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Performance Assessment of an ITU-T Compliant
Machine Learning Enhancements for 5G RAN

Network Slicing
Natalia Yarkina, Anna Gaydamaka, Dmitri Moltchanov, Yevgeni Koucheryavy

Abstract—Network slicing is a technique introduced by 3GPP to enable multi-tenant operation in 5G systems. However, the support
of slicing at the air interface requires not only efficient optimization algorithms operating in real time but also its tight integration into
the 5G control plane. In this paper, we first present a priority-based mechanism enabling defined performance isolation among slices
competing for resources. Then, to speed up the resource arbitration process, we propose and compare several supervised machine
learning (ML) techniques. We show how to embed the proposed approach into the ITU-T standardized ML architecture. The proposed
ML enhancement is evaluated under realistic traffic conditions with respect to the performance criteria defined by GSMA while explicitly
accounting for 5G millimeter wave channel conditions. Our results show that ML techniques are able to provide suitable approximations
for the resource allocation process ensuring slice performance isolation, efficient resource use, and fairness. Among the considered
algorithms, polynomial regressions show the best results outperforming the exact solution algorithm by 5–6 orders of magnitude in
terms of execution time and both neural network and random forest algorithms in terms of accuracy (by 20–40 %), sensitiveness to
workload variations and training sample size. Finally, ML algorithms are generally prone to service level agreements (SLA) violation
under high load and time-varying channel conditions, implying that an SLA enforcement system is needed in ITU-T’s 5G ML framework.

Index Terms—5G, network slicing, machine learning, radio access network, slice isolation, ITU-T.
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1 INTRODUCTION

The introduction of the 5G cellular architecture not only
drastically enhances the amount of resources at the air inter-
face but enables flexibility of the end-to-end resource control
and management [1], [2]. One of its advanced functionalities
is network slicing providing the tools for efficient resource
management including the radio access network (RAN) [3].

Following 3GPP [4], a network slice is a logical net-
work that provides specific network capabilities and net-
work characteristics. The specification also demands slice
isolation, although defined in a broad sense encompassing
multiple levels such as security, performance, etc. Providing
performance isolation of slices along with efficient use of
system resources and fairness of their allocation is a difficult
task since these requirements are largely contradictory [5],
[6]. The problem is even more challenging when slicing is
extended to the RAN, where dynamic channel conditions
need to be accounted for when designing isolation schemes.

To date, a number of algorithms have been proposed for
network slicing in RAN with various performance isolation
criteria taken into account. As most of those approaches
formalize and solve an optimization problem, the solution
complexity becomes a critical issue for practical implemen-
tation of the proposed algorithms. On top of this, many of
the formulated slicing problems do not account for specifics
of wireless propagation by abstracting the cell capacity. In
dynamically changing wireless channel conditions, ensuring

The authors are with the Department of Electrical Engineering and Com-
munications, Tampere University, Tampere, Finland. Email: {natalia.yarkina,
anna.gaydamaka, dmitri.moltchanov, evgeni.kucheryavy}@tuni.fi

both isolation and fairness of resource allocation may lead
to inability to timely redistribute resources among slices and
flows that belong to different slices. As a result, lightweight
approximations of exact solutions are of special importance
for practical implementations.

Machine learning (ML) has recently become a viable
alternative to conventional optimization and prediction
techniques in various applied fields of science. Industry,
transportation, healthcare, and many other fields utilize ML
to solve a wide range of problems. There are numerous use
cases of ML in communication networks [7], network au-
tomation and optimization [8], anomaly detection, network
traffic prediction [9], [10], traffic optimization adjustment,
etc. In the context of 5G systems, ITU-T has recently stan-
dardized a framework for ML integration by specifying the
corresponding architecture and data handling [11], [12].

This study aims at improving practical applicability of
an existing RAN slicing scheme by enhancing it with a
lightweight ML-based approximator capable of providing a
solution fast enough to follow the evolution of radio channel
conditions. The investigated approach is applicable to other
RAN slicing schemes that imply solving one or more opti-
mization problems under very strict time constraints typical
for RAN resource allocation.

In this paper, we assess the use of ML for RAN slicing
within the ITU-T architecture framework. We first formalize
a model of resource slicing in RAN aimed at fair priority-
based isolation of slices. Then, we apply supervised ML
techniques to reduce the solution complexity while account-
ing for specifics of wireless propagation and a realistic slice
content composition. Particularly, we analyze performance
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of four candidate ML models – the linear regression, the
polynomial regression, the random forest regressor, and the
artificial neural network (ANN) – chosen primarily for their
prediction and training speed. We consider their online and
offline implementations and discuss how to integrate them
into the 5G ML architecture standardized by ITU-T.

The main conclusions of our work are:

• accuracy and implementation: (i) the polynomial regres-
sions of degrees 2 and 4 show the best results in the
online learning setting outperforming other models
in terms of execution time, accuracy, generalization
capability, and training sample size, which makes
them suitable for online implementation with fre-
quently changing traffic distributions across slices;
(ii) when trained offline and tested on simulation
data, the models show an accuracy level inferior
to the online training, however, for random forest
regressors, this could be improved via larger training
datasets and increased model complexity;

• sensitiveness: (i) ML algorithms are sensitive to the
composition of slices and workload distribution
across them, but not to the overall workload; (ii) pre-
diction accuracy does not decrease with the number
of slices, which makes ML enhancement particularly
suitable for over 5–7 slices due to slow exact compu-
tation;

• channel and traffic impairments: ML algorithms are
prone to service level agreements (SLA) violation un-
der high load and time-varying channel conditions,
implying that an SLA control system in real time is
needed in the ML pipeline.

The rest of the paper is organized as follows. In Section 2
we discuss the ITU-T standardized framework for ML im-
plementation in 5G networks and also briefly review the
recent work related to ML enhancement of network slicing.
Section 3 presents the system model and its components.
In Section 4 we describe the adopted slicing scheme and
provide an exact solution algorithm. Section 5 introduces the
ML enhancement framework and techniques for speeding
up resource arbitration. In Section 6 we present the adopted
numerical evaluation scenarios and study stochastic process
representing the cell capacity. Numerical results and their
interpretation are provided in Section 7. Conclusions are
drawn in the last section.

2 BACKGROUND AND RELATED WORK

In this section, we discuss the use of ML in 5G systems in-
cluding the ITU-T architectural framework for ML integra-
tion and applications of ML techniques for network slicing.
We refer the reader to [13] for a survey of 5G network slicing
enablers, architectures and deployment strategies, and to
[5], [14] for recent reviews on RAN resource allocation to
slices.

2.1 Machine Learning Integration in 5G Cellular
ML is defined in [11] as a process that enables computational
systems to understand data and gain knowledge from it
without necessarily being explicitly programmed. Fig. 1
shows the high-level architecture for enabling ML in a
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Fig. 1. ITU-T high-level architecture for ML integration (adapted from
[11]).

telecommunication network which was proposed in ITU-
T Y.3172 [11]. Its main components are the ML pipeline, the
ML function orchestrator (MLFO), and the ML sandbox.

The ML pipeline is a set of logical nodes with specific
functionalities. The nodes are combined to form an ML
application. The source node (SRC) provides input data for
the ML pipeline. The collector node (C) is responsible for
collecting data from one or more source nodes. All data
preprocessing, including data cleaning and aggregation, is
performed by the preprocessor node (PP). One of the key
nodes, the model node (M), is in charge of executing the
chosen ML model. The output of the model can be revised
by the policy node (P) and some rules can be applied to it.
Thereafter the distributor node (D) manages the output and
delivers it to one or more sink nodes (SINK). The sink node
represents the target of the ML output where it takes action.

The ML pipeline can be overlaid on an existing net-
work infrastructure with its nodes positioned and chained
throughout several network levels (e.g., UE, the access net-
work and the core network). The placement of ML function-
alities is governed by such factors as the specifications of
ML applications, their latency constraints and availability of
data, but also performance and resource constraints of net-
work functions (NF) and levels. The placement and chain-
ing of the ML pipeline nodes are controlled by MLFO, a
logical node that manages and orchestrates the nodes of ML
pipelines. The input for MLFO is ML Intent, which repre-
sents a declarative description specifying an ML application.
Based on this information and network conditions MLFO
can control, arrange and change the nodes of ML pipelines.
To implement an ML application, MLFO, in coordination
with other management and orchestration functions, in-
stantiates nodes of an ML pipeline with specific roles (e.g.,
SRC, C, M) and associates them to technology-specific NFs
of the underlying network based on their capabilities and
corresponding requirements of the ML application.

The ML sandbox is an isolated domain used for train-
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ing, testing and evaluating ML pipelines before deploying
them in a live network. The ML pipelines hosted here are
separate, but the data can come from both simulated and
live underlay networks. If any changes occur in ML Intent
or new specifications are added, MLFO updates the ML
pipeline nodes in the ML sandbox so that they correspond
to the modified scenario.

2.2 Machine Learning for Network Slicing

Applications of ML for network slicing enhancement can
be manifold [15], however, resource allocation among slices
receives the most attention from researchers. Indeed, in the
majority of policies proposed so far for network slicing
in RAN, the resource shares allocated to slices/slice users
are determined as a solution to a linear or non-linear opti-
mization problem [5]. However, considering the numerous
constraints and the dimension of the problem, obtaining
such a solution fast enough for a real-time adaptive resource
reallocation can be challenging. A possible way to tackle this
issue is by using ML techniques.

The survey [15] discusses the automation of numerous
network functions involved in control and management of
slices. The authors provide a list of 5G network slicing
scenarios and suggest several ML techniques that can be
adopted to enhance various slicing-related tasks. The au-
thors of [16] develop a three-stage hybrid learning algorithm
to classify network traffic into three slice categories: eMBB,
mMTC or URLLC. The classification is based on the data
such as user device type, session duration, packet delay
budget, etc. The study in [17] investigates how traffic of one
slice affects traffic of another slice. The authors develop a
data-driven ML-based slicing and allocation model which
intelligently assigns and redistributes resources among net-
work slices with respect to certain quality of service (QoS)
parameters. Similar problems are addressed in [18], where
the authors build an experimental prototype of the 5G
network architecture and embed ML solutions to config-
ure radio resources for network slices. Their results show
that despite the growing computing resource utilization
the throughput of the network was increased. The authors
in [19] focus on the problem of resource allocations with
changing channel characteristics. They suggest implement-
ing ML to correctly model the wireless channel.

A number of deep reinforcement learning (DRL) so-
lutions, namely [20], [21], [22], [23], have been proposed
for network slicing in RAN as an alternative to explicit
optimization-problem-based and algorithmic resource shar-
ing schemes. The authors of [20] investigate the feasibility
and efficiency of applying the DRL framework to resource
allocation among slices and consider two scenarios: priority-
based core network slicing and radio resource slicing. In the
latter, a weighted sum of spectral efficiency and QoS in the
three slices under study is adopted as the reward function
for the decision process. The authors of [21] propose a com-
bined solution including a deep recurrent neural network
to predict traffic volume in large timescales and a rein-
forcement learning algorithm for performing the resource
scheduling in small timescales. Here, the reward function
aims at minimizing the resource consumption while guar-
anteeing a certain degree of slice performance isolation and
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Fig. 2. The considered ML-enabled slicing system architecture.

includes a bonus for slice reconfiguration. In [22] the authors
propose a system for dynamic reservation of unused re-
sources in virtualized RAN based on DRL algorithms. They
show that by tuning the objective function, which represents
a weighted sum of average slice-specific QoS utilities and
per slice resource utilizations, significant improvements in
resource utilization can be achieved, however, no guidance
is provided on the choice of these functions.

Although DRL is considered a promising approach to
resource sharing in context of network slicing, it is char-
acterized by high training complexity [20] and a certain
arbitrariness in the choice of the reward function resulting
in impeded tractability. Moreover, most studies consider
workload, where there is no high competition for resources
among slices and do not investigate the efficiency of the
ML model under workload bursts, which might be com-
promised. The rationale behind our proposed framework
is to combine the tractability of an explicit slicing policy
covering all workload ranges with the time efficiency of the
simplest supervised ML techniques, which can approximate
the solution when its computation by the exact algorithm
takes too long.

3 SYSTEM MODEL

In this section, we introduce our system model and its
components. We start with the overall system design and
then proceed with the radio part providing an abstraction
of resources at the air interface. Then, we specify the traffic
process for each slice and introduce the slice performance
isolation policy and our approach to its ML enhancement.
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3.1 Base Station with ML-enhanced RAN Slicing
We study the downlink transmission of a 5G base station
(BS) providing virtualization of radio access resources and
network slicing (see Fig. 2). The uplink direction and the
mixed uplink/downlink case can be addressed in a similar
manner. The BS may have several radio access technologies
(RAT A, RAT B, etc.), whose resources are controlled in the
radio resource management (RRM) subsystems. The RRMs
are collectively controlled and coordinated by a common
resource manager (CoRM), which combines the data rates
provided by each RAT into the aggregated time-varying BS
capacity, C(t) = cA(t) + cB(t) + . . . , t ≥ 0, and manages its
allocation to user sessions. The slicing manager is a separate
entity responsible for dynamic distribution of the aggre-
gated capacity, C(t), among S instantiated network slices
based upon the adopted slicing policy and demand. The re-
sulting capacity allocation to slices, C1(t), C2(t), . . . , CS(t),
is communicated back to CoRM and translated to resource
allocation constraints at each RAT scheduler. The considered
network structure corresponds to a heterogeneous network
of a single operator – the infrastructure provider (InP).

The slicing manager’s operation is enhanced by ML.
The ML pipeline implemented therein receives data char-
acterizing the aggregated capacity and the slices’ demand
therefor from CoRM. The data is fed to an ML model which
computes Ci(t), i = 1, . . . , S, and returns them to CoRM
in terms of shares of the total capacity for further coor-
dinated resource allocation among RATs. CoRM instructs
the RAT-specific RRMs to provide appropriate capacity to
UEs. The slicing manager also uses parameters from the
SLAs between the InP and the slices’ tenants, which are
accessible through the SLA management functions in the
Operations/Business Support System (OSS/BSS).

An MLFO supervises the ML pipeline’s performance
and the accuracy of the output. It calls for retraining if the
accuracy is insufficient (e.g., due to a substantial change in
demand) or the slicing parameters have changed (e.g., a new
slice has been instantiated or SLA parameters modified). Re-
training is performed in an ML sandbox (see Fig. 1), which
has access to the data provided by CoRM and OSS/BSS.

3.2 Radio Specifics
Each considered RAT has an assigned frequency band. As
opposed to many previous studies of RAT network slicing,
we adopt a joint methodology and combine the slice-level
resource allocation with an explicit account for wireless
channel dynamics. To this aim, we utilize computer sim-
ulations to obtain the time-varying RAT capacity. A 3GPP-
compliant radio channel modeling procedure accounting for
propagation, antenna, user mobility, human-body blockage,
and line-of-sight obstruction specifics is detailed in Section
6 while the radio part sub-models are introduced below.

3.2.1 Propagation Model
Throughout the paper we consider the most complex RAT,
mmWave, as an example. We represent propagation losses
using the Urban-Micro (UMi) Street-Canyon model.

Let ILoS = 1 if the UE is under the line-of-sight (LoS)
and ILoS = 0 under non-line-of-sight (nLoS) conditions.
Similarly, let InHB = 1 if the UE is not blocked by human

TABLE 1
Notation utilized in this paper

Notation Description
A Aggregated losses
B Bandwidth
BPRB Size of the physical resource block
C BS capacity
Cs Capacity of slice s
D Labeled dataset
d Distance between BS and UE
fc Operating frequency
GBS/UE BS/UE antenna gain
hB/BS/UE Height of Blocker/BS/UE height, ∆h=hBS−hUE

ILoS Indicator of LoS blockage, 1 if LoS, 0 if nLoS
InHB Indicator of HB blockage, 1 if not blocked, 0 otherwise
K Dataset size
KX Number of antenna elements
N Number of active users
N0 Noise power spectral density
Ns Number of ongoing sessions in slice s
Ncont

s Contracted number of sessions in slice s
PBS Transmitting BS power
pout Outage probability
PL Path loss
qs Probability for an arriving session to go to slice s
rBS BS service radius
Rs User data rate in slice s
Rmin

s Minimum data rate per user in slice s
Rmax

s Maximum data rate per user in slice s
S Set of all instantiated slices, S = |S|
SINR Received signal-to-interference-plus-noise ratio
v User speed
γs Contracted capacity share of slice s
θs Mean session duration in slice s
ν Session arrival rate
σSF Shadow fading standard deviation
τRDM Mean Random Direction Mobility run time

(nHB) and InHB = 0 otherwise (i.e., human-blocked, HB).
According to [24], the path loss for the frequency band 0.5–
100 GHz can be expressed in dB as

PL[dB](d, ILoS, InHB) =

10α(ILoS) log10 d+ β(InHB) + 20 log10 fc + χσSF(ILoS),
(1)

where d is the three-dimensional (3D) distance in meters
between the NR BS and the UE, α(ILoS) is a coefficient being
2.1 under the LoS and 3.19 under nLoS conditions, β(InHB)
is 32.4 dB when the UE is not blocked by human and 52.4 dB
otherwise, fc is the carrier frequency measured in GHz, and
χσSF(ILoS) is the shadow fading in dB, which is normally dis-
tributed with zero mean and standard deviation σSF(ILoS).
Note that the value of σSF(ILoS) also depends on ILoS [24].

By converting the path loss (1) to linear scale we
can write the received signal-to-interference-plus-noise ratio
(SINR) as

SINR(d, ILoS, InHB) =
PBSGBSGUE

PL(d, ILoS, InHB)N0BPRBA
, (2)

where PBS is the emitted power, GBS and GUE are respec-
tively the BS and UE antenna gains, N0 is the thermal noise
power spectral density, BPRB is the size of the physical
resource block (PRB), and A represents aggregated losses
given, in decibels, by

A[dB] = MI + FN + LC (3)
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with MI being the interference margin, FN the noise figure,
and LC the cable losses.

The cable losses LC depend on the UE implementation
and we assume LC = 2 dB, see Table 2 [25]. The noise figure,
FN, also relates to the UE implementation and characterizes
the amount of noise generated by the device itself with
no signal present. We also set it to a typical value, 7 dB,
but it may vary from device to device in the range 2–
10 dB [25]. Finally, interference is usually represented as
a random variable depending on many factors including
the type of deployment (random or cellular-like), opera-
tional frequency, deployment density, the use of resource
blocks at neighboring cells, etc. However, interference mod-
els developed for mmWave systems have shown that the
use of directional antennas greatly reduces interference as
compared to microwave systems. This is why, and also to
simplify the propagation model, we utilize the interference
margin to capture inter-cell interference. Although we set
the margin to 3 dB, one can utilize the models in [26], [27],
[28] to estimate the mean interference in a specific setup and
use it as MI .

As the timescale of interest in this paper is not less than
a few tens/hundreds of transmission time intervals (TTIs),
we exclude the fast fading phenomena from consideration
in (2).

3.2.2 Blockage Conditions
Following [24], for a user at a 2D distance d meters from the
BS, the LoS probability is

P{ILoS=1|d} =

{
1, d ≤ 18,

18d−1 + e−
d
36 (1− 18d−1), d > 18.

(4)

In our model the user’s LoS/nLoS state, which is in-
dicated by ILoS, is chosen randomly according to (4) and
remains unchanged for a time period exponentially dis-
tributed with mean τLoS. The latter is interpreted as the time
to cross a building block at a pedestrian speed v.

An attenuation of 20 dB induced by human-body block-
age [29] is reflected in the value of β(InHB) in (1). Following
[30], we assume that human blockers are represented by
cylinders with a base radius of rB and a height of hB meters.
Then, the human-body blockage probability is given by [30]

P{InHB=0|d} = 1− e
−2ζHBrB

(√
d2+∆h2 hB−hUE

∆h +rB
)
, (5)

where ζHB is the density of blockers per square meter and
∆h = hBS − hUE with hBS and hUE being the BS and
UE heights, respectively. Similarly, we sample the user’s
HB/nHB state by (5) and it does not change for a random
time interval exponentially distributed with mean τHB.

3.2.3 Antenna Model
Linear antenna arrays are assumed at both UEs and the
BS. To model the radiation patterns, similarly to [31], we
utilize cone models with a constant gain over the main lobe.
We denote by KX , X ∈ {BS,UE}, the number of antenna
elements and assume the distance between the neighboring
elements to be λ/2, where λ is the wavelength. The phase
excitation difference between the elements is assumed zero.
Then, following [32], the half-power beamwidth (HPBW)

of the main lobe for a symmetrical pattern is given by
2|θm − θ±3dB|, where θm = π/2 is the array orientation and
θ±3dB = arccos(∓ 2.782

KXπ ) are the half-power points’ angles.
The mean gain over the main lobe can be obtained, for
X ∈ {BS,UE}, as [32]

GX =
1

θ+3dB − θ−3dB

∫ θ+
3dB

θ−
3dB

sin(KXπ
2 cos θ)

sin(π2 cos θ)
dθ. (6)

3.2.4 Cell Size and User Mobility
It is assumed that, upon session arrival, the user is randomly
placed in the cell coverage area according to the uniform
distribution. The coverage area is specified by the BS service
radius such that under the worst-case blockage conditions –
nLoS and HB – a cell edge UE experiences an outage (i.e.,
a SINR below a threshold value SINRthre) no more than
fraction pout of time. It can be obtained as follows

rBS =

√√√√( PBSGBSGUE

10
β(0)
10 f2

cN0BPRBAMSFSINRthre

) 2
α(0)

−∆h2, (7)

where MSF is the slow fading margin given by

MSF[dB] =
√
2erfc−1(2pout)σSF(0) (8)

with erfc−1(·) denoting the inverse complementary error
function, pout is the outage probability at the cell edge coin-
ciding with the fraction of time UE is in outage conditions.

We track only users having active sessions and stop
tracking a user as soon as his or her session terminates. To
represent user movement, we adopt the Random Direction
Mobility (RDM) model [33]. Accordingly, each user selects a
random direction from the interval [0, 2π) and moves in this
direction at a fixed constant speed v during an individual
run time exponentially distributed with mean τRDM. As
soon as this run time period elapses, the procedure for
the user is repeated. Whenever the user reaches the cell’s
boundary, the movement direction is reflected.

The mobility of users is assumed homogeneous and
independent of each other. The flow of users across the cell
boundary is assumed stationary.

3.2.5 Cell Capacity
We approximate the total cell capacity C(t) at time t ≥ 0 by
assuming equal bandwidth sharing between the N active
users as follows

C(t) =
B

N

N∑
i=1

ηi(t), (9)

where B denotes the bandwidth and ηi(t) is the spectral ef-
ficiency of UE i at time t. The user’s spectral efficiency, ηi(t),
is obtained by mapping SINR (2) to the NR modulation and
coding scheme (MCS) [34].

Note that (9) is essentially an approximation and builds
upon two assumptions: (i) the whole set of available re-
sources is utilized and (ii) resources are equally partitioned
among all users. We then employ C(t) computed by (9)
in Section 6.1 to characterize the cell capacity’s dynamics,
which is further used in Section 7. In practice the exact
cell capacity’s behavior depends on the exact slice resource
allocations determined by the employed slicing policy, as
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well as on resource allocations between sessions within each
slice, which in turn may depend on the tenants’ proper poli-
cies. Thus, the adopted approach permits a decomposition
of the overall problem into separate tasks.

3.3 Traffic and Slices
The BS serves heterogeneous traffic and the network slicing
technique is employed to efficiently accommodate sessions
with substantially different QoS requirements (voice, video
streaming, gaming, etc.). We denote the set of all instantiated
slices by S , |S| = S, and assume each slice intended for one
type of service, which makes it homogeneous in terms of
session characteristics and QoS parameters.

Since slices are service-specific, for each of them we can
define a minimum data rate per user, Rmin

s > 0, needed to
meet the QoS requirements of the service provided in the
slice, Rmin = (Rmin

s )s∈S . It is assumed that a user cannot
receive proper service if the data rate is below this value.
Furthermore, following GSMA NG.116 [35], for each slice
we can specify a maximum user data rate. It is denoted by
Rmax

s ≥ Rmin
s , Rmax = (Rmax

s )s∈S , and corresponds to such
a value that allocating a data rate higher than this will not
result in any gain in QoS or quality of experience (QoE) for
the user.

Let Ns be the number of ongoing user sessions in slice s
and denote the row vector containing the numbers of users
in all slices by N = (Ns)s∈S . Each user is assumed to have
only one connection in only one slice. If a user has multiple
connections, it is considered and served as multiple users,
one per connection. We assume that users arrive into the
system according to a Poisson process of rate ν, are directed
to slice s ∈ S with probability qs and leave the system
upon session completion. Session durations in slice s are
exponentially distributed with mean θs.

We assume that resources are shared among slices us-
ing the slicing scheme with equitable-priority-based per-
formance isolation of slices proposed in [5]. Let Cs ≥ 0
represent the capacity of slice s ∈ S and let it follow the
number of users in the slice in the form Cs = NsRs, where
Rs is the user data rate in slice s ∈ S to be determined by the
slicing scheme. Note that Rs is the ensemble average user
data rate in the slice, and the actual data rates perceived by
slice users may differ depending on their channel conditions
and the resource allocation policy applied by the slice’s
tenant. Let R = (Rs)s∈S be a column vector. Considering
that C is the total capacity of the BS, the capacities of slices
must satisfy

∑
s∈S Cs ≤ C .

For our system, we demand that

Rmin
s ≤ Rs ≤ Rmin

s , s ∈ S, (10)

as long as the number of users in the slice, Ns, does not
exceed a contracted number N cont

s , Ncont = (N cont
s )s∈S .

Indeed, due to capacity limitations, slice performance iso-
lation cannot be guaranteed for unrestricted traffic in all
slices, so it is assumed that slice isolation is ensured as
long as the number of users in the slice does not exceed
its contracted threshold, i.e., Ns ≤ N cont

s . The InP thus
guarantees performance isolation of slice s by providing it
with at least a capacity of

Cmin
s (Ns) = min{Ns, N

cont
s }Rmin

s . (11)

Any remaining capacity is distributed among all slices
on the basis of fairness, but so that Rs ≤ Rmax

s , s ∈ S . Note
that we allow for overbooking, i.e., the sum of the contracted
slice capacities,

∑
s∈S N cont

s Rmin
s , can be larger than C .

The considered slicing scheme provides a flexible and
dynamic partitioning of the total BS capacity among slices
based upon (i) the parameters Rmin, Rmax and Ncont, and
(ii) the demand expressed in terms of the number of users
N. It is assumed that the parameters Rmin

s , Rmax
s and N cont

s

are agreed upon between the InP and the slice s tenant
and stated in the corresponding SLA, with N cont

s set either
directly or in the form of the contracted resource share

γs =
N cont

s Rmin
s

C
, s ∈ S. (12)

Flexibility is assured by the fact that when some slices
do not use all their contracted capacity N cont

s Rmin
s , the

remaining capacity (N cont
s −Ns)R

min
s becomes available to

other slices if they need it. Thus, each slice has priority to its
contracted capacity over other slices.

Computation of R is specifically discussed in Section 4
and involves solving a convex programming problem,
which can prove computationally challenging under the
time constraints characterizing radio resource scheduling.
The proposed ML enhancement addresses this challenge by
providing time-efficient approximations using supervised
ML techniques.

3.4 ML Enhancement

The architecture proposed by ITU-T and described in Sub-
section 2.1 is generic enough to be adopted in a multitude
of scenarios [36]. In this work, we propose to employ
supervised ML to approximate C = (Cs)s∈S based upon
a labeled sample obtained by applying the exact solution
algorithm. Moreover, as the parameters Ncont, Rmin and
Rmax change at a much larger timescale than the demand
N, they can be assumed constant, thus restricting the sys-
tem’s variability.

3.4.1 Online Learning

Two options for ML enhancement are investigated: online
and offline. The online learning setting implies training on
live data and repeatedly switching between the training
and prediction phases. Each time a slice is instantiated,
removed, or modified, a training phase begins. Here the
slice capacities C are computed using the exact algorithm.
The observed system states given by N along with the exact
solutions are collected into a training dataset. Once the train-
ing set is populated, the implemented ML model is trained
and the process moves on to the prediction phase. Here the
ML technique is used to predict C from N. The accuracy is
constantly monitored either through periodical comparison
with the exact solution or by assessing relevant performance
measures. Whenever the system detects insufficient accu-
racy due to a change in demand yielding population vectors
N substantially differing from the training data, the process
starts over from the training phase.
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3.4.2 Offline Learning
Whereas in the online learning setting the model is trained
for a specific, current range of workloads, in the offline
scenario training and validation data are sampled from the
uniform distribution on the feasible space of N. Labels
for the data are computed using the exact algorithm with
the average BS capacity. As a result, the trained model
must be suitable for any workload regime and no accuracy
monitoring is needed. The model has to be retrained only
upon changes in the parameters Ncont, Rmin and Rmax.

3.5 Performance Assessment
Four supervised ML models are investigated in the paper: a
linear regression, a polynomial regression, a random forest
regressor and an ANN. However, other ML techniques can
also be employed in the proposed settings. Our goal is
to evaluate and compare these ML algorithms in terms of
approximation accuracy, generalization capability and time
efficiency under the online and offline learning scenarios.
We also assess the impact of channel variability on the per-
formance of these techniques. Specific performance criteria
will be discussed in Subsection 5.7.

The timescale of interest for resource allocation con-
sidered in this paper is at least a few tens/hundreds of
TTIs. Practically, it corresponds to the resource reallocation
procedure invoked at either (i) regular intervals or (ii) at
time instants when the slice conditions (e.g., the number of
active users) change.

4 EQUITABLE-PRIORITY-BASED SLICING POLICY

In this section, we first formalize a model of multi-tenant
resource sharing at the air interface aimed at fair priority-
based isolation of slices. Then, we proceed to presenting the
exact solution algorithm and motivating the need for ML
approaches for the overall problem solution.

4.1 Resource Arbitration Scheme
Since the demand if given in terms of the number of users in
slices, the state of the BS is described by vector N ∈ Ω = NS .
We partition the state space as Ω = Ωmax ∪ Ωopt ∪ Ωcong,
where

Ωmax = {N ∈ Ω : NRmax ≤ C} (13)

contains all states in which the available capacity suffice to
allocate the corresponding maximums to all users,

Ωopt = {N ∈ Ω : NRmin ≤ C < NRmax} (14)

contains all states in which the maximums cannot be allo-
cated to all users yet minimums can, and

Ωcong = {N ∈ Ω : NRmin > C} (15)

contains all states in which even the corresponding mini-
mums cannot be allocated to all users.

The slicing scheme determines the slice capacities
Cs(N) ∈ R+, s ∈ S , for each N ∈ Ω so that

∑
s∈S Cs(N) ≤

C . For N ∈ Ωmax, we can assign the maximum data rate to
all users in all slices, which yields

Cs(N) = NsR
max
s , s ∈ S. (16)

For N ∈ Ωopt, we seek to allocate resources in a way
to (i) satisfy the minimum and maximum constraints (10),
(ii) to make use of the whole available capacity and (iii)
to provide max–min fairness to users taking account of
whether the contracted number of users is exceeded and by
how much. Such an allocation, for N ∈ Ωopt, can be found
as a solution to the optimization problem [5]

SLICEN,C(R
min,Rmax,Ncont)

maximize U(R) =
∑
s∈S

Ws(Ns)Ns ln(Rs) (17)

subject to NR = C (18)

over R ∈ RS
+ : Rmin

s ≤ Rs ≤ Rmax
s (19)

with the weight functions defined as

Ws(Ns) =

{
1, Ns ≤ N cont

s ,
N cont

s /Ns, Ns > N cont
s .

(20)

The target function U(R) in (17) is a utility function of
the log type proposed for proportionally fair resource shar-
ing in [37], which in our case coincides with the max–min
fairness [38]. The weight functions (20) ensure a max–min
fair resource allocation to users as long as their number
in the corresponding slices does not exceed the contracted
quantity, and penalize the “violating” slices by decreasing
their weights. The constraint (18) ensures not only that the
total allocation does not exceed the available capacity C , but
also that all available capacity is allocated. Finally, the box
constraints (19) ensure that the minimum and maximum
data-rate requirements in slices are satisfied.

We now extend our policy to congestion states, N ∈
Ωcong. Denote Nmin

s (Ns) = min{Ns, N
cont
s } and Nmin =(

Nmin
s

)
s∈S . Now, if NminRmin ≥ C then we set

Cs(N) =
Nmin

s Rmin
s

NminRmin
C. (21)

If, conversely, NminRmin < C , then we can allocate the
due capacity NminRmin and then need to distribute the
remaining capacity C −NminRmin to N −Nmin users. We
will do this proportionally to the requested capacity as well,
which yields

Cs(N) = Nmin
s Rmin

s +
(Ns −Nmin

s )Rmin
s

(N−Nmin)Rmin
(C−NminRmin).

(22)

The main features of the scheme, namely fairness and
slice performance isolation, are illustrated numerically in
Subsection 7.1

4.2 Exact Solution of SLICEN,C(R
min,Rmax,Ncont)

Since the objective function in SLICEN,C(·) is differentiable
and strictly concave and the feasible region is compact
and convex, there is a unique maximum for U(R) in the
feasible region, which can be found by Lagrangian meth-
ods. For finding the exact solution of the problem we
propose to employ Algorithm 1. It uses a recursive func-
tion, FUNC(N,R, C, s), which populates the set of solution
candidates, R, by considering all possible combinations of
active constraints (19).
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Algorithm 1: Exact Solution
of SLICEN,C(R

min,Rmax,Ncont)

Input: state N ∈ Ωopt, parameters Rmin, Rmax,
Ncont and C , the weights W obtained by (20)

Output: R solving (17)–(19)
Function FUNC(Nprev, Rprev, Cprev, ŝ):

if NprevRmin ≤ Cprev ≤ NprevRmax then
R := Rprev

RSP := Cprev

NprevWW // stationary point
if Rmin

s ≤ RSP
s ≤ Rmax

s ∀s ∈ S such that
Nprev

s > 0 then
for such s ∈ S that Nprev

s > 0 do
Rs := RSP

s

R := R
⋃
{R} // add candidate

if ŝ = 1 then
return

else
for such s = ŝ, ..., S that Nprev

s > 0 do
Nnext := Nprev

Rnext := Rprev

Nnext
s := 0

for Rbnd
s ∈ {Rmin

s , Rmax
s } do

Rnext
s := Rbnd

s

Cnext := Cprev −Nprev
s Rbnd

s

FUNC(Nnext, Rnext, Cnext, s+ 1)

R := ∅ // set of candidate solutions
FUNC(N, Rmax, C , 1) // populate R
R := argmax

R̂∈R
U(R̂)

The algorithm operates as follows. The unique solution
to the problem (17)–(18), i.e., with the box constraints (19)
lifted, can be easily found as

RSP
s =

WsC

NW
, s ∈ S. (23)

If the stationary point, RSP, satisfies (19), then it is the
sought-for optimum and |R| = 1. If, conversely, RSP is not
feasible then FUNC(·) is run recursively with one additional
constraint – either Rs = Rmax

s or Rs = Rmin
s – activated at

each call for all s ∈ S corresponding to non-zero Ns. If,
for instance, the boundary Rs∗ = Rmax

s∗ is activated, then
Rs∗ is set to Rmax

s∗ in the solution candidate while its other
entries are searched for as the solution to the problem under
study with C − Ns∗R

max
s∗ in place of C and Ns∗ set to

zero, hence the recursion. Once all possible combinations of
active constraints have been considered and R populated,
the vector maximizing the objective function (17) is chosen
among the members of R.

Note that whenever (23) does not provide a feasible
solution, the time complexity of Algorithms 1 is exponential
in S. The problem was tackled by iterative methods, namely
the Gradient Projection method, in [5], however, it implied
matrix inversion, which brings its complexity to O(S4) in
the worst case. Under high traffic conditions, when the
number of sessions in slices may change on sub-second

timescales, and when the number of slices is rather high this
could be problematic for implementation. For this reason,
we need faster algorithms that can be found in the ML field.
In the next section, we consider several such approximations
to speed up the resource arbitration process.

5 SUPERVISED ML TECHNIQUES

In this section, we discuss the motivation and specifics of
using supervised ML to enhance the considered resource
arbitration procedure. Then, we formulate the correspond-
ing ML regression problem and introduce the supervised
ML techniques under analysis. Finally, we present the per-
formance criteria that we use for comparing the techniques.

5.1 ML Enhancement Motivation and Specifics
Under high traffic conditions when the number of sessions
in slices may change on sub-second timescales and when
the number of slices is relatively large, obtaining the slice
allocation C = (Cs)s∈S via the procedure described in
Section 4 could be problematic for N ∈ Ωopt as it implies
solving the optimization problem SLICEN,C(·), whose exact
solution is of exponential time complexity. To quicken the
procedure for this range of system states, we propose em-
ploying time-efficient supervised ML techniques permitting
to approximate the solution based upon a number of exact
solution samples.

Recall that the SLICEN,C(R
min,Rmax,Ncont) parame-

ters are of different nature. The SLA thresholds, Rmin, Rmax

and Ncont, change far less frequently than the demand N
(e.g., when a slice is added or removed). We can hence
assume them constant during prolonged periods of time and
retrain the model each time they change. The BS capacity C ,
on the other hand, may vary much more frequently than
N, but, as it will be shown in the next section, remains
concentrated around its mean value, which we denote by C̄ .
We can thus assume that its fluctuations merely induce noise
in sample labels and not consider it as an explicit parameter.

Finally, although SLICEN,C(·) yields a solution in the
form of data rates R, we formulate the ML techniques
for predicting slice capacities C and, consequently, use as
sample labels C = N ◦ RT , where ◦ denotes component-
wise multiplication. This is due to the fact that Cs are much
smoother mapping functions of N compared to Rs, which
tremendously improves regression accuracy.

5.2 ML Problem Formulation
The above discussion brings us to the following ML problem
formulation. Assume Rmin, Rmax, Ncont and C̄ constant
and consider training data

D = {(N(1),C(1)), (N(2),C(2)), . . . , (N(K),C(K))}, (24)

such that, for any k = 1, . . . ,K , sample N(k) satisfies (14),
i.e.

N(k)Rmin ≤ C̄ + ξk < N(k)Rmax, (25)

while C(k) = N(k) ◦ (R(k))T , where R(k) is the solution to
SLICEN,C(·) with N = N(k) and C = C̄ + ξk. Quantities
ξk, k = 1, . . . ,K , are realizations of a random variable ξ
representing random deviation of the BS capacity from its
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mean. Now, our task is to use D to build such a vector
function f(N) = (fs(N))s∈S that C̃ = f(N) represents a
suitable approximation for a slice allocation obtained from
solving SLICEN,C(·) for any N satisfying (25).

For training the models we adopt the common approach
and rely on the quadratic loss function (see, e.g., [39]), which
in our case takes the form

MSE(f,D) =
1

KS

K∑
k=1

S∑
s=1

(
fs(N

(k))− C(k)
s

)2
. (26)

Then, for each type of ML algorithm, the function f that
minimizes the loss (26) is found and evaluated. In what
follows, having training and execution complexity in mind,
we specifically concentrate on two simple approaches (the
linear and polynomial regressions), one with medium com-
plexity (the random forest regressor) and the most complex
one – ANN.

5.3 Linear Regression
The simplest technique we use is linear regression. Here, we
predict the vector of slice capacities in state N as

C̃ = xB = (1, N1, . . . , NS)B, (27)

with the regression coefficients, B, to be determined from
the training data D to minimize (26). The matrix of regres-
sion coefficients can then be computed as [39]

B = (XTX)−1XTY, (28)

where X has the form

X =


1 N

(1)
1 . . . N

(1)
S

1 N
(2)
1 . . . N

(2)
S

...
. . .

1 N
(K)
1 . . . N

(K)
S

 , (29)

and Y = [y1 . . . yS ] with column vectors ys =

(C
(k)
s )k=1,K .
The time cost to train and to query a linear regression

model is, respectively, O(S2K + S3) and O(S) [39]. In our
case, we have S such model, one for each Cs.

5.4 Polynomial Regression
In a polynomial regression of degree 2 the prediction is
computed by (27) with vector x appended on the right with
entries NiNj for all i, j = 1, . . . , S such that i ≤ j. The
matrix of regression coefficients is obtained by (28) in which
matrix X is appended on the right with respective columns
(N

(k)
i N

(k)
j )k=1,K for all i, j = 1, . . . , S such that i ≤ j.

A polynomial regression of degree m > 2 is constructed
from a regression of degree m − 1 by the same proce-
dure. Namely, the prediction is obtained by (27) in which
vector x of a regression of degree m − 1 is appended
on the right with products of the form N i1

1 × · · · × N iS
S

for all is = 0, 1, 2, . . . such that
∑S

s=1 is = m. Matrix
X in (28) is appended by respective columns of the form
((N

(k)
1 )i1 × · · · × (N

(k)
S )iS )k=1,K for all is = 0, 1, 2, . . .

such that
∑S

s=1 is = m. Obviously, the linear regression is
polynomial of degree 1.

5.5 Random Forest Regressor
The random forest algorithm constructs multiple decision
trees on various sub-samples of the dataset and, in the
case of the regressor, returns the average prediction of the
individual trees. A decision tree is built by recursively
partitioning the feature space so that the samples with the
same or similar labels are grouped.

More specifically, let Dm be the training data at tree
node m, |Dm| = Km. For each candidate split θ = (s, nm)
consisting of a feature s and its threshold value nm, the data
Dm is partitioned into D−

m(θ) = {(N,C) ∈ Dm : Ns ≤ nm}
and D+

m(θ) = Dm \ D−
m(θ). The quality of a candidate split

of node m is computed using a loss function L(·) as [40]

g(Dm, θ) =
K−

m

Km
L(D−

m(θ)) +
K+

m

Km
L(D+

m(θ)). (30)

The commonly used loss function for regression prob-
lems is, again, the mean squared error (MSE) [40], defined
as

L(Dm) =
1

KmS

∑
(N,C)∈Dm

S∑
s=1

(Cs − C̄m,s)
2 (31)

with C̄m,s =
1

Km

∑
(N,C)∈Dm

Cs. The split minimizing (30),
say θ∗, is then applied, and the algorithm recurses for
subsets D−

m(θ∗) and D+
m(θ∗) until a predefined maximum

depth is reached or Km = 1. To predict the label of a sample
N the algorithm starts at the root node of the decision tree
and moves down the tree until a leaf is found. The sample
is then associated with the label of this leaf.

According to [40], in general, the run time cost to con-
struct and to query a balanced binary tree is, respectively,
O(KS logK) and O(logK). The time complexity of a ran-
dom forest with T balanced trees is O(TKS logK) to train
and O(T logK) to query, attaining respectively O(TK2S)
and O(TK) in the worst case.

5.6 Artificial Neural Network
The last ML technique investigated is a fully connected
ANN with M ReLU-activated hidden layers of size Jm,
m = 1, . . . ,M , and a linear activation output. More specifi-
cally, the approximation is computed as

C̃ = (1, h
(M)
1 , . . . , h

(M)
JM

)B(M),

ĥ(m) = (1, h
(m−1)
1 , . . . , h

(m−1)
Jm−1

)B(m), m = 2, . . . ,M,

ĥ(1) = (1, N1, . . . , NS)B
(0), (32)

h
(m)
j = max{0, ĥ(m)

j }, j = 1, . . . , Jm, m = 1, . . . ,M.

The matrices B(m), m = 0, . . . ,M , are obtained from D
via backpropagation using the sum quadratic loss.

5.7 Performance Criteria
We evaluate and compare the considered ML techniques
in terms of accuracy and performance within the settings
described in Subsection 3.4. The predictive accuracy of an
ML model f in a labeled dataset D of size K is assessed via

• the root mean square error

RMSE(f,D) =
√
MSE(f,D), (33)
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TABLE 2
Simulation parameters

Notation Value Description
B 400 MHz Bandwidth
BPRB 1.44 MHz PRB size
fc 28 GHz Operating frequency
FN 7 dB Noise figure
GBS 11.57 dBm BS antenna gain
GUE 5.57 dBm UE antenna gain
hB 1.7 m Blocker height
hBS 10 m BS height
hUE 1.5 m UE height
LC 2 dB Cable losses
MI 3 dB Interference margin
N0 – 174 dBm/Hz Noise power spectral density
PBS 24 dBm Transmitting BS power
pout 0.05 Outage probability
SINRthre – 9.478 dB SINR threshold
T 104 s Simulation length
∆t 1 s Channel sampling interval
v 1.5 m/s User speed
σSF(0) 8.2 dB nLoS shadow fading STD
σSF(1) 4 dB LoS shadow fading STD
τRDM 30 s Mean run time in the RDM model
τLoS 30 s Mean LoS/nLoS state time
τHB 3 s Mean HB/nHB state time

• the mean absolute error

MAE(f,D) =
1

KS

K∑
k=1

S∑
s=1

∣∣∣fs(N(k))− C(k)
s

∣∣∣ , (34)

• the maximum residual error

MaxE(f,D) = max
k,s

∣∣∣fs(N(k))− C(k)
s

∣∣∣ . (35)

To evaluate performance of the ML techniques, we con-
sider their time efficiency and the capability to satisfy the
data rate constraints. The former is assessed via: (i) the
prediction time and (ii) the sample dataset size needed for
training, which is particularly relevant in the online learning
setting.

The capability of the approximations to satisfy the con-
straints is estimated using the probability that the approxi-
mate resource allocation to slices results in SLA violation for
capacity C̄ , that is,

V (f,D) =
1

K

K∑
k=1

1{∃s ∈ S :

fs
(
N(k)

) C̄∑S
s=1 fs(N

(k))
< Cmin

s (N (k)
s )}.

(36)

6 EVALUATION SCENARIOS

In this section, we detail our simulation approach for esti-
mating the total cell capacity and specify representative traf-
fic characteristics. The resulting scenarios are then utilized
to numerically assess performance of the ML techniques
discussed in the previous section.

6.1 Dynamic Resource Characterization
We first determine the statistical characteristics of the
stochastic process representing the cell capacity for different
fixed numbers of users N . With each user we associate three

independent Poisson processes (PP) of events. The first,
of rate τ−1

RDM, yields a sequence of times at which a new
movement direction is selected randomly from the inter-
val [0, 2π). The second, of rate τ−1

LoS, provides a sequence
of times at which the user’s LoS/nLoS state is selected
according to the probability (4) in the current position of
the user, and a new value for the shadow fading factor,
χσSF[dB] ∼ N(0, σSF(ILoS)), is sampled with the standard
deviation corresponding to the selected LoS/nLoS state.
The selected LoS/nLoS state and the shadow fading factor
remain unchanged until the next event of this PP. Finally,
the third PP is of rate τ−1

HB and yields a sequence of times
at which the user’s HB/nHB state is selected according to
probability (5).

Simulation time is divided into intervals of length ∆t.
At the beginning of each interval [tj , tj +∆t), j = 1, . . . , T ,
t1 = 0, the new coordinates of user i = 1, . . . , N are
calculated according to the RDM model as described in
Subsection 3.2.4. If a user reaches the boundary of the BS
service area defined by (7), its trajectory is reflected. At
each time tj , j = 1, . . . , T , from the coordinates of each
user i we calculate its 2D distance to the BS, ri,j , and
compute by (2) the user’s SINR

(√
r2i,j +∆h2, ILoS, InHB

)
.

Then, the user’s spectral efficiency, ηi(t), is obtained from
the NR MCS to SINR mapping [34]. The total BS capacity
for t ∈ [tj , tj +∆t) is approximated as C(t) = C(tj) by (9).

The system parameters utilized for cell capacity charac-
terization are provided in Table 2. In this work, we deal with
a relatively long-term resource allocation spanning the time
of a few tens/hundreds of TTIs (the assumed TTI is the
mmWave NR subframe corresponding to the numerology
µ = 3, i.e., 1 ms). Because we are concerned with the
approximate total cell capacity obtained by averaging-out
users’ spectral efficiencies, the channel sampling interval,
∆t, is directly set to a rather large value of 1 s. If, however,
individual users’ data rates are of interest, then one should
track SINR at a much greater time resolution, e.g., 1 ms.

Fig. 3 shows the time series of the total cell capacity
while Fig. 4 reports the cumulative distribution function
(CDF), the probability density function (pdf) and the au-
tocorrelation function (ACF) of C(t) for 30, 40, 50 and
60 UEs. The data in Fig. 4 show that, regardless of the
number of users, the distribution is close to log-normal
reflecting the effect of a power-decaying propagation model.
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Fig. 3. Time series of the cell capacity.
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Fig. 4. Statistical characteristics of the cell capacity process {C(t), t ≥ 0}.

Furthermore, for all the considered numbers of UEs in the
system, the average total cell capacity remains unchanged
at C̄ ≈ 2000 Mbps.

As one may observe in Fig. 4(a) and 4(b), although the
variance of the cell rate decreases with more UEs in the
system, it still remains relatively large even for 60 UEs.
This implies that the constant cell rate assumption, which is
often made for simplicity reasons in slicing algorithms, may
naturally require timely recalculation of the slice shares. The
latter places strict constraints on the algorithms execution
time, thus requiring lightweight ML solutions irrespective
of the implementation type (online or offline). As further
shown in Fig. 4(c), although the memory of the cell rate pro-
cess is rather short, it remains very high over 2–4 s intervals
providing a lower bound on the re-slicing frequency.

6.2 Traffic Characterization

A realistic assessment of traffic conditions is the key to creat-
ing network slicing models meeting modern requirements.
To offer an insight into a typical traffic composition and
its fluctuations, Table 3 provides traffic shares of the most
significant application categories at different periods of the
day based upon statistics collected in North America in 2021
and summarized in [41]. Furthermore, according to the same
report, in the afternoon, the total traffic is about 20 % higher
than during the morning hours. Also, video streaming traffic
clearly predominates in downlink where its average share
attains 48.9 %.

Using these data as a starting point and taking into
account the projected growth in cloud gaming and virtual
and augmented reality (VR/AR) applications [42], for our
analysis we consider a composition of slices with the SLA

TABLE 3
Mobile internet traffic shares, %

Traffic Category Morning Afternoon Evening

Video Streaming 19.2 28.6 32.5
Social Networking 29.0 27.0 26.0
Web Browsing 25.4 22.8 20.8
Gaming 0.5 1.7 1.3
Messaging 6.3 5.8 5.7
Marketplace 2.5 1.8 1.7
File Sharing 0.2 0.3 0.1
Cloud 9.2 5.6 5.5
VPN and Security 3.4 3.4 3.2
Audio 4.3 3.0 3.0

TABLE 4
SLA parameters of slices

Slice type s Rmin
s[Mbps]

Rmax
s[Mbps]

γs[%]

Voice 1 0.1 1 4.5 fixed
Best Effort 2 1 C 2
Video Streaming 3 3 25 10.8
Gaming 4 10 50 8
VR/AR 5 20 100 14
Corporate 6, . . . , S 5 50 4.75

and workload parameter values provided in Tables 4 and 5
respectively. Recall that the considered SLA parameters are
the minimum and maximum user data rates Rmin

s and Rmax
s ,

and the contracted slice resource share γs (12), to which the
slice’s sessions have priority over other slices. The workload
parameters include the mean slice session durations θs, the
user arrival rate in the cell ν, and the probability qs for an
arriving user to be served by slice s ∈ S . The interarrival
times and durations of sessions are assumed exponentially
distributed.

The voice slice in our list is intended for classical cellular
telephony services. Unlike all other slices, we assume it non-
elastic in the sense that its size does not scale in and out
with the demand due to the low data-rate requirement of a
voice session; its capacity share is thus fixed. The best effort
slice serves the traffic of social networking, web browsing,
messaging, file sharing and other services that usually do
not require strict QoS guarantees. The video streaming slice
receives traffic of video streaming applications that provide
quality guarantees to users. Gaming and VR/AR services
are the most resource-demanding with strict latency re-
quirements [43], and therefore have dedicated slices. Finally,
corporate slices are assumed to be client-specific and each
serve a mix of traffic including resource-consuming video
conferencing, but also file sharing, cloud, messaging, etc.

The workload parameters for the scenarios in Table 5
are chosen to yield the following distributions of traffic
shares among slices, assuming the user data rates in slices
R = (1, 20, 10, 25, 50, 25, 25, 25). In scenario SceMo6, which
roughly corresponds to the morning hours, the average
distribution of traffic shares among slices in percentages is
(5, 40, 20, 5, 10, 20, 0, 0) with the average resource utiliza-
tion of 56 %. Scenario SceMo8 is different from scenario
SceMo6 only in that the workload of the corporate slice
is distributed among three corporate slices 6, 7, and 8
in ratios 1/2, 1/4, and 1/4. Scenario SceAN6 represents
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the afternoon and yields the average traffic percentages of
(3, 30, 30, 12, 20, 5, 0, 0) with the utilization of 80 %. Finally,
scenario SceAN8 is similar to scenario SceAN6, but the
workload of the corporate slice is equally distributed among
three corporate slices 6, 7, and 8.

The contracted capacity shares, γs, for slices 1–6 are set
approximately corresponding to the 99-percentiles of their
traffic shares under ν = 3, the maximum qs over all the
scenarios under consideration, and the user data rates Rmin

s .
The contracted shares of all corporate slices are set γ6 for
simplicity. Thus, in this work, we assume that only about a
half of the total capacity is contracted and the remainder is
shared among slices without prioritization. Other scenarios
can be designed based upon different assumptions as to the
InP’s business model and pricing strategies.

7 NUMERICAL RESULTS

In this section, we first numerically illustrate the main
features of the considered slicing scheme. Then, an accuracy
and performance assessment of the ML models under study
is provided, preceded by a short discussion on the utilized
data. Lastly, we address the impact of the cell capacity’s
variability on the efficiency of the slicing scheme.

7.1 Slicing Policy Features
We start with Fig. 5 providing insight into the considered
slicing policy’s features, namely slice isolation, data rate
requirement enforcement and fairness. We consider capacity
C̄ and state N = (58, 22, 23, 2, 2, 9) corresponding to the av-
erage number of users in slices under scenario SceMo6, and
vary the number of users in the video streaming slice. The
voice slice receives a constant capacity share, i.e. C1 = γ1C̄ ,
and the slicing schemes is applied to S̃ = {2, . . . , 6} and
C̃ = (1− γ1)C̄ .

It can be observed in Fig. 5 (bottom) that as N3 grows,
capacity is fairly allocated to users accounting for their min-
imum and maximum data-rate requirements. For instance,
for N3 ∈ [10, 40] the data rate of slice 3 is Rmax

3 , while the
rates in other S̃ slices, being greater than Rmax

3 , are equal
to each other. As soon as the data rates in slices S̃ \ {3}
go below Rmax

3 , all the rates decrease altogether, but not
below their respective minima. However, as soon as N3

grows beyond the contracted value, N cont
3 , the data rates

in other slices do not change and only R3 keeps decreasing
so that the capacity of slice 3 remains equal to its value for

TABLE 5
Workload parameters of slices

SceMo SceAN
ν = 2.5 ν = 2.7

Slice type s θs[sec] qMo6
s[%]

qMo8
s[%]

qAN6
s[%]

qAN8
s[%]

Voice 1 210 11.01 11.01 8.86 8.86
Best Effort 2 10 88.54 88.54 90.32 90.32
Streaming 3 3600 0.25 0.25 0.5 0.5
Gaming 4 1800 0.05 0.05 0.16 0.16
VR/AR 5 1800 0.05 0.05 0.13 0.13
Corporate 6 3600 0.1 0.05 0.03 0.01
Corporate 7 3600 0 0.025 0 0.01
Corporate 8 3600 0 0.025 0 0.01
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Fig. 5. Slice sizes (top) and user data rates (bottom) in states N =
(58, 22, N3, 2, 2, 9) vs. the number of users in slice 3.

N cont
3 (see Fig. 5 top). Thus, performance in slices S̃ \ {3} is

isolated in the case of traffic increase in slice 3 beyond the
contracted capacity.

7.2 ML Assessment Data and Tools
To numerically evaluate the accuracy and performance of
the considered ML models, we rely on two types of labeled
sample datasets. The majority of data is sampled via the
slicing analysis simulator [44] with cell capacity values
simulated via the procedure in Subsection 6.1. Here, sep-
arate datasets are obtained for the four scenarios using the
parameter values in Tables 4 and 5. Another type of datasets
– uniformly sampled – are populated with vectors N where
each Ns is randomly sampled from {0, . . . , ⌊C̄/Rmin

s ⌋}, and
the average capacity is assumed. These are used to evaluate
the offline learning setting.

Data were sampled and labelled with the voice slice
omitted, i.e. assuming S̃ = {2, . . . , S} and C̃ = (1 − γ1)C .
All datasets have been filtered so as to consist of samples
satisfying

∑
s∈S̃ NsR

min
s < C̃ <

∑
s∈S̃ NsR

max
s only. Such

states belong to set Ωopt and require the time-greedy solu-
tion of the optimization problem SLICEN,C(·).

To implement the considered ML models we utilized
the corresponding functions from the scikit-learn library [45],
namely LinearRegression with PolynomialFeatures preprocess-
ing in the case polynomial regressions and RandomForestRe-
gressor with 10 and 50 decision tree estimators. As for the
ANN, we employed Keras’ Sequential model with two ReLU-
activated hidden layers of size 64 and 128. Such a configu-
ration resulted from the hyperparameter optimization on a
SceAN6 dataset using the KerasTuner framework.

7.3 Accuracy of the ML Models
Accuracy assessment results are provided in Tables 6 and
7 and also in Fig. 6 and 7. Specifically, Table 6 shows the
average accuracy for different evaluation settings. Row 1
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TABLE 6
Accuracy of the ML models

S = 6 S = 8
10-fold cross validation Test on a SceMo dataset 10-fold cross validation Test on a SceMo dataset

Technique RMSE MAE MaxErr MAE AbsErrSD RMSE MAE MaxErr MAE AbsErrSD

1. Trained on LinReg 50.66 33.71 864.80 142.43 136.46 30.73 20.55 605.38 95.92 100.39
uniformly PolyReg2 45.07 28.53 860.93 72.19 64.90 27.29 17.12 631.14 99.63 82.35
sampled data, PolyReg4 28.15 17.51 1044.18 65.48 63.04 18.51 11.54 765.11 93.13 92.26
K = 105, RandFor10 16.88 8.54 946.22 69.33 62.14 18.94 11.36 479.04 99.17 87.48
averaged capacity RandFor50 15.39 7.56 943.86 51.06 47.43 22.09 13.82 337.62 89.42 84.09
C̄ = 2000 Mbps ANN 11.34 7.20 616.10 76.22 76.43 7.43 4.77 238.60 115.45 104.16

LinReg 25.98 19.17 366.83 18.83 28.38 20.01 14.65 451.77 14.69 24.34
2. Trained on a PolyReg2 21.89 16.34 394.66 16.01 26.01 15.95 11.70 402.74 11.71 22.88
SceMo simulation PolyReg4 21.12 15.69 433.93 15.46 26.02 15.45 11.29 520.43 11.28 22.88
dataset, RandFor10 24.43 17.81 400.72 19.64 29.94 18.19 13.02 376.50 20.08 27.23
K = 6× 104 RandFor50 23.83 17.38 395.62 18.90 29.29 17.41 12.46 380.63 18.66 25.91

ANN 21.68 16.07 413.95 16.10 25.95 16.01 11.69 394.16 13.33 23.83

LinReg 20.32 15.16 312.64 118.30 108.40 15.01 11.11 292.35 84.07 98.34
3. Trained on a PolyReg2 17.54 13.34 215.59 52.61 41.86 12.68 9.59 209.57 38.12 38.84
SceAN simulation PolyReg4 16.76 12.65 225.66 75.74 120.72 12.13 9.06 220.98 53.76 113.44
dataset, RandFor10 19.29 14.36 258.00 118.28 100.20 14.00 10.32 254.45 89.97 72.43
K = 6× 104 RandFor50 18.69 13.92 253.86 121.32 101.42 13.44 9.91 228.91 88.27 73.26

ANN 17.69 13.54 270.44 77.79 47.15 13.02 9.85 212.46 57.84 43.94

deals with offline learning. Here, the models are trained on
uniformly sampled data with averaged cell capacity and
then tested on SceMo simulation datasets. Rows 2 and 3
illustrate the online learning setting. In row 2 the models
are trained on SceMo datasets different from the test ones,
whereas in row 3 the models are trained on SceAN datasets
and then tested on the test SceMo datasets. The same SceMo6
and SceMo8 datasets are used for testing in all rows.

It can be observed that the online learning setting yields
substantially better results than the offline one as long as
training and testing are performed on data sampled with
the same workload parameter values. However, when tested
on data sampled with differing workload parameters, the
accuracy is generally quite poor, although some models
generalize better than others.

We specifically look into the sensitivity of the models’
accuracy to the change in the workloads in Fig. 6 and 7.
As one may observe, the accuracy of the models is hardly
impaired by variations in the overall workload level (Fig. 6),
but is greatly affected by changes in the workload distribu-
tion among slices (Fig. 7). We clearly see that the polynomial
regressions closely followed by ANN demonstrate the best
generalization capacity among the considered models.

A comparison between S = 6 and S = 8 results
provided in Table 6 shows that an increase in the number of
slices improves the prediction accuracy in the online train-
ing setting. This result is particularly welcome since it is for
a larger number of slices that the exact solution algorithm
becomes slow and an alternative solution is needed.

Whereas the metrics in Table 6 are averaged over all
slices, Table 7 provides accuracy assessment by slice. It
can be observed that all the models simultaneously exhibit
substantial variations in prediction accuracy from slice to
slice. Unfortunately, these variations cannot be explained
and hence predicted from the slices’ SLA parameters: e.g.,
the video streaming slice yields the best accuracy on SceMo
data and the worst on SceAN. On the other hand, we notice
that for each workload range, significant errors come from

about two slices, while approximations for others are satis-
factory. Thus, in the ML pipeline it may suffice to monitor
and adjust predictions for just a few slices.

7.4 Performance of the ML Algorithms
Besides accuracy, we evaluate performance of the consid-
ered models by looking into their prediction time (Table 8),
trade-off between accuracy and prediction time (Fig. 8),
training dataset sizes (Fig. 9) and capability to respect the
data rate constraints (Table 9).

According to Table 8, the regression models are substan-
tially faster than the random forests and ANN. However,
when increasing the number of slices from S̃ = 5 to S̃ = 7,
the execution time of the regressions approximately dou-
bles, while that of RF and ANN barely changes. It should
be noted that the prediction time of regressions and ANN
is determined by the model dimensions, whereas that of RF
also depends on the data and varies from one dataset to
another.
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Fig. 6. Accuracy sensitivity to the overall workload level. For each run,
the models are trained on a SceAN6 sample (ν = 2.7) of size 6×104 and
then tested on samples of size 250 generated for ν ∈ [2.5, 2.9] under
the SceAN scenario assumptions. Lines show MAE averaged over 10
runs vs. ν.
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TABLE 7
Accuracy of the ML models by slice via 10-fold cross validation

Best Effort Streaming Gaming VR/AR Corporate
Dataset Technique RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LinReg 68.49 53.18 4.76 1.31 11.76 8.42 14.11 9.47 30.77 23.46
PolyReg2 64.24 50.18 4.36 1.57 7.25 4.92 8.54 5.77 25.08 19.24

SceMo6 PolyReg4 63.87 49.90 3.38 0.94 6.85 4.57 7.73 5.10 23.77 17.92
RandFor10 73.40 57.16 4.03 0.50 8.02 5.12 9.24 5.91 27.48 20.34
RandFor50 71.69 55.84 3.96 0.50 7.78 4.99 8.95 5.75 26.76 19.84

ANN 64.87 50.81 4.80 1.32 7.02 4.79 8.07 5.42 24.06 17.99

LinReg 29.27 21.71 44.91 35.41 11.86 8.27 9.66 6.50 5.93 3.92
PolyReg2 26.24 19.94 41.84 33.18 9.06 6.55 6.67 4.44 3.87 2.58

SceAN6 PolyReg4 25.37 19.25 40.40 31.59 8.49 6.18 6.00 3.89 3.55 2.34
RandFor10 29.17 22.05 46.11 35.51 9.90 7.11 7.08 4.42 4.24 2.71
RandFor50 28.23 21.34 44.70 34.45 9.58 6.89 6.86 4.30 4.08 2.61

ANN 26.29 20.00 42.21 33.24 8.84 6.39 6.31 4.32 3.79 2.60

Fig. 8 reveals the trade-off between accuracy and predic-
tion time based on the data in Tables 6 and 8 for the online
learning scenario. Here, the XGBoost regression model [46]
is added as a benchmark. It can be observed that PolyReg2
provides the best compromise between execution time and
accuracy.

Fig. 9 shows the learning curves in terms of MAE for the
models under study. We observe that the polynomial regres-
sions perform the best in the online learning setting, with
PolyReg2 potentially slightly less accurate than PolyReg4,
but reaching its maximum accuracy faster, with less than
1500 samples. The accuracy of the random forest regres-
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Fig. 7. Accuracy sensitivity to workload variations among slices. For
each run, the models are trained on a SceAN6 sample of size 6×104

and then tested on samples of size 250 generated for q2 = qAN5
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learning scenario based on data in Tables 6 and 8.

TABLE 8
Prediction time per 1000 of data points, s

S = 6 (S̃ = 5) S = 8 (S̃ = 7)

LinReg 6.30× 10−5 1.11× 10−4

PolyReg2 2.28× 10−4 5.03× 10−4

PolyReg4 1.05× 10−3 2.01× 10−3

RandFor10 2.40× 10−2 2.80× 10−2

RandFor50 2.81× 10−2 2.94× 10−2

ANN 4.51× 10−2 4.47× 10−2

Exact solution 4.35 2.06× 102

sors and ANN keeps improving for much larger training
dataset sizes, especially when learning offline. However, as
we can see from Table 6, good cross-validation results on
a uniformly sampled dataset with a fixed capacity value,
exhibited by ANN and the RF regressors, do not guarantee
satisfactory prediction accuracy on a test dataset simulated
with varying cell capacity and hence noisy.

Finally, Table 9 shows that the approximations via all
the considered ML models are quite prone to SLA viola-
tion, especially under higher workloads. Therefore, what-
ever the adopted model, a specific SLA guarantee control
must be implemented in the ML pipeline by means of
a policy node. Such a node might first check whether
the inequality Cs

C∑
m∈S Cm

≥ Cmin
s (Ns), where Cs is the

size of slice s returned by the model node, holds for all
s ∈ S , and if this is not the case then set Cs = γsC
or Cs = Cmin

s (Ns)
C∑

m∈S Cmin
m (Nm) . Either of these would

provide a suboptimal yet SLA-conform allocation. In our
modeling setup adding such operations would increase the
execution time by about 1.32 × 10−2 s for S = 6 and
1.4× 10−2 s for S = 8 per 1000 data points.

7.5 Impact of Varying Traffic and Channel Conditions

The considered slicing scheme yields the optimal resource
allocation to slices provided that it is executed to the current
cell capacity value. A delay in re-slicing may result in issues

TABLE 9
Probability that the approximation leads to SLA violation, %

LinReg PReg2 PReg4 RF10 RF50 ANN

SceMo 10.30 12.79 10.90 00.50 00.29 11.65
SceAN 19.29 23.31 17.38 19.68 18.14 15.08
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illustrated in Fig. 10. Here user data rates for N correspond-
ing to the average numbers of users in SceMo (top) and
SceAN (bottom) are plotted vs. C . Solid lines show the data
rates computed for each plotted value of C and dashed lines
indicate the data rates computed for C̄ and then scaled for
each C with factor C/C̄ . It can be seen in Fig. 10 (top)
that the scaled data rate in the video streaming slice for
C > C̄ is above the maximum, Rmax

3 = 25, which results
in a waste of resources. A bigger issue can be observed in
Fig. 10 (bottom). Here, the scaled data rate in the VR/AR
slice goes below the required Rmin

5 = 20, which leads to
SLA violation.

To investigate further the impact of capacity variations,
in Fig. 11 we plot vs. the arrival rate the probabilities that the
minimum data rates, although maintained under C̄ , are vio-
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Fig. 10. User data rates vs. cell capacity in the system states corre-
sponding to the average numbers of users in the SceMo (top) and
SceAN (bottom) scenarios. Solid lines represent the data rates com-
puted by Algorithm 1 for each plotted capacity value C; dashed lines
show the data rates computed by Algorithm 1 for C̄ = 2000 and then,
for each C, scaled with factor C/C̄.
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Fig. 11. Probabilities of the minimum data rates’ violation due to capacity
variations vs. ν. The lines represent P{N, ξ : C̄+ ξ < NRmin ≤ C̄} for
user distributions qMo6 (dashed) and qAN6 (solid).

lated under a current capacity value provided that re-slicing
is done in real time. Note that here we do not account for the
contracted numbers of users, and this can hardly result in
SLA violation, for which we need NminRmin > C̄+ξ rather
than NRmin > C̄ + ξ. We observe that under the SceAN
user distribution this probability becomes significant when
the workload initially assumed in the scenario is multiplied
by 3.7, and under SceMo the workload has to be multiplied
by 7. Both probabilities attain about 6–7 % and then go down
as the workload grows further because C̄ also becomes
insufficient for the growing traffic.

The data provided in Fig. 10 and Fig. 11 emphasize that
the variable cell capacity may lead to significant degrada-
tion of contracted rates when re-slicing is not performed
timely. Otherwise, its impact is limited to very high work-
load regimes and barely affects SLA. Complementing these
illustrations is Fig. 12 showing the system degradation
probability for different re-slicing triggers. By the degra-
dation probability we understand the probability that the
data rate requirements of at least one slice are violated.
Separate simulations are performed for (i) the variable cell
capacity sampled at 1 s intervals, (ii) the approximation
via the constant cell capacity C̄ = 2000, and (iii) the
variable cell capacity for degradation control and C̄ for re-
slicing. By analyzing the presented data, one observes that
the least degradation is induced by invoking re-allocations
upon both session arrival and departures. Re-slicing upon
arrivals only shows a performance comparable to that of
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Fig. 12. Estimated probabilities of the minimum data rates’ violation for
different re-slicing triggers under the SceAN6 scenario. Colored bars
represent 1

T

∫ T
0 1{∃s ∈ S : Cs(t) < Ns(t)Rmin

s }dt, where Ns(t) is the
number of sessions in slice s at time t and Cs(t) = Cs(t∗)

C(t)
C(t∗) with t∗

being the time of the last re-slicing before t. The values are estimated
by simulation for T ≈ 8 hours and averaged over 10 runs. Black bars
indicate STD over 10 runs.

the timer-based approach with 1 s intervals in the depicted
SceAN scenario characterized by higher workloads. Quite
naturally, an increase in the re-slicing interval results in a
higher performance degradation. Importantly, we observe
that relying upon a constant cell capacity leads to overly op-
timistic results in high load conditions. At the same time, for
lower load conditions corresponding to the SceMo scenario
(not shown in the figure) no significant difference can be
seen between the three considered parameterizations. Thus,
one can conclude that capturing the cell capacity dynamics
timely is critical in high load conditions.

8 CONCLUSIONS

Motivated by critical time and accuracy constraints for the
slicing process in future 5G NR systems, in this paper we
have compared and evaluated performance of ML algo-
rithms for enhancing a RAN slicing scheme as standard-
ized by ITU-T. By accounting for a realistic channel model
and slice workload distributions, we have assessed their
accuracy and efficiency as well as sensitiveness to cell rate
variations operating in online and offline learning regimes.

We have shown that the online implementation exhibits
improvements over the offline for the same slice compo-
sition, overall workload level and workload distribution
among slices. Furthermore, the polynomial regressions are
potentially our best choice for online learning, since in this
setting they outperform both neural and random forest al-
gorithms in terms of accuracy, execution time, sensitiveness
to workload variations and the size of training data needed
to achieve the optimal accuracy, which makes them suitable
to accommodate frequently changing traffic distributions
across slices. However, the random forest regressor is a close
competitor capable of achieving a better accuracy when
trained offline, although with a much larger training dataset.

By assessing the effect of the overall workload level
and channel variations we have demonstrated that the
latter may lead to significant degradation of the contracted
data rates, especially in high workload regime, if re-slicing
is not performed timely, which drives the need for ML
enhancement. Although when using an ML technique a

monitoring and adjustment mechanism is needed in the
ITU-T standardized ML pipeline (i.e., the policy node) to
enforce SLA constraints.

We note that the proposed approach can be adapted
to other RAN slicing schemes formulated as optimization
problems with constraints. The presented framework, re-
sults and discussion could hence provide guidance for such
an adaptation.
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