
Optimal Service Caching and Pricing in Edge
Computing: a Bayesian Gaussian Process Bandit

Approach
Feridun Tütüncüoğlu and György Dán

Division of Network and Systems Engineering, School of Electrical Engineering and Computer Science
KTH, Royal Institute of Technology, Stockholm, Sweden

Email: {feridun, gyuri}@kth.se

Abstract—Motivated by the emergence of function-as-a-service
(FaaS) as a programming abstraction for edge computing, we
consider the problem of caching and pricing applications for
edge computation offloading in a dynamic environment where
Wirelesss Devices (WDs) can be active or inactive at any point
in time. We model the problem as a single leader multiple-
follower Stackelberg game, where the service operator is the
leader and decides what applications to cache and how much to
charge for their use, while the WDs are the followers and decide
whether or not to offload their computations. We show that the
WDs’ interaction can be modeled as a player-specific congestion
game and show the existence and computability of equilibria.
We then show that under perfect and complete information the
equilibrium price of the service operator can be computed in
polynomial time for any cache placement. For the incomplete
information case, we propose a Bayesian Gaussian Process Bandit
algorithm for learning an optimal price for a cache placement
and provide a bound on its asymptotic regret. We then propose
a Gaussian process approximation-based greedy heuristic for
computing the cache placement. We use extensive simulations
to evaluate the proposed learning scheme, and show that it
outperforms state of the art algorithms by up to 50% at little
computational overhead.

I. INTRODUCTION

Battery powered Wireless Devices (WDs) are increasingly
used for computationally intensive applications such as aug-
mented reality, natural language processing, face, gesture and
object recognition [1, 2]. Nonetheless, executing these kinds of
applications on WDs results in high energy consumption and
can adversely affect battery lifetime and the user experience.

Edge computing could become a promising solution for of-
floading computationally intensive tasks from WDs to nearby
compute resources in the infrastructure via wireless networks.
By computation offloading, it could become possible for
WDs to reduce their energy consumption, while meeting
application latency requirements. Nonetheless, if many WDs
offload simultaneously, application performance could suffer
due to congestion on the limited wireless and computational

The work was partly funded by the Vinnova Center for Trustworthy Edge
Computing Systems and Applications (TECoSA) and the Swedish Research
Council through project 2020-03860. The computations were enabled by
resources provided by the Swedish National Infrastructure for Computing
(SNIC) at Linköping University partially funded by the Swedish Research
Council through grant agreement no. 2018-05973.

resources in the edge infrastructure. This realization has spun
a great interest in edge resource management, pricing and
admission control [3]–[7].

Nonetheless, the management of storage and its interac-
tion with wireless and computing resource management have
received much less attention in the literature [8, 9]. Storage
is an essential prerequisite for the availability of executable
code and data at the edge server, and hence for computation
offloading. Code availability and pricing for computation of-
floading become particularly important in the case of emerging
Function as a Service (FaaS) offerings (also called serverless
computing) where tasks are executed on-demand, by loading
container images from storage to memory, and charging is
based on execution time. Yet, optimizing code availability
and pricing is challenging, as the price and loaded container
images affect the decisions of WDs, and the service operator
may not have access to information about the WDs and
their workloads a priori, e.g., in emerging mobile network
architectures [10]–[12].

In this work, we study this important problem. We explore
the interaction between a profit-maximizing service operator
that performs storage management and pricing, and cost-
minimizing autonomous WDs that can offload their computa-
tion, subject to application availability and latency constraints.
We provide an analysis of the strategic interaction between
the service operator and the WDs under complete and perfect
information. We then consider the incomplete information case
where the service operator has to learn what applications to
cache and what price to charge through repeated interaction
with the devices, whose decisions whether or not to offload
are orchestrated by a network operator. Our main contributions
are as follows.

• We propose a Stackelberg game to model the interaction
between the service operator and the WDs.

• We show that the interaction of the WDs can be modeled
by a player-specific congestion game and we prove the
existence of pure strategy Nash Equilibria.

• We propose a polynomial time algorithm for computing
the optimal price to be charged by the service operator.

• We propose a Bayesian Gaussian Process (GP) Bandit
based approach to approximate Subgame Perfect Equi-
libria (SPE) of the game under incomplete information.

• We use extensive simulations for showing that the re-

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

t = 0

...

t = 1 t = 2

Fig. 1. System with N = 4 WDs and |J | = 5 apps. For each time slot the
figure shows the active WDs, some of which offload (indicated by an arrow
to the access point). The set of offloaders depends on the set X (t) of cached
apps and the price π(t), the decision is coordinated by a network orchestrator.

sulting solution outperforms state-of-the-art Multi-Armed
Bandit (MAB) based algorithms with a small computation
overhead.

The rest of the paper is organized as follows. We present
the system model and problem formulation in Section II. We
show the existence of Nash Equilibrium (NE) and we propose
an algorithm for computing the optimal pricing under complete
information in Section III. We present the proposed Bayesian
Revenue Maximization (BRM) algorithm for learning a SPE
under incomplete information and we provide a regret analysis
in Section IV. We show numerical results in Section V, and
discuss related work in Section VI. Section VII concludes the
paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a multi-access edge computing system that
consists of an edge server with storage capacity S managed by
a service operator, and a set N = {1, 2, . . . , N} of WDs that
can offload their computational task for execution at the edge
server via a wireless link. Time is slotted, and we consider
that each WD i ∈ N is active with probability qi > 0 in time
slot t, independent of other WDs and of its activity in previous
time slots [13, 14]. We consider that a single time slot is long
enough for performing each user’s task both in the case of local
computing and in the case of computation offloading. This
assumption is reasonable in the case of real time applications
if the worst-case task completion time is less than the time
slot length. We define the random variable Bi(t) to model
whether or not WD i is active, i.e., P (Bi(t) = 1) = qi, and
define the set N a(t) = {i ∈ N|Bi(t) = 1} of active WDs in
time slot t. An inactive WD has no task to execute in time
slot t, while if active, WD i wants to execute a task of type
ϕi ∈ J , where J is the set of applications (i.e., the set of
task types). The applications are the software images required
for the execution of the tasks; tasks of different WDs may
need the same application image. The computational task of
WD i is characterized by the size Di of the input data (e.g, in
bytes), by the expected number Lj of cycles per byte required
to perform the task (e.g, in Gcycles/byte) for j = ϕi, and by
the completion time requirement τ̄i.

At the beginning of time slot t, the service operator can
decide to cache a subset X (t) ⊆ J of applications, subject to

N Set of WDs
J Set of applications
t Time slot index
T Time horizon
qi Activeness probability of WD i

ai(t) Offloading decision of WD i at time slot t
Na(t) Set of active WDs at time slot t
ϕi Type of the application that WD i wants to execute
Lϕi

Expected number of cycles per byte for WD i
Di Size of the input data of WD i
X (t) Set of cached apps at time slot t, X (t) ⊆ J
τ̄i Completion time requirement of WD i
sj Storage size of app j ∈ J
S Storage capacity of the edge servers

π(t) Price determined by the service operator at time slot t
τ li Local execution time of the task of WD i

f l
i Local processing frequency of WD i

m(t) Number of offloaders at time slot t
pi Transmission power of WD i
p̂i Maximum transmission power of WD i
Ru

i Transmission rate of WD i
W Channel bandwidth
hi Channel coefficient from WD i to AP
σ̃2
i Noise power at the AP for WD i

τui Upload time of WD i
fc Computing frequency of the edge server
τci Execution time of WD i’s task at the edge servers
γl
i Power use coefficient of WD i

βi Unit energy cost of WD i
C0

i (t) Local computing cost of WD i at time slot t
C1

i (t) Offloading cost of WD i at time slot t
R(X (t), π(t)) Service operator’s instantaneous reward at t
r̄(X (t), π(t)) Average reward of the service operator

TABLE I
TABLE OF NOTATIONS.

its storage capacity constraint

∑
j∈X (t)

sj ≤ S, (1)

where sj is the size of the software image for application
j. Caching application j in time slot t involves a usage cost
cj ∈ R+ to the service operator, e.g., corresponding to the cost
of licensing the application from its owner.

If WD i is active in time slot t (Bi(t) = 1) and the
application it intends to use is cached by the service operator
(ϕi ∈ X (t)) then WD i can decide to offload the computation
to the edge server. We denote by ai(t) the offloading decision
of WD i; ai(t) = 1 corresponds to offloading, and ai(t) = 0
to local computing for time slot t. A WD that offloads in time
slot t is charged unit price π(t) ≥ 0 by the service operator.
We denote by P = [0, π] the domain of prices and assume it is
compact. The active WDs use an orchestrator provided by the
network operator for coordinating whether or not to offload.
We consider that the price π(t) is application independent,
aligned with pricing in current FaaS offerings. The service
operator has to choose and announce the price π(t) before the
set N a(t) of active WDs becomes known, together with the
caching decision X (t).

Next, we present our model of local computing and com-
putation offloading, followed by the problem formulation.

2

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

A. Local Computing

If WD i chooses to perform the task locally, the task needs
to be executed using local computational resources. We denote
by f li the local processing capability (frequency) of WD i, and
express the local processing time as

τ li =
Lϕi

Di

f li
. (2)

We consider that f li can be chosen such that local computing
ensures that the task is completed just upon its deadline, i.e.,
τ li = τ̄i. This assumption is reasonable, as dynamic frequency
scaling is widely used for reducing the energy consumption of
battery powered WDs while meeting performance needs [15].

B. Computation Offloading

If WD i decides to offload, it has to transmit Di amount
of data over the wireless channel to the edge server via an
Access Point (AP), and then processing is performed at the
edge server. We denote by

m(t) =

N∑
i=1

ai(t), (3)

the number of WDs that offload at time slot t, and for
simplicity we consider that the available frequency spectrum
and the edge processing capacity are equally shared among
offloaders. More complex models of resource sharing could
be used in practice.

For data transmission, we make the common assumption
of a Gaussian channel [8, 16], and we express the data rate
achievable by WD i using the Shannon formula [17],

Ru
i (pi,m(t)) =

W

m(t)
log2(1 +

pihi
σ̃2
i

), (4)

where W is the channel bandwidth, hi is the channel coeffi-
cient from WD i to the AP, pi is the transmit power of the WD
i, σ̃2

i is the noise power at the AP, and bandwidth is shared
equally among the m(t) WDs that decide to offload. The
transmission power is bounded by the maximum transmission
power p̂i, i.e., pi ≤ p̂i. Given the data rate, we can express
the upload time as

τui (pi,m(t)) =
Di

Ru
i (pi,m(t))

. (5)

We denote by f c the computing capability of the edge server,
and we consider that it is equally shared among the tasks that
are offloaded, consequently we can model the the processing
time at the edge server as

τ ci (m(t)) =
Lϕi

Di

f c/m(t)
. (6)

C. WD Cost Model

We model the cost of WD i as a combination of its energy
consumption and the price charged by the service operator for
computation offloading. In the case of local computing the
cost is due to the energy consumed by the local processor to
execute the task, i.e.,

C0
i (t) = τ li (f

l
i)

2γliβi, (7)

where γli is the power use coefficient, and βi is the unit energy
cost of WD i.

In the case of offloading the cost is the sum of the energy
consumption of the transmission of the input data and the
execution cost that is to be paid to the service operator. We
consider that the execution cost is proportional to the task
complexity Lϕi

and the input size Di, which is reasonable
for today’s FaaS offerings following the pay-as-you-go model.
The cost of WD i in the case of offloading is thus

C1
i (t) = τui (pi,m(t))piβi + Lϕi

Diπ(t), (8)

where π is the unit price charged by the service operator. The
cost of WD i is thus in each time slot

Ci(ai(t), pi, a−i(t)) =(1− ai(t))(τ
l
i (f

l
i)

2γliβi)+

ai(t)(τ
u
i (pi,m(t))piβi + LϕiDiπ(t)).

(9)

where a−i(t) denotes the offloading decisions of WDs ∀i′ ∈
N \ {i}.

D. Problem Formulation

We consider that the WDs and the service operator are ratio-
nal, strategic entities. The objective of WD i is to minimize its
cost subject to its completion time requirement, the constraint
on the maximum transmission power, and the caching decision
X of the service operator for each time slot, i.e., at time slot
t it aims to solve

min
ai(t)∈{0,1},pi≤p̂i

Ci(ai(t), pi, a−i(t)) (10)

s.t.
ai(t)(τ

u
i (pi,m(t)) + τ ci (m(t))) ≤ τ li ,

ai(t) = 0 if ϕi ̸∈ X (t),

where the first constraint ensures that WD i does not offload
if τui (pi,m(t)) + τ ci (m(t)) > τ li , and the second constraint
ensures that it offloads only if application ϕi is cached by the
service operator.

The service operator’s reward at time slot t is the difference
of its income from the WDs that offload and the cost of
caching applications X (t),

R(X (t), π(t)) = (11)

=
∑

i∈Na(t)

ai(t)Lϕi
Diπ(t)1X (t)(ϕi)−

∑
j∈X (t)

cj ,

where 1X (t)(ϕi) is the indicator function. Observe that
R(X (t), π(t)) depends on the set N a(t) of active WDs, and
hence it is a random variable. The expected reward of the
service operator in time slot t is the expectation with respect
to the distribution of the set of active WDs,

r̄(X (t), π(t)) = EB [R(X (t), π(t))]. (12)

The service operator can choose a policy κ for computing
X (t) and π(t) based on past actions X (τ) and π(τ), and ob-
servations, including the set {i|ai(τ) = 1} of offloading WDs
and the obtained rewards R(X (τ), π(τ)), τ ∈ {0, . . . , t− 1}.
Let us denote by K the set of policies of the service operator.

3

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

For a policy κ ∈ K we define the expected average regret
of the service operator up to time T as the loss of reward
compared to a static decision X ∗, π∗ with maximum expected
reward,

ρκ(T) =
1

T

T∑
t=1

EB [R(X ∗, π∗)−R(X κ(t), πκ(t))]. (13)

The objective of the service operator is to find a policy κ∗

that asymptotically minimizes the expected average regret,

κ∗ ∈ argmin
κ∈K

ρκ = argmin
κ∈K

lim
T→∞

ρκ(T), (14)

subject to the memory storage constraint (1).
The resulting problem is a stochastic sequential game, in

which the service operator and the WDs play a multi-follower
Stackelberg game in every time slot. In the Stackelberg game
the service operator is the leader and the WDs are the
followers. We refer to the problem as the Dynamic Time
Constrained Computation Offloading (DTCCO) game, and
we are interested in learning a policy κ∗ that solves (14)
under incomplete information, i.e., through interaction with
the WDs. Importantly, we assume that the service operator
does not know the set of active WDs and their parameters,
instead WDs report their parameters to a network orchestrator
node owned by the network operator and the orchestrator
node coordinates the offloading decisions of the WDs. This
assumption is reasonable when the network orchestrator and
the service operator are different entities [10]–[12, 18]: the
network operator can have access to traffic information and
WDs’ parameters [12], while the service operator owns or
rents computation resources that it makes available to the
WDs, but needs to decide caching and pricing before WDs
decide whether to use its service.

III. EXISTENCE OF EQUILIBRIA IN THE STAGE GAME

We first focus on the stage game played in time slot t among
the active WDs, and we characterize their interaction for a
given caching decision X (t) and price π(t), chosen by the
service operator. We then consider the problem of pricing
and caching faced by the service operator under complete
information when the service operator knows the set of active
WDs and their parameters. This is equivalent to assuming that
the network operator and the service operator are the same
entity, hence in this section we use the term operator to refer
to both entities. As we focus on a single stage, throughout the
section we omit the time index to simplify notation.

A. Equilibrium Existence Among WDs

Let us consider a caching decision X and price π, and
investigate the interaction of the active WDs, which is in effect
a strategic game. We thus investigate whether the strategic
game played by the WDs admits a pure strategy NE. To assess
whether NE exist, we start with characterizing the optimal
offloading decision for WDs.

Lemma 1. Consider a WD i such that ϕi ∈ X . If Bi = 0 then
WD i is not active, and thus ai = 0. If Bi = 1, i.e., the WD is
active, then if τ ci (m) > τ li then the optimal offloading decision

is a∗i = 0. Otherwise, let p∗i be such that τui (p
∗
i ,m)+τ ci (m) =

τ li . Then, if p∗i > p̂i then a∗i = 0, otherwise

a∗i =

{
1, π ≤ βi(f

l
iγ

l
i − p∗i (

1
f l
i

− m
fc))

0, else,
(15)

where p̂i is the maximum transmission power of WD i.

Proof. Observe that if τ ci (m) > τ li then WD i cannot complete
the task on time, thus the optimal offloading decision is
a∗i = 0. Otherwise, WD i should choose a transmit power
that minimizes its cost while ensuring timely completion. It
is easy to see that the upload time τui (pi,m) is a strictly
monotonically decreasing function of pi, and Ci(1, pi, a−i) is
a strictly monotonically increasing function of pi. Thus, WD i
minimizes its cost by choosing a transmit power p∗i that yields
τui (p

∗
i ,m) + τ ci (m) = τ li . Now, if p∗i > p̂i then offloading is

not feasible. Otherwise, if p∗i ≤ p̂i then the optimal decision
is

a∗i =

{
1, Ci(1, p

∗
i , a−i) ≤ Ci(0, p

∗
i , a−i)

0, else.
(16)

We can substitute τui (p
∗
i ,m) = τ li − τ ci (m), (2) and (6) into

(16), and obtain (15), which proves the result.

The optimal offloading decision of a WDs given other WDs’
decisions is called the best reply, and is used in characterizing
NE, defined as follows.

Definition 1 (Nash Equilibrium). A NE is a collection of
offloading decisions (a∗i)i∈N such that

Ci(a
∗
i , p

∗
i , a

∗
−i) ≤ Ci(1− a∗i , p

∗
i , a

∗
−i),∀i ∈ N . (17)

Observe that the game played between WDs is a player-
specific network congestion game with the topology shown
in Fig. 2. Unfortunately, in player-specific congestion games
the existence of pure strategy NE is not guaranteed. Next, we
use a topological equivalence argument to show that in the
considered game a NE always exists.

Theorem 1. The stage game possesses a pure strategy Nash
equilibrium among WDs.

Proof. Note that the stage game is a player-specific network
congestion game with topology shown in Figure 2 (left).
The nodes S, A, and D stand for Source, Access Point,
and Destination, respectively. In the network topology the
path (S, A, D) corresponds to computation offloading, while
the direct path (S, D) corresponds to local computing with
edge weights Ci(1, p

∗
i , a−i) and Ci(0, p

∗
i , a−i), respectively.

To show the existence of equilibria, in what follows we
show that Γ can be transformed to a network with parallel
edges Γ̃ such that the games played on the two networks
are best response equivalent. We do so by replacing the
edge (A, D) and its two end vertices A and D in Γ by a
single vertex, and by redefining the costs of incident edges.
Thus, we obtain the parallel network topology Γ̃ shown in
Fig. 2 (right), where the local computing cost is defined
as C̃i(0, p

∗
i , a−i) = Ci(0, p

∗
i , a−i) − LϕiDiπ, and the cost

of offloading is C̃i(1, p
∗
i , a−i) = Ci(1, p

∗
i , a−i) − Lϕi

Diπ.

4

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Fig. 2. Topology of the network congestion game Γ and Γ̃ used in the proof
of Theorem 1.

Observe that the difference between the cost functions of
WD i in Γ and that in Γ̃ depends only on the strategy of
the operator. This in fact implies that Γ̃ and Γ are best-
response equivalent, and thus they have identical sets of pure
strategy Nash equilibria. Since Γ̃ is a singleton player-specific
congestion game, it possesses a pure NE [19], and so does Γ.
This concludes the proof.

Given that equilibria do exist, the next question is whether
a NE can be computed easily. E.g., one could allow one
WD at a time to improve its strategy, i.e., increase the
payoff it receives, leading to an improvement path. If every
improvement path is finite then the game is said to have the
Finite Improvement Property (FIP), and a NE can be computed
easily. Unfortunately, the FIP is not guaranteed in player-
specific congestion games. Next, we show that the considered
game does have the FIP.

Lemma 2. The stage game possesses the finite improvement
property, i.e., if WDs update their offloading strategies one at
a time, they reach a NE in a finite number of steps.

Proof. Each WD has two strategies, thus the result follows
from Theorem 1 in [20].

Hence, an equilibrium can be computed through letting
WDs update their offloading strategies one at a time. We can
thus conclude that for any caching decision X and price π
set by the operator, there is a NE for the WDs in the stage
game, and a NE can be computed efficiently. For a practical
implementation, each WD can calculate its threshold price (15)
for all 1 ≤ m ≤ N , and hence the active WDs can find
a NE by only sharing their threshold prices with a network
orchestrator entity.

B. Optimal Pricing under Complete Information

Next, we consider the problem of the operator in the
stage game, and we propose a polynomial-time algorithm for
computing the optimal equilibrium price for a given caching
decision X . Throughout the subsection, we consider Strong
Stackelberg Equilibrium (SSE), i.e., if there are multiple
subgame perfect equilibria then one with maximum utility
for the operator will be chosen. Throughout this subsection,
we denote by U(a,X , π) = R(X , π|N a) the instantaneous
reward.

Let us denote by πi,m the maximum price at which WD i
would choose to offload for a particular number of offloaders
m ≤ N , and let us call πi,m the threshold price of WD i for m.
In addition, we define the notation that we will use in this sec-
tion. Let us define the set N o(π,m) = {i| i ∈ N , πi,m ≥ π}
of potential offloaders at price π if there were m offloaders,
and define the set NX = {i| i ∈ N , ϕi ∈ X} of WDs whose
applications are cached by the operator. We then define the
set Πt = {πi,m|i ∈ N , 1 ≤ m ≤ N} of threshold prices. We
define corresponding sets for the set X of cached applications;
we define Πt

X = {πi,m|i ∈ NX , 1 ≤ m ≤ NX } as the
set of threshold prices. We define the set N o

X (π,m) = {i ∈
NX | πi,m ≥ π} of WDs that would want to offload at price
π if a total of m WDs offload for cached application set
X . Under the complete information assumption the threshold
prices πi,m, i ∈ N can be calculated using Lemma 1. For an
application placement X and price π we denote by α∗(X , π)
the set of Nash equilibria among WDs that yield maximum
utility to the operator.

We continue with an important result that we will use
for proposing a polynomial time algorithm that computes the
utility maximizing price.

Lemma 3. Consider an application placement X and thresh-
old prices π′, π′′ ∈ Πt

X such that there is no threshold
price in the interval (π′, π′′), i.e., (π′, π′′) ∩ Πt

X = ∅. Let
π1, π2 ∈ (π′, π′′], π1 < π2. Then the set of equilibria
α∗(X , π1) = α∗(X , π2). Furthermore, for any a ∈ α∗(X , π1)
the utility of the operator is a monotonically increasing linear
function on (π′, π′′], i.e., U(a,X , π1) < U(a,X , π2).

Proof. We start with proving the first statement, i.e.,
α∗(X , π1) = α∗(X , π2). Let a ∈ α∗(X , π1) be an equi-
librium under price π1. Now, since there is no thresh-
old price on (π′, π′′), for any π2 ∈ (π1, π

′′) it holds
that Ci(1, p

∗
i , a−i) ≤ Ci(0, p

∗
i , a−i) for π1 if and only if

Ci(1, p
∗
i , a−i) ≤ Ci(0, p

∗
i , a−i) for π2, ∀i ∈ NX . Hence,

a ∈ α∗(X , π2).
To prove the second statement, let us consider an equilib-

rium a ∈ α∗(X , π′′). By the previous statement we know that
a ∈ α∗(X , π) for π ∈ (π′, π′′]. We can rewrite (11) for the
equilibrium strategy profile a under homogeneous pricing and
obtain

U(a,X , π) =
∑

i∈N :ai=1

1X (ϕi)LϕiDiπ −
∑
j∈J

cj , (18)

which is monotonically increasing in π for any given X on
(π′, π′′]. For all π ∈ (π′, π′′], WDs will not change their deci-
sions. Therefore, we can treat C̃ =

∑
i∈N :ai=1 1X (ϕi)DiLϕi

as a constant, and can substitute it in (18) to obtain

U(a,X , π) = C̃π −
∑
j∈J

cj . (19)

Since ∂U(a,X ,π)
∂π = C̃, the utility of the operator is a linear

function on (π′, π′′]. This concludes the proof.

The above result allow us to characterize the reward as a
function of the price π set by the operator.

5

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Proposition 1. U(a,X , π) is a left-continuous piecewise-
linear function of π.

Proof. Consider prices π′, π′′ ∈ Πt
X for some X ⊆ J such

that (π′, π′′) ∩ Πt
X = ∅. Then, by Lemma 3, U(a,X , π) is

an increasing affine function on the interval (π′, π′′]. Since
the set Πt

X has a finite number of elements, U(a,X , π) is a
collection of left-continuous monotonically increasing linear
functions, and it is thus piecewise linear.

Next, we characterize equilibria to allow finding an optimal
price efficiently.

Lemma 4. Let a′, a′′ ∈ α∗(X , π) be NE for application
placement X and price π. Then

∑
i∈NX

a′i =
∑

i∈NX
a′′i ≤ m,

i.e., the number of offloaders is the same in the NE.

Proof. We prove
∑

i∈NX
a′i =

∑
i∈NX

a′′i by contradiction.
Let m′ =

∑
i∈NX

a′i and m′′ =
∑

i∈NX
a′′i , and without

loss of generality, assume that m′′ < m′. Then, for strategy
profile a′, there has to be at least m′ WDs with πi,m′ ≥ π.
Similarly, for NE strategy profile a′′, there have to be at least
m′′ WDs with πi,m′′ ≥ π. Observe that πi,m′ < πi,m′′ since
by assumption m′′ < m′. However, if a′ is a NE then we
know that there are at least m′ WDs for which πi,m′′ ≥ π.
Thus in strategy profile a′′ there are at least m′−m′′ WDs that
would prefer offloading at price π, and hence a′′ cannot be a
NE, which contradicts the initial assumption. Thus, m′ = m′′

must hold, which concludes the proof.

We now use Lemma 4 for designing an algorithm for
computing the NE. First, we show that for given π and
application placement X , a NE with maximum payoff for the
operator can be computed in polynomial time. To show this,
observe that for given price π, the operator’s income from a
WD that offloads is U(ai, {ϕi}, π) = ai1X (ϕi)LϕiDiπ, and
is independent of what other WDs are offloading.

Lemma 5. Consider a price π and application placement X .
Let m′ = maxm {|N o

X (π,m)| ≥ m}. Consider a set N † ⊆ N ,
N o

X (π,m′+1) ⊆ N † ⊆ N o
X (π,m′) such that |N †| = m′ and∑

i∈N †\No
X (π,m′+1) Lϕi

is maximal. Then the strategy profile
a in which ai = 1 ⇐⇒ i ∈ N † is a NE with maximum
payoff for the operator, and can be found in polynomial time.

Proof. Consider m′ = maxm {|N o
X (π,m)| ≥ m}, and ob-

serve that N o
X (π,m′ + 1) ⊂ N o

X (π,m′). Since |N o
X (π,m′ +

1)| = m′′ < m′ + 1 in any NE
∑

i∈NX
ai < m′ + 1, at the

same time there is at least one NE in which
∑

i∈NX
ai = m′,

thus by Lemma 4 we know that
∑

i∈NX
ai = m′ for any

a ∈ α∗(X , π). Clearly in a NE with m′ offloaders ai = 1 for
WDs i ∈ N o

X (π,m′+1), and hence there are
(|No

X (π,m′)|−m′′

m′−m′′

)
equilibria that can be computed, with potentially different
payoffs for the operator. To find an equilibrium with highest
payoff for the operator, recall that the income U(ai, {ϕi}, π)
from WD i offloading is independent of what other WDs
offload. Hence the set N † of offloaders that maximizes the
income of the operator is such that N o

X (π,m′ + 1) ⊆ N †,
and it contains the WDs with highest Lϕi

Di from the set
N o

X (π,m′) \ N o
X (π,m′ + 1).

Algorithm 1: Computing a NE for WDs

Data: X , π Result: N †

1 m′ = maxm {|N o
X (π,m)| ≥ m}

2 N † = ∅
3 if m′ < |NX | then
4 N † = N o

X (π,m′ + 1)
5 end
6 N †.add({| argmax

∑
i∈No

X (π,m′)\No
X (π,m′+1) Lϕi

Di| =
m′ − |N †|})

Algorithm 2: Calculating optimal price for given X
Data: X ,Πt

X Result: π∗, U∗

/* Calculate the operator’s revenue
for each πi,m */

1 for k′ = 1 : |Πt
X | do

2 N † =Algorithm1(X ,Πt
X (k′))

3 U(k′) =
∑

i∈N † Lϕi
DiΠ

t
X (k′) -

∑
j∈X cj

4 end
5 U∗ = maxk U(k′)
6 k∗ = min{k′|U(k′) = π∗}, π∗ = Πt

X (k′∗)

To see that the solution can be obtained in polynomial time,
observe that m′ can be found based on N o

X (π,m), and N †

can be found by sorting WDs in decreasing order of Lϕi
Di,

both in polynomial time (see Algorithm 1).

Lemma 5 allows us to compute a NE among the WDs
efficiently, one that is in accordance with the SSE assumption,
i.e., it maximizes the revenue of the service operator. Given a
NE for a given price, we are now ready to compute the price
that maximizes the operator’s revenue for given application
placement.

Theorem 2. Consider an application placement X . Then the
price π∗ computed by Algorithm 2 maximizes the operator’s
revenue, i.e., U(a∗,X , π∗) ≥ U(a,X , π),∀a∗ ∈ α∗(X , π∗),
(π, a) ∈ α∗(X , π).

Proof. Consider a price such that π /∈ Πt
X , and allows a set

of equilibria α∗(X , π). Then, for any consecutive threshold
prices (i.e. π′, π′′ ∈ Πt

X , (π′, π′′) ∩ Πt
X = ∅), let π be such

that π′ > π > π′′. By Lemma 3 the two prices allow the same
set of equilibria, a ∈ α∗(X , π′) = α∗(X , π), and the utilities
satisfy U(a,X , π′) > U(a,X , π). Thus, to be able to find the
profit maximizing price and the corresponding strategy profile,
it is sufficient to compute U(a,X , π′),∀π′ ∈ Πt

X and then find
the price such that π∗ = argmaxπ′∈Πt

X
U(a,X , π′). Hence,

Algorithm 2 computes a price that maximizes the utility of the
operator.

Theorem 2 implies that the optimal price π∗ is a threshold
price for the given caching decision X , i.e., π∗ ∈ Πt

X , and
the operator can find the optimal price by calculating and
comparing the utility at the threshold prices. Thus, an optimal
price can be computed in polynomial time for any given
caching decision X under complete information.

6

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IV. BAYESIAN OPTIMIZATION FOR REGRET MINIMIZATION

We have so far shown how to choose an optimal price
for a caching decision X under complete information and
characterized the reward as a function of the price. In what
follows we consider the incomplete information case, i.e., the
network operator and the service operator are different entities.
We characterize the expected reward of the service operator
under incomplete information and we propose an online policy
for maximizing it, including the computation of a near-optimal
caching decision X ∗ together with a corresponding optimal
price, which together approximate a solution to (14).

A. Characterization of the per stage expected reward

We first start with characterizing the expected reward as a
function of the price π(t) chosen by the service operator for
a single time slot t. For brevity, we omit the time index t in
this subsection.

Proposition 2. r̄(X , π) is a piecewise linear, left-continuous
function of π.

Proof. Recall that r̄(X , π) is by definition the expectation
of the reward R(X , π|N a) = U(a,X , π), where the expec-
tation is taken over the set N a of active WDs. Thus, by
Proposition 1 it is the weighted sum of piecewise linear left-
continuous functions, and is thus itself piecewise linear and
left-continuous.

Thus, for any X ⊆ J there is a price π∗
X ∈ argmaxπ r̄(X , π).

We now continue with the analysis of the maximal expected
reward, starting with the definition of two properties of reward
functions.

Definition 2. The set function r̄ : 2J → R is monotone if for
any X ⊂ J and j ∈ J \ X we have r̄(X ∪ {j}) ≥ r̄(X).

Definition 3. Given scalar 0 < ν ≤ 1, we say that the set
function r̄ : 2J → R is ν-weakly submodular if∑
j∈X ′

(
r̄(X ∪ {j})− r̄(X)

)
≥ min{ν(r̄(X ∪ X ′)− r̄(X)),

1

ν
(r̄(X ∪ X ′)− r̄(X))}, (20)

where X ,X ′ ⊆ J , X ∩ X ′ = ∅.

Monotonicity is a common assumption, e.g., in Knapsack
problems with independent item values. As we show next, in
the considered problem the service operator’s expected reward
need not be monotone.

Proposition 3. Let X ⊆ J and j ∈ J \ X , then

r̄(X ∪ {j}, π∗
X∪{j})− r̄(X , π∗

X) ⪋ 0. (21)

Proof. We prove the result through the following example.

Example 1. The WDs’ parameters are as shown in Table II.
The system-wide and application parameters are |J | = 2,
Lj = (517, 820), cj = (0.025, 0.019), γli = 10−18, βi = 1,
f c = 12 GHz, W = 240 MHz. The resulting expected rewards
are r̄({1, 2}, 0.24×10−9) = 5.49, r̄({1}, 0.34×10−9) = 0.15,

r̄({2}, 0.23 × 10−9) = 5.52, clearly r̄({1}, 0.34 × 10−9) <
r̄({1, 2}, 0.24× 10−9) < r̄({2}, 0.23× 10−9).

Hence, the expected reward is not monotone.

Together with monotonicity, submodularity is often used for
obtaining approximation ratio bounds for NP-hard optimiza-
tion problems. As we show, in our considered problem the
expected reward need not be submodular, as it is not even
weakly submodular.

Proposition 4. Let X ,X ′ ⊆ J , X ∩ X ′ = ∅. Then,∑
j∈X ′

(
r̄(X ∪ {j})− r̄(X)

)
< min{ν(r̄(X ∪ X ′)− r̄(X)),

1

ν
(r̄(X ∪ X ′)− r̄(X))}, (22)

for any ν ∈ (0, 1].

Proof. We prove the statement by giving a counterexample
for ν-weak submodularity.

Example 2. The WDs’ parameters are as shown in Table III.
The system-wide and application parameters are |J | = 3,
Lj = (530, 630, 1039), cj = (0.0986, 0.09, 0, 0982), γli =
10−18,βi = 1,f c = 12 GHz, W = 280 MHz. Assume that
X ′ = {1, 2}, and X = {3}. The expected reward for this
experiment are r̄({3, 1}, π∗

{3,1}) = 7.3689, r̄({3, 2}, π∗
{3,2}) =

7.3604, r̄({3}, π∗
{3}) = 7.459, r̄({1, 2, 3}, π∗

{1,2,3}) =
7.6142. Using (20), r̄({3, 1}, π∗

{3,1}) + r̄({3, 2}, π∗
{3,2}) −

2r̄({3}, π∗
{3}) = −0.1887, and r̄({1, 2, 3}, π∗

{1,2,3}) −
r̄({3}, π∗

{3}) = 0.1551.

The left hand side of the inequality (20) is negative, whereas
the right hand side is positive. The inequality does not hold,
hence function is not weakly submodular in general.

We have thus shown that the expected reward r̄ is neither
monotone nor weakly submodular in general. Hence, existing
results on monotone submodular function maximization do not
hold for our problem.

Moreover, our analysis of the expected reward highlights
two key challenges in learning an optimal policy κ∗ based
on past observations, challenges not found in the literature
on Combinatorial Multi-Armed Bandit (CMAB) optimiza-
tion [21, 22]. First, the expected reward of caching an appli-
cation depends on what other applications are cached, i.e., in
bandit terminology, the expected reward of a bandit arm is not
independent of the set of arms chosen. Second, the rewards of
the cached apps X depend on the chosen price π, i.e., there
is an additional continuous decision variable that needs to be
optimized.

WD f l
i σ̃2

i Di p̂i hi qi ϕi

WD1 0.23 0.2078 44 0.1 0.93 0.67 2
WD2 0.34 0.184 0.42 0.176 0.84 0.42 1

TABLE II
WDS’ PARAMETERS FOR EXAMPLE 1

7

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

WD f l
i σ̃2

i Di p̂i hi qi ϕi

WD1 0.595 0.161 13.65 0.32 0.96 0.52 3
WD2 0.288 0.127 47.5 0.26 0.95 0.37 2
WD3 0.506 0.106 24.6 0.29 0.96 0.3 3
WD4 0.452 0.129 3.34 0.23 0.87 0.9 1

TABLE III
WDS’ PARAMETERS FOR EXAMPLE 2

As a consequence, existing approaches for solving CMAB
problems, which choose a set of arms (called a super arm)
using a computation oracle that is provided with the empirical
distribution of the rewards of individual arms, can not be
applied directly to our problem. Instead, the choice of what
set of applications to cache has to be combined with learning
the corresponding optimal price.

B. Combinatorial Bayesian Revenue Maximization
Motivated by the above observations, we propose the BRM

algorithm for approximating an optimal policy. BRM com-
bines the exploration of the expected reward of individual
applications with the maximization of the reward of a set of
applications that are expected to provide the highest reward,
computed based on current best estimates. Importantly, the
optimization of the price is specific to the set of cached
applications, so as to address the issue of potential non-
monotonicity. The pseudocode of the algorithm is shown in
Algorithm 3.

The key tenet of BRM is that it simultaneously learns
to approximate the maximum expected reward of individual
applications and sets of applications. With a small, decreasing
probability, at time t it caches a single application chosen at
random, while otherwise, it selects a set of applications to
cache based on their estimated maximum expected rewards,
computed using the posterior mean reward of the applications
obtained using a GP approximation. For the chosen set X of
applications, it then chooses a price π based on samples of
the instantaneous rewards collected in the past, for that set of
applications, using a GP approximation of the expected reward
function (Line 11).

For a given application placement X , the function that
we want to maximize is one dimensional, i.e., r̄(X , π) :
P → R, and we propose to approximate it by a GP us-
ing Bayesian Optimization (BO). Let us denote by Dt =
{(X (l), π(l), R(X (l), π(l))}tl=1 the set of reward samples col-
lected up to time t, and by DX

t = {(X , π(l), R(X , π(l))|l =
1, . . . , t;X (l) = X} the reward samples collected for a set X
of applications up to time t. Let nXt = |DX

t | be the number of
reward samples collected for set X , and let πX (l) be the price
used when the target function of set X was sampled the lth

time, 1 ≤ l ≤ nXt , and denote by PX
t = [πX (1), . . . , πX (nXt)]

the vector of prices used when the target function of set X is
sampled.

For a set of applications X at time t the GP approximation
of the expected reward function r̄(X , π(t)) as a function
of the price models the expected reward as a collection of
random variables {r̄(X , π)}π∈P , such that the finite collection
of random variables {r̄(X , πX (l))}l≤nX

t
are jointly Gaussian

with mean

E[r̄(X , πX (l))] = µX (πX (l)), (23)

and covariance

cov(r̄(X , πX (l)), r̄(X , πX (l′))) = (24)

E
[(
r̄(X , πX (l))− µX (πX (l))

)(
r̄(X , πX (l′))− µX (πX (l′))

)]
= kX (πX (l), πX (l′)) ≤ 1,

for all l, l′ ≤ nXt , where kX is called the kernel func-
tion. An example of commonly used kernel functions is the

squared exponential kernel k(π, π′) = e−
||π−π′||2

2θ2 , where
θ is called the length scale parameter. Let us denote by
yX
t = [R(X , πX (1)), . . . , R(X , πX (nXt))]T the vector of

revenue samples collected until time t. Then, the posterior
distribution of the GPs approximation of the expected reward
with zero mean prior (i.e., GP (0, kX (., .)) will have mean
µX
t (π), covariance kXt (π, π′) and variance σX

t (π) that can be
computed as [23]

µX
t (π) = kX

t (π)T (KX
t + σ̄2I)

−1
yX
t (25)

kXt (π, π′) = kX (π, π′)− kX
t (π)T (KX

t + σ̄2I)−1kX
t (π′)

(26)

σX
t (π) =

√
kXt (π, π), (27)

where kX
t (π) = [kX (π, πX (1)), . . . , kX (π, πX (nXt))]T ∈

RnX
t , KX

t =
(
kX (πX (l), πX (l′))

)
l,l′≤nX

t
∈ RnX

t ×nX
t is the

positive semi-definite kernel matrix, I is the nXt ×nXt identity
matrix, and σ̄2 is the prior of the noise variance.

Given the posterior distribution GP (µX
t , k

X
t), the algorithm

chooses the next price πX (nXt + 1) to be explored so as to
maximize the upper-confidence bound of the expected reward,
which is computed based on µX

t and σX
t (Line 11). Intuitively,

maximization of the upper confidence bound aims at finding a
tradeoff between maximizing the instantaneous reward based
on past samples and between exploring prices for which
the estimated reward has high variance. BRM is inspired by
the recently proposed Enlarged Confidence Gaussian Process
Upper Confidence Bound (EC-GP-UCB) algorithm [24], but
compared to EC-GP-UCB it uses a novel acquisition function
that results in a deterministic regret bound. In addition, it
extends the GP approximation to the selection of cached
objects, performed using the GP-Non-negative Greedy (NNG)
algorithm, which also makes use of the estimated posterior
means.

C. Regret Analysis

In this section we provide a bound on the regret achieved
by the proposed algorithm. We consider a particular set X
of cached apps throughout the subsection, i.e., we provide a
bound on the regret

ρX (T) =

T∑
t=1

(
max
π∈P

r̄(X , π)− r̄(X , π(t))
)

(28)

and hence we omit X , and we use t instead of nXt for sim-
plicity. We start with introducing Reproducing Kernel Hilbert

8

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Algorithm 3: BRM
Result: r̂

1 t = 1, r = 0,D0 = ∅
2 for t = 1, 2, . . . do
3 θ(t) ∼ Bernoulli(t−ξ)
4 if θ(t) = 1 then
5 X̂ = {Unif(J)} /* Choose j ∈ J

uniform at random */
6 else
7 X̂ =GP-NNG({µ{j}

t−1}j∈J)
8 end

/* GP approximation for X̂ between
Line 10-12 */

9 DX̂
t−1 = {(X , π,R) ∈ Dt−1|X = X̂ }

10 ψX̂
t−1 =

ϵmax
√

nX̂
t−1

σ̄ + V
11 π̂X̂ ∈

argmaxπ∈P µ
X̂
t−1(π)+

(
ψX̂
t−1+

∆
√

nX̂
t−1

σ̄

)
σX̂
t−1(π)

/* Observe R(X̂ , π̂X̂) */

12 DX̂
t = DX̂

t−1 ∪ {(X̂ , π̂X̂ , R(X̂ , π̂X̂))}
/* Compute µX̂

t , σ
X̂
t using (25)-(27) */

13 r = (r +R(X̂ , π̂X̂))
14 r̂ = r/t
15 end

Algorithm 4: GP-NNG Algorithm

Data: {µ{j}}j∈J Result: X
1 X = ∅
2 Mj = maxπ µ

{j}(π), M := {Mj}j∈J
3 while M ̸= ∅ ∧

∑
j∈X sj ≤ S do

4 j∗ = argmaxj Mj /* Ties are broken
arbitrarily */

5 if maxπ
∑

j∈X∪{j∗} µ
{j}(π) ≥

maxπ
∑

j∈X µ
{j}(π) then

6 X = X ∪ {j∗}
7 end
8 M =M \Mj∗

9 end

Spaces (RKHSs), which is a central concept in the study of
BO using GPs.

Definition 4 (Hilbert Space). A Hilbert Space is an inner
product space that is complete with respect to the norm
induced by the inner product (Ex. Rd, d ∈ N+).

Definition 5 (Reproducing Kernel Hilbert Space). Let L ≠
∅ and Hk be a Hilbert function space over L that consists of
functions f : L → R.

• A function k : L × L → R is called a reproducing
kernel of Hk if we have k(., l) ∈ Hk,∀l ∈ L and the
reproducing property

f(l) = ⟨f, k(., l)⟩ (29)

holds ∀f ∈ Hk and ∀l ∈ L
• The space Hk is called a RKHS over L if ∀l ∈ L the

Dirac functional δl : Hk → R defined by

δl(f) := f(l), f ∈ Hk (30)

is continuous.

Many recent works in BO obtained regret bounds for functions
that belong to some RKHS with a continuous kernel [25],
[24], [26], [27]. By using a RKHS with a universal continuous
kernel one can uniformly approximate any continuous bounded
function on a compact domain [28]. There are well known
zero-regret optimization algorithms for objective functions that
are inside of RKHS Hk spanned by a given continuous kernel
k [25, 26]. By Lemma 4.28 in [29], we know that if Hk

is an RKHS generated by kernel k, then k is bounded and
separately continuous if and only if ∀f ∈ Hk is bounded and
continuous. Nonetheless, by Proposition 2 we know that r̄ is
not continuous, and hence r̄ /∈ Hk for any continuous kernel
k. Consequently, achieving zero-regret is infeasible.

Hence, our regret bound is based on first bounding the regret
that we could achieve if the target function was in a suitably
chosen RKHS, and, one that is known to contain functions
that are not too far from our target function r̄. To make this
precise, for a kernel k let us denote by Hk(P) the RKHS of
well-behaved functions over the domain P formed by k. Let
us define the class of functions with bounded RKHS norm

Fk(P, V) = {r̄h ∈ Hk(P) : ||r̄h||k ≤ V }, (31)

i.e., the RKHS norm ||r̄h||k =
√
⟨r̄h, r̄h⟩k is bounded by V >

0, where ⟨., .⟩ is the inner product forming Hk. Furthermore
let us choose a class of functions Fk(P, V) so that there exists
a ∆ > 0 such that

min
r̄h∈Fk(P,V)

||r̄h − r̄||∞ ≤ ∆, (32)

and there is a function

r̃ ∈ argmin
r̄h∈Fk(P,V)

||r̄h − r̄||∞, (33)

such that ||r̃ − r̄||∞ ≤ ∆, where the norm is the maximum
pointwise difference over P . We refer to Fk(P, V) as the
hypothesis class and to r̃ as the hypothesis function, and we
note that by definition |r̃(π)− r̄(π)| ≤ ∆,∀π ∈ P .

We will start with bounding the regret in the hypothetical
scenario that our observations are taken from the hypothesis
function, defined as

ρ̃(T) =

T∑
t=1

(
max
π∈P

r̃(π)− r̃(π(t))
)
. (34)

To continue the analysis, let us first recall that we can only
take noisy observations of the target function r̄, i.e., yt′ =
R(π(t′)) = r̄(π(t′)) + ϵ(π(t′)), 1 ≤ t′ ≤ t. By (32) and (33)
we know that there is a function v(π) such that

r̄(π) = r̃(π) + v(π), v(π) ∈ [−∆,∆], (35)

9

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

and hence we can express the observations as

yt′ = r̃(π(t′)) + v(π(t′)) + ϵ(π(t′)), 1 ≤ t′ ≤ t (36)

yht′ = yt′ − v(π(t′)), (37)

where yht′ is the hypothetical noisy observations at time slot t′

if we had sampled from the hypothesis function, and ϵ(π(t))
is the observation noise.

As a first step we show that the observation noise ϵ(π(t))
is σ-sub-Gaussian, defined as follows.

Definition 6 (Sub-Gaussian Distribution). Let σ > 0. We
say that the random variable X is σ-sub-Gaussian if

E
[
exp

(
µ(X − E[X])

)]
≤ exp

(σ2µ2

2

)
(38)

for any µ ∈ R. σ2 is called the variance proxy.

Lemma 6. The observation noise ϵ(π(t)) is σ-sub-Gaussian
with proxy σ2 = (ϵmin − ϵmax))2/4, where ϵmin =
minπ(t)∈P ϵ(π(t)), ϵmax = maxπ(t)∈P ϵ(π(t)).

Proof. Observe that E[ϵ(π(t))] = E[R(π(t)) − r̄(π(t))] = 0
for any π(t) ∈ P , and ϵmin ≤ ϵ(π(t)) ≤ ϵmax. By using
Hoeffding’s Lemma we obtain

E[eµϵ(π(t))] ≤ exp
(
µ2(ϵmax − ϵmin)2/8

)
, (39)

and hence for σ2 = (ϵmax − ϵmin)2/4 the observation noise
ϵ(π(t)) is σ-sub-Gaussian by Definition 6.

Let us first assume that we have a target function r̄h that is
inside the hypothesis class (we will remove this assumption
later), i.e., r̄h ∈ Fk(P, V), we can then bound the pointwise
error between the posterior mean µh

t computed using (25) at
time slot t and the target function r̄h as a function of the
variance σt.

Proposition 5. Let r̄h ∈ Fk(P, V) and let yt be the vector
of noisy observations that corresponds to sampled prices Pt.
Then for t ≥ 1 and π ∈ P we have

|r̄h(π)− µh
t (π)| ≤ ψtσt(π), (40)

where ψt =
ϵmax

√
t

σ̄ + V .

Proof. The proof can be found in the Appendix.

In reality, our target function is not an element of the hypothe-
sis class (i.e. r̄ /∈ Fk(P, V)). Nonetheless, the only difference
between µt and µh

t comes from the observation vectors yt

and yh
t respectively. We next provide a bound on the absolute

difference between the posterior means obtained from query-
ing the true target function and the best-in-class hypothesis
function. Observe that the posterior standard deviation (26)
does not depend on the observations.

Lemma 7. For any π ∈ P , t ≥ 1 and σ̄ > 0, we have

|µh
t (π)− µt(π)| ≤

(∆√
t

σ̄

)
σt(π). (41)

Proof. The proof can be found in the Appendix.

Combining Proposition 5 and Lemma 7 we can bound the
error of the posterior mean with respect to the hypothesis
function.

Corollary 1. For all π ∈ P ,

|r̃(π)− µt(π)| ≤
(
ψt +

∆
√
t

σ̄

)
σt(π), (42)

where ψt =
ϵmax

√
t

σ̄ + V .

Proof. The proof follows from Proposition 5 and Lemma 7
by substitution,

|r̃(π)− µt(π)| ≤ |r̃(π)− µh
t (π)|+ |µh

t (π)− µt(π)|

≤
(ϵmax

√
t

σ̄
+ V

)
σt(π) +

(∆√
t

σ̄

)
σt(π)

≤
((ϵmax +∆)

√
t

σ̄
+ V

)
σt(π). (43)

This proves the statement.

Based on the above results, we can provide a deterministic
asymptotic regret bound for our algorithm with respect to the
hypothesis function.

Theorem 3. Consider the hypothesis class Fk(P, V) of func-
tions on the domain P ⊂ R for some V > 0. For any r̄ defined
on P and ∆ ≥ 0 such that minr̄h∈Fk(P,V) ||r̄h − r̄||∞ ≤ ∆,
the BRM algorithm achieves asymptotic regret

ρ̃(T) = O
(
T (∆ + ϵmax)

√
ΓT + V

√
ΓTT

)
, (44)

where ΓT is kernel specific sublinear maximum information
gain.

Proof. The proof can be found in the Appendix.

Combining the above with (32), we can bound the regret of
the proposed algorithm with respect to the target function r̄.

Theorem 4. Consider the hypothesis class Fk(P, V) of func-
tions on the domain P ⊂ R for some V > 0. Let ∆ ≥ 0 such
that minr̄h∈Fk(P,V) ||r̄h − r̄||∞ ≤ ∆. Then the asymptotic
regret, in the sense of (28), of the BRM algorithm is

ρX (T) = O
(
T
(
(∆ + ϵmax)

√
ΓT + 2∆

)
+ V

√
ΓTT

)
= O

(
T (∆ + ϵmax)

√
ΓT + V

√
ΓTT

)
.

Proof. Observe that by (32) , (r̄(π(t)) − r̃(π(t))) ∈ [−∆,∆]
for any π(t), and thus |ρX (T) − ρ̃(T)| ≤ 2∆T . The result
then follows from (44).

The bound given in Theorem 4 shows that the choice of
the kernel function plays a prominent role in minimizing the
regret bound. Observe that ∆, V,ΓT depend on the choice of
the kernel by the service operator. We know by Proposition 2
that the average revenue is a piece-wise linear function, hence
it is rough (the opposite of smooth). Thus, choosing a smooth
(rough) kernel function will result in a high (low) pointwise
error ∆ and low (high) V since the norm ||r̄h||k ≤ V is
a measure of the roughness of the target function, and low
(high) ΓT since the information gain obtained from smooth
(rough) functions is low (high) because of the high (low)

10

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

correlation between nearby observations. The service operator
can influence these parameters through the choice of the
kernel, and thus it can influence the worst case accuracy of
the algorithm.

V. NUMERICAL RESULTS

We used extensive simulations to evaluate the performance
of the proposed algorithm in terms of service operator util-
ity, exploration vs. exploitation, and the effect of the WDs’
probability of being active on the average reward.

For the evaluation we consider a system with up to N = 100
WDs, up to |J | = 60 applications and storage capacity up
to S = 8. The computational complexity Lj is drawn from
a uniform distribution on [100, 1100] cycles/B, and the cost
cj of application j is drawn from a uniform distribution on
[0.01, 0.1]$. The computational capability of the edge server is
f c = 12 GHz. The task types of the WDs are chosen uniform
at random from J .

For each WD, the maximum transmission power p̂ is drawn
from a uniform distribution on [150, 350] mW, and f li is
drawn from a uniform distribution on [0.1, 0.8] GHz, and
Di is drawn from a uniform distribution on [1, 50] MB.
The channel noise variance σ̃2

i and the channel gain hi are
uniformly distributed on [0.1, 0.3] and [0.8, 1], respectively.
We set γi = 10−18, βi = 1,∀i ∈ N . The probability qi that
WD i is active is drawn from a uniform distribution on [0, 1].
Lastly, the channel bandwidth W is chosen uniform at random
on [200, 300] MHz for each simulation. These choices of
parameters are similar to those used in previous work [30, 31].
The results shown are the averages of at least 150 simulations,
together with 95% confidence intervals.

We use three baselines for comparison. The first baseline
knows the realizations of Bi(t) and the parameters of the
active WDs in every time slot t ≤ T . It uses Algorithm 3 given
in [32] to compute the cached set X ∗(t) at every time slot t and
the corresponding optimal price. We refer to this as the Oracle.
The second baseline is Static Expected Reward Maximization
(SERM), which knows the parameters of the WDs, and uses
this knowledge for computing the expected reward r̄({j}, π∗)
for all j ∈ J . SERM then uses Algorithm 3 in [32] with
r̄({j}, π∗) as input to estimate the optimal service caching
(instead of the instantaneous reward R({j}, π∗)). This baseline
is expected to serve as an upper bound for the performance
upper of BRM since it has access to more information about
the system. The third baseline is the Combinatorial Upper
Confidence Bound (CUCB) algorithm proposed in [21] for
combinatorial multi-armed bandit problems. CUCB knows the
WDs’ parameters, and at the end of every time slot it can
calculate the price π∗

X̂ that would have been optimal given
the active WDs by using Algorithm 2, and the corresponding
reward of each application. It maintains the average of the
computed optimal prices and rewards for each application j,
which it uses for choosing the set of applications to be cached
using the CUCB algorithm, together with the average of the
prices of the chosen applications.

Fig. 3. Average reward vs. price for caching various applications, GP
approximation vs. actual.

0 10 20 30 40 50 60 70 80 90 100

0

50

100

150

0 5 10 15 20
0

10

20

30

40

50

Fig. 4. Average reward vs. number of WDs (N).

A. Approximation of Average Reward

Fig. 3 shows the average reward as a function of the price
($/Gcycle) for |J | = 3 and S ≤ 3. Solid lines represent the
actual expected rewards and the dashed lines show the esti-
mates obtained using the BRM algorithm. BRM approximates
well the rewards around their maxima, and as such it manages
to find prices that are close to optimal. It is interesting to note
that r̄({2}, π∗

{2}) is slightly higher than r̄({1, 2, 3}, π∗
{1,2,3}),

i.e., caching more applications is detrimental to the average
reward.

B. Service Operator’s Profit

Fig. 4 shows the average reward of the service operator
as a function of the number of WDs for three scenarios.
The figure shows results for SERM for N ≤ 20, as the
time required for calculating the expected reward in (12)
increases exponentially with the number of WDs. Nonetheless,
for N ≤ 20 we can observe that BRM performs close to
SERM, and as such BRM approximates the expected reward of
the individual applications sufficiently well. In addition, BRM
outperforms CUCB for all scenarios, especially as the number
of WDs increases. This is because the interaction between
WDs become more intricate as the number of WDs increases,
and hence taking the mean of the optimal prices from all

11

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

Fig. 5. Average reward vs. number of applications (|J |).

10 15 20 25 30 35 40 45 50 55 60

0

20

40

60

80

100

120

140

160

180

200

Fig. 6. Number of explored set of apps. vs. the number of apps. (|J |).

realizations of N a(t) for a given application placement in each
time slot fails to perform well. It also is interesting to note that
as the number of WDs increases, the gap between the Oracle
and the rest of the curves increases since the entropy of the
active WDs increases (c.f. Section V-D).

Comparing the results for the three scenarios, we observe
that scenario (|J | = 16, S = 8) has the highest average re-
ward, which is due to that this scenario has the highest average
number of WDs per cached application (S

|J |), which allows
more reward per application. Scenarios (|J | = 32, S = 8)
and (|J | = 8, S = 2) have the same ratio, yet the former
allows higher reward because there are more applications that
can offer better options to service operator to choose from.

Fig. 5 shows the average reward as a function of the
number of applications (|J |) for N = 20, up to S = 8. The
figure shows that the algorithms are fairly insensitive to the
increase in the number of applications. The figure also shows
that BRM can explore well and can approximate the optimal
application placement despite high number of applications and
consistently outperforms CUCB.

C. Exploration vs. Exploitation

Fig. 6 shows the number of distinct sets of applications
explored by the algorithms as a function of the number of
applications. The figure shows that the proposed BRM scales

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

5

10

15

20

25

30

35

40

Fig. 7. Average reward vs. average activation probability of the WDs (q) for
N = 10, |J | = 8, S = 2.

well as it does not explore as many sets as CUCB does,
and yet achieves superior reward, i.e., it performs better in
exploitation. The difference is most significant for higher
values of storage capacity S.

D. Effect of the Activation Probability

Fig. 7 shows the average reward as a function of the
activation probability of the WDs. For simplicity, we used
the same activation probability for all WDs, i.e., qi = q. The
figure shows that the gap between the Oracle and the rest of
the algorithms is highest for q = 0.5, when the randomness of
activations is highest. On the contrary, for qi = 1, Oracle and
SERM achieve the same reward because N a(t) = N . BRM
performs very close to SERM for all values of the activation
probability, despite it not having access to WDs parameters.
Overall, we can conclude that the proposed BRM algorithm
achieves high utility at low computational complexity.

VI. RELATED WORK

A number of recent works deal with energy efficient com-
putation offloading for a single mobile user [33]–[37]. [33]
proposes a system that enables energy-aware offloading to the
infrastructure. Also the proposed algorithm maximizes energy
savings with minimal computational burden. [34] proposed
CPU frequency scaling and transmission power adaptation to
optimize energy consumption of the computation of a task.
[35] investigated the cloud computing in terms of use of
bandwidth and energy consumption, and provided the results
obtained from an experimental platform (Amazon EC2). The
results show that cloud offloading is sustainable considering
the energy consumption. [36] presents a dynamic offloading
algorithm in order to achieve energy savings under time
constraints. In [37], experimental results are used to show
that battery power savings can be achieved using computation
offloading. Inspired by these works that show the potential
energy savings through offloading, we consider a system level
optimization problem with an emphasis on the interaction
between the WDs and the service operator, and provide a game
theoretic analysis combined with online learning.

12

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

Going beyond offloading by a single device, a number of re-
cent works proposed optimization approaches to minimize the
cost of task execution for multiple mobile devices [38]–[41].
Authors in [38] model the cost of the users as a combination
of the energy consumption and the completion time, formulate
the problem as a Markov decision process, and provide a
near-optimal offloading policy. Authors in [39] study task
partitioning to maximize throughput in processing streaming
data. A two-tiered edge/cloud model with user mobility in
a location-time workflow framework was considered in [40],
and a heuristic was proposed to minimize the sum cost of
mobile users. Authors in [41] consider the joint allocation
of wireless and cloud resources and proposed an iterative
algorithm to minimize users’ energy consumption. Unlike
these works that focus on the WDs costs only, our model and
problem formulation account for the financial incentives of the
service operator as well, and provides a joining treatment of
the problem faced by WDs and by the operator.

Another line of works provide a game theoretic and
optimization treatment of the computation offloading prob-
lem [42]–[47]. [42] allows WDs to choose what share of their
task to offload in order to minimize the energy consumption
and at the same time to meet its delay constraint, while the
cloud allocates resources accordingly. [43] considers a model
in which tasks arrive simultaneously to the cloud through
a single wireless link and proposes a non-cooperative game
among users that minimize their own energy use. The users are
subject to execution deadlines, and have user specific channel
bit rates. [45] considers a hierarchical MEC network, where
mobile users can make offloading decisions, and decide the
uplink transmission power, perform cloud selection, and route
the tasks. A distributed offloading approach is developed based
on the game theory, in which UEs collaborate with each other
to minimize the network cost in terms of energy consumption
and latency. [47] models the load-balancing problem as a
stochastic congestion game in which each users aims to
minimize its task execution time. The experiments show that
the proposed algorithm can improve the load balancing of the
cloud system, and enhance the quality of service. Different
from these works, our model considers service caching and
pricing together with the optimization problem faced by WDs,
resulting in a Stackelberg game formulation.

Most related to ours are recent works that consider applica-
tion caching and offloading [8, 9]. [8] formulates a Bayesian
Stackelberg game, where the leader is the operator and fol-
lowers are WDs. The operator’s aim is to maximize the total
revenue by choosing a price and applications to cache, while
WDs aim to minimize their cost in terms of the charged price
and delay. [9] considers the joint optimization of computation,
caching, and communication to an edge cloud and uses sim-
ulations to show that the proposed method achieves shorter
completion times compared to the other schemes. Our work is
different from both of these works in terms of the modelling
assumptions and the problem formulation. In [8], authors do
not consider slotted time, dynamic population and resource
management. In [9], authors do not consider slotted time
and resource management, but they consider dynamic task
requests. Unlike our work, they do not analyze the interaction

between WDs and the operator, and thus they formulate a cost
minimization problem to be solved by the operator.

Contrary to the works that formulate a game theoretic
model, our model considers the interactions between WDs as a
player-specific congestion game, and we model the interaction
between WDs and the operator as a Stackelberg game. We
then analyze the existence of equilibria, and we propose
an algorithm for calculating the optimal pricing for given
application placement under perfect and complete information.
In addition, we consider the incomplete information case
with a dynamic population of WDs, and we propose a novel
Bayesian Gaussian Process Bandit optimization approach for
joint pricing and caching.

Related in terms of methodology are recent recent works
that propose to use BO in edge computing. In [48] authors use
BO for finding a trade-off between performance and energy
consumption in virtual Base Stations (vBS), based on a GP
model combined with contextual bandit optimization. Authors
in [49] propose BO for learning the relationship between the
cost and the run-time of serverless functions and the function
instance configuration, and they aim at minimizing the cost
of using a serverless system from a single WD’s perspective
by choosing the memory allocated to the function. Different
from [49], where authors use the expected improvement as
acquisition function, which may fail to find a good balance
between exploration and exploitation for very rough target
functions, we propose to use an acquisition function based
on an upper confidence bound, so as to provide robustness
despite a discontinuous target function. Different from these
works, our proposed solution BRM employs BO with GP
by introducing a new acquisition function and combines this
with a novel heuristic that approximates the optimal service
caching.

VII. CONCLUSION

In this work we have provided a game theoretic analysis
of pricing, application caching and computation offloading for
edge computing. For the case of complete and perfect infor-
mation, we showed that an equilibrium of offloading decisions
and an optimal price for a particular caching decision can be
computed in polynomial time, but the efficient computation
of a strong Stackelberg equilibrium is infeasible due to the
intricate interactions between caching decisions for different
applications. We then analyzed the incomplete information
case with a dynamic population of users, and proposed a novel
Bayesian Gaussian Process Bandit optimization approach for
joint pricing and caching. Our numerical results show that
the proposed algorithm is computationally efficient, and it
outperforms state-of-the-art combinatorial multi-armed bandit
algorithms. Future directions of research include considering
pricing for the use of wireless resources, heterogeneous pricing
for computing resources, and WDs whose activity may be
correlated over time or may be non-stationary.

REFERENCES

[1] M. Hakkarainen, C. Woodward, and M. Billinghurst, “Augmented as-
sembly using a mobile phone,” in IEEE/ACM Intl. Symp. on Mixed and
Augmented Reality, 2008, pp. 167–168.

13

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[2] J. Liu, Z. Wang, L. Zhong, J. Wickramasuriya, and V. Vasudevan,
“uWave: Accelerometer-based personalized gesture recognition and its
applications,” in IEEE Intl. Conf. on Pervasive Computing and Commu-
nications, 2009, pp. 1–9.

[3] S. Jošilo and G. Dán, “Joint management of wireless and computing
resources for computation offloading in mobile edge clouds,” IEEE
Transactions on Cloud Computing, vol. 9, no. 4, pp. 1507–1520, 2021.

[4] C. You, K. Huang, and H. Chae, “Energy efficient mobile cloud
computing powered by wireless energy transfer,” IEEE Journal on
Selected Areas in Communications, vol. 34, no. 5, pp. 1757–1771, 2016.

[5] J. Yan, S. Bi, Y. J. Zhang, and M. Tao, “Optimal task offloading
and resource allocation in mobile-edge computing with inter-user task
dependency,” IEEE Transactions on Wireless Communications, vol. 19,
no. 1, pp. 235–250, 2020.

[6] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Transactions
on Wireless Communications, vol. 16, no. 3, pp. 1397–1411, 2017.

[7] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Joint service placement and request routing in multi-cell mobile edge
computing networks,” in IEEE INFOCOM, 2019, pp. 10–18.

[8] J. Yan, S. Bi, L. Duan, and Y.-J. A. Zhang, “Pricing-driven service
caching and task offloading in mobile edge computing,” IEEE Trans-
actions on Wireless Communications, vol. 20, no. 7, pp. 4495–4512,
2021.

[9] M. Chen, Y. Hao, L. Hu, M. S. Hossain, and A. Ghoneim, “Edge-cocaco:
Toward joint optimization of computation, caching, and communication
on edge cloud,” IEEE Wireless Communications, vol. 25, no. 3, pp. 21–
27, 2018.

[10] G. Paschos, E. Bastug, I. Land, G. Caire, and M. Debbah, “Wireless
caching: technical misconceptions and business barriers,” IEEE Com-
munications Magazine, vol. 54, no. 8, pp. 16–22, 2016.

[11] P. Cruz, N. Achir, and A. C. Viana, “On the edge of the deployment:
A survey on multi-access edge computing,” ACM Comput. Surv., mar
2022, just Accepted.

[12] Z. Xiong, J. Zhao, Y. Zhang, D. Niyato, and J. Zhang, “Contract
design in hierarchical game for sponsored content service market,” IEEE
Transactions on Mobile Computing, vol. 20, no. 9, pp. 2763–2778, 2021.

[13] G. Poghosyan, I. Pefkianakis, P. Le Guyadec, and V. Christophides,
“Extracting usage patterns of home IoT devices,” in IEEE Symposium
on Computers and Communications, 2017, pp. 1318–1324.

[14] L. Xu, G. Shao, Y. Cao, H. Yang, C. Sun, T. Zhang, B. Wen, X. Cheng,
C. Song, and X. He, “Research on telecom big data platform of LTE/5G
mobile networks,” in IEEE International Conferences on Ubiquitous
Computing Communications and Data Science and Computational
Intelligence and Smart Computing, Networking and Services, 2019, pp.
756–761.

[15] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen,
“Toffee: Task offloading and frequency scaling for energy efficiency
of mobile devices in mobile edge computing,” IEEE Transactions on
Cloud Computing, vol. 9, no. 4, pp. 1634–1644, 2021.

[16] W. Chen and L. Han, “Time-efficient task caching strategy for multi-
server mobile edge cloud computing,” in IEEE HPCC/SmartCity/DSS,
2019, pp. 1429–1436.

[17] V. K. Garg, “An overview of digital communication and transmission,”
in Wireless Communications Networking. Morgan Kaufmann, 2007,
pp. 85–122.

[18] X. Xia, F. Chen, Q. He, J. Grundy, M. Abdelrazek, and H. Jin, “Online
collaborative data caching in edge computing,” IEEE Transactions on
Parallel and Distributed Systems, vol. 32, no. 2, pp. 281–294, 2021.

[19] P. Spirakis, M. Mavronicolas, and S. Kontogiannis, Proc. of Intl.
Workshop on Internet and Network Economics, 2006, vol. 4286.

[20] I. Milchtaich, “Congestion games with player-specific payoff functions,”
Games and Economic Behavior, vol. 13, no. 1, pp. 111–124, 1996.

[21] W. Chen, Y. Wang, and Y. Yuan, “Combinatorial multi-armed bandit:
General framework and applications,” in Proc. of Intl. Conf. on Machine
Learning, vol. 28, no. 1, 2013, pp. 151–159.

[22] W. Chen, W. Hu, F. Li, J. Li, Y. Liu, and P. Lu, “Combinatorial
multi-armed bandit with general reward functions,” in Conf. on Neural
Information Processing Systems, 2016, p. 1659–1667.

[23] C. E. Rasmussen and C. K. I. Williams, Gaussian processes for machine
learning. MIT Press, 2006.

[24] I. Bogunovic and A. Krause, “Misspecified Gaussian process bandit
optimization,” in Conference on Neural Information Processing Systems
(NeurIPS), 2021.

[25] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger, “Gaussian
process bandits without regret: An experimental design approach,” Intl.
Conf. on Machine Learning, 2009.

[26] S. Vakili, N. Bouziani, S. Jalali, A. Bernacchia, and D. Shiu, “Optimal
order simple regret for Gaussian process bandits,” in Advances in Neural
Information Processing Systems, vol. 34, 2021, pp. 21 202–21 215.

[27] F. Berkenkamp, A. P. Schoellig, and A. Krause, “No-regret Bayesian
optimization with unknown hyperparameters,” J. Mach. Learn. Res.,
vol. 20, no. 1, p. 1868–1891, 2019.

[28] C. A. Micchelli, Y. Xu, and H. Zhang, “Universal kernels,” J. Mach.
Learn. Res., vol. 7, p. 2651–2667, 2006.

[29] I. Steinwart and A. Christmann, Support Vector Machines, 1st ed.
Springer, 2008.

[30] Y. Huo, X. Dong, and W. Xu, “5G cellular user equipment: From theory
to practical hardware design,” IEEE Access, vol. 5, pp. 13 992–14 010,
2017.

[31] P. Joshi, F. Ghasemifard, D. Colombi, and C. Törnevik, “Actual output
power levels of user equipment in 5G commercial networks and impli-
cations on realistic RF EMF exposure assessment,” IEEE Access, vol. 8,
pp. 204 068–204 075, 2020.

[32] F. Tütüncüoğlu and G. Dán, “Optimal pricing for service caching and
task offloading in edge computing,” in 2022 17th Wireless On-Demand
Network Systems and Services Conference (WONS), 2022, pp. 1–8.

[33] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer with
code offload,” vol. 2010, Oct. 2010, pp. 49–62.

[34] Y. Wen, W. Zhang, and H. Luo, “Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,” in
Proc. IEEE INFOCOM, 2012, pp. 2716–2720.

[35] M. V. Barbera, S. Kosta, A. Mei, and J. Stefa, “To offload or not to
offload? The bandwidth and energy costs of mobile cloud computing,”
in Proc. IEEE INFOCOM, 2013, pp. 1285–1293.

[36] D. Huang, P. Wang, and D. Niyato, “A dynamic offloading algorithm
for mobile computing,” IEEE Transactions on Wireless Communications,
vol. 11, no. 6, pp. 1991–1995, 2012.

[37] A. Rudenko, P. Reiher, G. Popek, and G. Kuenning, “Saving portable
computer battery power through remote process execution,” Mobile
Computing and Communications Review, vol. 2, 1998.

[38] E. Hyytiä, T. Spyropoulos, and J. Ott, “Offload (only) the right jobs:
Robust offloading using the markov decision processes,” in IEEE Intl.
Symp. on a World of Wireless, Mobile and Multimedia Networks, 2015,
pp. 1–9.

[39] L. Yang, J. Cao, S. Tang, T. Li, and A. T. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud
computing,” in IEEE Intl. Conf. on Cloud Computing, 2012, pp. 794–
802.

[40] M. R. Rahimi, N. Venkatasubramanian, and A. V. Vasilakos, “MuSIC:
Mobility-aware optimal service allocation in mobile cloud computing,”
in IEEE Intl. Conf. on Cloud Computing, 2013, pp. 75–82.

[41] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. on Signal and Information Processing over Networks,
vol. 1, no. 2, pp. 89–103, 2015.

[42] Y. Wang, X. Lin, and M. Pedram, “A nested two stage game-based
optimization framework in mobile cloud computing system,” in IEEE
Intl. Symp. on Service-Oriented System Engineering, 2013, pp. 494–502.

[43] E. Meskar, T. D. Todd, D. Zhao, and G. Karakostas, “Energy efficient
offloading for competing users on a shared communication channel,” in
IEEE Intl. Conf. on Comm., 2015, pp. 3192–3197.

[44] C. Lin, X. Xiang, and C. Chen, “Game-theoretic analysis of computation
offloading for cloudlet-based mobile cloud computing,” in Proc. of Intl.
Conf. on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, 2015, pp. 271–278.

[45] B. Wu, J. Zeng, L. Ge, X. Su, and Y. Tang, “Energy-latency aware
offloading for hierarchical mobile edge computing,” IEEE Access, vol. 7,
pp. 121 982–121 997, 2019.

[46] B. Zhou and H. Yang, “Rendering scheduling framework in edge com-
puting: A congestion game-based approach,” in IEEE Intl. Performance
Computing and Communications Conf., 2019, pp. 1–6.

[47] F. Zhang and M. M. Wang, “Stochastic congestion game for load
balancing in mobile-edge computing,” IEEE Internet of Things Journal,
vol. 8, no. 2, pp. 778–790, 2021.

[48] J. A. Ayala-Romero, A. Garcia-Saavedra, X. Costa-Perez, and G. Iosi-
fidis, “Bayesian online learning for energy-aware resource orchestration
in virtualized rans,” in IEEE INFOCOM 2021, 2021, pp. 1–10.

[49] N. Akhtar, A. Raza, V. Ishakian, and I. Matta, “COSE: Configuring
serverless functions using statistical learning,” in IEEE INFOCOM 2020,
2020, pp. 129–138.

14

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

[50] S. R. Chowdhury and A. Gopalan, “On kernelized multi-armed bandits,”
in Proc. of Intl. Conf. on Machine Learning - Volume 70, 2017, p.
844–853.

[51] I. Bogunovic, A. Krause, and S. Jonathan, “Corruption-tolerant Gaussian
process bandit optimization,” in Conf. on Artificial Intelligence and
Statistics, 2020.

Feridun Tütüncüoğlu is a Ph.D. student at the
Division of Network and Systems Engineering in
KTH Royal Institute of Technology, Stockholm,
Sweden. He received M.Sc in Electrical & Elec-
tronics Engineering from Bilkent University, Turkey
in 2019. He worked as a research engineer at the
department of Electrical & Electronics Engineering,
Bilkent University from 2017 to 2019. His research
interests include design and analysis of decentralized
algorithms, online learning algorithms and game
theoretical models of edge computing resource man-

agement and allocation.

György Dán (M’07, SM’17) is a professor at KTH
Royal Institute of Technology, Stockholm, Sweden.
He received the M.Sc. in computer engineering
from the Budapest University of Technology and
Economics, Hungary in 1999, the M.Sc. in busi-
ness administration from the Corvinus University
of Budapest, Hungary in 2003, and the Ph.D. in
Telecommunications from KTH in 2006. He worked
as a consultant in the field of access networks,
streaming media and videoconferencing 1999-2001.
He was a visiting researcher at the Swedish Institute

of Computer Science in 2008, a Fulbright research scholar at University
of Illinois at Urbana-Champaign in 2012-2013, and an invited professor at
EPFL in 2014-2015. He served as area editor of Computer Communications
2014-2021, and has been editor of IEEE Transactions on Mobile Computing
since 2019. His research interests include the design and analysis of content
management and computing systems, game theoretical models of networked
systems, and cyber-physical system security and resilience.

15

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3221465

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

