
1

Live Migration of Video Analytics Applications
in Edge Computing

Chenghao Rong, Jessie Hui Wang, Jilong Wang, Yipeng Zhou, Jun Zhang

Abstract—In order to schedule resources efficiently or maintain applications’ continuity for mobile customers, edge platforms often
need to adaptively migrate the applications on them. However, our measurement shows that existing migration solutions cannot solve
the issue of migrating video analytics applications in edge computing because the memory states of video analytics applications have
different characteristics from other applications. We conduct a breakdown analysis of the memory states of video analytics
applications, and propose to treat three types of states separately with three different techniques, i.e., warm-up, sync, and replay, to
minimize the negative influence of migrations on application performance. Based on this idea, we implement a prototype system in
which two new components, i.e., state store and sidecar, are designed to achieve near-transparent live migration with minimal
application code modifications. Evaluation experiments demonstrate that the time of application interruption caused by migrating a
video analytics application with our solution is less than 405ms, and our solution does not consume much resources.

Index Terms—Edge computing, state migration, video analytics, container migration

✦

1 INTRODUCTION

Public edge platforms have been increasingly popular, such
as AWS Local Zones [1] and Azure private MEC [2]. By
bringing computation and storage closer to end customers,
they can provide lower latency and better quality of service
(QoS) for edge applications compared to cloud platforms.

The killer application for edge platforms is real-time
video analytics (VA) applications [3], which have drawn
many researchers to make efforts to optimize their per-
formance. Particularly, edge platforms need to adaptively
change the placement of edge applications to cope with the
mobility of users or to improve resource efficiency. Many
works have focused on the issue of making scheduling
decisions on when and where to migrate applications [4],
[5], [6], [7], [8], [9]. But, how to implement the migration de-
cisions made by these works? In other words, edge platforms
need a solution to migrate the VA applications on them without
significantly degrading the performance of applications.

Migrating VA applications within an edge platform is
essentially migrating containers because edge platforms
typically use container technology to serve applications due
to its simplicity and low overhead [10], [11]. When an edge
platform decides to migrate a containerized application, it
needs to transfer the memory states of the migrated applica-

• This work was supported in part by the Natural Science Foundation of
China under Grant 62072269 and in part by the National Key Research
and Development Program of China under Grant 2020YFE0200500.
(Corresponding author: Jessie Hui Wang.)

• C. Rong, J. H. Wang and J. Wang are with the Institute
for Network Sciences and Cyberspace, Tsinghua University, Bei-
jing 100084. J. H. Wang and J. Wang are also with ZGC
Lab, Beijing 100194, China (e-mail: rch18@mails.tsinghua.edu.cn,
jessiewang@tsinghua.edu.cn, wjl@cernet.edu.cn).

• Y. Zhou is with FSE, School of Computing, Macquarie University,
Macquarie Park, NSW 2113, Australia (e-mail: yipeng.zhou@mq.edu.au).

• J. Zhang is with the Department of Electronic and Computer Engineering,
Hong Kong University of Science and Technology, Hong Kong (e-mail:
eejzhang@ust.hk).

tion containers [12]. The migration of application’s memory
states within a cloud has been studied by many researchers,
and the proposed solutions can be classified into three types
according to their basic ideas, i.e., Checkpoint/Restore [13],
[14], [15], [16], [17], Pre-copy [12], [18], [19], [20], [21], [22],
Post-copy [11], [23], [24], [25], [26], [27].

However, our measurements reveal that these migration
methods cannot solve the issue of migrating VA applications
within an edge platform. The size of the memory states
of typical VA applications is huge, which makes Check-
point/Restore inefficient. The dirty page rate of the memory
states during the running of typical VA applications is
very large, which makes Pre-copy methods infeasible. Post-
copy methods take longer time to finish migration, and
they cannot guarantee the application performance during
migration, which is unacceptable for edge VA applications
because these applications are usually delay-critical.

Fortunately, by a breakdown analysis of the memory
states of VA applications, we notice that not all memory
states are worthy to be transferred from the source to the
destination, which is an idea of state synchronization. The
memory states that have to be transferred are only the
persistent and frequently modified states (named as crucial
states), such as the feature points of objects and the results
generated by application-specific components of the VA
application. In contrast, the persistent and unmodified states
(named as permanent states), such as model parameters and
run-time libraries, can be recovered in advance by loading
and initializing application images at the destination, which
is an idea of warm-up. The volatile and frequently modified
states (named as ephemeral states), such as intermediate
features outputted by CNN models, can be re-created by
re-analyzing the same frame at the destination, which is
an idea of replay. Our measurement results also show that
permanent states and ephemeral states dominate the size of
the VA application’s memory states. Crucial states are with
small size, and transferring them is much easier and more

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

efficient than transferring all memory states.
Based on the above ideas, we try to develop the mi-

gration solution for edge platforms. However, there are
two problems in implementing these ideas. First, the edge
platform should be compatible with existing applications
without complex porting efforts [28], [29], but edge plat-
forms lack some critical information that is necessary for
migration using the above ideas, which may cause extensive
application code modifications. Specifically, edge platforms
cannot obtain the memory pages for crucial states in real
time, and they do not know which frames should be re-
played to get ephemeral states of an application. Second, the
migration procedure should be transparent to applications
(i.e., customers of the edge platform). In other words, mi-
grating applications on the edge platform seamlessly should
be a service provided for edge applications, and ideally, it
should not incur any overhead to applications.

We design two components to solve the above imple-
mentation problems and achieve near-transparent migrations
with minimal application code modifications. We ask an applica-
tion to actively report its crucial states to its edge platform,
and these states are saved in the new component state store.
The state store is designed to be distributed, and each edge
server has a local state store to save the crucial states of
applications on this server. In this way, frequent cross-server
data transmission is avoided, which is beneficial for appli-
cation performance. The global state store is only used to
synchronize crucial states from the source to the destination.
The other new component sidecar is designed for migration
transparency. With it, applications only need to appropri-
ately insert two simple HTTP GET/PUT operations into
their codes to request/report their crucial states, and they do
not need to care about any details of the implementation of
the migration solution, which enables application migration
with minimal application code modifications.

To summarize, our work makes three contributions.
First, we analyze the memory states of VA applications and
reveal why existing migration methods for cloud computing
scenarios do not solve the VA application migration prob-
lem in edge platforms. Second, from a breakdown analysis
of the memory states, we propose to treat three types of
states separately and exploit three different techniques, i.e.,
warm-up, sync, and replay, to migrate them. Third, based
on the idea, we use carefully designed APIs and a novel
combination of the sidecar and hierarchical state stores to
achieve near-transparent state migration of video analytics
applications with minimal application code modifications.
Evaluation experiments show that our system can achieve
seamless VA application migration with no more than
405ms of application interruption time and does not trade
much resources for migration performance gains.

2 BACKGROUND

2.1 VA Applications Need to Be Migrated Seamlessly
Edge platforms need to adaptively change the placements
of VA applications to cope with the mobility of users or
to improve resource efficiency. Specifically, in the scenarios
where cameras are constantly moving, such as autonomous
delivery vehicles [30] and dashboard cameras [31], a VA
application typically offloads its computation to the nearby

edge server to obtain lower latency and more computing
resources. However, when the user (device) move away
from the nearby edge server, the application QoS will be
significantly degraded due to the deteriorating network
connection. Ideally, when users move, the VA applications
on the edge server should also be live migrated to a new
nearby server. Besides, resources of an edge platform are
dynamic. An edge platform may change the placement
of applications among edge servers (or between the edge
server and the cloud) to improve resource efficiency [4], [5],
[6], [7], [8], [9]. Therefore, efficient live migration is essential
for VA applications in edge computing scenarios.

A good migration scheme hands off the migrated ap-
plication from the source server to the destination server
without degrading the latency and accuracy of VA appli-
cations. Typically, an application migration takes several
minutes to complete, and the application may be inter-
rupted for a while during migration [18], [32]. We refer
to the period from the timepoint at which a migration
command is received to the timepoint at which everything
is settled down in the destination server as migration time
and the period of application interruption as downtime. Real-
time VA applications often require analysis latency within
a few hundred milliseconds [33], so a minimal downtime
is a must. During application interruptions, newly arriving
video frames cannot be analyzed, and these frames must be
analyzed after the migration is completed. Although many
works have shown that we can obtain accurate analysis
results by only analyzing key frames because video frames
are redundant [34], [35], [36], the information about key
frames is not available to edge platforms. The selection of
key frames is implemented by application developers and is
packaged into the image. An edge platform does not know
how the application is implemented [29], so it is agnostic to
the information about key frames. Blindly discarding video
frames may lead to inaccurate analysis results. Therefore,
the migration of VA applications also needs to ensure that each
video frame must be analyzed.

2.2 VA Application Migration is Essentially Migrating
Memory States

Edge platforms usually work in a multi-tenant way, so an
isolated and lightweight virtual environment is demanded
for edge application encapsulation [12]. Although tradi-
tional hardware-level approach, i.e., virtual machine (VM),
can provide excellent resource isolation, it drastically in-
creases the overhead of deploying and running applications
[37]. In practice, edge platforms typically choose to use con-
tainer technology to serve applications due to its simplicity
and low overhead [10], [11], [38]. Therefore, migrating VA
applications within an edge platform is equivalent to mi-
grating containers in a geo-distributed environment. Specif-
ically, to migrate a containerized application, we mainly
need to transfer the application image (including applica-
tion codes, libraries, and other files needed to make the
application run such as configuration files) and the memory
states, i.e., memory data of the container.

The image of an application is read-only and never
changes during running, so we can transfer the image with-
out stopping the application, which does not necessarily

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

incur any downtime. The key issue is the transfer of memory
states. Memory states are changed continuously as the ap-
plication runs. To maintain consistency in the memory states
of the running application, we must pause the application to
complete the transfer of the memory states during migration
[12], [39]. Therefore, migrating VA applications is essentially
migrating the memory states of containerized applications.

2.3 Memory States of a Typical VA Application

A typical VA application consists of a pipeline of video
processing components, i.e., a front-end object detector and
a back-end task-specific module to track the object of interest
and further analyze the video frames [40]. To migrate the VA
application memory state, it is necessary to understand the
memory state generated by a typical VA application.

The object detector component is responsible for detect-
ing objects in video frames. There are two popular types
of object detectors, i.e., object detection and background
subtraction [6], and both of them use CNN models to clas-
sify objects in video frames. The memory states generated
by this component are mainly model parameters and in-
termediate features. During application running, the model
parameters are loaded from the image into memory, and the
intermediate features are generated during frame inference.

The task-specific module can be represented as a directed
acyclic graph (DAG), containing multiple components such
as object tracking and object counter [40]. In general, object
tracking is the basis for further analysis of video frames [7],
[41]. It is responsible for identifying the same objects across
video frames and tracking the status changes of objects,
e.g., detecting whether a pedestrian is running through a
red light. To track objects correctly, an object tracker must
calculate the feature points for each object in a frame and
then compare them with the feature points of the objects
in previous frames. Therefore, the component has to store
all feature points of the objects in the previous frames and
this frame, which is its memory states. Similarly, other task-
specific components need to keep their intermediate results
in a data structure, which is a part of the memory states of
VA applications.

3 DEMYSTIFYING MEMORY STATES OF VA APPLI-
CATIONS

State migration has been well-studied in cloud computing
scenarios for various applications [37], and the proposed
migration methods are explicitly developed based on the
characteristics of the memory states of the application under
study. As far as we know, migrating VA applications in edge
computing scenarios has never been studied. In this section,
we conduct measurements to understand the characteristics
of the memory states of VA applications and investigate
whether and why current migration solutions proposed for
other scenarios and applications cannot solve our problem.

3.1 Measurement Setting

We need to choose some representative VA applications to
conduct our measurements. Particularly, the selected appli-
cations should cover two popular types of object detectors,

i.e., CNN-based object detection and background subtrac-
tion, and they should be implemented with all representa-
tive deep learning (DL) frameworks (i.e., TensorFlow and
PyTorch) and different ways to store model files.

• Application A: Vehicle Counter (CNN-based detec-
tor, PyTorch). An edge server receives video streams
from cameras at traffic lights, identifies vehicles, and
responds to periodical queries from users, such as
the number of vehicles per day/hour/minute. The
application uses Faster R-CNN + ResNet101 and Deep
Sort [41] to identify various vehicles with PyTorch.
The model file we use is PyTorch’s default format.

• Application B: Object Tracking (CNN-based detec-
tor, TensorFlow, frozen graph model). Some cameras
are constantly moving, such as autonomous delivery
vehicles [30] and dashboard cameras [31]. We use the
same algorithms as application A to detect and track
objects for alerts with TensorFlow. The model file we
use is a frozen graph model (a way to store model
files), which consumes more memory in exchange for
inference efficiency.

• Application C : Person Detection (background sub-
traction, CNN-based classifier, TensorFlow). An
edge server receives video streams for real-time anal-
ysis of intrusions. The application uses the back-
ground subtraction method to extract RoIs of ob-
jects in frames, EfficientDet [42] to classify objects
to search persons, and SURF [43] to track the mov-
ing persons with TensorFlow. The model file format
used by this application is SavedModel, which is the
recommended way to save models in TensorFlow.

We implement the prototypes of these applications and
encapsulate each prototype into a container. We prepare
several input videos in advance instead of collecting data
in real time to facilitate our measurements and ensure the
fairness of comparison. The video quality of input videos
is 480p, 5fps, and this quality has been sufficient to obtain
relatively accurate analytics results [9], [44], [45]. During
measurements, these videos are pushed to application’s
containers via the RTMP protocol, which is widely used in
real-time video analytics.

As existing migration tools, such as CRIU [46], do not
support migration of applications that use GPU devices [47],
the measurements are conducted in a CPU cluster with three
edge servers. Each server has 64 cores of 2.8GHz AMD
EPYC processor and 64 GB RAM. It is widespread that
VA applications are run in a CPU cluster [4], [5], [7]. Edge
servers are connected via WAN, and we set the network
bandwidth between the edge servers to 50Mbps according
to the measurement results in [48].

3.2 Why Current Solutions Cannot Work

We implement three live migration methods that are widely
used, i.e.,Checkpoint/Restore [13], [14], [15], [16], [17], Pre-copy
[12], [18], [19], [20], [21], [22], Post-copy [11], [23], [24], [25],
[26], [27] based on CRIU, which is an open-source tool of live
migration. Note that the application images are transferred
in advance, and we concentrate on the migration of their
memory states in our measurements.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

TABLE 1: The size of snapshot and the downtime of migrat-
ing VA applications under the Checkpoint/Restore method.

App Snapshot Size (GB) Downtime (s)
A 2.13 425.64
B 3.78 703.72
C 1.59 325.98

These three methods represent the basic ideas of all
current migration methods [37]. Checkpoint/Restore simply
freezes the running application at the source server (here-
after called source application), checkpoints all the related
memory states into a base snapshot, sends the base snap-
shot to the destination server, and resumes the migrated
application at the destination (hereafter called destination
application) with the base snapshot [13], [14]. Obviously,
it is preferred when migrating applications whose memory
states are small.

Pre-copy first transfers a base snapshot and iteratively
transfers dirty pages (modified memory pages after the last
transfer) in multiple rounds [18], [19]. In practice, pre-copy
gradually decreases the time interval of each iteration to
reduce the size of dirty pages [12]. When the size of dirty
pages is small enough, the source application is shut down,
and the remaining dirty pages are transferred to the desti-
nation server [22]. We can see that the application is stopped
only in the last round, which reduces the downtime. Obvi-
ously, the performance of this method depends on the dirty
page rate, and it is friendly only towards applications that
do not modify memory states frequently.

Post-copy first freezes the source application and trans-
fers a snapshot of boot memory (the memory states that
are necessary to start the application). Then the destination
application is resumed immediately at the destination. The
boot memory is only a part of all memory states. Therefore,
the destination application will trigger many page faults
during running, and the corresponding page is fetched from
the source server once a fault is triggered [23], [24], [26]. This
method is helpful for urgent migration commands since the
application can run at the destination as soon as possible
[27]. However, the migration procedure may take a longer
time, and the application performance is uncertain before
the migration is completed.

3.2.1 Size of Memory States and Migration Performance of
Checkpoint/Restore
Table 1 reports the size of the transferred base snapshot
and the downtime when the Checkpoint/Restore method
is used for migrating the three applications. It can be seen
that the size of VA applications’ memory snapshots are huge,
which will cause a long downtime in the Checkpoint/Restore
method. For example, the snapshot of the vehicle counter
application is 2.13Gb, and migrating an application with
such a huge snapshot takes over 400 seconds. We can see
that Checkpoint/Restore is not suitable for migrating VA
applications in low bandwidth scenarios.

3.2.2 Dirty Page Rates and Migration Performance of Pre-
copy
We set the maximum iterations of pre-copy to 10 and grad-
ually reduce the time interval of each iteration from 100

0

150

300

450

600

750

1 2 3 4 5 6 7 8 9 10

Si
ze
(M
bp
s)

Iteration round

 Dirty page rate(A)
 Dirty page rate(B)
 Dirty page rate(C)
 Edge bandwidth

(a) without compression

0

150

300

450

600

750

1 2 3 4 5 6 7 8 9 10

Si
ze
(M
bp
s)

Iteration round

 Dirty page rate(A)
 Dirty page rate(B)
 Dirty page rate(C)
 Edge bandwidth

(b) with compression

Fig. 1: Dirty page rates under the Pre-copy method v.s. the
typical network bandwidth between edge servers.

TABLE 2: The migration performance and application per-
formance under the Post-copy method.

App Downtime (s) Migration
time (s)

Number of
processing frames

A 2.50 527.8 23
B 2.36 822.6 21
C 1.41 504.7 27

seconds to 10 seconds. We measure the size of dirty pages to
be transferred in each iteration, and calculate the dirty page
rate which represents the minimum network bandwidth
needed to complete the transfer before the end of one
iteration.

As shown in Figure 1a, the dirty page rate is greater
than the network bandwidth among edge servers for all
applications, i.e., the speed of generating dirty pages is greater
than the available transmission speed. We further try to use a
compression technology (such as gzip) to reduce the size of
data to be transferred. The results are shown in Figure 1b.
We can see that the compressed dirty page rate is still
greater than the network bandwidth between edge servers.
We can conclude that pre-copy does not serve the purpose
of migrating VA applications since VA applications generate
dirty pages very frequently.

3.2.3 Application Performance and Migration Performance
of Post-copy
Table 2 shows the migration performance and application
performance when the Post-copy method is used. Since it
transfers only boot memory to the destination server, the VA
application’s downtime is significantly shorter compared
to Checkpoint/Restore. But the migration time of VA ap-
plications is extremely long because it takes a very long
time to trigger all page faults to retrieve all memory pages.
Although the application starts to run at the destination very
quickly, the application performance degrades significantly
before the migration is completed. For example, the down-
time is 2.5 seconds for the vehicle counter application, but
the migration time is about 500 seconds, and the application
only analyzes 23 video frames in these 500 seconds. Note
that the application needs to analyze 500× 5 frames in this
period, and these frames are queued up to be analyzed,
which causes bursts in computing resource demand and is
detrimental to the stability of the edge system.

3.3 Breakdown of Memory States of VA Applications
The most important concern of VA applications is the analy-
sis latency for each frame, so minimizing the downtime and

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

46.7%
67.4%

36.9%
53.0%

32.4%

62.7%

0.3%

0.2%

0.4%

0
1
2
3
4
5

A B C
M

em
or

y
st

at
e

si
ze

(G
b)

Application

 Permanent Ephemeral Crucial

Fig. 2: The percentage of three memory state types in the
base snapshot.

guaranteeing the application performance during migration
are our primary goals.

The basic idea to achieve these two goals is to transfer
static memory states as much as possible and start the
application at the destination only after all memory states
have been recovered. We try to minimize the size of dirty
pages so as to reduce the downtime which is necessary for
transferring dirty pages. Fortunately, we note that not all
dirty pages are worthy to be migrated. For example, in-
ference with CNN models generates intermediate features,
which are part of the dirty pages. These features can be
gotten by analyzing the same frames at the destination,
which means transferring these states is not necessary.

Therefore, we conduct a breakdown analysis of the
memory states of VA applications to find other memory
states that do not need to be transferred, similar to the
intermediate features.

• The model parameters of object detector components
and DL frameworks are never modified throughout
the application’s whole life. These memory states are
named permanent states, which are persistent and not
modified during running.

• Some memory states are persistent and frequently
modified during the application is running, which
includes the results returned by video processing
components, such as the results of the object detector,
the RoIs retrieved by the background subtraction
component, the feature points extracted by the fea-
ture extraction component, and the tracking results
of previous frames. We name them as crucial states,
as they are necessary states to keep the applications’
correct contexts which means they have to be trans-
ferred from the source to the destination.

• The features outputted by model layers and the
intermediate results generated by the object tracker
component are volatile and frequently modified dur-
ing the application is running. They can be gotten
just by analyzing a single frame. We name them as
ephemeral states.

Figure 2 shows the breakdown statistics of these three
types of memory states in the snapshots of three applica-
tions. DL framework API (e.g., torch.save in PyTorch)
is used to checkpoint CNN models and get the size of
model parameters. We place breakpoints in the source codes
of three applications and use CRIU to dump the memory
states of each breakpoint. BinDiff is used to compare these
memory states and classify them into one of the three types.

We can see that the permanent states and the ephemeral
states dominate the size of the memory states for all appli-

cations. The size of the crucial states is very small compared
to the other two types. It is good news, and then we can
propose the following ideas to solve the migration problem.

Permanent states can be warmed up in advance at the desti-
nation server since they will not be modified. For example, We
can launch the application container using the same image
and initialize it. It is extremely rewarding to warm up these
states instead of transmitting them because they are large.

Ephemeral states can be gotten at the destination by replaying
and re-analyzing the related frames with the same model. Then,
we can eliminate the transmission of these ephemeral states
during migration. Moreover, since the time of analyzing
a frame is very short (about a few hundred milliseconds
depending on the model used), re-analyzing video frames
does not raise a long downtime.

Crucial states must be synchronized from the source to the
destination, which incurs downtime. Fortunately, the size of
crucial states is not very large (less than 1% of the base
snapshot), and we hope the downtime will be acceptable.

4 OVERALL SYSTEM DESIGN

Based on the ideas proposed in the last section, migrating
a VA application in edge computing can be completed
in three phases: warm-up phase (warm-up containers to
recover permanent states), sync phase (data transmission to
synchronize crucial states), and replay phase (replay and re-
analyze frames to recover ephemeral states).

Ideally, these phases should be completed quickly (to
avoid long downtime and migration time), and their imple-
mentation should be transparent to applications (to avoid
increasing the burden on application developers) [28]. How-
ever, there are at least two problems that edge platforms
themselves cannot solve.

Problem 1: Edge platforms cannot obtain crucial states in
real time during migration.

First, the memory addresses of crucial states are not
fixed each time the application is loaded into memory.
Due to system security concerns, current operating systems
enable address space layout randomization (ASLR) [49],
[50]. Edge platforms cannot quickly read crucial states from
fixed memory addresses. Second, in section 3.3, we use an
offline approach to get the crucial states in debug mode
with the premise of having VA application’s source codes.
However, in a production edge platform, VA applications
are implemented by edge platform’s customers, and the
source codes are packaged as an image, so edge platforms
do not have access to the source codes and cannot obtain
crucial states.

Problem 2: Edge platforms do not know which frames should
be replayed to get ephemeral states of the applications.

The execution process of the application is completely
invisible to the edge platform, so the location of the frames
being analyzed of an application is also not accessible by
the edge platform. When edge platforms need to replay
frame analysis to get ephemeral states, they do not know
the location of the frame being replayed.

4.1 Architecture
The two problems mentioned above tell us that completely
transparent migration of VA applications is impossible be-
cause the crucial states and the location of the frames being

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

analyzed of an application (hereafter called states for con-
venience) are completely invisible to the edge platform. To
obtain states quickly during migration, we ask edge applica-
tions to actively report the states of migrated applications to
edge platforms, and use a proxy for each VA application to
transparently migrate the states. In this way, we can quickly
acquire states with minimal application modifications.

Specifically, the edge platform sets up a state store to
receive and save the states from applications. During run-
ning, applications write their states to the state store. When
applications need to be migrated, they can read the states
from the state store. However, a VA application container
cannot know the network address of the state store as
they are different containers. Therefore, applications cannot
accomplish the write process by themselves. Although we
can ask the edge platform to notify applications of the
address, it urges applications to take more jobs and revise
their implement codes.

In this work, we propose a proxy for each application,
named sidecar, which shares a network address with the
application. When a VA application needs to write states, it
first delivers the states to its sidecar. Then the sidecar writes
the states to the state store. When a VA application needs
to read states, it first notifies its sidecar of the request to get
states. Then the sidecar reads the states from the state store
and returns the states to the application.

Figure 3 illustrates the architecture of our system, which
consists of the following three components. We describe our
design concerns and their responsibilities as follows.
Migration controller. It serves as the control center. It is
responsible for several tasks: 1) sending the network address
of the local state store to the sidecar, 2) all tasks that need
the timing coordination between the source and destination
servers, such as launching the destination application, syn-
chronizing states between servers, and stopping the source
application. In our system, the synchronization of crucial
states is done by the controller, rather than the applica-
tion container sending the states directly to the destination
server. This is because the source application container
lacks network information about the destination application
container, and containers of the source and destination edge
servers (clusters) may be in different container networks for
security considerations [51].
State store. It is responsible for storing states of VA ap-
plications. It should be a distributed database due to the
distributed nature of edge platforms. Applications keep
writing states to and reading states from the state store
during running, which means state access performance is
a key issue. In order to avoid frequent cross-server data
transmission, each edge server has a local state store that
serves local VA applications. When an application is run-
ning normally, its states are stored in the corresponding local
state store, which avoids sending states over the Internet.
The global state store is located on the control server, e.g., a
cloud server. The global state store is only used to synchro-
nize states across servers. During migration, the migration
controller stores the states obtained from the source server
in the global state store. In this way, the migration controller
can access the states from the global state store and resend
them when it fails to send states to the destination server
due to fluctuations in the edge network.

Control Server

Global State Store

Migration
Controller

Local State Store

PodPod
Pod

App Sidecar

Edge Server

……

Local State Store

Pod
Pod

App Sidecar

Pod

Sidecar App

Edge Server

Fig. 3: System architecture.

Sidecar. The sidecar and the application container make
up the application pod. As a VA application is started, its
sidecar is automatically injected into the pod. The sidecar
acts as a bridge to associate the migration controller, lo-
cal state stores, and application containers. With sidecar,
an application container only needs to send states to and
request states from the sidecar. All migration functions are
actually completed by the sidecar, such as reading/writing
states to the local state store, queuing video frames, and
managing migration phases. Sidecar is the key enabler to
make migration near-transparent to applications.

4.2 Warm-up Phase: Permanent State Recovery

Because of the reproducibility of permanent states, we can
re-create the permanent states in advance at the destination
server by launching and initializing a container instance of
the migrated application.

Due to the feature named “lazy initialization” of Cuda
and DL frameworks, model parameters are not initialized
when a container is created, which means not all permanent
states are created. Analyzing the first frame would take a
longer time than analyzing the later frames because the first
frame would trigger the initialization of model parameters.
For example, when we use Faster R-CNN + ResNet101 to
analyze video frames with RTX 3090, the first inference takes
about 8 seconds, while the inference of each later frame only
takes about 120 milliseconds.

We need to warm up the complete permanent states and
avoid the long delay of analyzing the first frame. In our
design, the sidecar sends a random picture to the application
container after the container of the destination application
is started. The application container analyzes the picture
to complete the lazy initialization of Cuda and DL frame-
works. This process is named as pre-initialization of model
parameters. It does not increase the downtime because the
source application is not stopped during this process.

4.3 Sync Phase: Crucial State Synchronization

Basically, during running, the application keeps send-
ing/requesting its crucial states to/from its sidecar, and
its sidecar writes/reads the received states into/from the
local state store. During migration, the migration controller
pulls the states from the local state store of the source
server and pushes these states to the local state store of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

the destination server. In this way, the crucial states are
synchronized between the two servers.

In this subsection, we introduce the implementation of
the communication between an application container and
its sidecar and the communication between the sidecar and
its corresponding local state store.

4.3.1 How Applications Send/Request Crucial States
To minimize the damage to migration transparency, an
edge platform should provide state management interfaces
to customers. There are two essential state management
interfaces: statePUT, which is to implement the function of
sending crucial states to the sidecar, and stateGET, which
is to implement the function of requesting crucial states
from the sidecar. The application and its sidecar are two
different containers on the same server. Therefore we can
let them share the same network namespace. Then they can
communicate with each other using localhost instead of
a specific IP address.

With the state management interfaces, customers (appli-
cation developers) can make simple modifications of their
application codes to enable high-performance migration on
the edge platform. We take two typical types of VA appli-
cations as examples to guide customers on how to mod-
ify their application codes. Algorithm 1 describes how to
modify an object detection-based application. The pseudo-
code about how to modify a background subtraction-based
application is provided in Algorithm 2.

Customers only need to add one stateGET and one
statePUT in their codes appropriately, and all other sen-
tences are the pseudo-codes of original applications. Specif-
ically, as shown in Algorithm 1, since an object tracker
needs the feature points of previous frames to track ob-
jects, an object detection-based application needs to call
stateGET to get crucial states (line 7), and the arguments
are the number of previous frames needed by the object
tracker. After analyzing a frame, the application needs to
call statePUT to update the latest crucial states to the sidecar
(line 10), and the arguments are the feature points of the
latest frame being analyzed and the results of application-
specific components. Similarly, as shown in Algorithm 2,
a background subtraction-based application calls statePUT
and stateGET to update and get crucial states on line 8
and line 11, respectively. We can see that the application
migration is near-transparent to customers.

4.3.2 How Sidecar Reads/Writes Crucial States
Applications send/request states from the sidecar, and then
the sidecar needs to write/read states in the local state store.
We present writing states to the local state store as writeState
and reading states from the local state store as readState.
Because state read/write resides on the critical path of
application execution process, writeState and readState must
be implemented in an efficient way.

Obviously, we should complete a send/request com-
mand of an application by accessing the database (local
state store) only once because each database access would
incur latency. An object tracker may require the feature
points from multiple frames to associate the same objects
across frames. We should not read/write the states of each
individual frame separately. In our design, a sidecar uses

Algorithm 1 An Object detection-based application

1: model← loadWeight(model path)
2: image← extractFrameFromRTMP (rtmp url)
3: while image ̸= NULL do
4: img ← preprocess(image)
5: obj ← objectDetector(model, img)
6: feat← extractFeaturePoints(obj)
7: pre feats, pre res← stateGET (num)
8: tracker ← objectTracker(feat, pre feats)
9: res← objectCounter(tracker, pre res) ▷

Application-specific components
10: statePUT (feat, res)
11: image← extractFrameFromRTMP (rtmp url)
12: end while

Algorithm 2 A background subtraction-based application

1: model← loadWeight(model path)
2: image← extractFrameFromRTMP (rtmp url)
3: while image ̸= NULL do
4: img ← preprocess(image)
5: RoIs← backgroundSubtractor(img)
6: obj ← objectClassifier(RoIs,model)
7: feat← extractFeaturePoints(obj,RoIs)
8: pre feats, pre res← stateGET (num)
9: tracker ← objectTracker(feat, pre feats)

10: res← objectCounter(tracker, pre res) ▷
Application-specific components

11: statePUT (feat, res)
12: image← extractFrameFromRTMP (rtmp url)
13: end while

a single key-value pair to store the states of all previous
frames needed by analyzing the current frame. The number
of frames in a single key-value pair depends on object
tracking algorithms used by VA applications.

To implement the above design, in writeState, a sidecar
maintains a queue, containing feature points of the needed
previous frames. The maximum length of the queue is the
number of previous frames needed by the application’s
object tracker. When the sidecar receives the states of a new
frame, the sidecar removes the feature points at the head of
this queue and pushes the new frame’s feature points to the
tail of this queue. Then, we use application ID (the unique
identifier of an application in edge platforms) as the key
and package the queue and the latest results of application-
specific components as the value. At last, sidecar writes the
key-value pair to the local state store. In readState, a sidecar
only needs to perform an operation of reading the database
to get the states needed by an application. Since the local
state store and the sidecar are located on the same server,
the time overhead of reading and writing states is tiny.

4.4 Replay Phase: Ephemeral State Recovery

Once migrating crucial states is finished, the migration con-
troller stops the source application and asks the destination
application to start re-analyzing the frame that is being
processed when the source application is stopped (hereafter
called beginning frame). Before this step, the destination

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

sidecar should have started fetching frames from the RTMP
stream and storing the frames in a queue at the destination.

The key issue is how the destination knows which frame
is the beginning frame that should be re-analyzed. For
convenience, we denote the beginning frame as frame 0 and
the last analyzed frame of the source application as frame
-1. RTMP protocol does not have an identifier field in each
frame. We use the hash value of partial data of an encoded
video frame as the frame identifier, and the identifier of
frame -1 is sent as a crucial state to the destination in the
sync phase. In our implementation, we choose the first 1000
bytes of an encoded frame (e.g., a PNG image) to calculate
the hash value. Although the size of this data is small, it
is encoded from the entire image, which guarantees the
uniqueness of the frame identifier. Also, the overhead of
computing its hash value is negligible (less than 2ms).

In the replay phase, the destination sidecar has gotten
the identifier of frame -1 from the crucial states, and it can
get the beginning frame (frame 0) from its queue according
to the identifier of frame -1. Relaying this frame can recover
all ephemeral states. After that, the destination can analyze
all subsequent frames normally.

4.5 Summary of Migration Procedure
Figure 4 shows the procedure of application migration.
After receiving a migration command from the scheduler,
the migration controller immediately creates a pod of the
migrated application in the destination server (①).
Warm-up phase. After the pod is created, the destination
sidecar sends a random picture to the destination appli-
cation (②). The destination application starts the step pre-
initialization (③). Once the destination application finishes
pre-initialization, it returns an HTTP status code 200 (suc-
cessful response) to the destination sidecar.
Sync phase. After the destination sidecar receives the status
code 200, it sends a request for synchronizing state to the
migration controller (④). At the same time, the destination
sidecar starts to fetch video frames from the RTMP stream
and store them in a video frame queue (⑤). After the
migration controller receives the request for synchronizing
state, it reads the crucial states from the local state store
of the source server and writes these states to the local
state store of the destination server (⑥). After the migration
controller gets the states from the local state store of the
source server, it immediately stops the source application
pod (⑦) and sends the frame identifier in the crucial states
to the destination sidecar (⑧).
Replay phase. When the destination sidecar gets the identi-
fier of frame -1, it locates the frame and deletes the frames
before the beginning frame from the frame queue (⑨). The
remaining frames in the frame queue are sent one by one to
the destination application container (⑩).

5 IMPLEMENTATION

We implement our system on Kubernetes 1.21 [52], which is
a widely-used open-source system for automating deploy-
ment, scaling, and management of containerized applica-
tions. The source code of our system is available [53].
VA application. We implement the Gaussian mixture
model-based background subtraction method [54] to extract

Controller

① Creating Pod

② Sending a
picture

⑤ Queuing frames

Destination
Sidecar

Destination
App

④ Req: Sync State
⑥ Sync state

⑨ Removing
redundant frames

⑩ Sending
frames

Source Pod

⑦ Stopping Pod

Warm-up Phase

Sync Phase

Replay Phase

③ Pre-
initialization

⑧ Frame identifier

Fig. 4: The overall procedures for migrating a VA applica-
tion.

regions of interest (RoIs), and the length of history is set to
500, and the threshold is set to 60. The models used in the
object detectors of three applications are pre-trained on the
Kitti dataset [55]. To track objects, we implement SURF and
Deep Sort. SURF extracts objects’ feature points based on
the video frames, while Deep Sort extracts the feature points
based on the feedback information of the object detector. The
interfaces of stateGET and statePUT are implemented using
simple HTTP GET/PUT operations.
Migration controller. We implement the migration con-
troller at the kube-system namespace and bind it to the
controller server. With role-based access control (RBAC),
we grant the migration controller permissions to manage
cluster resources, such as creating and deleting application
pods, viewing pods information, etc. During the sync phase,
we implement a low-cost remote procedure call (RPC) to
access (store) states in the state store.
State store. We choose Redis as our state store. Redis
is an in-memory key-value storage system that provides
low-latency access to data. We implement state redundant
backup to achieve reliable state storage. Each local state
store has one master node and two slave nodes. The states
are automatically synchronized between the master node
and the slave nodes. When the master node fails, the slave
node is automatically switched to be the new master node
for failure recovery. Furthermore, we add a new resource
object statestore in Kubernetes to help the migration con-
troller access the information of local state stores. We bind
this resource object with a Redis instance. In this way, the
migration controller can use the list statestore operation to
get the information of each server’s local state store, such as
IP, location, and running status.
Sidecar. We pre-build the sidecar as an image and upload
the image to a registry. An edge server needs to pull this
image when its sidecar is started on this server for the first
time. In the sidecar, we use OpenCV 3.4 to decode RTMP
video streams. The interfaces of readState and writeState are
implemented as a low-cost RPC.

6 EVALUATION

Experiment setup. Following Figure 3, we build a Kuber-
netes cluster that has a control server and two edge servers.
The control server has a 64-core 2.8Ghz AMD EPYC CPU,

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

and 64GB RAM. The two edge servers have different hard-
ware to emulate the heterogeneity of edge computing [56].
One has a 64-core 2.8GHz AMD EPYC CPU, 64 GB RAM,
and two RTX 3090 GPU (named as server A). The other has
a 40-core 2.2GHz Intel Xeon CPU, 64GB RAM, and two RTX
2070 GPU (named as server B). VA applications are migrated
between these two edge servers. The bandwidth between an
edge server and the controller server is set to be varied be-
tween 25Mbps and 50Mbps according to the measurements
in [48]. According to [33], the latency between an edge and
the nearest cloud is usually less than 20 ms. This latency is
significant to some extremely low-latency scenarios such as
autonomous driving, but in our scenario, analyzing a frame
typically takes hundreds of milliseconds [8], [34]. It has a
limited impact on the application performance, so we do
not emulate it.

Applications. We use the same applications as in sec-
tion 3.1, including vehicle counter, object tracking, and
person detection. These applications almost dominate the
usage scenarios of edge video analytics. In our evaluations,
we build a live streaming environment with Nginx and
FFmpeg. Each application pod pulls a video stream from an
Nginx container to conduct analysis. To ensure consistency
in evaluations, we prepare several videos (1080p, 5fps) in
advance, and these videos are also transformed to different
frames rates to evaluate the impact of frame rate on ap-
plication migration. The frame rates are 2, 3, and 5 in our
evaluation because edge servers with RTX 2070 GPU can
only analyze a maximum of 5.7 frames per second.

6.1 Migration Performance

The key metrics to evaluate the performance of a migration
solution are overall migration time and downtime, and down-
time is more important than migration time in our problem.
Overall migration time. The migration of an application
starts when the scheduler sends a migration command and
ends when the replay phase is completed. In addition to the
warm-up phase, the sync phase, and the replay phase, the
migration process also includes the application pod bootup
because the migrated application needs to be created in the
Kubernetes cluster.

We evaluate the migration time with different applica-
tions and different network bandwidths. We conduct ex-
periments for each setting five times and show the average
migration time in Figure 5. We only show the results when
the network bandwidth is 25 Mbps because the conclusions
under other network bandwidths are similar to this case.

The migration time with our solution is very short (less
than 25 seconds) compared with the results in Table 1 and
Table 2. Our system can significantly reduce the migration
time. Our breakdown analysis of the migration time shows
that the pod bootup and warm-up phase account for the
majority of the migration time, and only a tiny fraction of
the migration time (about 1%) is spent on the sync phase
and the replay phase. Besides, by comparing Figure 5a and
Figure 5b, we can find that the time overhead of the warm-
up phase on server A is less than that on server B. In our
system, during the warm-up phase, application containers
need to load DNN models and initialize model parameters,
and the time overhead of this process depends on the

5.98 6.13 6.1
13.45 15.98 8.61

0.16 0.18
0.53

0.17 0.15
0.11

0
5

10
15
20
25

Vehicle Counter Object tracking Person detection

Ti
m

e
(s

)

VA applications

Pod Bootup Warm-up phase Sync phase Replay phase

(a) Migrating applications from server A to server
B

5.82 5.98 6.03

9.34 11.18 6.23
0.17 0.17

0.58
0.12 0.11

0.09

0
5

10
15
20

Vehicle Counter Object tracking Person detection

Ti
m

e
(s

)

VA applications

Pod Bootup Warm-up phase Sync phase Replay phase

(b) Migrating applications from server B to server
A

Fig. 5: Overall migration time under different computation
resources.

performance of GPU devices [47], so the time overhead
of the warm-up phase is affected by GPU devices of edge
servers.
Downtime. Application migration can cause an applica-
tion interruption. During the interruption, new arriving
frames have to be queued. After the migration is completed,
the destination application needs to analyze these queued
frames. Obviously, the latency of analyzing these queued
frames is larger than the latency of analyzing frames when
the application is running normally, because the latency of
queued frames includes the downtime caused by migration.
Therefore, we can use the latency of analyzing each frame
during migration to evaluate the downtime. The average
latency of frame analysis during the application is running
normally can serve as the baselines.

Figure 6 shows the results of the scenario where VA
applications are migrated from server A to server B. The first
frame analyzed by the destination application is denoted as
frame 0. As shown in Figure 6a, when the frame rate is 5,
the latency of frame 0 is larger than the baseline. Even in the
worst case (migrating person detection application), the gap
between the latency of frame 0 and the baseline is 405ms,
which is extremely low compared with the results in Table 1
and Table 2. It shows that our migration method can achieve
a near-seamless application migration. Besides, we also note
that the gaps between the latency of frame 0 and the baseline
are small for the other two applications (85ms and 109ms).
This is because the size of feature points of SURF (used in
person detection) is larger than that of Deep Sort (used in
vehicle counter and object tracking). Constrained by the low
bandwidth, the sync phase of person detection takes more
time, so the downtime of the person detection application is
larger than that of the other two applications.

The gap between the latency of frame 0 and the baseline
decreases as the frame rate becomes small. As shown in
Figure 6b and Figure 6c, in the worst case (migrating person
detection application), the gap between the latency of frame
0 and the baseline is 159ms when the frame rate is 2, and
the gap is 284ms when the frame rate is 3. The gaps be-
come significantly smaller at lower frame rates. The interval

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

0

0.5

1

-40 -30 -20 -10 0 10 20 30

La
te

nc
y

(s
)

Frames

 Vehicle counter Object tracking Person detection Baseline

Migration completion time

(a) The frame rate is 5.

0

0.2

0.4

0.6

0.8

-40 -30 -20 -10 0 10 20 30

La
te

nc
y

(s
)

Frames

 Vehicle counter Object tracking Person detection Baseline

Migration completion time

(b) The frame rate is 3.

0

0.2

0.4

0.6

-40 -30 -20 -10 0 10 20 30

La
te

nc
y

(s
)

Frames

 Vehicle counter Object tracking Person detection Baseline

Migration completion time

(c) The frame rate is 2.

Fig. 6: The latency of frame analysis with different frame
rates (25Mbps).

between two consecutive frames is long at a low frame
rate, and then the source application may be stopped at
the interval between two consecutive frames, which means
there is no new frame arriving during downtime. Therefore,
the application interruption does not affect the latency of the
analysis of new frames. In short, the migration downtime
is hidden in the interval between two consecutive frames
when the frame rate is low.

We can also see that, with our solution, the latency of
frame analysis degrades for an extremely short time. In the
worst case, as shown in Figure 6a, the increase of latency
caused by migration lasts for only 9 frames, less than two
seconds. It is negligible because migration is not frequent
[7], [8].

6.2 Migration Impact on Resource Load

During the migration downtime, many arrived frames are
queued up for analysis. If too many frames are queued,
the system will consume a lot of resources to analyze these
queued frames after migration, which may lead to resource
load burst and affect system stability. Therefore, we evaluate
the resource usage of our system during migration. We
use the average GPU utilization during the application is
running normally as the baseline.

We measure the resource usage of the destination server
(server A and server B) with different frame rates when
migrating VA applications. Due to space constraints, we
only show the resource usage of server A and server B at
5fps. The conclusions under other frame rates are similar
to this case. Figure 7 shows the results. Only one picture
(pre-initialization) is analyzed, so the GPU utilization is 0
in most of the warm-up phase. There is a brief fluctuation
in GPU utilization because the application pod needs to

0

20

40

60

0 10 20 30G
P

U
ut

ili
za

tio
n

(%
)

Time (s)

 Vehicle counter Object tracking Person detection Baseline

(a) server A

0
25
50
75
100

0 10 20 30

G
P

U
ut

ili
za

tio
n

(%
)

Time (s)

 Vehicle counter Object tracking Person detection Baseline

(b) Server B

Fig. 7: GPU utilization of the destination server during
migration (5fps).

conduct the pre-initialization during the warm-up phase.
Once the application migration is finished, the pod needs to
analyze the queued frames. The GPU utilization of person
detection on server B rises significantly in the first two
seconds and then falls back to the baseline (green box in
Figure 7). The duration of fluctuations in GPU utilization is
completely acceptable compared to the migration interval
of several minutes or even hours. Besides, we note that
the GPU resource utilization of the other two applications
does not change significantly. This is because the number
of queued frames during the migration of vehicle counter
and object tracking is smaller than that during the migration
of person detection. In our multiple experiments, 3 frames
are queued in most cases when the person detection is
migrated, and only 2 frames are queued in most cases when
vehicle counter and object tracking are migrated.

In short, our migration solution does not have a percep-
tible impact on the computation load of the system.

6.3 Resource Usage of Sidecar

With sidecar, an edge platform enables near-transparent
migration, but sidecar also consumes computation resources
during application running. To evaluate the resource usage
of the sidecar, we implement the version of VA applications
without a sidecar for each application and use its resource
usage as the baseline. We consider the difference between
the two versions as the resource usage of a sidecar. Since
sidecar does not use GPU, we only measure the CPU usage.

Intuitively, as the frame rate increases, the sidecar’s
resource usage also increases. Therefore, we only show the
resource usage of the sidecar at 5fps in Figure 8, which is
the case with the highest resource usage for the sidecar
in our evaluation. Among the three applications, the CPU
usage of the sidecar of person detection is the largest. Its
average CPU usage is 42.11% (0.42 CPU core) on server B,
and its average CPU usage is 37.91% (0.38 CPU core) on
server A. The CPU resource overhead caused by the sidecar
is acceptable. First, limited by the number of its GPUs, one
edge server can not serve many VA applications. Generally,
an edge server has 8 GPUs, and one GPU serves a single VA
application without GPU packing [47]. Second, edge servers
have many CPU cores, e.g., Dell PowerEdge XE2420 has 48
CPU cores, so CPU resource is relatively sufficient.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

10
20
30
40
50
60

0 10 20 30 40 50 60 70 80 90C
P

U
us

ag
e

(%
)

Time (s)

Vehicle detection Object tracking Person detection

(a) server A

15

35

55

75

0 10 20 30 40 50 60 70 80 90C
P

U
us

ag
e

(%
)

Time (s)

Vehicle detection Object tracking Person detection

(b) Server B

Fig. 8: CPU usage of sidecar (5fps).

6.4 Performance of State Read/Write

In our system, VA applications need to read states from and
write states to the local state store during running. These
operations increase the latency of frame analysis, and it is
critical to evaluate the latency of these operations.

The evaluated applications use two object tracking meth-
ods, i.e., SURF and Deep Sort. SURF needs to extract mul-
tiple feature points for each object in one previous frame,
and we denote the maximum number of extracted feature
points for each object (used in SURF) as α. Deep Sort needs
to extract feature points from multiple previous frames, and
we denote the number of previous frames (used in Deep
Sort) as β. In this evaluation, we vary the values of α from
200 to 400 and the values of β from 10 to 30 according to [41],
[43]. The frame rate of video streams is 5. Each experiment
lasts 10 minutes. We record the overhead of state read/wirte.

Table 3 shows the average overhead of state read/write
when a VA application uses Deep Sort to track objects on
server B. As the number of extracted feature points in-
creases, the time overhead of state read/write also increases.
When β is 30, the operations of writing and reading states
take 15.42 ms, accounting for about 5% of the latency of
frame analysis. This time overhead is acceptable for the
latency of frame analysis.

However, as shown in Table 4, the operations of writing
and reading states take longer when a VA application uses
SURF to track objects. It is because the states of applications
using SURF are much larger than that of applications using
Deep Sort. In the worst case (α is 400), the operations take 64
ms. This time overhead is not negligible compared to the la-
tency of frame analysis (about 400 ms). The performance of
state read/write greatly depends on the speed of data serial-
ization. Using high-performance data serialization methods
or avoiding data serialization can greatly reduce this latency.
To ensure low latency of VA applications, we recommend
that edge platform customers should use lightweight object
tracking algorithms, e.g., Deep Sort.

7 LIMITATION AND DISCUSSION

We discuss the limitation of our migration scheme and the
future research direction.

TABLE 3: The performance of state read/write using when
a VA application uses Deep Sort to track objects.

β Write (ms) Read (ms) data size (Kb)
10 3.60 7.03 42.56
20 4.62 7.87 63.12
30 6.45 8.97 93.48

TABLE 4: The performance of state read/write when a VA
application uses SURF to track objects.

α Write (ms) Read (ms) data size (Kb)
200 8.51 30.22 323.67
300 11.78 39.56 430.21
400 15.88 48.17 583.49

In our system, we assume that the model is not modified
over the lifetime of a VA application, but a few works
assume that the model used by the application is not always
constant during application running. For example, some
works propose to switch between lightweight and heavy-
weight models depending on the server load [8], [9], [44].
In these works, an VA application may switch the used
model at intervals. We refer to the interval of switching
models as a time window. Essentially, the DL model may
be modified over the lifetime of an application, but is not
changed inside a time window. Our system can respond to
application migration commands within a time window to
migrate VA applications in the scenarios of these works.

In our paper, we take two typical types of VA applica-
tions as examples to guide developers on how to modify
their applications. Developers only need to identify cru-
cial states in the codes of application-specific components
based on their experience. Application-specific components
are usually simple [7], so developers can easily identify
their crucial states. However, there are still few complex
application-specific components. To ensure the reliability
of the migrated applications with complex application-
specific components, developers need to iterate over code
changes and corresponding unit tests to ascertain the states’
completeness, which increases the burden on developers.
Ideally, we should provide a tool to automatically identify
crucial states in the VA application code. Theoretically, we
can use static analysis [57], [58], [59] to identify all potential
crucial states and then use dynamic analysis [60] to mini-
mize the scope and eliminate the redundant data as much
as possible. The detailed designs will be explored in our
future work.

8 RELATED WORK

Application migration. To alleviate network bottlenecking
during migration, many works are dedicated to sending
migrated data faster, generating dirty memory pages slower,
or sending less data for the dirty memory pages.

In [61], the authors are concerned about transferring
memory pages faster by using high-speed networks, such as
Remote Direct Memory Access (RDMA). But this high-speed
network capability is not available in edge computing. The
network resources between edge servers are scarce.

The authors of [18] propose to slow down the dirty page
rate by shifting the execution of the application to a wait
state after the application generates more than a certain

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

number of dirty pages. During migration, this method sig-
nificantly degrades application performance, i.e., computa-
tion speed is reduced, and latency is increased. This method
is not suitable for latency-sensitive VA applications.

In recent years, many works have been devoted to
sending less data, but they are essentially based on the
idea of pre-copy. In [21], [62], the authors use a native
pre-copy solution to migrate an application running within
multiple containers (VMs). RemusDB [63] relies on VM
checkpointing and compression to propagate state changes
of a database system. In [64], [65], the authors use vari-
ous techniques, e.g., binary delta encoding algorithm, de-
duplication, and compression to reduce the size of dirty
pages for efficient VM migration. In [39], [66], the authors
utilize layered storage of images to reduce the overhead
of image migration, but they still use memory difference
transfers and compression techniques to reduce the size of
dirty pages when migrating states. Talaria [67] proposes an
in-engine content synchronization solution to migrate mo-
bile cloud gaming instances, which sends the game objects’
states in the order of their priority. In [12], [68], the authors
propose a specific hardware accelerator to speed up the data
reduction computations (such as compression and delta
encoding) to accelerate the live migration of services. As the
software stack of the applications studied in their works is
simple and is without CNN models and DL frameworks, the
dirty page rates of the applications studied in these works
are much lower than that of VA applications. In our mea-
surements, the dirty page rate of VA applications is usually
larger than the typical edge network bandwidth (more than
25 times at the maximum). Even with compression, the dirty
page rate of the pre-copy’s first iteration is only smaller than
the edge network bandwidth, but transferring the memory
pages still takes more than 91 seconds in the first iteration,
which is not tolerable for VA applications. As a result, it
is hardly smaller than the edge network bandwidth even
though data reduction techniques are exploited, such as
compression or data de-duplication. These existing works
cannot solve the migration of VA applications.

There are also some works that aim to make scheduling
decisions on when and where to migrate applications [69],
[70], [71], [72], [73]. They usually formulate optimization
problems and solve the optimization problems to make
decisions, but they do not address how to implement the
migration decisions made by these works. These works can
be used as a supplement to our system. Specifically, using
their scheduling algorithms, we can predict the possible
destination locations for application migration in advance,
and then the migrated application can be pre-warmed in
advance at the possible destination servers.
State management for NFV. Network Functions Virtual-
ization (NFV) advocates moving Network Functions (NFs)
from dedicated hardware devices to software applications
running in VMs or containers on shared server hardware
[74]. An important benefit of the NFV is elastic scaling, i.e.,
the ability to increase or decrease the number of instances
used for a specific NF [28]. As most NFs tend to be stateful,
elastic scaling of NFV involves migrating flow states across
NF instances. The existing works are dedicated to sending
the states directly between NF instances during migration
or decoupling the packet processing from the state in NFs.

Recent works allow the states to be directly transferred
between NF instances during migration with the help of a
centralized SDN controller. Specifically, OpenNF [75] and
Split/Merge [76] use carefully designed state management
libraries to achieve redistribution of flow states from the
original instance to the new instance. U-HAUL [77] only
migrates elephant (long-lived) flow states, which reduces
the amount of data during migration. FAST [78] proposes
a heuristic algorithm based on tabu search to decide the
destination and transfer link of state migration, then transfer
the state directly between application instances based on
OpenNF. TFM [79] completely decouples the state migration
and packet migration and allows these two procedures to be
executed in parallel, avoiding the increase in migration time
caused by the sequence of these two procedures. In these
works, the authors assume that the source codes of NF ap-
plications are available to network operators. The operators
can significantly modify NF application codes to adapt these
works. For example, making a simple monitoring appliance
(e.g., PRADS) OpenNF-compliant took over 120 man-hours
[29]. However, this assumption is not always true in our
scenario, i.e., source codes of video analytics applications
may not be available for edge platforms. Moreover, the
extensive porting efforts to adapt state migration increase
the burden on developers.

Some work decouples packet processing from flow
states, which means that NF instances get flow states
from external storage on demand during packet processing.
Specifically, in [80], [81], states of all NF instances are stored
in a standalone centralized state store via the RDMA high-
speed network, and NF instances themselves are stateless
and hence can easily scale in/out. Similarly, S6 [28] proposes
to use a global DSO (distributed shared object), shared
by all NF instances, to scale NF instances elastically. In
these works, they assume servers are connected by a high-
speed network. However, in our scenario, edge servers
are distributed across geographical locations, and network
resources between servers are not abundant. Although the
state data of video analytics applications is reduced after
replaying and warming up, the crucial state is still large
compared to flow states. During application running, such a
large data transfer across machines increases the application
latency, which is intolerable for video analytics applications.

9 CONCLUSION

In this paper, we conducted measurements to understand
the characteristics of the memory states of VA applications.
Based on the characteristics we found, we propose to treat
three types of states separately and exploit three techniques,
i.e., warm-up, sync, and replay, to migrate them. We further
implemented the above idea on Kubernetes and designed
two new components to achieve near-transparent live mi-
gration. The evaluation shows our system can achieve seam-
less migration of VA applications without consuming much
resources.

REFERENCES

[1] AWS, “Aws local zones.” https://aws.amazon.com/about-
aws/global-infrastructure/localzones/.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

[2] Azure, “Azure private mec.” https://docs.microsoft.com/en-
us/azure/private-multi-access-edge-compute-mec/overview.

[3] G. Ananthanarayanan, P. Bahl, P. Bodı́k, K. Chintalapudi, M. Phili-
pose, L. Ravindranath, and S. Sinha, “Real-time video analytics:
The killer app for edge computing,” computer, vol. 50, no. 10, pp.
58–67, 2017.

[4] C.-C. Hung, G. Ananthanarayanan, P. Bodik, L. Golubchik, M. Yu,
P. Bahl, and M. Philipose, “Videoedge: Processing camera streams
using hierarchical clusters,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC). IEEE, 2018, pp. 115–131.

[5] P. Yang, F. Lyu, W. Wu, N. Zhang, L. Yu, and X. S. Shen, “Edge
coordinated query configuration for low-latency and accurate
video analytics,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 7, pp. 4855–4864, 2019.

[6] J. Jiang, G. Ananthanarayanan, P. Bodik, S. Sen, and I. Stoica,
“Chameleon: scalable adaptation of video analytics,” in Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 253–266.

[7] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl,
and M. J. Freedman, “Live video analytics at scale with approx-
imation and {Delay-Tolerance},” in 14th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 17), 2017, pp.
377–392.

[8] C. Rong, J. H. Wang, J. Liu, J. Wang, F. Li, and X. Huang,
“Scheduling massive camera streams to optimize large-scale live
video analytics,” IEEE/ACM Transactions on Networking, 2021.

[9] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A
mobile deep learning framework for edge video analytics,” in
IEEE INFOCOM 2018-IEEE Conference on Computer Communica-
tions. IEEE, 2018, pp. 1421–1429.

[10] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella,
“On multi-access edge computing: A survey of the emerging 5g
network edge cloud architecture and orchestration,” IEEE Com-
munications Surveys & Tutorials, vol. 19, no. 3, pp. 1657–1681, 2017.

[11] C. Puliafito, C. Vallati, E. Mingozzi, G. Merlino, F. Longo, and
A. Puliafito, “Container migration in the fog: A performance
evaluation,” Sensors, vol. 19, no. 7, p. 1488, 2019.

[12] Z. Zhou, X. Li, X. Wang, Z. Liang, G. Sun, and G. Luo, “Hardware-
assisted service live migration in resource-limited edge computing
systems,” in 2020 57th ACM/IEEE Design Automation Conference
(DAC). IEEE, 2020, pp. 1–6.

[13] M. Bozyigit and M. Wasiq, “User-level process checkpoint and
restore for migration,” ACM SIGOPS Operating Systems Review,
vol. 35, no. 2, pp. 86–96, 2001.

[14] C. Yang, “Checkpoint and restoration of micro-service in docker
containers,” in Proc. 3rd Int. Conf. Mechatron. Ind. Informat, 2015,
pp. 915–918.

[15] S. Nadgowda, S. Suneja, N. Bila, and C. Isci, “Voyager: Complete
container state migration,” in 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 2017, pp.
2137–2142.

[16] C. Prakash, D. Mishra, P. Kulkarni, and U. Bellur, “Portkey:
Hypervisor-assisted container migration in nested cloud environ-
ments,” in Proceedings of the 18th ACM SIGPLAN/SIGOPS Interna-
tional Conference on Virtual Execution Environments, 2022, pp. 3–17.

[17] T. Xing, A. Barbalace, P. Olivier, M. L. Karaoui, W. Wang, and
B. Ravindran, “H-container: Enabling heterogeneous-isa container
migration in edge computing,” ACM Transactions on Computer
Systems (TOCS), 2022.

[18] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live migration of virtual machines,” in
Proceedings of the 2nd conference on Symposium on Networked Systems
Design & Implementation-Volume 2, 2005, pp. 273–286.

[19] M. Nelson, B.-H. Lim, G. Hutchins et al., “Fast transparent migra-
tion for virtual machines.” in USENIX Annual technical conference,
general track, 2005, pp. 391–394.

[20] M. Terneborg, J. K. Rönnberg, and O. Schelén, “Application agnos-
tic container migration and failover,” in 2021 IEEE 46th Conference
on Local Computer Networks (LCN). IEEE, 2021, pp. 565–572.

[21] T. Benjaponpitak, M. Karakate, and K. Sripanidkulchai, “Enabling
live migration of containerized applications across clouds,” in
IEEE INFOCOM 2020-IEEE Conference on Computer Communica-
tions. IEEE, 2020, pp. 2529–2538.

[22] H. Wang, Y. Li, Y. Zhang, and D. Jin, “Virtual machine migration
planning in software-defined networks,” in 2015 IEEE Conference
on Computer Communications (INFOCOM). IEEE, 2015, pp. 487–
495.

[23] M. R. Hines, U. Deshpande, and K. Gopalan, “Post-copy live
migration of virtual machines,” ACM SIGOPS operating systems
review, vol. 43, no. 3, pp. 14–26, 2009.

[24] T. Hirofuchi, H. Nakada, S. Itoh, and S. Sekiguchi, “Enabling
instantaneous relocation of virtual machines with a lightweight
vmm extension,” in 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing. IEEE, 2010, pp. 73–83.

[25] C. C. Chou, Y. Chen, D. Milojicic, N. Reddy, and P. Gratz, “Op-
timizing post-copy live migration with system-level checkpoint
using fabric-attached memory,” in 2019 IEEE/ACM Workshop on
Memory Centric High Performance Computing (MCHPC). IEEE,
2019, pp. 16–24.

[26] U. Deshpande and K. Keahey, “Traffic-sensitive live migration of
virtual machines,” Future Generation Computer Systems, vol. 72, pp.
118–128, 2017.

[27] U. Deshpande, D. Chan, T.-Y. Guh, J. Edouard, K. Gopalan, and
N. Bila, “Agile live migration of virtual machines,” in 2016 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2016, pp. 1061–1070.

[28] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18), 2018, pp. 299–312.

[29] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for {NFV}: Simplifying middlebox
modifications using {StateAlyzr},” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), 2016, pp.
239–253.

[30] WIRED, “The prime challenges for amazon’s new delivery robot.”
https://www.wired.com/story/amazon-new-delivery-robot-
scout/.

[31] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Be-
nenson, U. Franke, S. Roth, and B. Schiele, “The cityscapes dataset
for semantic urban scene understanding,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016, pp.
3213–3223.

[32] A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Mi-
grating running applications across mobile edge clouds: poster,”
in Proceedings of the 22nd Annual International Conference on Mobile
Computing and Networking, 2016, pp. 435–436.

[33] N. Mohan, L. Corneo, A. Zavodovski, S. Bayhan, W. Wong, and
J. Kangasharju, “Pruning edge research with latency shears,” in
Proceedings of the 19th ACM Workshop on Hot Topics in Networks,
2020, pp. 182–189.

[34] Y. Li, A. Padmanabhan, P. Zhao, Y. Wang, G. H. Xu, and R. Ne-
travali, “Reducto: On-camera filtering for resource-efficient real-
time video analytics,” in Proceedings of the Annual conference of
the ACM Special Interest Group on Data Communication on the
applications, technologies, architectures, and protocols for computer
communication, 2020, pp. 359–376.

[35] K. Chen, T. Li, H.-S. Kim, D. E. Culler, and R. H. Katz, “Marvel:
Enabling mobile augmented reality with low energy and low
latency,” in Proceedings of the 16th ACM Conference on Embedded
Networked Sensor Systems, 2018, pp. 292–304.

[36] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrish-
nan, “Glimpse: Continuous, real-time object recognition on mobile
devices,” in Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, 2015, pp. 155–168.

[37] F. Zhang, G. Liu, X. Fu, and R. Yahyapour, “A survey on virtual
machine migration: Challenges, techniques, and open issues,”
IEEE Communications Surveys & Tutorials, vol. 20, no. 2, pp. 1206–
1243, 2018.

[38] M. Park, K. Bhardwaj, and A. Gavrilovska, “Toward lighter con-
tainers for the edge,” in 3rd USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 20), 2020.

[39] L. Ma, S. Yi, N. Carter, and Q. Li, “Efficient live migration of edge
services leveraging container layered storage,” IEEE Transactions
on Mobile Computing, vol. 18, no. 9, pp. 2020–2033, 2018.

[40] X. Zeng, B. Fang, H. Shen, and M. Zhang, “Distream: scaling live
video analytics with workload-adaptive distributed edge intelli-
gence,” in Proceedings of the 18th Conference on Embedded Networked
Sensor Systems, 2020, pp. 409–421.

[41] N. Wojke, A. Bewley, and D. Paulus, “Simple online and realtime
tracking with a deep association metric,” in 2017 IEEE international
conference on image processing (ICIP). IEEE, 2017, pp. 3645–3649.

[42] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

object detection,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2020, pp. 10 781–10 790.

[43] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust
features (surf),” Computer vision and image understanding, vol. 110,
no. 3, pp. 346–359, 2008.

[44] T. Tan and G. Cao, “Fastva: Deep learning video analytics through
edge processing and npu in mobile,” in IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, 2020, pp.
1947–1956.

[45] J. Redmon and A. Farhadi, “Yolov3: An incremental improve-
ment,” arXiv preprint arXiv:1804.02767, 2018.

[46] CRIU, https://criu.org/.
[47] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu, N. Kwatra, Z. Han,

P. Patel, X. Peng, H. Zhao, Q. Zhang et al., “Gandiva: Introspective
cluster scheduling for deep learning,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018,
pp. 595–610.

[48] B. Zhang, X. Jin, S. Ratnasamy, J. Wawrzynek, and E. A. Lee, “Aw-
stream: Adaptive wide-area streaming analytics,” in Proceedings
of the 2018 Conference of the ACM Special Interest Group on Data
Communication, 2018, pp. 236–252.

[49] C. Kil, J. Jun, C. Bookholt, J. Xu, and P. Ning, “Address space
layout permutation (aslp): Towards fine-grained randomization
of commodity software,” in 2006 22nd Annual Computer Security
Applications Conference (ACSAC’06). IEEE, 2006, pp. 339–348.

[50] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization,” in 2013 IEEE
Symposium on Security and Privacy. IEEE, 2013, pp. 574–588.

[51] M. Orlov, “4 reasons why your docker containers can’t talk
to each other.” https://maximorlov.com/4-reasons-why-your-
docker-containers-cant-talk-to-each-other/.

[52] Kubernetes, “Kubernetes, production-grade container orchestra-
tion.” https://kubernetes.io/.

[53] “State migration for va application,” https://github.com/lolo-
pop/State-Migration-for-VA-Application/.

[54] OpenCV, “How to use background subtraction methods.”
https://docs.opencv.org/3.4/d1/dc5/tutorial-background-
subtraction.html.

[55] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets
robotics: The kitti dataset,” The International Journal of Robotics
Research, vol. 32, no. 11, pp. 1231–1237, 2013.

[56] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637–646, 2016.

[57] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Transactions
on Programming Languages and Systems (TOPLAS), vol. 9, no. 3, pp.
319–349, 1987.

[58] S. Sinha, M. J. Harrold, and G. Rothermel, “System-dependence-
graph-based slicing of programs with arbitrary interprocedural
control flow,” in Proceedings of the 21st International Conference on
Software Engineering, 1999, pp. 432–441.

[59] M. Das, “Unification-based pointer analysis with directional as-
signments,” Acm Sigplan Notices, vol. 35, no. 5, pp. 35–46, 2000.

[60] E. J. Schwartz, T. Avgerinos, and D. Brumley, “All you ever wanted
to know about dynamic taint analysis and forward symbolic
execution (but might have been afraid to ask),” in 2010 IEEE
symposium on Security and privacy. IEEE, 2010, pp. 317–331.

[61] W. Huang, Q. Gao, J. Liu, and D. K. Panda, “High performance
virtual machine migration with rdma over modern interconnects,”
in 2007 IEEE International Conference on Cluster Computing. IEEE,
2007, pp. 11–20.

[62] J. Zheng, T. S. E. Ng, K. Sripanidkulchai, and Z. Liu, “Comma:
Coordinating the migration of multi-tier applications,” in Proceed-
ings of the 10th ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, 2014, pp. 153–164.

[63] U. F. Minhas, S. Rajagopalan, B. Cully, A. Aboulnaga, K. Salem,
and A. Warfield, “Remusdb: Transparent high availability for
database systems,” The VLDB Journal, vol. 22, no. 1, pp. 29–45,
2013.

[64] K. Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to
dance: Agile vm handoff for edge computing,” in Proceedings of
the Second ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–
14.

[65] T. Wood, K. Ramakrishnan, P. Shenoy, and J. Van der Merwe,
“Cloudnet: dynamic pooling of cloud resources by live wan mi-
gration of virtual machines,” ACM Sigplan Notices, vol. 46, no. 7,
pp. 121–132, 2011.

[66] L. Ma, S. Yi, and Q. Li, “Efficient service handoff across edge
servers via docker container migration,” in Proceedings of the Second
ACM/IEEE Symposium on Edge Computing, 2017, pp. 1–13.

[67] T. Braud, A. Alhilal, and P. Hui, “Talaria: in-engine synchronisa-
tion for seamless migration of mobile edge gaming instances,” in
Proceedings of the 17th International Conference on emerging Network-
ing EXperiments and Technologies, 2021, pp. 375–381.

[68] Z. Zhou, X. Li, and G. Sun, “Accelerate service live migration in
resource-limited edge computing systems,” in Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, 2019, pp. 354–355.

[69] Z. Tang, X. Zhou, F. Zhang, W. Jia, and W. Zhao, “Migration mod-
eling and learning algorithms for containers in fog computing,”
IEEE Transactions on Services Computing, vol. 12, no. 5, pp. 712–725,
2018.

[70] C. Liu, F. Tang, Y. Hu, K. Li, Z. Tang, and K. Li, “Distributed
task migration optimization in mec by extending multi-agent deep
reinforcement learning approach,” IEEE Transactions on Parallel and
Distributed Systems, vol. 32, no. 7, pp. 1603–1614, 2020.

[71] Z. Benomar, F. Longo, G. Merlino, and A. Puliafito, “Cloud-based
enabling mechanisms for container deployment and migration at
the network edge,” ACM Transactions on Internet Technology (TOIT),
vol. 20, no. 3, pp. 1–28, 2020.

[72] M. Sun, Z. Zhou, X. Xue, and W. Gaaloul, “Migration-based
service allocation optimization in dynamic iot networks,” in Inter-
national Conference on Service-Oriented Computing. Springer, 2021,
pp. 385–399.

[73] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. Shen, “Delay-
aware microservice coordination in mobile edge computing: A
reinforcement learning approach,” IEEE Transactions on Mobile
Computing, vol. 20, no. 3, pp. 939–951, 2019.

[74] ETSI, “Network functions virtualisation (nfv).”
https://www.etsi.org/technologies/nfv.

[75] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella, “Opennf: Enabling innovation
in network function control,” ACM SIGCOMM Computer Commu-
nication Review, vol. 44, no. 4, pp. 163–174, 2014.

[76] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“{Split/Merge}: System support for elastic execution in virtual
middleboxes,” in 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), 2013, pp. 227–240.

[77] L. Liu, H. Xu, Z. Niu, P. Wang, and D. Han, “U-haul: Efficient state
migration in nfv,” in Proceedings of the 7th ACM SIGOPS Asia-Pacific
Workshop on Systems, 2016, pp. 1–8.

[78] T. V. Doan, G. T. Nguyen, M. Reisslein, and F. H. Fitzek, “Fast:
Flexible and low-latency state transfer in mobile edge computing,”
IEEE Access, vol. 9, pp. 115 315–115 334, 2021.

[79] Y. Wang, G. Xie, Z. Li, P. He, and K. Salamatian, “Transparent flow
migration for nfv,” in 2016 IEEE 24th International Conference on
Network Protocols (ICNP). IEEE, 2016, pp. 1–10.

[80] M. Kablan, B. Caldwell, R. Han, H. Jamjoom, and E. Keller,
“Stateless network functions,” in Proceedings of the 2015 ACM
SIGCOMM workshop on hot topics in middleboxes and network function
virtualization, 2015, pp. 49–54.

[81] M. Kablan, A. Alsudais, E. Keller, and F. Le, “Stateless
network functions: Breaking the tight coupling of state
and processing,” in 14th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 17). Boston, MA:
USENIX Association, Mar. 2017, pp. 97–112. [Online]. Avail-
able: https://www.usenix.org/conference/nsdi17/technical-
sessions/presentation/kablan

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

15

Chenghao Rong received the B.S. degree from
Shandong University in 2015 and the M.S. de-
gree from University of Chinese Academy of
Sciences in 2018. He is currently pursuing the
Ph.D. degree in Tsinghua University, China. His
research interests include edge computing and
video analytics.

Jessie Hui Wang received the Ph.D. degree in
information engineering from The Chinese Uni-
versity of Hong Kong in 2007. Before that, she
received the B.S. degree and the M.S. degree
in computer science from Tsinghua University.
She is currently a tenured Associate Professor
with Tsinghua University. Her research interests
include Internet routing, distributed computing,
network measurement and Internet economics.

Jilong Wang received the Ph.D. degree in com-
puter science from Tsinghua University in 2000.
He is currently a Professor with Tsinghua Uni-
versity. He has served as the chair of the board
of directors for Asia Pacific Advanced Network
(APAN) since 2019. His research focuses on
network measurement, cyberspace governance
and Internet testbed.

Yipeng Zhou received the M.Phil. and Ph.D.
degrees from Information Engineering (IE) De-
partment, The Chinese University of Hong Kong
(CUHK). From 2016 to 2018, he was a Research
Fellow with the Institute for Telecommunications
Research (ITR), University of South Australia.
From 2013 to 2016, he was a Lecturer with the
College of Computer Science and Software En-
gineering, Shenzhen University. He is currently
a Lecturer with the Department of Computing,
Macquarie University. He is a recipient of the

ARC DECRA in 2018.

Jun Zhang (Fellow, IEEE) received the Ph.D.
degree in electrical and computer engineering
from the University of Texas at Austin, Austin,
TX, USA, in 2009. He is an Associate Professor
with the Department of Electronic and Computer
Engineering, Hong Kong University of Science
and Technology, Hong Kong. He has coauthored
the book Fundamentals of LTE (Prentice Hall,
2010). His research interests include wireless
communications and networking, mobile-edge
computing, and edge AI and cooperative AI. Dr.

Zhang received the 2016 IEEE ComSoc Asia–Pacific Best Young Re-
searcher Award.

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3246539

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

