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DraftFed: a Draft-based Personalized Federated
Learning Approach for Heterogeneous

Convolutional Neural Networks
Yuying Liao, Le Ma, Bin Zhou, Xuechen Zhao, Feng Xie

Abstract—In conventional federated learning, each device is
restricted to train a network model of a same structure. This
greatly hinders the application of federated learning in edge
devices and IoT scenarios where the data and devices are quite
heterogeneous because of their different hardware equipment and
communication networks. At the same time, most of the existing
studies about federated learning of heterogeneous models are
limited to horizontal heterogeneity which share a highly homo-
geneous vertical structure. Little work has been done on vertical
heterogeneity such as models with different number of functional
layers or different connection methods within them, not to men-
tion the integrated heterogeneity scenarios. In DraftFed, a novel
draft-based approach is proposed to implement personalized
federated learning for integrated heterogeneous models. Unlike
traditional federated learning in which the parameters/gradients
are exchanged, DraftFed uses drafts as key knowledge to guide
mutual learning of models, which makes it suitable for model
structure personalization application scenarios..

Index Terms—Personal Computing, Neural models, Dis-
tributed networks, Heterogeneous (hybrid) systemsArticle.

I. INTRODUCTION

FEderated learning (FL) is an emerging technology of arti-
ficial intelligence [1][2][3]. In common mobile scenarios,

data is distributed across a large number of edge devices.
However, privacy preservation and regulatory concerns may
make it difficult to aggregate data to the cloud for centralized
training. This creates the problem of data silos. FL allows
multiple clients (or devices) to collaboratively train a shared
global model without exposing data privacy. The central server
coordinates multiple rounds of FL processes to obtain a final
global model. FL has been applied in some scenarios (such as
the next-word prediction of input methods [4]). It solves the
problem of data aggregation and makes it possible to design
and train some cross-institutional and cross-departmental deep
learning models. In particular, for deep learning applications
in IoT devices such as smart phones, FL has shown favorable
performance and robustness [5]. Additionally, for clients who
do not have enough private data to develop accurate local
models, FL is an optional way to improve the performance
of their models.

In most of the current assumption of FL configurations,
global models are refined by averaging updated model pa-
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rameters from devices. However, directly averaging model
parameters is only possible if all models have a same structure,
which could be a restrictive constraint in many real-world
applications. An important step in advancing the application
of FL in reality is to meet heterogeneous application require-
ments. We elaborate the need for model heterogeneity from
system and strategy perspectives:

1. Heterogeneous hardware resources: Advances in hard-
ware have made newly released mobile devices far su-
perior to their predecessors in terms of both storage
and computational power, such as the iPhone14, re-
leased in 2022, is equipped with A15 processor and
128G/256/512G storage capacity, while the iPhone7, re-
leased in 2019, is with A10 processor and 32G/128G
storage capacity [6][7]. Furthermore, according to the
research [8][9], people tend not to purchase new mobile
devices frequently, leaving a serious hardware hetero-
geneity in federated learning involving mobile devices.
Heterogeneous hardware resources usually refer to dif-
ferent computing powers, network connections or battery
among multiple mobile edge devices [10][11]. As in the
real mobile scenario, there are numerous cell phones with
widely varying computing and storage capacities being
used. When developing deep learning applications on
mobile devices, it is necessary to take it into account.
In addition, complex learning tasks generally rely on
large and deep networks. To build a federated learning
framework across multiple devices with heterogeneous
hardware resources, it is either necessary to discard some
users with under-performing devices or to collectively
train a simpler global model that do not perform well.
Therefore, model heterogeneity becomes a key require-
ment to enable the application of FL in heterogeneous
system scenarios.

2. Personal strategies: Model security or other personal
requirements may also generate the need for model
heterogeneity. It is well known that in federated learning,
the devices and the server perform multiple exchanges
of complete parameters. This frequent communication
makes the model parameters vulnerable to attacks, which
may reveal their privacy [12] or be embedded with
backdoors [13][14]. The data residing on each mobile
device is statistically heterogeneous (i.e., non-IID data
distribution). In the context of data heterogeneity, learning
a single global model may not work well for all devices
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Fig. 1. Examples of different types of model heterogeneity. Model (b) is an
example of horizontal heterogeneity with reference to model (a) The horizontal
heterogeneity is manifested in the difference in the number of filters and the
sparse parameter matrix after the mask operation; Model (c) is an example of
vertical heterogeneity with an additional layer compared to model (a); Model
(d) is an example of integrated heterogeneity of model (a), with different
structures at both horizontal and vertical levels.

involved in FL[15].

These above application requirements enforce model het-
erogeneity in diverse ways. FL can be conducted only if
the personal requirements are satisfied: jointly training and
interacting with heterogeneous models, and that is what we
are working on.

Currently, Federated Learning of heterogeneous models has
gained much attention [15][16][17][18][19]. We summarize
three types of model heterogeneity, as shown in Fig. 1,
which, to our knowledge, covers all convolutional network
model heterogeneity cases. Horizontal heterogeneity is mainly
reflected in shape heterogeneity of parameter matrices caused
by different numbers of filters or masked original model
parameters, etc. Vertical heterogeneity refers to the addition
or reduction of certain convolutional layers compared to the
original model, while integrated heterogeneity is a combina-
tion of these two types of heterogeneity. Both horizontal and
vertical heterogeneous models are regarded as the sparse or
simplified versions of their original models. Besides, there
are still implicit constraints to the model heterogeneity — the
participants, no matter in horizontal or vertical heterogeneity
scenarios, still have to negotiate and agree on a particular
model before they can mask it. Furthermore, the integrated
heterogeneity does not restrict the choice of model selection
of clients to satisfy personalized needs, while being backward
compatible with the newly joined devices, enabling lifelong
learning.

Challenges and Our Solutions. The main challenge of our
work is that different models are often integrated heteroge-
neous from one another, and simply aggregating the param-
eters of corresponding layers by mapping may lead to non-
convergence results. Fortunately, we found that Personalized
federated learning (PFL) has become a promising paradigm for
many heterogeneity problems[20][21]. This paper presents a
draft-based personalized federated learning approach to tackle
the model heterogeneity problem. The idea is inspired by two
basic observations from human knowledge acquisition process.

- In early stages, when we want to gain knowledge about a
particular species, we observe itself by browsing its pictures,
videos to extract, summarize and recognize its features or
characteristics. The process is repeated and our cognition about

it gradually improved.
- Apart from this, we also learn the summarized experiences

from others. As long as the object is identical, the features
observed by different individuals will share some common
knowledge to some extent.

Similarly, in the model heterogeneity personalized federated
learning context, we believe that although model structures are
very different, they may possess common knowledge for same
inputs, i.e., the feature extraction layer (e.g., Convolutional
layers) generates similar feature maps, and the decision layer
(e.g., Linear layers) gives similar confidence for classes. The
outputs of these specific layers and models reflect sample-
specific properties and can be understood as fuzzy images of
the data. Therefore, we define these model outputs (interme-
diate or final) as model drafts.

Now, simulating human knowledge acquisition behavior,
each PFL client is considered as a human-like intelligent
agent, and the main idea of our approach is to learn the
“common knowledge” of drafts when each client performs its
own personalized local learning process. A new draft-based
approach, DraftFed, is developed to address federated learning
for integrated heterogeneous model where the model structure
is so different that parameters cannot be aggregated directly.
Fig. 2 shows the overview of DraftFed. In our method, draft
learning process is independent of the local learning.The goal
of draft learning is to allow devices to learn drafts extracted
from other models, breaking the limitations of a unified model
structure while protecting the private data. To obtain drafts, we
set up a global data set separate from local training data and
feed it into each integrated heterogeneous model to collect its
drafts. Then the server aligns and aggregates the corresponding
drafts and send back to devices for local draft learning. In local
training process, devices perform routine model training based
on local data. Each device learns both their local private data
and the aggregated global drafts.

Summary of Contributions. In this work, we make the
following contributions:

1. We observe that given a set of global data, integrated
heterogeneous models may have similar drafts, which can
be learned by other models.

2. Based on the observation, we propose an original draft
learning approach, where devices learn from other de-
vices indirectly by minimize the distance between local
drafts to the aggregated global drafts.

3. We found that one single model draft is not sufficient
for model collaborative learning, especially in the case
of highly heterogeneous models. We present a joint draft
learning whose objective is to solve a joint optimization
problem on the combined drafts.

4. Finally, we design a general heterogeneous federated
learning framework based on draft learning for integrated
heterogeneous model scenarios, not only horizontal or
vertica heterogeneity, but even more general heterogene-
ity scenarios across models. And compared to other
related SOTA works, DraftFed has the highest inference
accuracy in most of the cases among different global
datasets.
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Fig. 2. An overview of DraftFed in model heterogeneity context. DraftFed
includes two learning tasks: local learning and draft learning. In draft learning,
(1) clients use the global data as input to calculate the drafts of local models
and upload them to the parameter server; (2) the parameter server aggregates
the drafts after alignment and returns the aggregated global draft to clients;
(3) clients learn from the global draft and update their local models.

II. RELATED WORKS

A. Federated Learning

FL was design to carry out high-efficiency machine learn-
ing among multiple parties or devices under the premise of
ensuring the security of terminal data. FL usually consists
of a parameter server (or without [22]) and several local
devices. Each device uses its own data to train a local model,
and the parameter server integrates all local models into a
global one. More specifically, in the federated learning training
process, participating devices do not send their local data to a
central server; instead, devices upload the updated local model
parameters. In each round, the parameter server arbitrarily
chooses several models from all devices to averagely aggregate
and update a global model. The selected devices download
the updated model from the parameter server, overwrite its
local model parameters, and proceed to the next round of
training; while the unselected devices continue to the next
epoch on their original local models. Among them, there are
different aggregation algorithms. FedAvg [4] is one of the
classic FL aggregation algorithms. The parameters of each
selected device update the global model equally. During the
entire learning process, devices only communicate with the
parameter server, and cannot obtain any information about the
rest of the devices except for the global model that are jointly
maintained, which guarantees the confidentiality of private
data.

B. Personalized Federated Learning

However, conventional FL only roughly aggregates various
models, and all devices obtain a same global model, ignoring
that in the context of the IoT, each device is different, both
in terms of hardware resources and local data distribution.
Researchers summarize the challenges FL faced in practical
applications as follows [20]:

- System heterogeneity such as storage, computing and
communication capabilities;

- Data heterogeneity, like non-IID local data, such as feature
distribution skew, label distribution skew and concept shift
[22]).

- Model heterogeneity, where clients need different model
structure according to their application scenarios.

To tackle these heterogeneity challenges, it is effective
to perform personalization in device, data and model levels

to attain well-trained personalized model for each device.
Because of its promising application scenarios (such as IoT
based personalized smart healthcare [23][24], smart home
services and applications, and location - aware recommenda-
tion services [25][26][27]), personalized learning has recently
attracted great attention [28][29]. Among them, system het-
erogeneity and data heterogeneity can be well addressed by
modelheterogeneous- based approach[26], where developers
can recommend models for different devices that best fit
their hardware performance. And at the same time, pruning
algorithms can be used to obtain different local models suitable
for heterogeneous data.

C. FL of heterogeneous models

In conventional FL, all devices including parameter servers
are restricted by a unified model structure. Moreover, in
the process of interaction, complete model parameters are
transmitted, which is not only unfavorable for applications in
the IoT environment, but also increases the communication
cost and the risk of privacy leakage.

At present, the FL of heterogeneous models have attracted
the attention of some researchers. The uniform global model
in the FL model has long been considered not to performed
equally well to all the personalized devices, and the need for
personalized models has gradually been proposed.

In terms of horizontal heterogeneity, as shown in Fig. 1
(b), there is the following work that implements federated
learning across horizontally heterogeneous models. Some of
the horizontal heterogeneous models have different number of
filters or filter sizes between the corresponding convolutional
layers, which directly affect the shapes of the parameter
matrices; others perform mask operations on the original
parameters due to pruning strategies, resulting in different
sparse parameter matrices. In Hermes[15] and LotteryFL[17],
each device can prune the global model based on its local
data to obtain a local model that best fits its situation. Het-
eroFL[16] divides the domain of the global model so that each
heterogeneous device model is responsible for updating partial
global model. However, HeteroFL divides the global model
parameter matrices from the origin. For the situation where the
global model is far more complicated than local models, some
neurons of the global model cannot be updated during the
whole learning process, which affects the model performance.
HFL[18], is a step forward than HeteroFL. The parameter
server partitions the domain that each device is responsible for
as needed, so that the global model parameters can be evenly
updated. Parameter/gradient - fusion based methods have
limited ability to adapt to heterogeneous hardware conditions
such as storage, computation and communication, and Fed-
Proto[19] is proposed to tackle this challenge. In FedProto, the
clients and server communicate the abstract class prototypes
instead of gradients. Since the prototype is class-based, the
aggregation of large amounts of complex data may result in
information conflict or missing. Although averaged prototypes
reduce individual privacy leakage to some extent, they still
expose the statistical properties of local data. In summary, the
above algorithm only discusses convolutional neural networks
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with horizontal heterogeneity and do not have strategies on
handling horizontal heterogeneity which cannot be extended
to vertically or integrated heterogeneous scenarios.

In terms of vertical heterogeneity, as shown in Fig. 1 (c),
different models have the same convolutional layers at the
corresponding depths, which are generally in the shallow part
of the models. Many approaches are intended to address the
privacy issues during parameter transfer and the fact that the
global model does not fit well to all local tasks. These methods
are similar to the Base + Personalization Layers pattern. Yang
[30] and Collins [31] proposed to reserve the functional layers,
like decision layers that are more relevant to personalization,
and conducted FL of heterogeneous models by only fusing
the layers before decision layers. Furthermore, Arivazhagan
[32] divided the model into basic and personalized submodels,
breaking through the previous limitation that the personal-
ized layers only contained decision - making layers, which
explored the personalization performance of other functional
layers. However, in integrated heterogeneous models, there are
very few identical layers available as shared layers, so the
Base + Personalization Layers approach is only applicable to
vertically heterogeneous models under certain restrictions.

The integrated heterogeneity is a combination of horizontal
and vertical heterogeneity, as shown in Fig. 1 (d), which not
only has different parameter matrix shapes of corresponding
depth layers, but also has quite different number of convolution
layers. Second, different functional layers are sandwiched be-
tween two adjacent convolutional layers. Therefore, neither the
above horizontal based methods nor the vertical based methods
can solve the problem of integrated heterogeneous models.
Linet [33] and Lin [34] proposed to use knowledge distillation
[35][36][37][38] to solve the model heterogeneity problem.
The federated learning approaches based on modeldistillation
learn the soft labels of each model, making them incapable of
learning the full capabilities of the data processing and suscep-
tible to the domain to which the global data belongs. Com-
pared to model-distillationbased approach FedMD, DraftFed
also learns the ability to extract features from samples, which
enhances the generalization ability on global data of models.
The method we present can be applied to the above three
model heterogeneity scenarios simultaneously, which covers
all convolutional network model heterogeneity cases.

III. METHOD

A. Preliminaries

Before diving into the details of DraftFed, we first define
the following notations used in our work. Suppose there are n
devices participating in FL, and each device trains the model
M on its local model datalocal independently. The model M
contains lc convolutional layers and lfc fully-connected layers.

Fig. 3 illustrates a brief concept of DraftFed in an integrated
model heterogeneity setting, where local models vary not only
from horizontal but also vertical dimensions. Each device(
e.g. clinet 1, 2, ..., n) has two learning tasks: local learning
and draft learning. Devices use local data for local learning
(denoted in green and yellow in Fig. 3), referring to solving
the original optimization problem based on local images and

their labels. And the global data, which may be completely
independent of local data, or even sampled from a different
data source, is used in draft learning (denoted in blue in Fig.
3) to compute the specified model drafts. Each model needs
to send its model drafts to the server preparing for the subse-
quent draft learning. The server aligns the received drafts and
aggregates them, then sends them back to devices. Essentially,
draft learning is an optimization problem, where devices try
to find the sets of local model parameters to minimize the
distances between the local drafts and the aggregated global
drafts. Throughout the learning process, local learning and
draft leaning are executed cyclically in turns until the learning
budget is run out or a specified accuracy is reached.

Local Learning As with conventional federated learning,
each device optimizes its objective function locally:

Minimize Llocal(F(ω;xlocal),ylocal), (1)

where ω is the parameters of the model M , xlocal and
ylocal are training images and labels of local data datalocal ,
F(ω;xlocal) is the output of the model M , and Llocal(·) is
the loss function e.g., a Cross-Entropy loss.

To improve the tolerance to heterogeneity caused by per-
sonalized requirements, we propose a general framework for
personalized FL of integrated heterogeneous (both horizontally
and vertically) models based on draft learning. We expect to
illustrate our series of technical contributions by answering the
following two questions: What ’ s drafts and How models
learn from them.

B. Draft Definition

Global data is the input to the draft calculation in draft
learning, which is distinguished from local privacy data used
for local learning. Global data is collected by the server and
it can be completely irrelevant to the local data. In the draft
computation process, only the forward propagation is involved
(without back propagation), therefore, the unlabeled data can
also be used as global data. As shown in Fig. 3, each local
data is sampled from a data set, e.g., the CIFAR-10 dataset,
while the global data is from another one, e.g., Fashion MNIST
dataset.

Draft Given a set of global data inputs datalocal, we define
a draft F(ω[: L];xlocal) to represent the output of layer #L
of model M .

Joint Drafts We found that one single model draft is not
sufficient for draft learning, especially in the case of highly
heterogeneous models. Therefore, we consider the joint draft
combined by [D1,D2,D3] as composite metric for draft
learning.

D1 = F(ω[: L1];xlocal),

D2 = F(ω[: Llc ];xlocal),

D3 = F(ω[: Llc+lfc
];xlocal),

(2)

where D1, D2 and D3 denote the output of layer #1, layer
#lc and #lc + lfc , respectively. In essence, D1 and D2 are
the initial and final feature maps of the model M , while D3 is
the embedding decision vector based on global data datalocal.
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Fig. 3. A Detailed architecture of DraftFed in the integrated heterogeneous setting.

If these target convolutional layers are closely followed by
Batch Normalization layers, the drafts indicate the output of
the Batch Normalization layers. This is because the Batch
Normalization layers can filter the personalized information
brought by heterogeneity in the feature maps, which is not
easily digested by other models.

C. Draft Learning

We then answer the How models learn from drafts question.
Optimization Objective of Draft Learning The objective

of DraftFed is to solve a joint optimization problem on the
combined drafts mentioned above. The objective of federated
draft learning across heterogeneous clients can be formulated
as,

Minimize λ1

n∑
i=1

lossi1 + λ2

n∑
i=1

lossi2 + λ3

n∑
i=1

lossi3 (3)

where λ1, λ2 and λ3 are the weights of the three loss
functions in the combined optimization objective. In our
experiments, λ1 = λ2 = λ3 = 1. In particular, the loss
function lossi1 and lossi3 are defined as follow:

lossi1 =

∥∥∥∥∥∥Di
1,

1

n

n∑
j=1

Dj
1

∥∥∥∥∥∥ ,
lossi3 = L

Di
3,

1

n

n∑
j=1

Dj
3

 ,

(4)

where ∥·∥ is the distance loss function, and in our exper-
iments, MSELoss is used. L(·) is the loss function e.g., a
Cross-Entropy loss. Here, we tentatively use 1

n

∑n
j=1 D

j
1 to

denote the average aggregation of D1, but the shapes of the
draft matrices may not be the same. We leave the details of
shape-mismatched draft aggregation to a later section.

Draft Alignment of D2 For integrated heterogeneous
convolutional networks, the output layers of D2 may be at
different vertical positions. As shown in Fig. 4(a), the t-SNE
visualization of D2 from different vertical positions are more
separable compared to the drafts in Fig. 4(b), which are from
the same vertical positions. Aggregation of D2 from different
models may introduces noise.

And Fig. 4(b) presents the closer distance within the drafts
of the same vertical position, which are reasonable to be
aggregated. To alleviate the draft fusion conflicts, D2 needs
to be aligned before aggregation.

As shown in Fig. 3, local models have different number of
convolutional layers. For a given model, its D2 is fused with
the drafts of layers that are at the same vertical positions in
other models. Therefore, the target D2 (after aggregation) is
model-specific. The server computes and maintains the shadow
target D2 for each model. It may be noticed that, the devices
need to provide not only their D2, but also drafts of other
model-specified layers. Regarding the position of models, we
only consider the order at the initialization phase, not after
adding shortcuts.

Given the number of convolution layers {l1c , l2c , ..., lnc } of n
model, device i needs to provide the following drafts:
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(a) The D2s of DenseNet121/161/169/201 models which are at different vertical
positions.

(b) The D2 of DenseNet121 and the aligned drafts of Dense- Net161/169/201,
which are at the same vertical positions.

Fig. 4. t-SNE visualization of the drafts produced by integrated heteroge-
neous convolutional networks. We consider 20 DenseNetx (DenseNet121,
DenseNet161, DenseNet169 and DenseNet201) mixed. Each color indicates
a draft of a model-specific layer.

Fig. 5. Examples on D2 alignment and the computation of shadow target
D2.

Di =
{
Si
1,S

i
2,S

i
3,F

(
ωi

[
: Lljc

]
;xi

global

)
, . . .

}
,

if ljc < lic,∀j ∈ [1, n],
(5)

where F
(
ωi

[
: Lljc

]
;xi

global

)
denotes the output draft of

the layer Lljc
(specified by model Mj) of model Mi with

global data xi
global as input, when and only when ljc < lic.

The server constitutes n shadow D2, just as shown in fig. 5.
Finally, lossi2 can be formulated as

lossi2 =

∥∥∥∥∥∥Di
2,

Di
2 +

∑ns

i F
(
ωi

[
: Lljc

]
;xi

global

)
ns + 1

∥∥∥∥∥∥
if ljc < lic,∀j ∈ [1, n],

(6)

where ns denotes the number of models with less convo-
lution layers than model Mi. And ∥·∥ is also refers to the
distance loss function, which is MSELoss.

Draft Aggregation In addition, for feature-map-based
drafts, the shapes of the draft matrices may not be the same.
Let’ s take the example of D1 and D2 , which are four-
dimensional matrices.

Given the {D1
1,D

2
1, ...,D

n
1 } of n models, the shape of

matrix Di
1 is [global bs, c outi1, w

i
1, h

i
1]. For Dj

1, whose
[wj

1, h
j
1] ̸= [wi

1, h
i
1], we make the widths and heights uniform

by using up/down sampling. For out-channel dimensions of
Dj

1, after we align the slice matrix of this dimension, the
modified slice matrix Dj

c out can be calculated as:

Dj
c out

i
=

{
[ej1, ..., e

j
c outi1

], if c outi1 ≤ c outj1

[ej1, ..., e
j

c outj1
, 0...0], if c outi1 > c outj1

,

∃i ̸= j.
(7)

where Dj
c out

i
denotes the modified slice matrix Dj

c out

with c outi1 as the reference, and ejk is the kth element of
Dj

c out. Therefore, the lossi1 of (4) is adjusted to

lossi1 =

∥∥∥∥∥∥Di
1,

1

n

n∑
j=1

Dji

1

∥∥∥∥∥∥ . (8)

Likewise, 1n
∑n

j=1 D
ji

1 in (8) is the modified matrices with
Di

1 as the reference using (7).
As for D3, which is a two-dimensional matrix, it is simpler

to aggregate D3 than D1 and D2.The two dimensions of D3

denote global batchsize and number of classes respectively,
which, in general, are the same among heterogeneous models.
Therefore, D3 can be aggregated directly.

D. DraftFed

We propose a general heterogeneous federated learning
framework that uses joint drafts as the key knowledge to learn
from other models.

The details of our approach are specified in Algorithm
1. In DraftFed, the devices coordinate with the parameter
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server for multiple iterations. In each iteration, first of all,
the devices compute the drafts of their local models using the
global data as input (DraftComputing()) in parallel to prepare
for the subsequent draft learning. Then, the server is mainly
responsible for collecting the drafts of each model and the draft
aggregation, including D1, D3, and model-specific D2, which
is the function DraftAggregation() in Algorithm 1. After the
global draft is obtained, the device performs DraftLearning()
(on global draft) and LocalLearning() (on private local data)
successively.

Drafts are the output of the specified layers, which can
be obtained by reserving channels when defining the local
models. The outputs of the hidden layers can also be accessed
by using the APIs provided by deep learning frameworks. We
use the hook function in PyTorch: register forward hook(),
with the ability to obtain or even change the intermediate
feature maps and gradients during the forward propagation.
In both DraftComputing() and DraftLearning() function, the
hook function is used to hook the model drafts.

In DraftComputing(), the devices need to provide not only
their own joint [D1,D2,D3], but also drafts of other model-
specified layers, as described in the Joint Drafts section. In
DraftAggregation(), the parameter server aggregates the model
drafts uploaded by devices after alignment, as described in
Draft Alignment and Draft Aggregation sections, respec-
tively. The output of DraftAggregation() is the global draft.
In DraftLearning(), after receiving the global drafts from the
server, devices calculate the current model drafts aiming to
minimize the distance between the local drafts and the global
draft. The joint loss function is calculated using (3), (4) and
(6). The detailed explanation of the draft learning process is
shown in Optimization Objective of Draft Learning above.

IV. EXPERIMENT AND ANALYSIS
A. Implementations Details

We implement the experiments in a pseudo-distributed set-
ting on 6 × Nvidia RTX 2080 Ti GPU. We considered 1
parameter server and 20 devices.
1) Datasets

CIFAR10 [39] is an image classification data set with 10
labeled classes. It contains 50,000 training samples and 10,000
testing samples.

CIFAR100 [39] is like CIFAR10, except that it has 100
classes, each containing 600 images - 500 training images and
100 testing images.

FashionMNIST[40] is a dataset of 70,000 grayscale images
of costume data, with 60,000 training examples and 10,000
testing examples

SVHN [41] is a real-world image data set that can be
regarded as similar to the MNIST (e.g., the images are of small
cropped digits). SVHN is obtained from the house number
in the Google Street View image. It contains 73257 training
samples and 26032 testing samples.

When the above data sets are used as the training data sets,
we shuffle the training set and divide it evenly into 20 subsets,
one of which is taken randomly by each client; when they are
used as the source of global data, we select |G| images with
label ∈ [0, 9] as the global data sets.

Algorithm 1 DraftFed

Input: local models M = {M1,M2, ...Mn}, local data
Data = {Data1, Data2, ...Datan}, global data set
Datag , global epoch E.

Output: Trained local models ME = {ME
1 ,ME

2 , ...ME
n }.

1 Initialize D2 target layer TL = {Llc1 , Llc2 , ...Llcn};
2 for each global epoch e = 1, 2, . . . , E do
3 for each node i ∈ Nc in parallel do
4 [De

i 1, D
e
i 2, D

e
i 3, D

e
i supplement]

5 ←DraftComputingDraftComputingDraftComputing(Datap, Llcsupplement
);

6 //Run on node i
7 end
8 [De

1, D
e
2, D

e
3]←DraftAggregationDraftAggregationDraftAggregation(TL,D);

9 for each node i ∈ Nc in parallel do
10 LocalTrainingLocalTrainingLocalTraining(Datai); //Run on node i
11 DraftLearningDraftLearningDraftLearning([De

1, D
e
i 2, D

e
3], Datap); //Run on

node i
12 end
13 end
14 DraftComputing(Datap, Llcsupplement

):
15 De

i 1 ←HookHookHook(Datap, L1);
16 De

i 2 ←HookHookHook(Datap, Llc);
17 De

i 3 ←HookHookHook(Datap, Llc+lfc
);

18 for each model-specific target layer Lj
lcsupplement

do
19 De j

i supplement ←HookHookHook(Datap, L
j
lcsupplement

)

20 end
21 end :;
22 DraftAggregation(TL,R):
23 De

1 ← AvgAvgAvg(De
i 1);

24 De
3 ← AvgAvgAvg(De

i 3);
25 for each draft De

i 2 do
26 draft list = [ ];
27 for each draft De j

supplement in D do
28 if De j

supplement.lc == De
i 2.lc then

29 draft list.append(De j
supplement);

30 end
31 end
32 De

i 2 ← sum(draft list)/len(draft list)
33 end
34 end :;
35 DraftLearning([D1, D2, D3], Datap):
36 D1 i ←HookHookHook(Datap, L1);
37 D2 i ←HookHookHook(Datap, Llc i);
38 D3 i ←HookHookHook(Datap, Llc i+lfc i);
39 MinimizeMinimizeMinimize λ1loss1loss1loss1(D1 i, D1) + λ2loss1loss1loss1(D2 i, D2) +

λ3loss3loss3loss3(D3 i, D3)
40 end :;

2) Model Architectures
ResNetx [42] is a residual learning framework, which

can effectively solve the problem of gradient disappear-
ance/gradient explosion that often occurs during deep neural
network training. It uses residual blocks to improve the per-
formance of very deep neural networks. At present, ResNet
has been widely used in many computer vision tasks.
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TABLE I
TOTAL NUMBER OF PARAMETERS/DRAFTS TO BE COMMUNICATED IN HERMES AND DRAFTFED UNDER DIFFERENT

COMPRESSION RATIO.

Method 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Hermes 5,510,648 4,485,860 3,902,490 3,185,168 2,883,313 2,848,330 2,411,919 2,318,753

DraftFed 2,228,352

Fig. 6. Convergence Rate comparison (mixed ResNetx on local data sampled
from CIFAR-10).

TABLE II
COMPARISON OF FL METHODS ON MIXED HETEROGENEOUS

MODEL SCENARIOS OF TWO MODEL FAMILIES.

Model Method Accuracy

ResNet50,
ResNet101 and

ResNet152 Mixed

Local 62.76
FedProto 63.27
FedMD 63.44
FedPer 59.51

DraftFed 64.16

DenseNet121,
DenseNet161,

DenseNet169 and
DenseNet201 Mixed

Local 68.55
FedProto
FedMD 68.65
FedPer

DraftFed 69.67

TABLE III
TOTAL NUMBER OF PARAMETERS/DRAFTS TO BE

COMMUNICATED IN FEDAVG AND DRAFTFED.

Method ResNetx DenseNetx

FedAvg 762,925,852 323,815,780

DraftFed 60,817,408 2,228,352

TABLE IV
THE AVERAGE TRAINING COSTS OF LOCAL LEARNING,
DRAFT PREPARATIONS AND DRAFT LEARNING (MIXED

DENSENETX ON LOCAL DATA SAMPLED FROM CIFAR-10 AND
GLOBAL DATA, WITH |G| = 512, SAMPLED FROM

FASHIONMNIST, SVHN AND CIFAR-100 RESPECTIVELY).

Local Draft Draft Draft

Training Computation Aggregation Learning

40.32s 2.42s 0.09s 2.33s

We adopted three of the models from the ResNet family
- ResNet50, ResNet101 and ResNet152. In our settings, the

local models of device #0−#7 are ResNet50, Device #8−
#15 ’s are ResNet101, and the rest are ResNet152.

DenseNetx [43] is a network architecture where each layer
is directly connected to every other layer in a feed-forward
fashion (within each dense block). For each layer, the feature
maps of all preceding layers are treated as separate inputs
whereas its own feature maps are passed on as inputs to all
subsequent layers.

We adopted DenseNet121, DenseNet161, DenseNet169 and
DenseNet201 four types of models, where each of these
models was chosen equally by the 20 devices.
3) Baselines

To make fair comparison, we compare DraftFed with four
baselines:

Local is the no-federated-learning method where an individ-
ual model is trained for each client without any communication
with others and the server.

Hermes[15] is a communication and inference-efficient FL
framework under data heterogeneity. In Hermes, each device
can learn a personalized and structured sparse deep neural
network, which can run efficiently on devices.

FedPer [32] is a common Base + Personalization Layers
approach commonly used in heterogeneous federated learning
scenarios. The main idea of FerPer is to divide the model
into two parts, the base layers and the personalization layers,
and the server is only responsible for aggregating the model
parameters of the base layers instead of the complete model.

FedMD [34] is a knowledge-distillation based method re-
duce the restrictions on the model structure. In contrast to
exchanging model parameters, models in FedMD exchange the
output of the fully-connected layers of the models to enable
the collaborative learning.

FedProto [19] is a prototype FL framework where only
prototypes are transmitted between the server and clients. The
prototype is class-based which reduces the leakage of private
local data to a certain extent.

B. Results

1) Convergence Rate
First, we examine the convergence rate of DraftFed and

other methods. Fig. 6 compares the inference accuracy curves
w.r.t communication rounds between DraftFed (blue line) and
other methods. In our experimental settings, the convergence
rates of each method in Fig. 6 are similar, but our method
achieves the best accuracy 64.16% compared to the other four
methods.
2) Inference Accuracy
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We tested the inference accuracy of our method and other
SOTA works. Our experimental scenarios are divided into
horizontal heterogeneity and integrated heterogeneity.

For horizontal heterogeneity, since it is not our major
concern, we just select Hermes, one of the SOTA works, as
our baseline without comparing other horizontal heterogeneity
algorithms. The local data and global data are sampled from
the same data sets and |G| = 512. We prune the local models
of the devices using the Lottery Ticket hypothesis [44], which
is a model compression algorithm that seeks a sparser but
essentially equivalent inference accuracy of the sub-network
structure compared to the original model. Compression ratio
is the sparsity of model, i.e., the number of non-zero elements
of the model after pruning/ the model before pruning. We
set pruning percent = 0.8, which means 20% of weights are
pruned. When the current model compression rate is less than
or equal to the pre-defined compression rate, the models stop
pruning (model masks no longer change).

The average inference accuracy over all clients is reported
in Fig. 7 and the corresponding communication costs are
shown in Table 4. Because Hermes is parameter-fusion-based,
it can achieve high accuracy when the model structures are
similar. However, as shown in Fig. 7 and Table. 4, the
overall accuracy of our method is just 0.08%-0.73% lower
than Hermes on the FashionMNIST dataset, while reducing
communication costs by 3.9%-59.6%; even on the CIFAR-
10 dataset, DraftFed achieves higher accuracy than Hermes
in most cases. In summary, compared to Hermes, DraftFed
not only has equivalent inference accuracy while effectively
reducing the pressure of storage and communication, but is
applicable to a wider range of model heterogeneity scenarios.

For integrated heterogeneity, we tested the inference accu-
racy in two sets of experiments for the mixed heterogeneous
model scenarios. The local data and global data are both
sampled from CIFAR-10 and |G| = 512.

The average inference accuracy over all clients is reported in
Table 1. In the DenseNetx mixed case, the accuracy of FedPer
and FedProto are missing. DenseNetx has a different structure
of the model parameters from the first convolutional layer
that aren’t available for base layers selection, therefore we are
unable to implement FerPer in this case. And for FedProto,
the prototypes of DenseNetx models have different shapes that
cannot be aggregated directly. In table 1, it can be seen that
DraftFed achieves the highest accuracy.
3) Communication Efficiency

In DraftFed, only drafts are exchanged between the server
and clients. In general, the sizes of the drafts are usually
much smaller than that of the model parameters. As shown in
Table 2, in the case of ResNetx, the communication volume
of DraftFed is 8% of that of FedAvg (17% in the case of
DenseNetx).
4) Training Costs

The training costs mainly consists of the time requiredfor
local learning and draft learning, including the prep work such
as draft computation and aggregation.As shown in Table 3,
the total time for draft preparations (draft computation and
aggregation) and draft learning is only 12% of that for the
local learning.

TABLE V
AVERAGE INFERENCE ACCURACY OF FIG. 9 OVER THE THREE

GLOBAL DATA SETS.

loss1 loss2 loss3

68.49% 68.86% 68.84%

loss1 + loss2 loss1 + loss3 loss2 + loss3

68.86% 68.88% 68.91%

loss1 + loss2 + loss3

68.92%

5) Privacy Preserving
The proposed DraftFed brings benefits to FL in terms of

privacy preserving. First, in DraftFed, only the drafts are
required to exchange rather than model parameters between
the server and the clients. The drafts D1 and D2 are the
feature maps of inputs, while D3 is the embedding decision
vector. Second, we propose to learn the drafts with global
data is used as input, rather than local data of devices, further
preventing the leakage of private data. Moreover, DraftFed
can be integrated with various privacy-preserving techniques
to further enhance the reliability of the system.

C. Research Questions

In addition to what we have described about DraftFed, there
may be several questions that exist. We answer the following
research questions that may be pop in your head:
(RQ1) Does the selection of public set affect the average
accuracy?

To answer this question, we tested three cases where
the public sets are sampled from CIFAR-100, SVHN and
FashionMNIST datasets, respectively, and the local training
sets are CIFAR-10 with equally split over clients. The local
models are ResNetx mixed. We compare DraftFed with other
SOTA methods under the same settings. Since in FedProto, the
prototype is based on the local data of the devices, in order
to evaluate its performance on different public data sets, we
slightly adjust its code to make sure the computation of the
prototype is based on the global data. It can be seen in Fig.
8 that DraftFed achieves the highest accuracy in most cases,
ensuring that DraftFed can accommodate different public data
options.
(RQ2) How different loss combinations affect model accu-
racy?

To explore the impact of different loss combinations on the
inference accuracy, we conduct the ablation experiments. Fig.
9 shows the inference accuracy for 7 combinations of losses
with different global data, where loss1 + loss2 + loss3 is the
joint loss chosen by as the setting for the previous DraftFed
experiments. Table 4 is the average inference accuracy of fig.
9 over the three global data sets, from which it can be seen
that DraftFed achieves the highest accuracy.

Overall, the triple-loss combination achieved the highest ac-
curacy rate, then is the dual-loss combinations, and the single-
losses have the lowest accuracy. Among the three single-loss
cases, loss3 is more suitable for the case where the global data
is homogeneous with the local data (FashionMNIST: 68.42%,
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Fig. 7. Average inference accuracy of Hermes and DraftFed under different compression ratio (mixed DenseNetx).

Fig. 8. Average inference accuracy of FedMD, FedProto and DraftFed on different global data with varying number of samples (mixed ResNetx on local
data sampled from CIFAR-10).

SVHN: 68.83%, CIFAR-100: 69.27%), while loss2 has a rela-
tively balanced performance (FashionMNIST: 68.49%, SVHN:
69.01%, CIFAR-100: 69.07%).

The drafts are considered as fuzzy images of the data
extracted by models. Different drafts reflect different charac-
teristics of the data. The D1, D2 and D3 in DraftFed are the
outputs of the first convolutional layer, the last convolutional
layer and the entire model respectively. In the task of image
classification, D1 represents the shallow image features of the

data, such as straight edge, color, texture, while D2 represents
the more detailed abstract features. D3 is the soft label of the
data, which reflects the statistical properties of the data. Loss3
provides a more direct direction for model learning, while it
is more susceptible to the source of global data than loss3.
Compared to loss2 and loss3, loss1 is more like a regular
term to prevent over-fitting.
(RQ3) How to choose the λ1, λ2 and λ3?

To answer this question, we perform a grid searching for
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TABLE VI
AVERAGE INFERENCE ACCURACY OF DIFFERENT [λ1, λ2, λ3] COMBINATIONS OVER THE THREE GLOBAL DATA SETS (MIXED

DENSENETX ON LOCAL DATA SAMPLED FROM CIFAR-10). THE BEST RESULTS ARE IN BOLD.

0.1-1-1 0.1-0.1-1 0.1-1-0.1 0.01-1-1 0.01-1-0.1 0.01-1-0.01 0.01-0.1-1 0.01-0.01-1

FasionMNIST 68.53% 68.51% 68.58% 68.5% 68.55% 68.67% 68.43% 68.62%

SVHN 68.81% 68.86% 68.86% 68.93% 68.92% 68.7% 68.77% 68.86%

CIFAR-100 69.32% 69.52% 69.59% 69.46% 69.41% 69.25% 69.33% 69.40%

Average 68.89% 68.96% 69.01% 68.96% 68.96% 68.87% 68.84% 68.96%

Fig. 9. Average inference accuracy for seven combinations of losses with
different global data with number of samples |G| = 512 (mixed DenseNetx
on local data sampled from CIFAR-10).

the values of λ1, λ2 and λ3 in [1, 0.1, 0.01]. Based on the
observation in RQ2, we set λ1 = min(λ1, λ2, λ3). After re-
moving the redundant cases of isometric scaling, the remaining
results are shown in Table 5. Among them, λ1 = 0.1, λ2 = 1,
λ3 = 0.1 achieves the highest average accuracy. We could not
find a set of [λ1, λ2, λ3] achieving the best inference accuracy
in the three sets of global data at the same time, but one
commonality is noticed among the three cases achieving the
highest accuracy: λ2 = 1. Therefore, for realistic applications
in other scenarios, λ1 = 0.1, λ2 = 1, λ3 = 0.1 can be
considered when setting the hyper-parameters in the initial
stage. And we highly recommend to set λ2 = 1.

V. CONCLUSION

Traditional federated learning requires all local nodes to
train network models with the same structure, which is difficult
to satisfy in IoT application scenarios. Secondly, previous stud-
ies have shown, even the proponents of federated learning also
admit, that the transmission of complete model information in
traditional federated learning has the risk of privacy leakage.
At the same time, most of the existing studies about federated
learning of heterogeneous models are limited to horizontal
heterogeneity which share a highly homogeneous vertical
structure. Little work has been done on vertical heterogeneity
such as models with different number of functional layers
or different connection orders, not to mention the integrated
heterogeneity scenarios. In order to tackle the challenges
mentioned above, we propose a novel draft learning method
to implement personalized federated learning for integrated
heterogeneous models.

DraftFed can effectively address the federated learning for
integrated heterogeneous models. In DraftFed, only the drafts

are transmitted between the server and devices. We set up a
global data set as the input of draft learning. Each device learns
both the local training samples and the aggregated drafts.

In addition, in future work, we will explore how to aggregate
drafts with extremely mismatched shapes while not losing
information behind them. And we need to further consider
the extreme non-IID scenarios.
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