hint of the importance of obtaining accurate mod-
els which include the inter-packet intervals, especially for
high numerologies and bandwidths, in designing successful
resource allocation techniques.

8 CONCLUSIONS

This work provided realistic traffic traces and associated
models for XR offloading scenarios to complement and
improve upon the models proposed in previous works,
such as [23]. We proposed two XR offloading scenarios
that are at the cutting edge of the current state of the art.
The first scenario represents a full offloading solution in
which the XR HMD captures and transmits sensor data to
a nearby server or MEC facility for processing and ren-
dering ultra-high definition immersive frames, which are
then transmitted back to the device. The second scenario
focuses on offloading heavy ML algorithms, such as the real-
time egocentric human body segmentation algorithm, which
allows users to see themselves within the virtual scene.

The traffic data were captured using a recently intro-
duced offloading architecture, described in [27], with ad-
ditional functionality presented in this work. To avoid any
uncontrollable overhead that we did not aim to model,
the data have been captured on the sender side, using a
local host network. The IP traffic was captured for multiple
resolutions for both the uplink and downlink streams and
both offloading scenarios.

The collected data were cleaned and post-processed, and
we conducted a thorough analysis to determine the most
appropriate modeling approach. We modeled the three main
components of video traffic, that is, the frame size, inter-
frame interval, and inter-packet interval, using continuous
unimodal distributions. While many video or XR traffic
models, such as [23], do not include inter-packet interval

40 MHz
μ: 1

100 MHz
μ: 2

200 MHz
μ: 2

200 MHz
μ: 3

400 MHz
μ: 3

800 MHz
μ: 3

0

5

10

15

20

25

30

35

Al
lo
ca
tio
n 
Er
ro
r (
%
)

Stream 2 - 72 Hz
Stream 1 - Med. Resolution
Stream 3 - Med. Resolution
Norm vs Captured Error (%)
Johnson-SU Max. vs Captured Error (%)

Fig. 12. Measured allocation errors between the captured and synthetic
data using our emulation tool for each transmission direction (UL and
DL) and validation scenario (A and B) for different numerology and
bandwidth configurations. All simulations were done for a single UE.

information, we consider it a crucial feature to include in XR
traffic models, especially for resource allocation techniques
design and optimization, as demonstrated in our validation
experiments. We fitted multiple continuous distributions to
the data for all resolutions and found that the Johnson’s SU

distribution provided the best fit, as determined by using
the KS test.

The Johnson’s SU distribution was fitted for all target
parameters, scenarios, and resolutions. With these models,
we generated synthetic data and used them in validation
experiments with an open-source 5G RAN emulator [24].
These experiments compared the performance of the cap-
tured and synthetic data at both the application and re-
source allocation layers. At the application layer, we found
that our models can generate realistic XR traffic data for
the proposed scenarios. In the resource allocation layer,
we demonstrated the importance of including inter-packet
interval time for designing advanced resource allocation
techniques specifically optimized for XR offloading.

In conclusion, the data and models presented in this
work can be effectively used for the design, testing, im-
provement, and expansion of wireless network solutions
in both academia and industry. They offer a comprehen-
sive approach to studying extended reality (XR) offloading
scenarios and provide insight into the importance of con-
sidering inter-packet interval times for resource allocation
techniques. Overall, we believe that this work provides a
useful contribution to the field of wireless networks and XR
technology.

ACKNOWLEDGMENTS

This work has received funding from the European Union
(EU) Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie ETN TeamUp5G, grant
agreement No. 813391.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 14

REFERENCES

[1] A. Suh and J. Prophet, “The state of immersive technology re-
search: A literature analysis,” Computers in Human Behavior, vol. 86,
pp. 77–90, 2018.

[2] R. Cheng, N. Wu, S. Chen, and B. Han, “Will metaverse be nextg
internet? vision, hype, and reality,” IEEE Network, vol. 36, no. 5,
pp. 197–204, 2022.

[3] K. Kilteni, R. Groten, and M. Slater, “The Sense of Embodiment
in Virtual Reality,” Presence: Teleoperators and Virtual Environments,
vol. 21, no. 4, pp. 373–387, 2012.

[4] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for Real-Time
Semantic Segmentation on High-Resolution Images,” in Computer
Vision – ECCV 2018 (V. Ferrari, M. Hebert, C. Sminchisescu,
and Y. Weiss, eds.), (Cham), pp. 418–434, Springer International
Publishing, 2018.

[5] A. Dai, M. Nießner, M. Zollhöfer, S. Izadi, and C. Theobalt,
“BundleFusion: Real-Time Globally Consistent 3D Reconstruc-
tion Using On-the-Fly Surface Reintegration,” ACM Trans. Graph.,
vol. 36, may 2017.

[6] P. Pérez, E. Gonzalez-Sosa, J. Gutiérrez, and N. Garcı́a, “Emerging
Immersive Communication Systems: Overview, Taxonomy, and
Good Practices for QoE Assessment,” Frontiers in Signal Processing,
vol. 2, 2022.

[7] D. González Morı́n, P. Pérez, and A. Garcı́a Armada, “Toward
the Distributed Implementation of Immersive Augmented Reality
Architectures on 5G Networks,” IEEE Communications Magazine,
vol. 60, no. 2, pp. 46–52, 2022.

[8] D. González Morı́n, A. Garcı́a Armada, and P. Pérez, “Cutting
the Cord: Key Performance Indicators for the Future of Wireless
Virtual Reality Applications,” in 2020 12th International Symposium
on Communication Systems, Networks and Digital Signal Processing
(CSNDSP), (Online), pp. 1–6, IEEE, 2020.

[9] J. Navarro-Ortiz, P. Romero-Diaz, S. Sendra, P. Ameigeiras, J. J.
Ramos-Munoz, and J. M. Lopez-Soler, “A survey on 5G usage
scenarios and traffic models,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 2, pp. 905–929, 2020.

[10] A. Osseiran, F. Boccardi, V. Braun, K. Kusume, et al., “Scenarios for
5G mobile and wireless communications: the vision of the METIS
project,” IEEE communications magazine, vol. 52, no. 5, pp. 26–35,
2014.

[11] “Air interface framework and specification of system level simu-
lations,” 2016. FANTASTIC-5G, Deliverable D2.1.

[12] P. Schulz, A. Traßl, N. Schwarzenberg, and G. Fettweis, “Analysis
and Modeling of Downlink Traffic in Cloud-Rendering Architec-
tures for Augmented Reality,” in 2021 IEEE 4th 5G World Forum
(5GWF), pp. 188–193, IEEE, 2021.

[13] M. Lecci, M. Drago, A. Zanella, and M. Zorzi, “An Open Frame-
work for Analyzing and Modeling XR Network Traffic,” IEEE
Access, vol. 9, pp. 129782–129795, 2021.

[14] M. Lecci, A. Zanella, and M. Zorzi, “An ns-3 implementation of a
bursty traffic framework for virtual reality sources,” in Proceedings
of the Workshop on ns-3, pp. 73–80, 2021.

[15] M. Lecci, F. Chiariotti, M. Drago, A. Zanella, and M. Zorzi, “Tem-
poral characterization of XR traffic with application to predictive
network slicing,” in 2022 IEEE 23rd International Symposium on
a World of Wireless, Mobile and Multimedia Networks (WoWMoM),
pp. 406–415, IEEE, 2022.

[16] F. Chiariotti, M. Drago, P. Testolina, M. Lecci, A. Zanella, and
M. Zorzi, “Temporal characterization and prediction of VR traffic:
A network slicing use case,” IEEE Transactions on Mobile Comput-
ing, pp. 1–18, 2023.

[17] S. Zhao, H. Abou-zeid, R. Atawia, Y. S. K. Manjunath, A. B.
Sediq, and X.-P. Zhang, “Virtual reality gaming on the cloud:
A reality check,” in 2021 IEEE Global Communications Conference
(GLOBECOM), pp. 1–6, IEEE, 2021.

[18] P. Graff, X. Marchal, T. Cholez, S. Tuffin, B. Mathieu, and O. Festor,
“An analysis of cloud gaming platforms behavior under different
network constraints,” in 2021 17th International Conference on Net-
work and Service Management (CNSM), pp. 551–557, IEEE, 2021.

[19] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Gior-
dano, “A network analysis on cloud gaming: Stadia, GeForce Now
and PSNow,” Network, vol. 1, no. 3, pp. 247–260, 2021.

[20] O. S. Peñaherrera-Pulla, C. Baena, S. Fortes, E. Baena, and R. Barco,
“Measuring key quality indicators in cloud gaming: Framework
and assessment over wireless networks,” Sensors, vol. 21, no. 4,
p. 1387, 2021.

[21] M. Carrascosa and B. Bellalta, “Cloud-gaming: Analysis of Google
Stadia traffic,” Computer Communications, vol. 188, pp. 99–116,
2022.

[22] B. Bojovic and S. Lagen, “Enabling NGMN Mixed Traffic Models
for ns-3,” in Proceedings of the 2022 Workshop on ns-3, pp. 127–134,
2022.

[23] 3GPP, “TR 38.838, Study on XR (Extended Reality) Evaluations for
NR, V17.0.0,” tech. rep., 2022.

[24] D. Gonzalez Morin, “FikoRE: 5g-network-emulator.” https://
github.com/nokia/5g-network-emulator, 2022.

[25] J. M. P. van Waveren, “The Asynchronous Time Warp for Vir-
tual Reality on Consumer Hardware,” in Proceedings of the 22nd
ACM Conference on Virtual Reality Software and Technology, VRST
’16, (New York, NY, USA), p. 37–46, Association for Computing
Machinery, 2016.

[26] D. Gonzalez Morin, E. Gonzalez-Sosa, P. Perez, and A. Villegas,
“Full body video-based self-avatars for mixed reality: from e2e
system to user study,” Virtual Reality, pp. 1–19, 2023.

[27] D. González Morı́n, M. J. López Morales, P. Pérez, and A. Villegas,
“TCP-Based Distributed Offloading Architecture for the Future
of Untethered Immersive Experiences in Wireless Networks,” in
ACM International Conference on Interactive Media Experiences, IMX
’22, (New York, NY, USA), p. 121–132, Association for Computing
Machinery, 2022.

[28] ITU-T, “H.264 : Advanced video coding for generic audiovisual
services,” tech. rep., 2021.

[29] RFC, “RFC 3550 - RTP: A Transport Protocol for Real-Time Appli-
cations,” tech. rep., 2003.

[30] Y.-C. Li, C.-H. Hsu, Y.-C. Lin, and C.-H. Hsu, “Performance
measurements on a cloud VR gaming platform,” in Proceedings of
the 1st Workshop on Quality of Experience (QoE) in Visual Multimedia
Applications, pp. 37–45, 2020.

[31] E. Gonzalez-Sosa, A. Gajic, D. Gonzalez Morin, G. Robledo,
P. Perez, and A. Villegas, “Real Time Egocentric Segmentation for
Video-self Avatar in Mixed Reality,” 2022.

[32] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, et al.,
“SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python,” Nature Methods, vol. 17, pp. 261–272, 2020.

[33] F. J. M. Jr., “The Kolmogorov-Smirnov Test for Goodness of Fit,”
Journal of the American Statistical Association, vol. 46, no. 253, pp. 68–
78, 1951.

[34] N. L. Johnson, “Systems of Frequency Curves Generated by Meth-
ods of Translation,” Biometrika, vol. 36, no. 1/2, pp. 149–176, 1949.

[35] D. Gonzalez Morin, M. J. Morales, P. Pérez, A. Villegas, and
A. Garcia Armada, “FikoRE: 5G and Beyond RAN Emulator
for Application Level Experimentation and Prototyping,” arXiv
preprint arXiv:2204.04290, 2022.

[36] R. Porat, M. Fischer, S. Merlin, et al., “11ax Evalu-
ation Methodology.” https://mentor.ieee.org/802.11/dcn/14/
11-14-0571-12-00ax-evaluation-methodology.docx, 2016.

[37] F. Capozzi, G. Piro, L. Grieco, G. Boggia, and P. Camarda, “Down-
link Packet Scheduling in LTE Cellular Networks: Key Design
Issues and a Survey,” IEEE Communications Surveys & Tutorials,
vol. 15, no. 2, pp. 678–700, 2013.

Diego González Morı́n is a Ph.D student at Nokia Bell Labs Spain,
enrolled with Universidad Carlos III de Madrid, Spain. He received his
B.Sc. and M.Sc. in industrial engineering from Universidad Politécnica
de Madrid in 2015 and 2018 respectively. In 2018, he received his M.Sc.
in systems, control and robotics from Kunliga Tekniska Hgskolan (KTH),
Stockholm, Sweden. After receiving his M.Sc. degrees, he joined Eric-
sson Research’s Devices Technologies group as a researcher, where
he focused on augmented reality technologies, a field in which he holds
three patents. In August 2019, he joined Nokia Bell Labs as a Ph.D.
student. He is currently pursuing a Ph.D. on the application of ultra-
dense networks for the implementation of distributed media rendering.

Daniele Medda is a Ph.D student at the International Hellenic University
of Thessaloniki, Greece. He received both his B.Sc. in Electrical and
Electronic Engineering and his M.Sc. in Internet Technologies Engineer-
ing from the University of Cagliari (Italy) in 2018 and 2020, respectively.
From 2018 to early 2021 he was a research assistant at the MCLab of
the University of Cagliari, focusing on immersive data coding. He joined
the International Hellenic University in 2021. His research interests are
IEEE 802.11be networks, MAC layer optimization, ultra-dense network-
ing and related standardization.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://github.com/nokia/5g-network-emulator
https://github.com/nokia/5g-network-emulator
https://mentor.ieee.org/802.11/dcn/14/11-14-0571-12-00ax-evaluation-methodology.docx
https://mentor.ieee.org/802.11/dcn/14/11-14-0571-12-00ax-evaluation-methodology.docx


REVISION SUBMITTED TO IEEE TRANSACTIONS ON MOBILE COMPUTING, SEPTEMBER 2023 15

Athanasios Iossifides is a Professor in the Department of Informa-
tion and Electronic Engineering at the International Hellenic University
(Greece). He received his diploma in Electrical Engineering and his
Ph.D. from the Department of Electrical and Computer Engineering of
the Aristotle University of Thessaloniki. From 1999 to 2010, he was with
COSMOTE SA as a telecommunications engineer and the head of the
Network Management Section of North Greece. He has served as Editor
for Wiley Transactions on Emerging Telecommunication Technologies
and IEEE Communications Letters and as a TPC co-chair or member in
numerous international conferences. He has participated in several na-
tional and international research projects on wireless communications,
the Internet of Things, and STE(A)M education which comprise the main
fields of his research interests.

Periklis Chatzimisios serves as a Professor in the Department of
Information and Electronic Engineering at the International Hellenic Uni-
versity (Greece). Moreover, he has been awarded the title of Researcher
Professor by the University of New Mexico (USA). He is also a Visiting
Fellow in the Faculty of Science & Technology, Bournemouth University
(UK). Dr. Chatzimisios is/has been involved in several standardization
and IEEE activities under the IEEE Communication Society (ComSoc).
He is currently the Chair of the IEEE ComSoc Young Professionals
Standing Committee, Chair of the Communications Chapter & Profes-
sional Activities for the IEEE Greece Section, and an active member
of the IEEE Future Networks Initiative. His research interests include
performance evaluation and standardization of mobile/wireless commu-
nications, Internet of Things, 5G/6G, Industry 4.0, Smart Cities, and
vehicle networking.

Ana Garcı́a Armada is a professor at University Carlos III of Madrid,
Spain. She has published approximately 150 refereed papers and she
holds four patents. She serves on the Editorial Board of IEEE Trans-
actions on Communications and the Open Journal of the IEEE Com-
munications Society. She has received several awards from University
Carlos III of Madrid, including an excellent young researcher award and
an award for best practices in teaching. She was awarded the third place
Bell Labs Prize 2014 for shaping the future of information and communi-
cations technology. She received the outstanding service award from
IEEE ComSoc Signal Processing for Communications & Computing
Technical Committee (formerly SPCE) and the IEEE ComSoc/KICS
Exemplary Global Service Award. Her research mainly focuses on signal
processing applied to wireless communications.

Alvaro Villegas leads the Extended Reality Lab in Nokia, a research
center focused in the application of immersive media (VR, AR, XR)
to human communications. He received a six-year telecommunications
engineering degree at Universidad Politécnica de Madrid (Spain) and he
completed an MBA Core Program at ESCP Europe Business School.
Alvaro received the Distinguished Member of Technical Staff title from
Bell Labs. He has dedicated his nearly 30 years of professional life
to innovate in digital video in different companies: Telefonica, ONO,
Motorola, Nagravision, Alcatel-Lucent and Nokia, where he has filed
more than 40 patents. In his former role as Head of Bell Labs in Nokia
Spain and now as lead of XR Lab he applies XR, AI/ML and 5G/6G
technologies to improve human communications.

Pablo Peréz is Lead Scientist at Nokia Extended Reality Lab (Madrid,
Spain). He is Telecommunication Engineer (BSc+MSs, 2004) and PhD
in Telecommunications (2013) from Universidad Politécnica de Madrid,
Spain, and Nokia Distinguished Member of Technical Staff (2022). He
has worked as R&D engineer of digital video products and services
in Telefonica, Alcatel-Lucent and Nokia; as well as a researcher in
future video technologies in Nokia Bell Labs. He is currently leading
the scientific activities of Nokia XR Lab, addressing the end-to-end
technological chain of the use of Extended Reality for human communi-
cation: networking, system architecture, processing algorithms, quality
of experience and human-computer interaction.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3326893

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Introduction
	XR Offloading Scenarios
	Offloading Architecture
	Traffic Capture Methodology
	Traffic Modeling
	Data Pre-processing
	Prior Data Analysis
	Traffic Models

	Realistic Traffic Generation
	Model application considerations and validation
	Temporal considerations
	Validation experiments

	Conclusions
	References
	Biographies
	Diego González Morín
	Daniele Medda
	Athanasios Iossifides
	Periklis Chatzimisios
	Ana García Armada
	Alvaro Villegas
	Pablo Peréz


