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Abstract—With the advancement of intelligent transportation systems, a series of diversified V2X applications come into being, which
have different key performance indicators (KPIs) and transmission features. Moreover, multi-tier computing as a new system-level
architecture distributes computing and communication capabilities anywhere between the cloud and the end-user. Unfortunately, the
existing network paradigm for V2X services adopts a one-shot allocation of resources ignoring the inherent differences of V2X service.
To cope with these problems, three types of refined network slices for V2X services are first proposed to simultaneously support
heterogeneous service characteristics without excessively splitting resources. Considering the spatiotemporal correlation between
service traffic and physical resources, a jagged slicing in multi-tier dynamic resources, which forms a “slice sandwich” brightly, is
realized by a dual timescale intelligent resource management scheme. The inter-slice resource configuration is based on neural
bandits with upper confidence bounds at each large-time period, while the exclusive resources are managed elastically by deep
Q-learning in terms of the real-time changing network state in the small slot. We developed a simulation environment by Simulation of
Urban Mobility (SUMO) including real-world road conditions and traffic models. The experiment results demonstrate that the proposed
scheme can effectively guarantee KPIs of V2X services and improve the system revenue compared with benchmark algorithms.

Index Terms—V2X services, network slicing, multi-tier computing, resource allocation, multi-armed bandits, deep Q-learning.

F

1 INTRODUCTION

W ITH the increase in population and the develop-
ment of urbanization, the transportation system is

facing unprecedented pressure [1]. Many V2X (vehicle-to-
everything) services have emerged to adapt to complex
traffic situations and offer enjoyable driving experiences. Up
to now, the Third Generation Partnership Project (3GPP) has
defined 57 use cases of V2X [2], [3], containing V2V (vehicle
to vehicle) services, V2P (vehicle to pedestrian) services,
V2I (vehicle to infrastructure) services, and V2N (vehicle
to network) services. Different from conventional services
for stationary or low-speed equipment, V2X services own
exclusive transmission features and key performance indica-
tors (KPIs). To reflect how various V2X services influence the
performance of the internet of vehicles (IoV), representative
use cases are detailedly summarized in Table 1. It is not
difficult to see that there are extremely diversified and even
conflicting service characteristics among use cases, which
poses critical pressure on the networking infrastructure [4].

Network slicing has emerged as a promising paradigm
to meet diverse service demands. It enables multiple in-
dependent logical networks (i.e., slices) to run on a com-
mon physical network infrastructure [5], [9]. However, as
V2X applications advance, the predefined slice for ultra-
reliable low-latency communications (URLLC) can hardly
meet more and more stringent and heterogeneous service
characteristics by one-shot resource allocation [6], [7], [8].
However, as V2X applications advance, the predefined slice
for ultra-reliable low-latency communications (URLLC) can
hardly meet more and more stringent and heterogeneous
service characteristics by one-shot resource allocation [6],
[7], [8]. Taking the advancements in existing studies, three
types of slices are proposed to accommodate existing and fu-
ture V2X use cases without excessively segmenting network

resources. Specifically, the slices for basic road safety services,
enhanced road safety services, and non-safety related services
are used to deliver basic driving information, achieve high-
level automatic driving, and improve driving comfort and
efficiency, respectively. The illustration of representative use
cases and their corresponding slices are depicted in Fig. 1.

Unfortunately, constrained by computing capability or
transmission delay, it is difficult to process multiple tasks
by a single paradigm [11], [12], [13]. Multi-tier computing
as a new system-level computing architecture provides a
new resolution for the problem. It involves three tiers with
the users at tier one, edge cloud at tier two, and remote
cloud at tier three [14]. By reasonably orchestrating available
resources along its continuum, the strict KPIs of each slice
are expected to be met. However, exploiting this hierarchical
computing architecture for service provisioning entails joint
allocation of multi-dimensional resources [15], [16]. Besides,
the high mobility of vehicles introduces more complexity
to resource management [17], [18], [19]. How to effectively
allocate multi-tier resources to multiple slices according to
time-varying network conditions is a thorny problem.

To cope with the problem, existing studies usually adopt
hierarchical resource allocation methods [20], [21], [22], [23],
[24]. Although these studies obtained certain results in
improving resource utilization, they are not applicable to
the IoV. That is because they ignored the exclusive charac-
teristics of V2X services and the importance of multi-tier
dynamic resources. Thus, considering the spatiotemporal
correlation between service traffic and physical resources
[25], a Two-Time-scale Resource Management Scheme (2Ts-
RMS) is proposed. Specifically, the scheme is divided into
two stages, namely inter-slice resource configuration and
intra-slice resource scheduling. At the beginning of each
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TABLE 1
Transmission features and key performance indicators of typical V2X service use cases.

Slices for V2X services Use Case Payload (Bytes) Frequency (Hz) Max End-to-End latency (ms) Reliability (%)

Basic Road Safety
Forward Collision Warning 50-300 10 100 90
Emergency Stop 400 10 100 90

Enhanced Road Safety
Vehicle Platooning 50-6000 2-50 10-25 90-99.99
Extended Sensors 1600 N/A 3-100 90-99.999

Non safety
Traffic Flow Optimisation 50-300 1-10 1000 N/A
Software Update N/A N/A 300-65535 N/A
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Fig. 1. Illustration of typical V2X applications in vehicular networks.
The basic road safety services slice provides position, heading, speed,
etc; the enhanced road safety services slice provides raw sensor data,
vehicles intention data, coordination, confirmation of future maneuvers,
and so on; the non-safety related services slice provides traffic flow op-
timization and software updates. An exclusive “slice sandwich” for each
V2X services slice is made up of jagged multi-dimensional resources.

large timescale (i.e., period), the infrastructure provider
(InP) configures resources for service providers (SPs) ac-
cording to service traffic. Due to the long-term trend of the
service traffic, the configuration policy remains unchanged
within each large timescale. The SPs create customized slices
with obtained multi-dimensional resources. Because the in-
herent characteristics of slices make its demand for multi-
dimensional resources appear jagged, the shape of a “slice
sandwich” is naturally formed. Then, to adapt the real-
time status of the physical layer, each SP will dynamically
schedule available resources at each small timescale (i.e.,

slot) of a large timescale to provide high-quality services
for its subscribers. In this way, system revenue could be
maximized while guaranteeing the delay and reliability
requirements of mobile users.

It is noted that the resource configuration made in the
InP will influence the scheduling process in SPs; mean-
while, the performance of SPs will also affect the decision-
making of the InP. The interaction between InP and SPs
makes it very challenging to implement conventional math-
ematical methods to solve the proposed problem. Deep
Reinforcement Learning (DRL) as intelligent approaches
provide promising solutions to the challenge. In the stage of
inter-slice resource configuration, since the status of service
requests is only up to the users, it does not change by
the selected policy of resource configuration. Thereupon, a
Joint Allocation algorithm of Multi-dimensional Resources
(JAMR) based on the improved NeuralUCB (Neural bandits
with Upper Confidence Bounds) approach is proposed. The
algorithm can effectively avoid the curse of dimensionality
and learns the unknown system revenue. As for the intra-
slice resource scheduling problem, state transitions need to
be considered, because the scheduling policies of resource
allocation and task offloading will generate different effects
on the physical layer states. To adapt to the time-varying
physical layer, a Joint Offloading and Resource Allocation
algorithm based on the Double Deep Q Network (JORA-
DDQN) approach is proposed to obtain optimal scheduling
policies. The major contributions of this paper are summa-
rized as follows.

• Three types of refined network slices for V2X ser-
vices are proposed to simultaneously accommodate
multiple V2X services over a common infrastructure.

• In view of differentiated KPIs among slices, a dual
Timescale Intelligent Resource Management Scheme
(2Ts-IRMS) is proposed to jaggedly divide multi-tier
resources into multiple slices in time-varying IoV.

• In order to fit reality, real world road conditions and
traffic models are set up in Simulation of Urban Mo-
bility (SUMO). Numerical experiments using Pytorch
verify that the proposed scheme can more economi-
cally and efficiently utilize network resources.

The rest of this paper is organized as follows. Section
2 presents an overview of the related works. In Section 3,
we describe the considered system framework. Section 4
presents the two timescale resource allocation problem. In
Section 5, the solutions based on JAMR and JORA-DDQN
are proposed. Section 6 evaluates the network performance
and compares its performance with some benchmarks. Fi-
nally, Section 7 concludes the paper.
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2 RELATED WORK
2.1 Network Slicing for V2X services
Up to now, the 3GPP has defined standardized slices to
support enhanced mobile broadband (eMBB), URLLC, and
massive machine type communication (mMTC) [29], [30].
With the evolution of V2X services, more and more rigorous
and heterogeneous KPIs need to be satisfied. Mapping V2X
services into existing reference slices or a single V2X slice is
no longer appropriate [32], [33]. Network slicing for concrete
application scenarios is still emerging, especially for vehic-
ular scenarios [34]. In [35], the authors customized slices for
safety and non-safety V2X services, respectively. Accord-
ing to the sensitivity of V2X services to delay, Wu et al.
proposed delay-sensitive and delay-tolerant slices [36]. As
described in Table 1, there are great differences between
basic road safety services and enhanced road safety services.
One slice for safety or delay-sensitive V2X services is still
insufficient to simultaneously cope with the differences.

For dealing with this problem, Campolo et al. designed
four slices for autonomous driving, tele-operated driving,
remote diagnostic, and vehicular infotainment [32]. Simi-
larly, the authors proposed a general network slicing ar-
chitecture for four typical use cases, namely localization
and navigation, transportation safety, autonomous driving,
and infotainment services [34]. A common problem of the
aforementioned studies is that the validity of the proposed
schemes did not be verified. The complexity of slicing
management increases with the number of slices. Dividing
V2X services into three slices is a more reasonable solution,
which is similar to the slicing way for traditional mobile ser-
vices. In [31], Ge et al. proposed three types of service slices,
which are used to transmit state-report, event-driven, and
entertainment-application messages, respectively. In [39],
Cui et al. divided the common network infrastructure into
three slices to provide short message service, call service,
and internet service for vehicles. Different from the existing
studies, the proposed slices in this paper fully consider
the exclusive characteristics (i.e., transmission features and
KPIs) of V2X services. They can cover all V2X use cases
defined in [2], [3] without excessively segmenting resources.

2.2 Resource Allocation for Network Slicing
In addition to slicing services with benign granularity, it
is important to effectively allocate resources among slices.
In [42], the authors developed a fuzzy logic-based resource
allocation algorithm to simultaneously satisfy the diversi-
fied requirements of V2X services. Although the scheme
achieved higher resource utilization, its computation com-
plexity is high as the InP directly allocates its resources to
users. Most of the existing studies tend to adopt hierarchical
resource allocation methods to reduce the burden of the
InP. In [6], Han et al. proposed a two-dimension-time-scale
resource allocation scheme including inter-slice resource
pre-allocation in large time periods and intra-slice resource
scheduling in small time slots. The scheme achieves a near-
optimal tradeoff among the performance of slices. In [20],
Mei et al. designed a slicing strategy with two-layer control
granularity. The upper-level and lower-level controllers are
used to guarantee the quality of services and improve the
spectrum efficiency of each slice, respectively. However,

these efforts only concentrate on spectrum resource allo-
cation. The significance of computing resources is ignored,
which are necessities to satisfy the KPIs of V2X services.

To address the multi-dimensional resources allocation
issue, Mohammed et al. proposed a multi-dimensional re-
sources slicing scheme [50]. Both the InP and SPs adopt
the dominant resource fairness (DRF) approach to allo-
cate multi-dimensional resources. In [23], the authors intro-
duced a generalized Kelly mechanism (GKM) to address the
multi-dimensional resource allocation issue between the InP
and SPs. Meanwhile, each SP utilizes Karush–Kuhn–Tucker
(KKT) conditions to derive the optimal scheduling strategy
of communication resources. Although these studies make
progress in improving the aggregate revenue of SPs, they
cannot be directly applied to the IoV with multiple V2X
services. On the one hand, when the InP equally treats all
slices, it is hard to guarantee road safety in real-world situ-
ations. On the other hand, the differentiated characteristics
of multi-tier computing resources have not been extensively
explored, which will further cut down the system revenue.
In our work, we adopt intelligent approaches to econom-
ically allocate multi-tier resources to multiple V2X slices
while guaranteeing the delay and reliability requirements
of mobile users.

2.3 DRL-Enabled Network Slicing
In the dynamic IoV, conventional mathematical models
face with high computation complexity and lack adaptabil-
ity and robustness. Advanced DRL algorithms have been
widely applied in network slicing [38]. From the perspective
of the effect of the action on the status, DRL can be divided
into DRL based on multi-armed bandits (MAB) and DRL
based on Markov Decision Process (MDP) [26], [27]. Because
the policies of resource allocation and task offloading will
generate different effects on the physical layer states, the
intra-slice resource scheduling problem is usually formu-
lated as an MDP problem. In [22], Chen et al. leveraged
the DDQN algorithm to learn the optimal policies of packet
scheduling and computation offloading. In [20], the authors
further verified the effectiveness of DDQN in jointly opti-
mizing resource allocation and computation offloading. In
this paper, considering that the numbers of vehicles and
available resources of slices are different, each SP equipped
with an exclusive agent implements resource scheduling to
guarantee the isolation among slices.

As for the inter-slice resources configuration problem,
it is impossible to find the optimal configuration policy
before the end of a period. That is because the future status
of the IoV is unknowable. In addition, it is impractical to
traverse all configuration policies at each period. Taking
advantage of the characteristic that the policy of resource
configuration will not change the status of service requests,
many studies adopt DRL algorithms based on MAB to
learn the unknown reward function. In [44], Zanzi et al.
developed a radio slicing orchestration scheme based on
MAB. With no prior knowledge of channel quality statistics,
SPs can make adaptive slicing decisions. In [45], Zhao
et al. formulated resource configuration as a contextual
MAB problem and adopted the upper-confidence-bound
(UCB) algorithm to solve it. However, these studies as-
sumed a linear relationship between the expected reward
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TABLE 2
MAJOR NOTATIONS USED IN THIS PAPER

Notation Definition
M Number of VUEs
B Bandwidth of a RB
Zl Packet size of link l
T /K Set of slots and periods
J /J Set/number of RBs
Y vm,i Number of CPU cores of VUE Nm allocated to slice i
Y ui Number of CPU cores of MEC server allocated to slice i
Wl,t Queue length of link l at slot t
ρl,j,t Allocation action of j-th RB for link l at slot t
el,t Offloading action for link l at slot t
Ul,t Service satisfaction of link l at slot t
ψi Penalty factor for slice i
ϕl,t Reliability of link l at slot t
qsei Unit price charging by slice i
qcm Price of unit communication resource
qcp Price of unit edge computing resource
qcc Price to access the cloud computing center
Dmax
l Maximum tolerant delay and minimum PRR of link l
ϕmin
l Minimum PRR of link l
C Set of multi-dimensional resources configuration for all slices
ci,k Resources configuration for slice i at period k
Ok,Ck Feature vector for resources configuration Ck at period k
V (Ck) Total system revenue corresponding to Ck
Pk,Ck Upper confidence bound of Ck at period k
sl,t, al,t State and action space of link l at slot t
Qπ(s, a) State-action value function under the policy π
Nl, Nl′ Transmitter and receiver of link l
αd, αr Weighting factors for delay and reliability
rvl,t, r

u
l,t Available V2V and V2I transmission rate for link l at slot t

Li/Li Set/number of links subscribed to slice i
Ji/Ji Set/number of RBs allocated to slice i
Y u, Y vm Number of CPU cores of MEC server and VUE Nm
N , I, L Set of UEs, slices, links
fv, fu, fc CPU frequency of VUE, MEC server, and cloud server

and the context vector. Furthermore, the effectiveness of
DRL algorithms based on MAB will be greatly reduced
when the number of candidate actions is large. The curse
of dimensionality is inevitable when we jointly consider
multi-dimensional resources. Therefore, in this paper, we
design a pre-allocation mechanism based on service priories
and adopt the NeuralUCB algorithm to obtain an optimal
configuration policy of multi-dimensional resources.

3 SYSTEM MODEL
This section describes the system model in detail. Specifi-
cally, we first present the network model (Section 3.1) and
multi-tier resources model (Section 3.2) of the IoV. Then,
we elaborate on the process of transmission (Section 3-3.3)
and offloading (Section 3.4) for vehicular tasks. Finally, key
performance indicators of V2X services will be presented
(Section 3.5). For convenience, Table 2 summarizes the major
notations of this paper.

3.1 Network Model

The physical infrastructure of the IoV mainly includes a
macro base station (MBS) connected to remote cloud servers,
roadside units (RSUs) equipped with MEC servers, and
vehicular user equipment (VUEs) with diverse numbers of
vehicular computing units. Note that an RSU essentially
is a statically logical entity. It supports V2X applications
by using the functionality provided by a 3GPP network
or user equipment (UE) [47]. Thus, we assume all UEs,
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Fig. 2. Illustration of the jagged allocation of virtualized multi-tier re-
sources to refined network slices of V2X services, compared to flat
slicing resources to three generic usage scenarios of 5G.

which consist of VUEs and RSUs, are within the coverage
of the MBS and VUEs can only access the internet via
RSUs. Let N = {N0, N1, ..., Nm, ..., NM} be the set of UEs
covered by RSU N0. Furthermore, we assume that VUE
Nm ∈ N (m 6= 0) is equipped with Y vm central processing
unit (CPU) cores. As for RSU N0, there are Y u CPU cores
deployed at its MEC server. It means that the MEC server
can serve at most Y u VUEs at the same time. fv and fu
represent the CPU frequency of each CPU core of the VUE
and MEC server, respectively.

As mentioned in Table 1, there are great differences
among V2X services. Therefore, we propose three kinds of
network slices to reflect the differences without excessively
segmenting resources. Specifically, the three kinds of net-
work slices embrace the slice for basic road safety services,
the slice for enhanced road safety services, and the slice for
non-safety related services. The specific characteristics and
requirements of each slice are described as follows.

• The slice for basic road safety services is mainly
aimed at the services that require high timeliness
and reliability but low data rates, such as collision
warnings and emergency stops. V2V is the prevalent
radio access technology to satisfy the requirements
of latency and reliability. Note that the packet size of
basic safety services is usually small. Thus, instead of
offloading tasks to MEC servers, vehicular comput-
ing resources are sufficient to process them.

• The slice for enhanced road safety services aims to
enable high-level autopilot. Compared to basic road
safety services, the slice requires higher reliability,
data rate, beacon frequency, and lower latency. Sim-
ilarly, to effectively transmit messages among vehi-
cles, low-latency V2V communication is the main
communication mode. Due to the limited processing
capability of VUEs and the long transmission latency
of remote cloud servers, a proportion of data process-
ing should be performed in MEC servers.

• The slice for non-safety related services has a low
sensibility to delay and reliability, but usually has
high requirements of data rate. As a result, it is
expected to use multiple access technologies to seek
higher throughput and to process tasks in MEC
servers or cloud servers.
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In this paper, an SP corresponds to a slice and provides a
class of V2X services. Therefore, we will not distinguish the
concepts of slice and SP in the following text. To facilitate
analysis, let Li be the set of V2V links subscribed to slice
i ∈ I with |I| = 3. Then, L = ∪i∈ILi denotes the set of all
V2V links across the whole network. Each V2V link l ∈ L
is composed of a transmitter (VTx) Nl ∈ N and a receiver
(VRx) Nl′ ∈ N .

3.2 Multi-tier Resources Model

As described above, each SP simultaneously needs comput-
ing resources and communication resources to service its
users. The inherent attributes (i.e., KPIs and transmission
features) of V2X services make their demand for multi-
dimensional resources appear jagged. Thus, the jagged re-
source slicing on the multi-tier computing architecture is
adopted in this paper. Generally, the architecture tends to
use three tiers with users at tier one, edge cloud at tier two,
and remote cloud services at tier three. Before determining
the most suitable communication method and computing
location for any service, the hierarchical and distributed
characteristics of multi-dimensional resources should be
considered. In the tier of terminal devices, vehicular com-
puting resources usually have relatively small computing
capabilities. The purpose of local execution is to reduce com-
munication delay and errors caused by transmission and
protocols. Significantly, a VUE can concurrently subscribe to
multiple slices in our system model, which is consistent with
actual cases. Therefore, let Y vm,i be the number of vehicular
CPU cores allocated to slice i by VUE Nm (m 6= 0).

As for the edge tier, MEC servers have powerful com-
puting capabilities. However, the computing resources of
each MEC server are limited. It means that only a part of
VUEs can offload their computing tasks to MEC servers by
V2I links. To guarantee isolation among slices, the shared
edge computing resources Y u (i.e., CPU cores) and the set
of shared wireless communication resources J with |J | = J
(i.e., physical resource blocks with bandwidthB) are orthog-
onally divided into three parts. Let Ji with |Ji| = Ji be the
set of the total wireless communication resources allocated
to slice i. Y u

i
is the number of CPU cores of the MEC server

allocated to slice i. The cloud tier consists of a large number
of remote cloud servers, which has sufficient computing
resources. Furthermore, the RSUs are connected to the MBS
and cloud computing center via high-speed fronthaul links.
Thus, when the VUEs decide to offload computing tasks to
remote cloud servers, it is reasonable to ignore the constraint
of the number of communication and computing resources.
To reflect the usage of cloud computing resources, let Y ci
be the number of VUEs offloading computing tasks to
remote cloud servers. Fig. 2 depicts a diagram of the jagged

allocation of virtualized resources to multiple V2X slices,
where each slice consists of multi-dimensional resources to
form a ”slice sandwich”.

3.3 Signal Transmission Model

In conventional services, the data rate of large-sized packets
can be directly calculated through the Shannon formula.
However, unlike conventional services, the packet size of
most V2X services is short, which ranges from 32 to 200
bytes [20]. Since the negative effect of channel dispersion
and coding length, the data rate of a short packet cannot
be accurately obtained by the Shannon formula. In [48],
based on finite block-length theory, a new method used
to approximately calculate the data rate of short packets
is proposed. Therefore, the available data rate between
VTx Nm ∈ N and VRx Nm′ ∈ N on the resource block
j ∈ J at slot t can be calculated as formula (1a) or formula
(1b), where σ2 is the power of additive white Gaussian
noise on each resource block (RB). pNm′

Nm
is the transmission

power when Nm communicates to Nm′ . hNm′
Nm,j,t

denotes the
channel coefficient on RB j at slot t, which contains path
loss, Rayleigh fading and shadowing effect. As for the short
packet transmission in formula (1b), V Nm′

Nm,j,t
is used to reflect

the random variability of the channel. It is calculated as

V
Nm′
Nm,j,t

= 1−
(

1 +
p
Nm′
Nm
· hNm′

Nm,j,t

σ2

)−2
. (2)

G−1(·) and $ are the inverse of the Gaussian Q-function
and the effective decoding error probability, respectively.
τNm is the number of transmit symbols. Both of them are
used to reflect the influence of coding on short packet
transmission.

In addition, during the phase of data transmission, each
V2V link maintains an individual queue to buffer the ar-
riving packets. The packet is delivered according to the
first-come-first-serve policy [22]. As for link l, the dynamic
evolution of its queue can be written as

Wl,t+1 = min{Wl,t −∆t · rvl,t/Zl +Al,t,W
max
l }, (3)

where Wl,t is the queue length (i.e., number of packets) at
slot t.Al,t denotes the instantaneous packet arrival.Wmax

l is
the maximum length of the buffer queue, and Zl is the total
packet size (in bits). ∆t refers to the duration of each slot.
During the duration, the quality of wireless channels keeps
stable. As for rvl,t, it depicts the total rate capacity from VTx
Nl to VRx Nl′ at slot t, which can be expressed as

rvl,t =
∑
j∈J

ρl,j,t · rNl′Nl,j,t
. (4)
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Term ρl,j,t is a binary variable. ρl,j,t = 1 denotes the j-th RB
is allocated to link l at slot t, otherwise ρl,j,t = 0.

3.4 Task Offloading Model

In this paper, we consider a hybrid computation offload-
ing scenario [21]. The computing task of a vehicle can be
executed locally. It can also select to be offloaded to the
MEC server by V2I communication or the remote cloud
computing servers through relayed V2I and high-speed
fronthaul links. As for the computing task of link l at slot t,
let el,t ∈ {0 1 2} be its offloading action. Specifically, el,t = 0
represents local execution, el,t = 1 indicates offloading the
computing task to the MEC server, and el,t = 2 means that
the offloading position of the task is the remote cloud com-
puting center. Considering the output size of the computing
task is much smaller than the input size of the computing
task, the download time of processed data is ignored [21],
[43]. Thus, at slot t, the processing time for the b-th packet
of link l ∈ Li can be described as:

Dcp
l,b,t =



Zl · βl
Y vm,i · fv

, el,t = 0; (5a)

Zl · βl
fu

+
Zl
rul,t

, el,t = 1; (5b)

Zl · βl
fc

+
Zl
rul,t

+ tc, el,t = 2, (5c)

where βl denotes that the input packet requires βl cycles/bit
for processing. Term fc is the CPU frequency of each CPU
core of the remote cloud server, and tc is the network delay
between RSUN0 and the cloud computing center. It is worth
noting that rul,t is the available transmission rate for link l to
upload data to RSU N0, which is denoted as

rul,t =
∑
j∈J

ρl,j,t · rN0

Nl,j,t
. (6)

3.5 Key Performance Indicators

As defined in [3], whole end-to-end (E2E) communication
refers to the process that transfers a given piece of infor-
mation from a source to a destination at the application
level. Generally, the E2E delay consists of waiting time in the
queue, transmission time, network latency, and processing
latency [49]. In this paper, we have assumed that all VUEs
are in the coverage of the RSUs and they can only grasp
data from RSUs. Consequently, it is reasonable to ignore the
network delay during the process of data receiving. Thus,
we mainly consider waiting, transmission, and processing
delays. At slot t, the E2E delay of the b-th packet of link l
can be written as

D
E2E

l,b,t = Dcw
l,b,t +Dct

l,b,t +Dcp
l,b,t, (7)

whereDcw
l,b,t denotes the queuing delay at VTxNl, andDct

l,b,t

refers to the transmission time between VTx Nl and VRx
Nl′ . To reflect the delay state of link l at slot t, let Dl,t be the
average packet delay of queue Wl,t.

In addition to delay, reliability is another key perfor-
mance indicator [10]. From the view of service provisioning,
the probability of receiving or dropping data packets is
usually used as a measure of reliability [46]. When the

delay of a packet exceeds the maximum tolerant delay, we
consider the packet as dropout, otherwise as receiving. In
this paper, we choose the packet reception ratio (PRR) as
the index to evaluate reliability, which can be expressed as

ϕl,t = Pr{D
E2E

l,b,t < D
max

l }, (8)

where D
max

l is the maximum tolerant E2E delay of link l.

4 PROBLEM FORMULATION
In this paper, the resource allocation problem is decomposed
into two stages. First, at the beginning of each large-time pe-
riod k, the InP jaggedly allocates shared physical resources
to SPs (Section 4.1). Then, at each small-time slot t, each
SP independently manages acquired resources to provide
services for its users (Section 4.2). Fig. 3 helps illuminate the
process of two-time-scale resource allocation.

4.1 Large Timescale Problem Formulation
At the beginning of each period k ∈ K, the multi-tier
resources are jaggedly allocated to slices to maximize system
revenue. The revenue consists of the fees charged by SPs
and the fees paid for accessing resources. As for slice i ∈ I
with resources configuration ci,k = {cvi,k, cui,k, cci,k}, the fee
charged by it is the value of the valuation function v(ci,k).
Term cvi,k = {Y vm,i,k|∀m ∈ [1,M ]}, cui,k = {Ji,k, Y ui,k}, and
cci,k = {Y ci,k} represent the resource configuration for the
terminal tier, edge tier, and cloud tier, respectively. From the
perspective of privacy and security, the computing resource
of vehicles only can be used by themselves. Thus, it is
reasonable to ignore the cost of using vehicular computing
resources. Let qcc be the price to access the cloud computing
center for each user. qcm and qcp are treated as the price
to utilize unit communication resources and unit edge com-
puting resources, respectively. Therefore, corresponding to
the set of multi-dimensional resources configuration for all
slices Ck = {ci,k|∀i ∈ I} ∈ C, the total system revenue
V (Ck) is expressed as

V (Ck) =
∑
i∈I

[
v(ci,k)− qcmJi,k − qcuY ui,k − qccY ci,k

]
(9)

Based on the above analysis, the problem that the InP
allocates multi-tier resources to SPs can be formulated as:

P1 : max
Ck

[V (Ck)]

subject to :

C1 :
∑
i∈I

Y vm,i,k ≤ Y vm; ∀m ∈ [1,M ], k ∈ K,

C2 :
∑
i∈I

Ji,k ≤ J ; ∀k ∈ K,

C3 :
∑
i∈I

Y ui,k ≤ Y u; ∀k ∈ K,

C4 : Y vm,i,k ∈ [0, Y vm]; ∀m ∈ [1,M ], i ∈ I, k ∈ K,
C5 : Ji,k ∈ [0, J ]; ∀i ∈ I, k ∈ K,
C6 : Y ui,k ∈ [0, Y u]; ∀i 6= i′ ∈ I, k ∈ K,
C7 : Yv

m,i,k
∩ Yv

m,i′,k
= ∅; ∀m ∈ [1,M ], i 6= i′ ∈ I, k ∈ K,

C8 : Ji,k ∩ Ji′,k = ∅; ∀i 6= i′ ∈ I, k ∈ K,
C9 : Yui,k ∩ Yui′,k = ∅; ∀i 6= i′ ∈ I, k ∈ K, (10)
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Fig. 3. Schematic of two-time scales resource allocation. First, at the beginning of each large-time period, the InP allocates shared physical
resources to SPs (inter-slice resource configuration). Then, each SP elastically assigns exclusive resources to its users at each small slot (intra-
slice resource scheduling).

where Yui,k is the set of edge computing resources allocated
to slice i at period k. Similarly, Yv

m,i,k
is the set of vehicular

computing resources allocated to slice i from VUENm at pe-
riod k. C1-C3 respectively guarantee that allocated resources
do not exceed the capacity of vehicular computing resources
Y vm, communication resources J , and edge computing re-
sources Y u. C4-C6 are the constraints to the value of Y vm,i,k,
Ji,k, and Y ui,k, respectively. These constraints ensure that the
number of resources allocated to each SP must be a non-
negative integer. C7-C9 ensure isolation among all slices. It
is noteworthy that the cloud tier contains a large number of
cloud servers and the RSUs connect to the cloud computing
center via high-speed fronthaul links. As a result, resource
constraints of offloading tasks from the edge tier to the cloud
tier can be ignored.

4.2 Small Timescale Problem Formulation

After determining the resource configuration for all slices,
each slice utilizes acquired multi-dimensional resources to
provide services for its subscribers to maximize the fee
charged by it. As for slice i ∈ I , qsei is the unit price to
charge link l for realizing service satisfaction Ul,t, which
consumes computing resources to process arriving tasks and
communication resources to transmit queued packets. Since
both delay and reliability are KPIs to weigh the quality of
V2X services, the service satisfaction Ul,t of link l at slot t
can be described as:

Ul,t = αd · U (1)
l

(D
E2E

l,t ) + αr · U (2)
l

(ϕl,t), (11)

where αd and αr are weighting factors that balance the im-
portance between delay and reliability. Based on theoretical
KPIs and actual indexes, the satisfaction of links shows a

negative exponential. Besides, to reflect the negative impact
of violating KPIs, a penalty factor ψi is introduced into
service satisfaction. In general, penalty factors for safety-
related services are larger than non-safety-related services.
Thus, for link l ∈ Li, its delay satisfaction and reliability
satisfaction are written as

U (1)
l

(D
E2E

l,t ) =

{
exp(−D

E2E

l,t ), D
E2E

l,t ≤ D
max

l ; (12a)

exp(−D
E2E

l,t )− ψi, D
E2E

l,t > D
max

l , (12b)

U (2)
l

(ϕl,t) =

{
exp(−(1− ϕl,t)), ϕl,t ≥ ϕ

min

l ; (13a)

exp(−(1− ϕl,t))− ψi, ϕl,t < ϕ
min

l , (13b)

where ϕ
min

l is minimum PRR of link l. Note that each period
is composed of T slots and Ck remains unchanged during
the duration of period k. Once resource configuration is
determined by the InP, the remaining problem for each SP
is how to maximize the long-term satisfaction of all service
requests. Thus, during period k, the problem that SP i ∈ I
schedules resources among its links Li is formulated as:

P2 : max
e,ρ

[v(ci,k)] = max
e,ρ

qsei T∑
t=1

∑
l∈Li,k

Ul,t


subject to :

C10 :
∑
l∈Li,k

ρl,j,t ≤ 1;∀t ∈ [1, T ], j ∈ Ji,k,

C11 :
∑
l∈Li,k

∑
j∈Ji,k

ρl,j,t ≤ Ji,k;∀t ∈ [1, T ],

C12 : el,t ∈ [0, 1, 2];∀t ∈ [1, T ], l ∈ Li,k,
C13 :

∑
l∈Li,k

el,t = 1 ≤ Y u
i,k

;∀t ∈ [1, T ], (14)
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Fig. 4. The flow chart of vehicular computing resources configuration.

where e = {el,t|∀t ∈ [1, T ], l ∈ Li,k} is the set of offloading
actions. ρ = {ρl,j,t|∀t ∈ [1, T ], l ∈ Li,k, j ∈ Ji,k} is the
set of the allocation of RBs. C10 refers that each RB only
can be assigned to a link at each slot t. C11 indicates that
the allocated communication resources cannot exceed the
obtained communication resources Ji,k. C12 implies that
the computing task of link l can be handled in only one
way, such as being executed locally, offloaded to the MEC
server, or remote cloud computing servers. C13 indicates
that the allocated edge computing resources to all links
cannot exceed the acquired edge computing resources Y u

i,k
.

5 DUAL TIMESCALE INTELLIGENT RESOURCE
MANAGEMENT SCHEME

The optimization problems described in Section 4 are dif-
ficult to solve as they are NP-hard problems. In addition,
the IoV needs an intelligent resource management scheme
to adapt to dynamic network conditions. Hence, in this sec-
tion, a novel 2Ts-IRMS is proposed to address the resource
allocation problem in the IoV. Specifically, we adopt the
proposed JAMR algorithm to address inter-slice resource
configuration at each large-time period (Section 5.1) while
the JORA-DDQN algorithm is used to solve intra-slice re-
source scheduling at each small-time slot (Section 5.2).

5.1 Inter-slice Resource Configuration

At large timescales, a central question is how the InP
allocates multi-tier resources to SPs to maximize system
revenue. Obviously, it is impossible to find the optimal
resource configuration of P1 in (10) before the end of period
k. That is because the future state of the IoV is unknowable
and cannot be obtained in advance. In addition, we cannot
acquire all V (Ck) (∀Ck ∈ C) for each period in practice.
Luckily, within a specific region, the long-term trend of
network conditions can be characterized by service requests
[20]. Meanwhile, the selection of resource configuration will
not change the state of service requests. Consequently, it
is reasonable to formulate P1 as a contextual MAB prob-
lem. However, the computation complexity is extremely
high when the InP simultaneously allocates all network

Algorithm 1 Inter-slice vehicular computing resources
configuration based on service priorities
1: for m = 1, 2, ...,M do
2: Input: Y vm.
3: for i = i1, i2, i3 do
4: Input: Li,k.
5: Compute Y v,req

m,i,k by (14).
6: Compute Y v,rem

m,i,k by (15).
7: if Y v,rem

m,i,k < Y
v,req
m,i,k

8: Let Y vm,i,k = Y v,rem
m,i,k ;

9: Let Evm,i,k = 0;
10: else
11: Let Y vm,i,k = Y v,req

m,i,k.
12: Let Evm,i,k = 1;
13: end for
14: end for
15: Return Evi,k.

resources. To address this challenge, based on service re-
quests, the problem of multi-tier resource allocation is ap-
proximately decomposed into several subproblems. Each
subproblem focuses on the characteristics of resources at
different tiers.

5.1.1 Vehicular computing resources

Different from other application scenarios, the IoV contains
a large number of safety-related services. It is necessary
to guarantee their resource requirements to avoid traffic
accidents, at first. As described in Section 3, when vehicular
computing resources are sufficient, local execution is the
first choice to process the computing tasks of safety-related
services. It can avoid unnecessary transmission delay and
error. Thus, based on the consideration of service priori-
ties, we first explore vehicular computing resource alloca-
tion among slices. Obviously, safety-related services have
a higher service priority than non-safety-related services in
practical IoV. As for safety-related services, we consider that
basic road safety services have a higher service priority than
enhanced road safety services. That is because basic driving
functions should be guaranteed at first under the condition
of insufficient computing resources. To facilitate analysis,
the slice for basic road safety services, the slice for enhanced
road safety services, and the slice for non-safety services
are denoted as i1, i2, and i3, respectively. Indexes are used
to reflect their service priority and vehicular computing
resources are orderly allocated based on this priority. The
specific flow of inter-slice vehicular computing resources
configuration is shown in Fig. 4.

It is noteworthy that the real-time policies of task of-
floading and resource scheduling at small timescales have
little dependence on vehicular computing resource con-
figuration. Furthermore, the computing resources of each
vehicle only can be used by themselves. Therefore, service
requests can be considered the only influencing factor for
vehicular computing resource configuration. As for VUE
Nm(m 6= 0), the number of required vehicular computing
resources Y v,req

m,i,k for slice i ∈ I at period k can be approxi-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3288637

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



9

mately calculated according to:

Y v,reqm,i,k =


∑

l∈Li,k
Wmax
l · Zl · βl · Λ(l′=m)

fv

 , (15)

where dxe = min{X ∈ Z|X ≥ x} is the ceiling function of
x. Li,k is the link set of slice i at period k. Λ(l′=m) indicates
whether the condition (l′ = m) is satisfied. Specifically,
Λ(l′=m) = 1 denotes VRx Nl′ of link l is VUE Nm; other-
wise, Λ(l′=m) = 0. Since vehicular computing resources are
allocated to different slices according to service priorities
in turn, the number of vehicular computing resources that
each slice can be used to allocate is different. Let Y v,rem

m,i,k be
the number of available vehicular computing resources of
VUE Nm to slice i ∈ I , which can be expressed as:

Y v,rem
m,i,k =


Y vm, i = i1; (16a)
0, i 6= i1;Y v,rem

m,i′,k < Y
v,req
m,i′,k; (16b)

Y v,rem
m,i′,k − Y

v,req
m,i′,k, i 6= i1;Y v,rem

m,i′,k ≥ Y
v,req
m,i′,k, (16c)

where i′ ∈ I refers to the slice whose priority is one
level higher than slice i. After the number of available
and required vehicular computing resources of all slices are
determined, the number of allocated vehicular computing
resources Y vm,i,k from VUE Nm to slice i at period k can
be obtained. Furthermore, to reflect whether the vehicular
computing resources requirements of slice i are satisfied,
we define the state set of vehicular computing resources
allocation at period k as Evi,k = {Evm,i,k|∀m ∈ [1,M ]}.
Evm,i,k = 1 indicates the vehicular computing resources
requirement of slice i to VUE Nm is satisfied, otherwise
Evm,i,k = 0. The detail of inter-slice vehicular computing
resources configuration based on service priorities is de-
scribed in Algorithm 1.

5.1.2 Edge computing resources & Radio communication
resources
In order to ensure that each computing task has a process-
ing location and to avoid wasting resources, the multi-tier
computing resources configuration of slice i ∈ I meets:

Li,k = Y vi,k + Y ui,k + Y ci,k =
M∑
m=1

Evm,i,k + Y ui,k + Y ci,k, (17)

where Li,k = |Li,k| is the total number of pending com-
puting tasks at period k. Y vi,k denotes the number of VUEs
with sufficient vehicular computing resources allocated to
slice i to process relevant computing tasks. After the vehic-
ular computing resources configuration is determined, the
problem of large timescales is transformed into the problem
that the InP adjusts the configuration of edge computing
resources and radio communication resources among slices.

As described above, we constitute problem P1 in (10)
as a contextual MAB problem. Specifically, at the begin-
ning of each period, the InP considered the agent first
observes its context in the form of a feature vector. The
vector indicates the characteristics of requested services
and the allocation status of vehicular computing resources
of all slices. At period k ∈ [K], we define the feature
vector for arm Ck ∈ C as Ok,Ck =

{
ok,ci,k |∀i ∈ I

}
, where

ok,ci,k = {Li,k, Z i,k, β i,k, A i,k, Y
v
i,k, Ji,k, Y

u
i,k} is the context

of slice i. Term Z i,k, β i,k, and A i,k are the average packet
payload, average computing tasks workload, and average
packet beacon frequency of links in slice i, respectively. Li,k
is the total number of pending computing tasks at period
k. Y vi,k denotes the number of VUEs that allocate sufficient
vehicular computing resources to slice i. Ji,k is the number
of the total RBs allocated to slice i. Y ui,k is the number of
CPU cores of the MEC server allocated to slice i.

Then, the agent chooses to pull an available arm C from
the candidate set of multi-tier resources configuration C
with the aid of context information. After pulling an arm,
the agent will observe reward Vk(Ck) from selected arm
Ck, but the rewards of the other arms are unknown. Over
time, the agent aims to collect enough information about
the relationship between the context vectors and rewards so
that it can predict the next best arm to play by looking at the
current context. However, linear contextual bandits make
often fail to fit the relationship between the context vectors
and rewards in practice. That is because they assume that
the expected reward at each period is linear in the feature
vector. Thus, in this paper, NeuralUCB is adopted to solve
the resource configuration problem.

The key idea of NeuralUCB is to use a neural network
f(Ok,Ck ;ωk−1) to predict the reward of context Ok,Ck and
compute upper confidence bounds to guide exploration
[28]. Specifically, at period k, upper confidence bound Pk,Ck
for each arm Ck ∈ C can be computed as formula (18),
where g(Ok,Ck ;ωk−1) is the gradient of neural network
f(Ok,Ck ;ωk−1). ωk−1 is the parameters of the current
neural network. δ and δ′ are the width and depth of the
neural network, respectively. H−1k is the inverse of matrix
Hk. It is worth noting that the scaling factor µk is composed
of two parts. One is the confidence radius which is similar
to linear UCB. The other one is the function approximation
error which is newly added to adapt to the unknown
nonlinear function. The exploration parameter ϑ is used to
control that the choice is inclined to explore or exploit. The
larger ϑ the more inclined the action choice is to explore,
otherwise to exploit. The detailed calculation expression
of µk is shown in (19). Herein, η and η′ are step size
and the number of gradient descent steps, respectively.

Pk,Ck = f(Ok,Ck ;ωk−1) + µk−1

√
g(Ok,Ck ;ωk−1)

T
H−1k−1g(Ok,Ck ;ωk−1)/δ, (18)

µk =

√
1 + χ4δ−1/6

√
log δδ′4k7/6χ1

−7/6 · (ϑ

√
log

detHk

detχ1I
+ χ5δ−1/6

√
log δδ′4k5/3χ1

−1/6 − 2 logχ2 +
√
χ1χ3)

+ (χ1 + χ6kδ
′)[(1− ηδχ1)

η′/2
√
k/χ1 + δ−1/6

√
log δδ′

7
k5/3χ1

−5/3(1 +
√
k/χ1)], (19)
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Algorithm 2 NeuralUCB for edge computing resources
and radio communication resources allocation
1: Initialization: ω0, H0 = χ1I.
2: for k = 1, 2, ...,K do
3: Observe Ok,Ck (∀Ck ∈ C).
4: for Ck ∈ C do
5: Compute Pk,Ck by (18).
6: Let Ck = argmaxCk∈CPk,Ck .
7: end for
8: Play Ck and observe reward Vk(Ck).
9: Compute Hk by (20).
10: for j = 0, 1, ..., J − 1 do
11: ωj+1 = ωj − η∇LNU(ωj).
12: end for
13: Return ωj .
14: Compute µk by (19).
15: end for

χ1, χ2, and χ3 are the regularization parameter, confidence
parameter, and norm parameter, respectively. χ4, χ5, and
χ6 are experimental parameters. After upper confidence
bounds for all arms are determined, the arm Ck with the
largest Pk,Ck is chosen and the agent receives the corre-
sponding reward Vk(Ck). Then, NeuralUCB will update Hk

as

Hk = Hk−1 + g(Ok,Ck ;ωk−1)g(Ok,Ck ;ωk−1)
T
/δ. (20)

At the end of period k, neural network parameter ωk is up-
dated by using gradient descent to approximately minimize
LNU(ω). We define LNU(ω) as

LNU(ω) =
K∑
k=1

(f(Ok,Ck ;ω)− Vk(Ck))
2
/2 + δχ1||ω − ω(0)||22/2,

(21)
where ω(0) is the initial parameter of the neural network.
The detail of the NeuralUCB algorithm used to allocate edge
computing resources and radio communication resources is
described in Algorithm 2 and depicted in Fig. 5.

5.2 Intra-slice Resource Scheduling

In a period, once the resource configuration is determined,
the remaining problem is how to effectively allocate re-
sources from an SP to UEs to maximize the satisfaction of
all links. The optimization problem P2 in (14) is difficult to
solve since the time-varying nature of the physical layer. Be-
sides, the decisions of task offloading and resource schedul-
ing cause changes in link states (e.g., queue characteristics
and channel quality), and service satisfaction also depends
on link states. Therefore, we utilize the DRL method based
on MDP to solve the proposed intra-slice resource schedul-
ing problem. First, we formulate our problem as an MDP
to accurately describe the process of resource allocation and
task offloading.

At each slot t during the k-th period, links will
send the information of service requests and available
resources to their subscribed slice i ∈ I . We define
the state space of link l ∈ Li,k at slot t as sl,t =
{Wl,t, Al,t, Zl, βl, D

max
l , ϕmin

l , rvl,,t, r
u
l,t, Y

v
l,i,k}. Herein, Wl,t

is the queue length, Al,t denotes the number of instanta-
neously arriving packets, Zl is the total packet size, Dmax

l

is the maximum E2E delay, and ϕmin
l is minimum PRR.

Slice 1: Basic Road Safety Services

Slice 2: Enhanced Road Safety Services

Slice 3: Non-Safety Related Services
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Fig. 5. Edge computing resources and radio communication resources
allocation based on NeuralUCB algorithm.

βl denotes that the input packet requires βl cycles/bit for
processing. rvl,,t and rul,t are available rates for V2V and
V2I transmission, respectively. Y vl,i,k is the number of ve-
hicular computing resources of VUE Nl allocated to slice i.
Thus, the state space of slice i at slot t can be defined as:
st = {sl,t|∀l ∈ Li} ∈ S .

For link l at slot t, its action space al,t contains task
offloading action and RBs allocation policy, which can be
expressed as al,t = {el,t, ρl,j1,t, ρl,j2,t, ..., ρl,jJi ,t}. Term el,t
is the offloading action of link l at slot t, and ρl,j,t indi-
cates whether the j-th RB is allocated to link l at slot t.
Therefore, the action space of slice i can be defined as:
at = {al,t|∀l ∈ Li} ∈ A.

The goal of resource allocation at this stage is to max-
imize the satisfaction level of all links within limited re-
sources. Therefore, we set rewards based on the constraint
conditions and objective function. After taking action At,
the reward function is defined as:

rt = `1 ·

 ∑
l∈Li,k

Ul,t


+ `2 ·

 ∑
l∈Li,k

ρl,j,t − 1

 · Λ ∑
l∈Li,k

ρl,j,t≤1



+ `3 ·

 ∑
l∈Li,k

∑
j∈Ji,k

ρl,j,t − Ji,k

 · Λ ∑
l∈Li

∑
j∈Ji,k

ρl,j,t≤Ji,k



+ `4 ·

 ∑
l∈Li,k

(el,t = 1)− Y u
i,k

 · Λ ∑
l∈Li,k

(el,t=1)≤Y u
i,k


(22)

where Λ(·) indicates whether the condition (·) is satisfied.
Specifically, Λ(·) = 0 denotes the condition (·) is satisfied,
otherwise Λ(·) = −1.

In the IoV, each slice is regarded as an agent and owns
a private neural network. Each agent aims to find the
best policy π to maximize the expected cumulative reward
E[Rt|s, π] for each state s. The cumulative discounted re-
ward can be expressed as

Rt =
T−1∑
i=0

γirt+i, (23)

where γ is the discount parameter which reflects the impor-
tance of future rewards. The value of γ is restricted between
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Fig. 6. Intra-slice resource scheduling based on JORA-DDQN algorithm.

0 and 1. A smaller γ represents that mostly care about the in-
stantaneous reward. In value-based reinforcement learning,
the state-action function Qπ(s, a) named as quality function
(Q-function) is commonly used to reflect how good policy π
is when taking action a at current state s, denoted as

Qπ(s, a) = E[Rt|s, π]. (24)

Q-function Q(s, a) provides the optimum policy π∗ by
selecting action a that maximizes the Q-value for the state s:

π∗(s) = arg max
a∈A

Q(s, a),∀s ∈ S. (25)

Based on the definitions above, we can seek out the optimal
policy π∗ via the recursive nature of the Bellman equation,
i.e.,

Qπ(st, at)← Qπ(st, at)

+ α

(
rt + γ max

at+1∈A
Qπ(st+1, at+1)−Qπ(st, at)

)
.

(26)

However, in high-dimensional state spaces, the classic Q-
learning method cannot efficiently compute the Q-function
for all states. To remedy this problem, DDQN improves
the Q-learning by combining the neural networks with Q-
learning [41]. Specifically, raw data is input into neural
networks as the state. Then, the Q-function is approximated
by deep neural networks. It is worth noting that DDQN
has two separate networks: the main network and the target
network. The main network approximates the Q-function,
while the target network gives the temporal difference (TD)
target for updating the main network. During the training
phase, the main network parameters θ are updated after
every action while the target network parameters θ− are
updated after a certain period. At each iteration, the main
Q-network is trained towards the target value by minimiz-
ing the loss function. We set a mean-squared error (MSE)
loss function. The function can measure how closely the
Q(s, a; θ) comes to satisfy the Bellman equation:

LDDQN(θ) =
1

2
· E
[(
yDDQN
t −Qπ (st, at; θt)

)2]
, (27)

where

yDDQN
t = rt + γQπ

(
st+1, arg max

at+1∈A
Q(st+1, at+1; θt); θ

−
t

)
.

(28)

Algorithm 3 JORA-DDQN for intra-slice resource scheduling
1: Initialization: main network weights θ,
2: target network weights θ−,
3: experience replay buffer.
4: for episode = 1, 2, . . . , E do
5: Receive the initial observation s;
6: for t = 1, 2, ..., T do
7: Take action at = argmaxaQ

π(st, a; θ) with probability
8: 1− ε or a random action with probability ε ;
9: Get reward rt and observe next state st+1;
10: Store the experience (st, at, rt, st+1) into the
11: experience replay buffer;
12: Get a batch U samples (st, at, rt, st+1) from the
13: replay memory;
14: Calculate the target Q-value ytarget

t
from the target

15: network by (28);
16: Update the main network by minimizing the loss
17: LDDQN(θ) in (27) and perform a gradient descent
18: step on LDDQN(θ) with respect θ;
19: Every G steps, update the target network θ− = θ
20: end for
21: end for

Once {θ} is determined, our agent will output near-optimal
resource allocation strategies and computation offloading
decisions using a discrete set of approximate action values.
The detail of JORA-DDQN is described in Algorithm 3 and
is depicted in Fig. 6.

6 PERFORMANCE EVALUATION

6.1 Simulation Environment

In our simulation, we utilize Pytorch 1.10.0 on Ubuntu
18.04.6 LTS to implement the 2Ts-IRMS algorithm and com-
pare it with multiple comparison algorithms. For experi-
mental purposes, a cellular V2X network environment based
on the SUMO platform is established, which consists of a
real road network, an MBS, and several VUEs and RSUs.
Specifically, to fit the reality, we import the road network
around the Beijing University of Posts and Telecommunica-
tion from OpenStreetMap to SUMO at first [40]. Then, the
whole road network is divided into 9 blocks, which is con-
sistent with the road partitioning strategy of the Manhattan
case [51]. An RSU is deployed in the center of each block
and can communicate with vehicles within its coverage,
which is depicted in Fig. 7. In order to reflect traffic in urban
regions as much as possible, vehicles randomly choose lanes
of departure, positions of departure, and speed of departure
to enter the generated road network and follow the car-
following model of Krauss and the lane-changing model of
LC2013 for movement [37].

For the communication resources in the IoV, we assume
that there are 50 RBs with 180kHz bandwidth to be allo-
cated. For the computing resources, we let the computation
capacity (i.e., CPU frequency) of a single CPU core for the
VUEs be 108 cycles/s, and the number of CPU cores for
any VUE be uniformly selected from the set {1, 2, 4, 8}.
Similarly, let the computation capacity of a single CPU core
for the RSU be 109 cycles/s, and the number of CPU cores
for the RSU be fixed to 8. For the services required by the
UEs, we assume that there are six typical V2X use cases. The
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Fig. 7. Real road conditions simulation of Beijing University of Posts and
Telecommunications based on SUMO.

TABLE 3
SIMULATION PARAMETERS

Parameter Value Parameter Value
Yu 8 Y vm {1, 2, 4, 8}
B 180kHz qse1 , q

se
2 , q

se
3 0.5,0.7,0.9

J 50 ψ1, ψ2, ψ3 0.9,1,0.5
M 20 qcm, qcu, qcc 0.006,0.09,0.03
σ2 -114dBm αd, αr 0.5,0.5

Wmax
l 5 fv, fu, fc 108, 109, 1010

V2V Transmit
Power

10dBm
V2I Transmit

Power
23dBm

Carrier
Frequency

5.9GHz
Small Scale

Fading
Rayleigh
Fading

transmission characteristics and KPIs of the use cases follow
Table 1.

In addition, to better evaluate how different V2X services
affect the network performance, various combinations of
services have been considered in the simulations. By se-
lecting these combinations, we want to test if the proposed
2Ts-RL can satisfy the requirements of multiple services,
especially for safety-related services. To simplify, we make
slices 1, 2, and 3 represent the slice for basic road safety
services, the slice for enhanced road safety services, and
the slice for non-safety-related services, respectively. The
simulation parameters and neural network parameters are
summarized in Table 3 and Table 4, respectively. Afterward,
we compare the 2Ts-IRMS algorithm with multiple com-
pared algorithms, which are described as follows:

• Hierarchical resource allocation schemes: The two-
timescale bidding resource management scheme
(2Ts-BRMS) adopts the generalized Kelly mechanism
(GKM) to address the inter-slice multi-dimensional
resource configuration problem and allocates re-
sources to users according to channel quality (CQ)
[23]. In the two-timescale fair resource management
scheme (2Ts-FRMS), both the InP and SPs adopt
the dominant resource fairness (DRF) approach to
allocate multi-dimensional resources [50].

• Inter-slice resource configuration schemes: The pro-
portional allocation scheme (PA) proportionally al-

TABLE 4
NEURAL NETWORK PARAMETERS

Parameter Value Parameter Value
Confidence factor -1.0 Discount factor 0.9

Regularization factor 1 Buffer size 20000
Exploration probability 0.1 Hidden Layer 3

Learning rate 0.01 Optimizer Adam
Activation function ReLU Minibatch size 100

Fig. 8. Comparison of the achieved valuation of hierarchical resource
allocation schemes under various combinations of services.

locates resources to slices based on the number of
subscribers and average resource requirements [52].
As for the context-aware configuration scheme (CA),
it adjusts inter-slice resource configuration based on
the localized service requests and traditional UCB
algorithm [45].

• Intra-slice resource scheduling schemes: As for com-
munication resource allocation, the queue-aware re-
source allocation strategy (QA) calculates the queue
length of each link. The longer the queue length, the
more communication resources are allocated. In the
fair resource allocation strategy (FA), the communi-
cation resources are equally shared by all links. As
for computing resource allocation, the local execution
scheme (LE), the edge execution scheme (EE), and
the cloud execution scheme (CE) make all tasks to be
executed on user terminals, MEC servers, and remote
cloud servers, respectively [21].

6.2 Simulation Results
Fig. 8 compares the achieved values of the valuation func-
tion of three hierarchical resource allocation schemes under
various combinations of services. With the fixed number of
VUEs in the cellular network, the proportion of users in
slices 1, 2, and 3 iterates through all possible combinations.
Compared to other comparison algorithms, 2Ts-IRMS has
the highest valuation value while owning more stale perfor-
mance. That is because it can dynamically adjust resource
allocation according to the different number of users and
service requests. It is noted that there are two main reasons
for the low performance of 2Ts-BRMS. On the one hand,
in the phase of inter-slice resource configuration, 2Ts-BRMS
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Fig. 9. Comparison of system revenue of multiple inter-slice resource configuration schemes under different unit prices of services. (a) Revenue
under different unit prices of basic road safety services; (b) Revenue under different unit prices of enhanced road safety services; (c) Revenue
under different unit prices of non-safety related services.
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Fig. 10. Comparison of system revenue of multiple inter-slice resource configuration schemes under different punishing values of services. (a)
Revenue under different punishing values of basic road safety services; (b) Revenue under different punishing values of enhanced road safety
services; (c) Revenue under different punishing values of non-safety related services.
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Fig. 11. Resource configuration among slices under different inter-
slice resource configuration schemes. (a) Allocated proportion of radio
blocks; (b) Allocated proportion of edge cpu cores.

equally treats all slices which leads to the failure to meet
safety-related services resulting in a greater negative impact.
On the other hand, when SPs allocate resources to users,
only considering communication resources affects the qual-
ity of services, especially for enhanced road safety services.
Besides, the value of the valuation function decreases with
the increase in the number of users, because the number of
resources is limited and cannot meet too many users.

To further analyze the impact of the JAMR approach
on inter-slice resource configuration, we evaluate the per-
formance of multiple inter-slice resource configuration
schemes by adjusting the unit price of a certain service,
which is depicted in Fig. 9. When the unit price of other
slices remains unchanged, it can be observed that the system
revenue increases with the unit price of the current service.
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Fig. 12. Convergence performance of the proposed JORA-DDQN in SLA
violation probability.

Significantly, JAMR can maintain the highest valuation at
any price setting, which further validates its self-adaptive
capability. For the three slices proposed, JAMR provides a
gain of 24%, 40%, and 76% with respect to DRF, GKM, and
CA on average, respectively. The CA scheme with limited
fitting ability has a lower revenue since its performance is
seriously affected by the nonlinear problem. Furthermore,
the fluctuation of the system revenue in the slice for non-
safety-related services is obviously smaller than in other
slices. The reason for this phenomenon is that the utility of
non-safety-related services has a smaller impact on the sys-
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Fig. 13. Performance indicators of link in the slice for basic road safety services under different intra-slice resource scheduling schemes. (a) CDF
of packet delay of link; (b) CDF of packet reception ration of link; (c) Cumulative satisfaction of links.
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Fig. 14. Performance indicators of link in the slice for enhanced road safety services under different intra-slice resource scheduling schemes. (a)
CDF of packet delay of link; (b) CDF of packet reception ration of link; (c) Cumulative satisfaction of links.

tem performance. Similarly, Fig. 10 depicts the system rev-
enue of multiple inter-slice resource configuration schemes
under different punishing values of services. Although the
increase in the penalties of services leads to a decrease in the
system revenue, JAMR still maintains the highest revenue
no matter how the penalties change.

Fig. 11 shows the number of communication resources
(i.e., RBs) and edge computing resources (i.e., CPU cores)
allocated to different slices under different inter-slice re-
source configuration schemes. When the number of vehicles
remains unchanged at 20 and the proportion of users in
slices 1, 2, and 3 is 2:2:1, JAMR assigns 10 RBs to slice 1, 28
RBs to slice 2, and 12 RBs to slice 3. At the same time, 25% of
the edge computing resources are allocated to slice 3 and all
remaining edge computing resources are allocated to slice
2. Significantly, although the PA scheme allocates enough
resources to the slice for enhanced road safety services, the
performance of other slices is seriously compromised.

After determining the resource configuration policy for
all slices, each SP allocates obtained resources to its sub-
scribers to maximize the long-term satisfaction of all links.
To guarantee the isolation among slices, each SP is equipped
with an exclusive agent to implement resource scheduling
among users based on the proposed JORA-DDQN scheme.
To illustrate the convergence performance of the JORA-
DDQN scheme in different slices, we plot the variation trend
of the SLA violation probability over training episodes for
each slice in Fig. 12. In this paper, the SLA mainly refers
to delay and reliability. At the beginning of the training,
the value of the SLA violation probability is high. With the
increase of training episodes, the SLA violation probability

gradually decreases. After 1500 episodes, the SLA violation
probability is leveling off, which means that all of the slices
have converged. Moreover, the slice for enhanced road
safety services has the lowest SLA violation probability,
which is consistent with KPIs requirements in Table 1.

Fig. 13 depicts the performance of links in the slice for
basic road safety services during an episode. It consists of
the cumulative distribution functions (CDF) of packet delay,
CDF of packet reception ratio, and cumulative satisfaction
of links. In view of the characteristics of basic road safety
services (i.e., small packet size and high timeliness and
reliability), it is more important to allocate radio resources
than computing resources. That is because most tasks are
sufficient to be processed at terminal devices without oc-
cupying the computing resources of the MEC server or
remote cloud servers. Thus, the DRF, CA, QA, and FA
are selected as benchmark schemes to compare with the
JORA-DDQN approach. Meanwhile, to ensure fairness, the
task offloading policy of benchmark schemes is consistent
with JORA-DDQN. Obviously, due to the flexible resource
management paradigm, the proposed JORA-DDQN scheme
significantly outperforms benchmark schemes whether in
terms of delay, reliability, or cumulative satisfaction. Specif-
ically, the average packet delay of link is 93.033 ms and the
algorithm can maintain the packet reception ratio of link
at least 90%. Besides, JORA-DDQN has the highest service
satisfaction and provides a gain of 50% with respect to DRF.

As for the slice for enhanced road safety services, the
packet size is much larger than basic road safety services,
and more CPU cycles are needed to process data. The com-
puting resources of the terminal devices are insufficient to
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Fig. 15. Performance indicators of link in the slice for non-safety related
services under different intra-slice resource scheduling schemes. (a)
CDF of packet delay of link; (b) Cumulative satisfaction of links.

support the simultaneous processing of numerous data. It is
necessary to access the MEC server. Thus, the DRF, CA, LE,
and EE are selected as benchmark schemes to compare with
the JORA-DDQN approach. Similarly, to ensure fairness, the
task offloading policy of CA and the RB scheduling policy of
LE and EE are consistent with JORA-DDQN. Fig. 14 depicts
the performance of links in the slice for enhanced road safety
services during an episode. In the proposed scheme, the
average packet delay of link is 9.608 ms and the algorithm
can maintain the packet reception ratio of link at least 99%.
Meanwhile, JORA-DDQN is able to maintain the highest
service satisfaction and provides a gain of 52% with respect
to DRF. Notably, the LE scheme with the worst performance
fails to meet the KPIs requirements of most links.

As described in Section 6.1, the slice for non-safety-
related services is expected to offload computing tasks to
the MEC server or remote cloud servers. Thus, the DRF, CA,
EE, and CE are selected as benchmark schemes to compare
with the JORA-DDQN approach. Considering that the slice
has a low sensitivity to the reliability, we only draw the
curves of delay and satisfaction in Fig. 15. It is observed that
JORA-DDQN can effectively use limited resources to reduce
task execution delay as much as possible. The CE scheme
has poor performance because it will generate additional
communication delays.

7 CONCLUSION
In this paper, we propose three types of network slicing
to accommodate diversified V2X services over a common
physical infrastructure. Specifically, the slice for basic road
safety services is used to fulfill the need for imminent warn-
ing to nearby entities in time; the slice for enhanced road
safety services aims to achieve a higher level of automatic
driving; the slice for non-safety related services focuses on
improving driving comfort and efficiency of users. Further-
more, in order to take full advantage of multi-tier resources
and consider time-varying network conditions, a novel
dual timescale intelligent resource management scheme
is proposed. First, at the beginning of each period, the
InP jaggedly tunes multi-tier resource configuration among
slices to improve system revenue. Then, constrained by
limited resources obtained from the InP, each SP carries out
real-time task offloading and resource scheduling decisions
to maximize the long-term service satisfaction of all users.
Finally, based on the effect of the action on the states, we
propose JAMR and JORA-DDQN algorithms for learning
the optimal strategies of proposed problems, respectively.

Simulation results show that our proposed 2Ts-IRMS can
effectively guarantee the performance requirements of users
and improve the system revenue compared with the bench-
mark algorithms.
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