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Coalitional Formation-based Group-buying for
UAV-enabled Data Collection: an Auction Game
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Abstract—Unmanned aerial vehicles (UAVs) enable promising solutions in assisting data collection in wide-area distributed sensor
networks, leveraging their advanced properties of high mobility and line-of-sight communication links. However, existing UAV-assisted
data collection methods mainly focus on unilaterally maximizing the utility of UAVs or sensors. Unfortunately, the problem driven by the
market economy is ignored, namely the game between buyer and seller, in the process of sensors competing for UAV services. To
address this problem, we propose a group-buying coalition auction method that encourages sensors to form coalitions to bid for UAV
data collection services. Then, a parallel variable neighborhood ascent search algorithm is designed to quickly search the
approximately optimal group-buying coalition structure. We further propose a novel group-buying coalition auction method, named
TRUST, which can ensure the economical properties, i.e., truthfulness, individual rationality, and maximization of social welfare.
Numerical results show that the sensors’ average age of information (AoI) under the proposed method is reduced by 16.7% and 44.5%
compared with the coalition formation game (CFG) and joint trajectory design-task scheduling (TDTS) UAV-to-community methods. To
our best knowledge, this is the first effort on truthful coalition formation-based group-buying auction.

Index Terms—Unmanned aerial vehicle (UAV), age of information (AoI), double auction, coalition formation game, truthfulness.

✦

1 INTRODUCTION

Wireless sensor networks (WSNs) have been widely de-
ployed in various applications, such as environmental mon-
itoring and event detection [1], [2], [3], [4]. In WSNs, sensors
usually transmit the status data packets (e.g., perceived en-
vironmental parameters) to the destination node in a multi-
hop manner. However, sensors with limited transmission
power have small wireless communication coverage, so the
high quality and low delay of long-distance communication
cannot be guaranteed. Recently, unmanned aerial vehicles
(UAVs) have been widely integrated into the fifth gener-
ation and beyond wireless networks due to high mobility
and distributed deployment [5]. They are able to quickly
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approach the sensors and establish a high-quality air-to-
ground communication link to collect data from the sensors
[4], [6]. This significantly reduces the transmission energy of
sensors and prolongs the life of WSNs.

Timely collected status information is crucial for time-
sensitive sensor network applications, while stale status in-
formation may yield incorrect decisions. Most existing UAV-
aided data collection research focuses on optimizing data
transmission energy consumption and throughput while
ignoring the valution of information freshness. The notion
of the age of information (AoI) was recently proposed to
quantify the freshness of the status information [2]. For-
mally, AoI is defined as the time elapsed since the latest
valid status packet generated by the source node is received
at the collection node. AoI has been investigated in various
WSN-based status update systems [2], [7], [8].

For UAV-enabled large-scale WSNs, it is extremely chal-
lenging for UAVs to design the planning of data collection
according to the locations and status of all sensors. To
address this challenge, sensors can effectively reduce the
complexity of data collection planning by forming coalitions
to aggregate transmission data [3], [9]. In a coalition, each
member delivers packets to the coalition head. Then, UAVs
fly to each coalition head for aggregated data collection.
As ordinary sensors may have limitations such as limited
energy and unstable transmissions, the access points (APs)
can be used to cache the aggregated status data packets
owing to the advantages of strong storage capacity and
low probability of transmission outage. In practice, APs
are introduced as coalition heads to assist with the data
collection in WSNs [3].

The UAV-enabled wireless communication networks
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also face the challenge of market economy factors. From
the perspective of industrial UAV development, there are
many recent commercial companies using UAVs for wireless
communication transmission, e.g., Qualcomm and AT&T.
Qualcomm and AT&T are jointly deploying UAV-assisted
information transmission on AT&T’s commercial network
to pave the way for large-scale wireless communication in
the fifth generation of wireless network [1]. Driven by the
economic properties, it is necessary to design an incentive-
based mechanism to appropriately encourage UAVs to assist
in the transmission of wireless communication devices. Auc-
tion is a classic allocation mechanism following market rules
and is able to ensure the fairness, efficiency, and economy
of the whole trading market when participants are ratio-
nal and competitive. Nowadays, auction has been widely
used in communication network resource allocation, such
as spectrum resource transactions, communication comput-
ing resource transactions, and edge cloud service transac-
tions [10], [11], [12], [13]. Applying auction mechanisms
to resource allocation in WSNs introduces the following
advantages: 1) Economy driven: The auction mechanism is
an economy-driven transaction that can effectively allocate
the resources of sellers to the buyers at a competitive price
in the wireless communication network market. 2) Fair
transaction: An important economic attribute of auction is
truthfulness, also known as strategy-proofness. The authen-
tic auction mechanism can ensure that honest bidding is the
only dominant strategy of the buyer and guarantee the rea-
sonable and fair allocation of resources. 3) Less information
needed: In the auction process, the auctioneer and the seller
do not need to know the complete information, but only
the buyer’s bid to determine the resource matching relation-
ship. Applying resource auctions to wireless communication
networks can significantly reduce unnecessary information
interaction overhead.

When using auction mechanism in UAV-enabled WSNs,
a single sensor may not be competitive enough to attract a
UAV to serve its data collection. Instead, the sensors may co-
operate with each other to form a group-buying coalition to
increase the bid so as to attract the UAV services. The UAV-
enabled data collection in WSN can be regarded as a typical
distributed multi-agent decision process, in which partici-
pants make decisions through information interaction and
evaluate their behaviors according to the potential utility.
Coincidentally, coalition formation game (CFG) shares the
same idea that focuses on how to encourage independent
participants to cooperate as an entity [14], [15]. Moreover,
coalition formation is a typical combinatorial optimization
problem. The existing coalition formation algorithms need
large amounts of information interaction and cannot be
implemented in parallel. So they are not suitable for the
optimization of large-scale sensor networks. Therefore, it is
crucial to design a coalition formation algorithm so that
sensors can efficiently form a group-buying coalition to
improve the data transmission efficiency.

The combination of auction and coalition formation
game theories enables analyzing the formation of the
economy-driven group-buying coalition. Truthfulness is a
key attribute in auction, which can ensure that buyers
submit bids for the true valuation of tradable resources. The
truthful bid mechanism of auction is particularly important.

For example, in the process of buyers competing for sellers’
resources, some buyers may dishonestly submit a high or
low bid to seek high profits, which may result in addi-
tional costs for other buyers. Some works have designed
bid mechanisms for non-cooperative auctions, such as the
second price auction, monotonic critical bid, and bid fraud
punishment measures, to ensure the honesty of the auction
process [11], [13], [16]. However, the previous truthful non-
cooperative auction mechanisms are no longer suitable for
the group-buying coalition auction. Therefore, it is necessary
to design an auction mechanism to ensure the truthfulness
of group-buying coalition formation.

1.1 Related Work

Due to high mobility and line-of-sight channels, UAVs
provide promising solutions to assist in the collection of
status data packets in WSNs. Zhan et al. [22] studied task
offloading in UAV-assisted multi-access edge computing
(MEC) systems. A successive convex approximation-based
alternating UAV trajectory optimization algorithm was pro-
posed to minimize the tradeoff between the completion time
and energy consumption. Considering the Markov property
of the time-varying communication channel, Liu et al. [23]
proposed a deep reinforcement learning-based algorithm to
maximize the computation utility in a cooperative UAV-
assisted MEC network. In contrast to the previous works,
which focused on system transmission throughput, delay,
and energy consumption, some researchers considered the
time value difference between sensor status data packets
and used the sensor AoI as the objective function. Hu
et al. studied the status packet transmission scenario of
UAV-assisted ground sensors [18]. They optimized the non-
convex problem to minimize the average AoI of sensors.
Zhang et al. developed a UAV-assisted communication
framework for delay-sensitive internet of thing (IoT) devices
in sixth-generation networks, in which AoI was taken as a
new metric to measure the quality of services [19].

In the above studies, the UAV serves sensors individ-
ually and sequentially. Hence, these methods can hardly
be applied to the large-scale WSN. In this regard, the
data clustering uploading of sensors has been studied in
[18], [19], [24]. Ebrahimi et al. proposed a projection-based
compressive data gathering method for UAV-assisted dense
WSNs [17]. To improve energy efficiency, Liu et al. proposed
an incremental clustering method in which sensors are clus-
tered based on UAV flight trajectories [9]. As a powerful tool
for analyzing user grouping, coalition formation game has
been widely used in communication networks. Chen et al.
proposed a coalition formation game method to realize joint
task allocation and spectrum allocation in heterogeneous
UAV communication networks [14]. Saad et al. proposed
a selfish coalition formation method to realize that UAVs
cooperatively transmit data to base stations [15].

Truthfulness is an important economic attribute in auc-
tion, which can ensure the reasonable allocation of UAV
transmission service resources in the market. There have
been many designs to ensure the truthfulness of the non-
cooperative auction mechanism, such as the famous second-
price auction, named Vickrey, which sets the second-highest
bid as the buyer’s payment to ensure the independence
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TABLE 1
A Comparison with Main Related Data Collection Methods.

Existing UAV-enabled data collection
works in wireless networks Economic Cooperation Truthfulness AoI Distributed

Clustering scheme [3] [17] × × × × ✓
AOI-based method [2] [18] [19] × × × ✓ ×

Auction scheme [6] [11] ✓ × ✓ × ✓
Coalition-auction scheme [20] [21] ✓ ✓ × × ×

Our group-buying coalition auctions scheme ✓ ✓ ✓ ✓ ✓

of the buyer’s payment and bid. This setting ensures the
truthfulness of the buyer’s bid. Some works have applied
Vickrey to resource auction in communication networks
[25], [26], [27]. The authors in [26] adopted Vickrey-Clarke-
Groves to ensure the truthfulness of the spectrum auction
market. Some works investigate the dynamic and ratio-
nal characteristics of communication networks in order
to ensure the veracity of auctions. For example, Zhang
et al. studied the distributed real auction mechanism in
mobile cloud computing task allocation. They proposed
an incentive-compatible online cloud auction method to
prevent the seller from making dishonest behaviors, such as
manipulating the payment for their own profits [11]. Hyder
et al. proposed an online auction mechanism for the dynamic
spectrum market, which designed penalty rules to avoid
manipulating bids [28].

The auction mechanism is an efficient and economics-
driven resource allocation approach in wireless communi-
cation networks. Ning et al. [6] proposed a community-
based delay approximation algorithm and a dynamic task
allocation auction algorithm to jointly optimize UAV tra-
jectory and task scheduling. Subsequently, to minimize the
computation cost, the authors formulated two stochastic
games to optimize the UAV trajectory and computation
offloading from the potential game-theoretic perspective in
their extended work [29]. Apostolopoulos et al. [30] studied
the data offloading approach in UAV-assisted MEC net-
works. They proposed a non-cooperative game decision-
making framework to maximize satisfaction of users un-
der uncertain computation resource auction. However, the
majority of existing investigations focused on maximizing
the utility in a non-cooperative auction. There has been
limited research combined coalition formation and auction
to allocate wireless communication resources. Sun et al.
proposed a spectrum auction method based on overlapping
coalition to optimize the composition of users using the
same spectrum [31]. However, the users were divided into
the same coalition just depending on whether they shared
the same channel, while the cooperative relationship among
coalition members was ignored. In effect, coalition members
can be formed to improve mutual benefits. Considering
the cooperative relationship among buyers or sellers, some
studies combined auction with coalition and applied them
to the wireless communication network resource allocation
[20], [21]. Zhang et al. proposed a game framework based
on a group-buying coalition to reduce user data download
overhead, in which users perceive the data content demands
of nearby members and form a group-buying coalition to
share the downloaded data according to their preferences
[20]. However, in this case, only the benefits from the user’s

unilateral perspective were considered while the mutual
benefits of both auction parties are neglected. Ng et al.
proposed a joint auction-coalition formation framework to
obtain the composition and distribution of UAV coalition
with maximum auction profit [21]. However, the preceding
works focused solely on how to form a coalition structure to
maximize auction profit while ignoring the truthfulness of
the group-buying coalition auction.

Table 1 presents the comparison among clustering, auc-
tion, and coalition-auction methods from the perspectives
of whether it is economy-driven, cooperative, trustful, and
in a distributed way or not. If the proposed method con-
siders the corresponding metric, there will be a checkmark
”✓”; otherwise, a ”×”. Compared with other methods,
our method considers the cooperation between sensors and
guarantees the truthfulness of the group-buying auction.
Besides, the AoI performance is also considered, which is
critical for WSN nodes.

1.2 Contributions and Organization
In this paper, we develop a double auction framework based
on a group-buying coalition to encourage UAVs to provide
reliable, cost-effective, and timely data collection services in
sensor networks. Firstly, the sensors form a group-buying
coalition to cooperatively raise their bids to ensure that the
UAV can be attracted to collect data for all sensors in the
coalition. To reflect the time value of sensor status informa-
tion, the sensor bidding is designed as the weighted average
of sensor AoI and energy loss. Secondly, for the coalition
formation in large-scale sensor networks, we design a paral-
lel variable neighborhood ascent search coalition formation
algorithm to update the coalition structure in parallel and
accelerate the division of coalitions. Finally, we proposed
a novel group-buying coalition bidding truthful auction
mechanism, which is named TRUST (sTrategy-proof auction
for VickeRy groUp-buying Sensor coaliTion) to ensure the
honest bids of sensors. To the best of our knowledge, this
paper is the first to study the truthful coalition formation-
based group-buying auction. The main contributions of
this paper are threefold: 1) A group-buying coalition-based
double auction method is proposed for UAV-enabled data
collection in WSNs. Combining double auction and coalition
game theory, sensors decide on the formation of group-
buying coalition to raise the bid. Specifically, sensors form
a coalition to raise the bid for the UAV to encourage it to
provide a data collection service, which effectively reduces
the AoI of sensors. 2) To obtain the optimal group-buying
coalition structure, a parallel variable neighborhood ascent
search coalition formation algorithm is proposed. Then,
the sensors can change the coalition structure in parallel
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Fig. 1. Multi-UAV system model for WSN data collection

according to the cooperative bidding preference criteria and
gradually converge to a stable and satisfactory bidding
coalition structure. And 3) A TRUST auction mechanism
is proposed to maximize the social welfare. The TRUST
modifies the bidding and payment rules of the group-
buying coalition, which is proven to meet truthfulness and
individual rationality. Our simulation results verify that the
proposed scheme can reduce the AoI of sensors as compared
with existing task-driven coalition formation schemes on the
premise of ensuring truthfulness.

This paper is an extended version of [32] with a detailed
literature study, the design of TRUST auction mechanism,
improved system model, and extensive experimental re-
sults. The remainder of this paper is organized as follows.
Section II illustrates the system model. The details of TRUST
are presented in Section III. Our proposed group-buying
coalition formation-based auction algorithm is discussed in
Section IV. Section V proves the economy of the proposed
TRUST auction. Section VI presents numerical results and
performance analyses, and Section VII concludes this paper.

2 SYSTEM MODEL

We consider UAV-enabled status data collection in WSNs.
As shown in Fig. 1, there are N geographically distributed
ground sensors denoted as N = {1, 2, ..., n, ..., N}. In most
cases, sensors are deployed in remote and harsh physical
areas, and cannot access the data collection center. Suppose
there are M UAVs that can collect sensors’ status informa-
tion, represented by a set M = {1, ...m...,M}. To reduce
the interruption probability caused by long-distance trans-
mission, APs are introduced to assist in the transmission
between UAVs and sensors. Suppose there are C distributed
APs, represented by a set C = {1, ...c..., C}. Similar to cloud-
edge data processing mode, APs act as edge servers to cache
the status data from sensors. UAVs act as cloud servers
to receive and process those aggregated status data from
APs. Thus, a dual-layer transmission scheme is designed.
As presented in Fig. 2, in the first layer, the sensors transmit
the status data packets to the AP; in the second layer, the
UAV flies just above the AP and collects the aggregated
status data packets from it. For convenience, key variables
and their definitions are listed in Table 2.

TABLE 2
List of Notations

Variables Explanation

N = {1, ...n..., N} Set of sensors

M = {1, ...m...,M} Set of UAVs

C = {1, ...c..., C} Set of APs

Υ = {S1, ...Sk, ...SK} Coalition structure of sensors

r The round of auction

a
(r)
n The AoI of sensor n in the rth round

ε
(r)
n The amount of status packets by sensor n

b
(r)
n The bid of sensor n in the rth round

b̄
(r)
n The truthful bid of sensor n

Φ
(r)
Sk

The bid of coalition Sk

Ψ
(r)
m,Sk

The actual coalition bid of coalition Sk

E
(r)
m,Sk

Energy consumption of UAV m

ω1 Energy weight coefficients

Q
(r)
m,Sk

The second highest payment of S(r)
k

I
(r)
m,Sk

Indicator function of Transaction result

SW(r) Social welfare in the rth round

Fig. 2. Dual-layer information transmission processes from sensors to
their AP and from the AP to a UAV.

To encourage UAVs to participate in the sensor status
data collection, a double auction is leveraged for modeling
the transaction process of the UAVs and sensors. The auc-
tion participants are composed of three parties, i.e. UAVs
(sellers), sensors (buyers), and the auctioneer (who can be
acted by APs). Due to the fact that 1) the bid of a single
sensor may not be attractive enough to UAVs and 2) the
UAV’s usefulness in serving a single sensor at a time is rel-
atively low, sensors form multiple group-buying coalitions
and bid for the UAV data collection service. A continuous
dynamic multi-round auction is proposed so that the UAVs
will successively serve different coalitions according to the
auction results. Sensors who lost in the previous round of
auction can also adjust their bids and participate in the next
round of auction. As shown in Fig. 3, our proposed group
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buying coalition auction method can be divided into six
stages:

Fig. 3. The signaling of group-buying coalition auction implementation.
Note that we only take one UAV as an example to illustrate.

Stage 1 (UAVs broadcast service sales information
and sensors broadcast status update requests): the sensors
broadcast the status update request information, e.g., AoI
status, location. The UAVs broadcast the data collection
service sale information, e.g., communication capabilities,
location.

Stage 2 (APs give auction information feedback to sen-
sors): after receiving the service sale information from the
UAVs, the APs give this auction information feedback to
the sensors in need and invite them to participate in group-
buying bidding.

Stage 3 (Group-buying coalition formation among sen-
sors): sensors form multiple group-buying coalitions to im-
prove the market competitiveness of their bids.

Stage 4 (Double auction between UAVs and sensor
coalitions): the coalitions report their bids and relevant
requirements for updating status packets to the APs. The
APs decide the winning sensor coalitions and UAVs.

Stage 5 (APs aggregate sensors’ status packets and UAVs
fly to APs): if the coalitions’ bids for UAVs’ service is

Fig. 4. The time slot division of the group-buying coalition auction.

successful, the APs collect the sensors’ status packets and
the UAVs fly to the APs.

Stage 6 (UAVs collect data from APs): the UAVs collect
the aggregated sensors’ status packets from the APs.

The time slot division of the group-buying coalition
auction is shown in Fig. 4. The definition of the sensor
coalition structure is given as follows:

Definition 1 (coalition structure). For the collection of all
sensors, N = {1, ...n..., N}, the coalition structure Υ(r) ={
S
(r)
1 , ...S

(r)
k ..., S

(r)
K

}
is defined as a partition that contains all

sensors (namely,
K⋃

k=1
S
(r)
k = N ) in the rth round of auction. Sk

is a sensor coalition and k is the coalition index. Due to one sensor
can only join in one coalition, S(r)

k ∩ S
(r)
k′ = ∅,∀k ̸= k′.

2.1 Communication Model
2.1.1 Sensors-AP communication
In the r-th round of the auction, each sensor coalition S

(r)
k

finds the nearest AP c as the data aggregation point of all
coalition sensor members according to

g
(
S
(r)
k

)
= argmin

c

∑
n∈S

(r)
k

dn,c, (1)

where dn,c=
√
(xn − xc)2 + (yn − yc)2 + (zn − zc)2 is the

distance between sensor n and AP c; xn, yn, and zn are
the three-dimensional coordinates of sensor n; xc, yc, and zc
are the three-dimensional coordinates of AP c.

The communication channel between the sensor and AP
is assumed to be non-line-of-sight (NLoS) [33]. Let hn,c

represent the channel gain between sensor n and AP c,
which is expressed as

|hn,c|2 = (dn,c)
−α1 , (2)

where α1 is the path loss exponent over the sensor-AP c
link. Specifically, orthogonal frequency division multiplex-
ing technology is used to avoid interference between APs.
APs in close proximity are assigned different orthogonal
channels for data transmission. Hence, the achievable com-
munication transmission rate from sensor n to AP c is

Rn,c = Bc log2

(
1 +

|hn,c|2 pn
N0Bc + µn

)
, (3)
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Fig. 5. Illustration of UAV position change before and after each round
of auction.

where Bc is the channel bandwidth occupied by AP c,
pn is the sensor transmission power, N0 is the one-sided
power spectral density of white Gaussian noise. Sensors
communicating with the same AP occupy the same channel
and experience co-channel interference µn, i.e.,

µn =
∑

n′∈S
(r)
k ,n′ ̸=n

|hj,n′ |2 pn′ (4)

Hence, the expected communication time from sensor n
to AP c is

t(r)n→c = E

{
ε
(r)
n

Rn,c

}
, n ∈ S

(r)
k , c = g

(
S
(r)
k

)
, (5)

where E {·} is the expectation operator. ε(r)n is the bit num-
ber of status packets (bits) generated by sensor n in the rth

round of auction.

2.1.2 AP-UAV communication
After collecting the status information packets of all coali-
tion sensor members, AP c will transmit the aggregated
data packets to UAV m. The channel between the UAV and
sensor is modeled as a probabilistic line-of-sight (LoS) and
non-line-of sight (NLoS) link [33]. The probability calcula-
tion formula of the LoS channel between AP c and UAV m
is

Prc,m(LOS) =
1

1 + ϑl exp (−ζl [θc,m − ϑl])
, (6)

where ζl and ϑl are constants that depend on the environ-
ment (rural areas, compact cities, or others), and θc,m is the
elevation. Besides, Prc,m(NLOS) = 1 − Prc,m(LOS). Let
hc,m represent the channel gain between c and m, that is

|hc,m|2 =

{
(dc,m)

−α2 ,LoS;

η(dc,m)
−α2 ,NLoS,

(7)

where η is an additional loss coefficient due to the NLoS
connection. α2 is the path loss exponent over the AP-UAV
link. dc,m is the distance between the UAV and the AP. We
assume that different UAVs fly at different fixed altitudes. If
the auction is successful, the UAV will fly to the position just
above the AP to communicate with it. Thus, dc,m=Hm − zc,

Fig. 6. Illustrative curves of age of information (AoI) versus time.

in which Hm is the fixed flight altitude of UAV m and is
strictly greater than the UAV’s minimum flight clearance
in [34]. The achievable communication transmission rate
between AP c and UAV m is

Rc,m = Bclog2

(
1 +

|hc,m|2pc
N0Bc

)
, (8)

where Bc is the channel bandwidth used by AP c. pc is
the transmission power of AP c. The expected transmission
time duration from c to m is defined as t

(r)
c→m, of which the

expression is the total amount of information required to be
transmitted divided by the transmission rate, that is

t(r)c→m =
∑

n∈S
(r)
k

E
{
ε(r)n /Rc,m

}
, c = g

(
S
(r)
k

)
. (9)

2.2 Energy consumption model
As shown in Fig. 5, the position changes of UAV m before
and after rth round of auction are as follows

x
(r+1)
m =


xc,

if UAV m serves coalition S
(r)
k

and c = g
(
S
(r)
k

)
;

x
(r)
m , else.

y
(r+1)
m =


yc,

if UAV m serves coalition S
(r)
k

and c = g
(
S
(r)
k

)
;

y
(r)
m , else.

(10)
If the transaction is successful, UAV m will fly to the spot

just above the AP c that the coalition chose. The position of
UAV m will be updated to the abscissa and ordinate of AP c.
Otherwise, the position of UAV m will remain unchanged.
Since the propulsion power of a UAV is dominant compared
to the communication power [35], the propulsion loss of
the UAV is mainly considered. Then, E(r)

m,Sk
is defined as

the overall energy loss caused by UAV m completing data
collection service for coalition S

(r)
k , which is the sum of

energy loss in the flight and hover states, that is

E
(r)
m,Sk

= P (vm)t(fly,r)c→m +P (0)t(hover,r)c→m , c = g
(
S
(r)
k

)
, (11)
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where vm is the flight speed of UAV m. P (vm) and P (0)
are the flight and hover propulsion power, respectively.

t
(fly,r)
c→m =

√
(x

(r)
m − xc)

2
+ (y

(r)
m − yc)

2
/vm is the time of

UAV m flying to AP c. t(hover,r)c→m is the hover time of UAV m
at sensor c. The hover time of the UAV is equal to the time
required for data transmission, i.e., t(hover,r)c→m = t

(r)
c→m. Thus,

the time spent by the UAV in the rth round of auction is the
sum of the flight time and hovering time, i.e.,

t(cost,r)c→m =t(fly,r)c→m + t(hover,r)c→m . (12)

2.3 AoI model
Age of information (AoI) is introduced to quantify the
freshness of information, which is defined as follows.

Definition 2 (Age of Information). The age of information
of a source node is the time elapsed since the latest valid status
packet is received at the collection node.

The time interval of each round of auction is defined as
tauc. In the rth round of auction, for a sensor n, its AoI before
the auction is defined as a

(r)
n and that after the auction is

updated to a
(r+1)
n as below

a(r+1)
n =

{
t
(r)
n→m, update;

a
(r)
n + tauc, otherwise.

(13)

As illustrated in Fig. 6, (13) indicates that if UAV m
collects data packets from sensor n, its AoI changes as the
time interval starting from the status packets generation at
sensor n to the arrival at UAV m, i.e., t(r)n→m = t

(r)
n→c+ t

(r)
c→m.

Otherwise, its AoI increases by the period of one auction
round. Assuming that a sensor coalition successfully pur-
chases a UAV for data collection, we define f

(
a
(r)
n

)
as the

valuation function of updating status information based on
AoI reduction, that is

f
(
a(r)n

)
=

1

1 + exp
−δn

(
a
(r)
n −t

(r)
n→m−ςn

) , (14)

where δn and ςn are the sensitivity and tolerance threshold
of sensor n to the AoI, respectively. Different types of
sensors may have different requirements for information
freshness. A smaller ςn means a smaller inflection point of
valuation function and a lower tolerance to the AoI; simi-
larly, a smaller δn implies a smaller slope at the inflection
point of valuation function and a lower sensitivity to the
change of information freshness.

3 TRUST FORMULATION

It is considered that sensors have certain rational and inde-
pendent decision-making abilities, they can evaluate their
behaviors according to their utilities. As stated in the intro-
duction part, if there is no mechanism to ensure the truth-
fulness of the coalition group-buying auction, sensors can
obtain more utility by dishonestly reporting their bid. For
example, as shown in Fig. 7, there are three sensor members
in the coalition, among which sensor 1 reports a dishonest
bid that is smaller than the true valuation. Compared to
an honest bid, sensor 1 pays a lower payment. However, it
still obtains the true valuation after the successful auction

Fig. 7. Honest versus dishonest bids. The utility is the difference be-
tween true valuation and payment, i.e., utility = true valuation − pay-
ment.

and the UAV data collection service. In this case, sensor 1
obtains a higher utility by dishonestly reporting the bid.
To ensure the truthfulness of the coalition group-buying
auction, this Section introduces the auction mechanism of
the lowest coalition bidding based on Vickery. Hereinafter,
it will be referred to as a sTrategy-proof VickeRy groUp-
buying Sensor coaliTion auction (TRUST).

The main idea of TRUST is as follows. Firstly, the lowest
bid coalition is defined to ensure that the bid of the whole
coalition is decided by the coalition member with the lowest
bid, and will not change due to other members’ dishonest
bids. Furthermore, the utility will not be increased regard-
less of whether the coalition members submit dishonest bids
that are higher or lower than the true valuation. Secondly,
considering the Vickery auction mechanism together, the
coalition payment is defined as the second-highest coalition
bid to ensure the truthfulness of the coalition bid. Finally,
the truthfulness of the whole auction process is ensured
through the design of the lowest bid coalition and Vickery-
based coalition payment. Specific proof of truthfulness is
given in section V.

3.1 The lowest bid coalition
Under a given coalition structure Υ(r) ={
S
(r)
1 , . . . , S

(r)
k , . . . , S

(r)
K

}
. The bid of the coalition S

(r)
k

in the rth round of auction is defined as the lowest bid
among the coalition members being multiplied by the
number of coalition members, and can be formulated as

Φ
(r)
Sk

= min
n∈S

(r)
k

b(r)n ·
∣∣∣S(r)

k

∣∣∣ , (15)

where symbol |·| means the cardinality of a set. b
(r)
n is

defined as the bidding strategy of sensor n in the rth round.
min

n∈S
(r)
k

b
(r)
n is the lowest bid among the coalition members.

Specially, the honest bidding strategy is denoted as b̄
(r)
n ,

which is the true valuation that the sensor thinks it can bring
to itself, i.e.,

b̄(r)n = f
(
a(r)n

)
∆
= (13) . (16)

Different UAVs have different costs to serve different
sensor coalitions due to differences in positions and capa-
bilities. The attraction of a coalition’s same bid to different
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UAVs is distinct. Therefore, the actual bid of coalition is
introduced to represent the actual bid attraction to UAVs.
The actual bid of coalition S

(r)
k for UAV m is defined as

the weighted difference between the coalition bid and flight
energy consumption, that is

Ψ
(r)
m,Sk

= Φ
(r)
Sk

− w1 · E(r)
m,Sk

, (17)

where w1 is the parameter for balancing coalition bid and
UAV flight energy consumption. If Ψ(r)

m,Sk
< 0, coalition S

(r)
k

will lose the bidding qualification towards UAV m in the rth

round.

3.2 Vickery-based coalition payment

In auction mechanism, critical pricing is defined to deter-
mine the winning coalition’s payment [25]. Combined with
Vickery auction for ensuring truthfulness, the highest bid
coalition wins the UAV service and its critical pricing is the
second-highest bid of coalitions.

In the rth round of auction, I(r)m,Sk
is defined to indicate

whether there is a successful transaction between coalition
S
(r)
k and UAV m, that is

I
(r)
m,Sk

=

{
1, if coalition S

(r)
k is a winner;

0, otherwise.
(18)

For sensor coalition S
(r)
k , the payment charged by the

auctioneer is the second-highest actual bid plus the flight
energy consumption of UAV m, that is

Q
(r)
m,Sk

=

{
max

{
Ψ

(r)
m,S−k

}
+ w1 · E(r)

m,Sk
, if I

(r)
m,Sk

= 1;

0, otherwise,
(19)

where S−k represent another sensor coalitions except coali-
tion Sk and max

{
Ψ

(r)
m,S−k

}
is the second-highest actual bid.

Every sensor member in a coalition should equally share
the purchase payment of the UAV service. Therefore, q(r)n is
defined as the payment of coalition member sensor n, that
is

q(r)n = Q
(r)
m,Sk

/
∣∣∣S(r)

k

∣∣∣ , n ∈ S
(r)
k . (20)

The utility of sensor n in the rth round auction is defined
as the true valuation minus its payment, that is

u(r)
n =


b̄(r)n︸︷︷︸

true valuation

− q(r)n︸︷︷︸
payment

, if I
(r)
m,Sk

= 1, n ∈ S
(r)
k ;

0, otherwise.
(21)

After receiving payment Q(r)
m,Sk

from coalition S
(r)
k , the

auctioneer draws a proportion of κ from the second-highest
actual bid as its utility. Hence, the utility of the auctioneer is∑
m∈M

∑
S

(r)
k ∈Υ(r)

I
(r)
m,Sk

κmax
{
Ψ

(r)
m,S−k

}
.

Then, the auctioneer gives the remaining pay-
ment to UAV m. Hence, the utility of UAV m is∑
S

(r)
k ∈Υ(r)

I
(r)
m,Sk

(1− κ)max
{
Ψ

(r)
m,S−k

}
.

3.3 Social welfare maximization problem formulation

We expect our group-buying coalition auction method to
improve not only the utility of data collection, but also eco-
nomic indicators. Social welfare is an important performance
indicator in auction, which is defined as the sum of winning
coalitions’ bids, i.e.,

SW(r) =
∑

m∈M

∑
S

(r)
k ∈Υ(r)

I
(r)
m,Sk

max
{
Ψ

(r)
m,S−k

}
. (22)

In this paper, the optimization goal is to find an optimal
group-buying coalition structure Υ(r) in each round of
auction to maximize the social welfare, i.e.,

(OP1) :Υ(r) = argmaxSW(r), (23)

s.t. t(cost,r)c→m ≤ tauc, (24)∑
S

(r)
k ∈Υ(r)

I
(r)
m,Sk

= {0, 1},∀m ∈ M, (25)

Rn,c ≥ R(th), c = g
(
S
(r)
k

)
,∀n ∈ S

(r)
k . (26)

Constraint (24) indicates that the total time cost of UAV
m must be smaller than the period of each round of auction,
which ensures that UAV m can complete data collection
service within an effective time. Constraint (25) ensures
that one UAV can only be matched with one coalition in
one round of auction. Constraint (26) indicates that the
achievable communication transmission rate from sensor n
to AP c must be higher than the signal to interference plus
noise ratio (SINR) demodulation threshold R(th). Obtaining
the optimal coalition structure solution by exhaustive search
is NP-hard. Thus, we leverage the coalition formation game
(CFG) to design a relatively low computational complexity
method, which approximates the optimal solution.

4 DESIGN OF GROUP-BUYING AUCTION ALGO-
RITHMS

This section proposes a group-buying coalition formation-
based auction algorithm (GB-CFA) to solve OP 1 and the
algorithm is illustrated in Fig. 8. The proposed GB-CFA al-
gorithm is mainly composed of two sub-algorithms. Firstly,
a parallel variable neighborhood ascent search-based coali-
tion formation algorithm is proposed. The sensors make the
decision of coalition formation to obtain the coalition struc-
ture that maximizes the whole coalition bid. Then, a TRUST
auction algorithm is designed to determine the successfully-
matched coalition and UAV, and the bid, while maximizing
the social welfare on the premise of ensuring truthfulness.
After succeeding in a round of auction, the UAV provides
data collection service for its matched coalition. After data
collection, the AoI of sensors will update and the next round
of auction will start. The details are illustrated in Algorithm
1.

4.1 Parallel variable neighborhood ascent search-
based Coalition formation algorithm

The sensor group-buying coalitions bid for UAV services
can be regarded as a typical distributed multi-agent decision
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Fig. 8. Illustration of group-buying coalition formation-based auction
algorithm determination process.

process, in which sensors make cooperative coalition forma-
tion decisions based on their status information. In the coali-
tion formation game, participants continuously optimize
the coalition structure according to the preference criteria
to improve the utility [36]. To avoid falling into a local
optimum coalition structure solution, a parallel variable
neighborhood ascent search coalition formation algorithm
is proposed to find the optimal solution with relatively low
computational complexity. Specifically, the sensors make the
operation of coalition structure change to explore possible
coalition bids. Then, the sensor performs comparisons and
updates to continuously improve the coalition bid based on
the collaborative bid preference criteria. Finally, the coalition
structure is continuously improved until a stable sensor
group-buying coalition structure is obtained. The details are
illustrated in Algorithm 2.

4.1.1 Variable neighborhood ascent search

As shown in Fig. 9, we propose three neighborhood-based
coalition operations to change the coalition structure Υ =
{S1, . . . , Sk, . . . , SK}, including:

1) Joining operation: sensor n join coalition Sj from coali-
tion Sk. N1 (n) is denoted as the neighborhood of
current coalition structure solution Υ through sensor
n joining operation, that is

N1 (n) =
{
Υ̃
∣∣∣Υ\ {Sk, Sj} ∪

{
S̃k, S̃j

}}
, (27)

Fig. 9. Three types of coalition operations.

Algorithm 1. Group-buying Coalition Formation-based
Auction (GB-CFA)

Input: tauc, a(1)n ;
Initialization: r = 1, t = 0;
while t ≤ T do

Compute the optimal coalition structure Υ(r) from
Algorithm 2;
Input Υ(r) to Algorithm 3 for auction results I(r)m,Sk

and payment max
{
Ψ

(r)
m,S−k

}
;

Calculate social welfare SW(r) by equation (22);
Update Sensor n’s AoI a(r+1)

n by equation (13);
t = t+ tauc;
r = r + 1;

end while
Return

{
SW(1), ...,SW(r)

}
;

where the original coalitions Sk and Sj are updated as
S̃k = Sk\n, S̃j = Sj ∪ n.

2) Swapping operation: sensor n in coalition Sk is
swapped with sensor p in the coalition Sj . N2 (n) is
denoted as the neighborhood of the current coalition
structure solution Υ through sensor n swapping opera-
tion, that is

N2 (n) =
{
Υ̃
∣∣∣Υ\ {Sk, Sj} ∪

{
S̃k, S̃j

}}
, (28)

where the original coalitions Sk and Sj are updated as
S̃k = Sk\n ∪ p, S̃j = Sj\p ∪ n.

3) Leaving operation: sensor n leaves coalition Sk to form
a separate coalition. N3 (n) is denoted as the neigh-
borhood of the current coalition structure solution Υ
through sensor n leaving operation, that is

N3 (n) =
{
Υ̃
∣∣∣Υ\ {Sk, Sj} ∪

{
S̃k, S̃j

}}
, (29)

where the original coalitions Sk and Sj are updated as
S̃k = Sk\n, Sj = ∅, S̃j = {n}.

The search is performed in a variable neighborhood
ascent way. If a better coalition structure solution is not
found, the algorithm will skip to the next neighborhood to
continue the search; Otherwise, the algorithm will go back
to the first neighborhood and start the search again. The
search neighborhood varies with the coalition operations,
preventing the search from falling into a local optimum
solution.
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Algorithm 2. Parallel Variable Neighborhood Ascent
Search-based Coalition Formation

Input: N , Tmax

Output: Υ(r)

Initialization:Υ(r) =
{
S
(r)
1 , . . . , S

(r)
k , . . . , S

(r)
K

}
, K = N ,

S
(r)
k = {k}, Tstable = 0;

loop ∀n ∈ N
Broadcast requests to search for a possible coalition
structure updates;
Sensor n ∈ S

(r)
k makes the i-th coalition operation to

search the
optimal coalition structure solution.

1) Joining operation: Sensor n leaves the current
coalition S

(r)
k and joins another coalition S

(r)
j .

2) Swapping operation: Sensor n ∈ S
(r)
k and p ∈

S
(r)
j swap coalitions;

3) Leaving operation: Sensor n leaves the current
coalition S

(r)
k and forms a singleton coalition;

Calculate the bids Φ(r)
Sk

and Φ
(r)
Sj

according to the
original coalition structure Υ(r);
Calculate the bids Φ(r)

S̃k
and Φ

(r)

S̃j
according to the

changed coalition structure Υ̃(r);
Search the optimal coalition structure solution Υ̃(r)

from neighborhood Ni (n);
if Υ̃(r) ≻n Υ(r) then

Υ(r) = Υ̃(r);
Tstable = 0;
/∗ Move to the first neighborhood operation ∗/
i = 1;

else
Tstable = Tstable + 1;
/∗ Move to the next neighborhood operation ∗/
i = i+ 1;
if i > 3 then

i = 1;
end if;

end if;
end loop if Tstable > Tmax, which is, all sensors remain the
coalition formation strategies;
Return Υ(r);

4.1.2 Parallel mode updating

For the sensor group-buying coalition game model pro-
posed in this section, we define:

Definition 3 (Preference relationship [15]). The symbol ≻n

represents a complete, relaxed, and transitive binary relationship.
Given any two coalition structuresΥ and Υ̃, for sensor n, Υ̃≻nΥ
represents that the coalition structure Υ̃ is preferred by n as
compared with the structure Υ.

In the coalition formation game, the preference criterion
is the basis for game participants to choose to leave the
original coalition or join a new coalition. The authors in [31]
proposed the social welfare criterion of coalition auction,
which ensures that the coalition operation can improve the

Algorithm 3. Social Welfare Maximization-based TRUST
Auction

Input: Υ(r), M;
Output: I(r)m,Sk

,max
{
Φ

(r)
m,S−k

}
;

Initialization: I(r)m,Sk
= 0,∀m ∈ M, S

(r)
k ∈ Υ(r)

while Υ(r), M ≠ ∅ do
Calculate E

(r)
m,Sk

based on equation (11);

Calculate Φ
(r)
Sk

based on equation (15);
Calculate Ψ

(r)
m,Sk

= Φ
(r)
Sk

− E
(r)
m,Sk

;

Calculate maxΨ
(r)
m,Sk

;

if maxΨ
(r)
m,Sk

≥ 0 then
Determine winning coalition S

(r)
k∗ and UAV

m∗ = argmax
m,Sk

Ψ
(r)
m,Sk

+ w2

∑
n∈S

(r)
k

Fairn (r)

;

I
(r)
m∗,Sk∗ = 1;

Calculate max
{
Ψ

(r)
m,S−k

}
;

Υ(r) = Υ(r)\S(r)
k ,M = M\m;

else
break;

end if
end while
Return I

(r)
m,Sk

,max
{
Φ

(r)
m,S−k

}
;

auction revenue of the whole network. However, it is not
suitable for large-scale communication network as the infor-
mation interaction required to calculate the whole network
auction revenue is very large. The authors in [15] proposed a
selfish coalition criterion, that is, coalition members tend to
choose the coalition with a higher revenue. Though the in-
formation interaction is greatly reduced under this criterion,
focusing on individual utility can weaken the cooperation
among coalition members. To address these problems, we
formulate the criterion from the perspective of coalition
cooperative bid promotion, which is called the cooperative
bid preference criterion.

Definition 4 (Cooperative bid preference criterion). For
sensor n, the two coalition structures obtained before and after the
coalition operation Υ and Υ̃ must satisfy

Υ̃≻nΥ ⇔ ΦS̃k
+ΦS̃j

> ΦSk
+ΦSj

. (30)

This criterion means that each sensor n prefers the coali-
tion operations that can improve the sum of two involved
coalition bids.

Remark 1. Unlike the designs of criterion that directly maximize
the social welfare of the whole auction, the advantage of our design
is that each operation only needs to calculate the bid change
of two coalitions and the communication cost only lies in the
currently changing coalitions. Besides, only the sensors that select
the same coalition in the neighborhood for coalition operation will
affect each other. Therefore, multiple sensors can perform coalition
operations in parallel to change multiple coalitions, which further
accelerates the convergence process of the coalition structure.
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TABLE 3
Complexity of the Proposed Algorithm

Operations Complexity

Step 1 of Algorithm 1: sensors estimate

the information of the channel state
O(C1)

Step 2 of Algorithm 1: sensors compute the

coalition bids for comparison
O(C2N)

Step 3 of Algorithm 1: sensors make requests

and respond to feedback
O(C3)

Step 1 of Algorithm 2: auctioneer decides the

winning coalitions and their payments
O(C4M)

4.2 TRUST auction algorithm

A TRUST auction algorithm is proposed to maximize the
social welfare of the auction results on the premise of
ensuring truthfulness, i.e., the sensor’s bid can reflect the
real value of UAV data transmission service.

The details are illustrated in Algorithm 3. Firstly, the
actual bid of each coalition is calculated according to equa-
tion (17). Secondly, the highest bid coalition and matching
UAV are found. On this basis, the second-highest coalition
bid is determined and set as the senor coalition payment
for UAV service according to the Vickrey auction. Then,
the winning sensor coalition and UAV are deleted from
the buyer and seller sets, respectively. The above process
is repeated until one of the sensor or UAV sets is empty, or
the remaining coalition bids are all smaller than 0. Finally,
the social welfare maximization is realized and the current
round of auction process is over.

4.3 Complexity analyses

The algorithm complexity of coalition group-buying UAV
service is mainly determined by Algorithms 2 and 3:

1) For Algorithm 2, the algorithm complexity of estimat-
ing channel status parameters is O (C1), where C1 is a
small constant related to channel estimation time [9]. In
the worst case, each sensor may try all possible coalition
combinations with other sensors that it can communi-
cate with. Thus, the complexity is O (C2N), in which
C2 depends on the time spent on utility calculation
and coalition comparison based on preference criterion
in Definition 4 . The complexity of coalition structure
updating is O (C3), where C3 is a constant that depends
on the period of the sensor’s request and responds to
feedback.

2) For Algorithm 3, in the worst case (i.e., the most
complex case) each UAV has to execute a transaction
in one round of auction. As there is a total of M UAVs,
the complexity is O (C4M), where C4 depends on the
interaction period of transaction.

Therefore, the total complexity of the algorithm is
O (C1) +O (C2N) +O (C3) +O (C4M), as shown in Table
3. In practice, due to the limitations of communication
distance and delay, more coalition members produce more
cooperation costs. So the large-scale coalitions may not be
formed. Moreover, once a larger sensor coalition is formed,

the possible attempts of each coalition will be reduced due
to the reduction of possible operation space. Therefore,
the complexity of coalition structure change operation is
tolerable.

5 PROOF OF AUCTION ECONOMY

Since the TRUST auction combines the coalition formation
process with double auction, it is crucial to ensure that it re-
tains economic robustness. In this section, we first introduce
two basic definitions related to the economic robustness in
double auction, then we prove that the proposed TRUST
method satisfies economic robustness.

Definition 5 (Individual rationality [31]). if no winning
seller obtains the revenue smaller than its cost and no winning
buyer pays more than the real value it obtains from the transac-
tion, the double auction is individually rational.

This definition guarantees the utilities of both the seller
and buyer are not smaller than 0, which provides incentives
for them to participate in the auction.

Definition 6 (Truthfulness [31]). If no buyer can improve its
utility by misreporting its bid to the auctioneer, the double auction
is truthful or strategy-proof.

In our proposed method, truthfulness requires that each
buyer cannot improve its utility by bidding higher or lower
than the true valuation of UAV data collection service.

Proposition 1. The TRUST auction is individually rational.

Proof : The utility of honest winning sensor n is b̄n −
Qm,Sk

/ |Sk| according to equations (20), (16), and (21).
Because the Vickery auction mechanism (namely second-
highest bid method) is adopted, Qm,Sk

≤ minn∈Sk
b̄n · |Sk|.

So we can obtain that b̄n − Qm,Sk
/ |Sk| ≥ 0, which

ensures that sensor n can obtain a non-negative utility.
On the other hand, the winning UAV’s utility satisfies∑
Sk∈Υ

Im,Sk
(1− κ)max

{
Ψm,S−k

}
≥ 0. Therefore, the pro-

posed TRUST auction is individually rational.

Proposition 2. The proposed TRUST auction is truthful. If
the bidding strategies of other sensors remain unchanged, a sensor
cannot improve its utility through a dishonest bid bn ̸= b̄n, i.e.,
un

(
b̄n
)
≥ un (bn).

Proof : Consider a sensor n that belongs to coalition
Sk, its dishonest bid is unequal to the true valuation of
UAV data collection service, i.e., bn ̸= b̄n. Then, all four
possible auction results of coalition Sk are listed in Table 4
when sensor n bids honestly and dishonestly. To prove the
truthfulness of our proposed TRUST auction, we need to
illustrate that no sensor in all four scenarios can improve its
utility through a dishonest bid.

For scenario 1: Coalition Sk wins the auction with sensor
n’s honest bid bn but loses with a dishonest bid b̄n. Since
Proposition 1 has proved that the utility of a successful
auction is non-negative while a failed auction is 0. In this
scenario, sensor n has no incentive to submit a dishonest
bid that reduces its utility.

For scenario 2: For both sensor n’s honest and dishonest
bids, coalition Sk wins the auction. Winning the auction
implies that whether sensor n bids honestly or dishonestly,
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TABLE 4
Scenarios of Auction Result

Scenarios Scenario 1 Scenario 2 Scenario 3 Scenario 4

Sensor n in coalition Sk bids honestly Win Win Lose Lose

Sensor n in coalition Sk bids dishonestly Lose Win Lose Win

coalition Sk’s bid is higher than the second-highest coalition
bid. However, the payment of the winning coalition takes
the value of the second-highest coalition bid. Hence, the util-
ity of each winning coalition member remains unchanged.
In this scenario, sensor n cannot increase its utility by
submitting a dishonest bid bn ̸= b̄n.

For scenario 3: For both sensor n’s honest and dishonest
bids, coalition Sk loses the auction. The utility of sensor n
is 0, i.e., un

(
b̄n
)
= un (bn) = 0. In this scenario, sensor n

cannot submit a dishonest bid bn ̸= b̄n to increase its utility.
For scenario 4: Coalition Sk loses the auction with sensor

n’s honest bid bn but wins with a dishonest bid b̄n. The
premise of failure in the auction is that coalition Sk’s bid is
not the highest, i.e.,

max
{
Ψm,S−k

}
≥ Ψ̄m,Sk

= min
n∈Sk

b̄n · |Sk|−w1 ·Em,Sk
. (31)

Obviously, sensors can only win the auction if they dishon-
estly increase bids. The coalition bid is decided by the sensor
member with the lowest bid. To win the auction, only the
lowest bid sensor n provides a dishonest bid that is higher
than its true valuation and satisfies

Φm,Sk
− min

n∈Sk

bn · |Sk| − w1 · Em,Sk
≥ max

{
Ψm,S−k

}
≥ Φ̄m,Sk

− min
n∈Sk

b̄n · |Sk| − w1 · Em,Sk
,

(32)
which means increasing dishonest bid bn above the current
maximum bid. Then, sensor n’s utility satisfies

un (bn) = b̄n −
(
w1 · Em,Sk

+max
{
Ψm,S−k

})
/ |Sk| ≤

b̄n −
(
w1 · Em,Sk

+ min
n∈Sk

b̄n · |Sk| − w1 · Em,Sk

)
/ |Sk| = 0.

(33)
According to the principle of individual rationality, the

sensor has no incentive to submit a dishonest bid bn ̸= b̄n
that makes its utility smaller than 0 in this scenario.

In conclusion, no sensor can improve its utility through
a dishonest bid. Hence, submitting an honest bid is a
dominant strategy for each sensor. The proof is thereby
completed.

6 NUMERICAL RESULTS AND ANALYSES

In this section, extensive simulations are conducted to
evaluate the performance of our proposed group-buying
coalition formation-based auction (GB-CFA) method. We
start with presenting the auction results. Then, we compare
the proposed algorithm against existing methods to verify
the effectiveness and superiority of our algorithm. Finally,
the truthfulness of the auction is verified. The sensors are
randomly distributed in an area of 2 × 2 km2 area. All
simulation parameters are listed in Table 5.

TABLE 5
Parameter settings

Parameter Value

Number of sensors, N 20 - 60

Number of UAV, M 1 - 7

Sensor transmit power pn [3] 100 mW

AP transmit power pc [3] 5 W

Flight altitude H [34] 100 - 150 m

Maximum speed of UAV vm [34] 12 - 24 m/s

One-sided power spectral density

of white Gaussian noise N0 [33]
−120 dBm

Bandwidth Bn, Bc [33] 1 MHz, 5 MHz

Path loss exponent for sensor-AP link α1 [33] 3

Path loss exponent for AP-UAV link α2 [33] 2

Excessive attenuation factor for NLoS η [33] 20 dB

Environment parameters ζl, ϑl [33] 0.136, 11.95

TABLE 6
AoI Model Parameter

Parameter S1-S5 S6-S10 S11-S15 S16-S20

AoI tolerated

threshold ςn (s)
15 15

25,15,15

15, 15
15

AoI sensitivity δn 0.7 0.7 0.9 0.5

Initial AoI a(0)n (s) 10-15 20-30 10-15 5

6.1 Auction results and analyses

To illustrate the impacts of the sensor parameters, including
sensor AoI tolerance threshold, AoI sensitivity, and amount
of information, the values of the relevant sensor parameters
are designed and presented in Table 6. It is designed so that
the initial ages of the sensor S16-S20 are relatively lower
than AoI sensitivity; S11-S15 are relatively higher than AoI
sensitivity; the AoI tolerance threshold of S11 is larger than
those of other sensors.

Fig. 10 presents the three dimentional formation and
distribution of the group-buying coalition. The arrow points
to the corresponding AP of the winning coalition in the
current round, to which the UAV flies from the current
position. The following can be observed:

1) The winning coalition will be served by the UAV
and the AoI of sensors in the winning coalition decreases
after the data collection service. As a contrast, sensors in
a losing coalition will experience a substantially increasing
AoI. For example, it can be seen that {S12, S13, · · · , S15} as
a coalition wins the first-round auction. UAV 1 flies to their
data aggregation AP 3 to provide data collection service (as
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(a) (b)

(c) (d)

Fig. 10. UAV auction results. (a) Results of the first round of auction. (b) Results of the second round of auction. (c) Results of the third round
of auction. (d) Results of the fourth round of auction. The triangles represent the APs, the rectangles represent the sensors, and the height of
rectangles represent the AoI value of the sensors. Besides, the sensors with the same color are in the same group-buying coalition, and the APs
with the same color are selected by this coalition as the status information aggregation point. The number of UAVs is set as M = 1.

can be seen in Fig. 10 (a)). Correspondingly, the AoIs of S12-
S15 all decrease to close 0, while other sensors’ AoIs increase
(as can be seen by comparing the heights of rectangle in Figs.
10 (a) and (b)).

2) Sensors are less willing to group with those of which
the AoI tolerance thresholds are high. For example, S11 does
not join a nearby group-buying coalition in Fig. 10 (a).
As can be seen in Table 5, S11 has a higher AoI tolerance
threshold than its nearby sensors. Hence, S11’s bid is low
and not attractive enough for UAV’s information update
service (as can be seen from equation (15)). Hence, nearby
sensors {S12, S13, · · · , S15} form a coalition without it.

Fig. 11 presents the UAV traveling process among dif-
ferent APs in 6 auction rounds. We observe that a higher
AoI sensitivity of sensor results in a higher bid (as can be
seen from equation (14)), which further leads to a stronger
auction competitiveness (equivalently, a higher coalition bid
in equation (14)). As an example, we compare AP 3 and
AP 4, and observe that, during 6 rounds of auction, the
UAV first flies to AP 3 and later re-visits AP 3, whereas
AP 4 is served later and only once. In other words, the
UAV frequently flies to AP 3 and serves the coalition formed
by its nearby sensors {S11, S12, · · · , S15}, compared to AP
4 and its nearby sensors {S16, S17, · · · , S20}. The reasons

are analyzed as below. As can be seen in Table 6, sensors
{S11, S12, · · · , S15} close to AP 3 have relatively higher
AoI sensitivity (δn = 0.9) and hence a larger bid. Sensors
{S16, S17, · · · , S20} close to AP 4 have relatively lower AoI
sensitivity (δn = 0.5) than other sensors.

6.2 Performance comparison

To illustrate the advantages of the proposed GB-CFA
method, comparisons with the following three methods are
carried out:

1) Joint trajectory design and task scheduling (TDTS)
UAV-to-community algorithm [6]: users automatically
form communities based on geographical location and
the UAV compares throughput and flight delay to de-
termine the flight sequence and the update of sensors.

2) Coalition formation game (CFG) algorithm [9]: the sen-
sors use a merge-split framework to form coalitions.
After that, the UAV receives the data upload request of
the ground sensor coalitions and given with priority to
serve the nearest sensor coalition.

3) Maximum throughput first (MTF) [37]: the UAV aims
to maximize system throughput by collecting as much
sensor data information as possible.
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Fig. 11. UAV traveling process among different APs. The number of
UAVs M = 1.

In the following, we present the performance in terms
of three indicators: the average AoI of all sensors, the total
amount of data collected by all UAVs (referred to as “total
amount of collected data” for short), and the social welfare
of auction. Without loss of generality, all AoI model pa-
rameters are randomly generated within reasonable limits.
All simulations results are obtained by averaging over 1000
independent trials.

6.2.1 Impact of the sensor number

Fig. 12 shows the curve of the average AoI for all sensors
versus the number of sensors. It can be observed that: 1)
The average AoI of the sensor increases with the number of
sensors. This is because as the demand for UAV data collec-
tion increases, sensors status updates become more difficult
due to the intense competition for UAV services. 2) Our
UAV service scheduling is more advantageous, which can
effectively reduce the average AoI of all sensors, especially
in the case of high-density sensor deployment. Compared
with CFG, TDTS, and MTF methods, our proposed GB-CFA
method decreases the average AoI of all sensors by 16.7%,
44.5%, and 65.3%, respectively. This benefits from the fact
that: our proposed joint coalition-auction framework can
achieve ground-air collaborative optimization. On the one
hand, ground sensors can continuously optimize the group-
buying coalition structure based on their own conditions.
On the other hand, UAVs can determine their service based
on the trade-off between coalition bid and cost.

Fig. 13 presents the curves of total amount of collected
data versus the number of sensors. The following observa-
tions can be obtained. 1) With the increase in the number
of sensors, the total amount of collected data of the system
increases. When the number of sensors increases to a certain
value, the total amount of collected data stops increasing
due to communication constraints. 2) Our proposed GB-
CFA method increases the total amount of collected data by
14% compared with the TDTS method. The reason is that
our method encourages more members to form a better bid-
ding group-buying coalition. In addition, the MTF method
only focuses on maximizing the total amount of collected
data and increases by 13.3% than that of our scheme.

Fig. 12. Average AoI versus the number of sensors. The number of UAVs
M = 3.

Fig. 13. The total amount of collected data versus the number of sen-
sors. The number of UAVs M = 3.

6.2.2 Impact of the UAV number

Fig. 14 shows the curves of the average AoI of all sensors
versus the number of UAVs. Compared with CFG, TDTS,
and MTF methods, our proposed GB-CFA method can de-
crease the average AoI of all sensors by 24.1%, 40.3%, and
66.7%, respectively. Besides, it can be seen that the average
AoI of the sensor decreases with the number of UAVs. The
reason is that the increase in the number of UAVs leads to a
reduced bid threshold of a successful auction. Hence, more
sensors can obtain the UAV service for status information
updates.

6.2.3 Impact of UAV speed on performance

Fig. 15 presents the curves of average AoI with UAV flying
speed. The average AoI of the sensor decreases with the
flight speed of UAVs. The reason is that UAVs with higher
speeds have higher mobility so that they can better schedule
their flight trajectories and update the status of sensors
in a more timely fashion. Besides, compared with CFG,
TDTS, and MTF methods, our proposed GB-CFA method
can decrease the average AoI of all sensors by 17.5%, 32.2%,
and 57.5%, respectively.
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Fig. 14. Average AoI versus the number of UAVs. The number of sensors
N = 40.

Fig. 15. Average AoI versus the UAV speed. The number of UAVs M =
3.

6.2.4 Convergence performance
We compare the convergence performance of the proposed
coalition formation algorithm when varying the number of
sensors. Fig. 16 depicts the cumulative distribution function
of the convergence iterations, which are obtained by 1000
independent trials in each network scale. It can be observed
that the largest convergence iterations of the proposed par-
allel coalition formation do not exceed 250 with 50 sensors
in the WSN. As the number of sensors increase from 30
to 50, the average convergence iterations of the proposed
parallel coalition formation algorithm increase from 100
to 175, and the centralized coalition formation algorithm
increase from 200 to 350. By comparison, the increased
convergence iterations of our proposed parallel coalition
formation algorithm is still within an acceptable range. It
shows the effectiveness of the proposed parallel coalition
formation algorithm in terms of convergence speed.

6.3 Auction truthfulness verification

Fig. 17 presents the curves of average social welfare versus
the number of sensors. We have the following observations.
1) The average social welfare from auction transactions

Fig. 16. Convergence performance of the proposed GB-CFA algorithm
with various sensors.

Fig. 17. Average social welfare versus the number of sensors

increases with the number of sensors. The proposed group-
buying coalition formation based TRUST auction can in-
crease the social welfare 145% than non-cooperative auction.
The reason is that a bidding improvement group-buying
coalition structure is formed as members make decisions
of joining the coalition under the proposed preference cri-
terion. 2) However, the increase in social welfare slows
down as the coalition scale and the auction bid of each
group-buying coalition are limited due to coordination de-
lay and cost. 3) Compared with the optimal result of the
maximize-profit auction, the social welfare of our TRUST
auction slightly decreases by 8.3% due to our coalition bid
setting. But, our proposed TRUST auction can guarantee the
truthfulness of the sensor’s bid. We prove the truthfulness
of the proposed TRUST auction by setting up sensors that
bid dishonestly. The following 3 cases are considered.

Case 1: Sensor 4 is set to be a dishonest node and
reports a bid that is smaller than its true valuation for
UAV services. Assuming that the auction transaction is still
successful in this case. As can be seen from Fig. 18, dishonest
bids will have no effect on the utilities of other coalition
sensor members under our proposed TRUST auction. As
a comparison, under the maximize-profit auction, sensor
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Fig. 18. Utility of the winning sensors under different auction modes (the
bid smaller than the actual bid wins).

Fig. 19. Utilities of the winning member under different auction modes
(the bid higher than the actual bid wins).

4 increases its own utility by the dishonest bid while the
utility of other coalition sensor members is reduced.

Case 2: Sensor 4 reports a dishonest bid that is higher
than its true valuation for UAV services. Assuming that the
auction transaction is still successful in this case. As can
be seen from Fig. 19, dishonest bidding has no effect on
the utilities of other coalition sensor members under our
proposed TRUST auction. As a comparison, the utility of
sensor 4 is reduced under the maximize-profit auction.

Case 3: Sensor 4 is set to be a dishonest node and reports
a bid that is smaller than its true valuation for UAV services.
Assuming that the coalition loses the auction due to the
dishonest bid. As can be seen from Fig. 20, the utility of
all sensor members will be 0 if the auction is lost. It shows
clearly that a dishonest bid will reduce the utilities of the
sensors. In this case, each sensor has no incentive to report
a dishonest bid.

Based on the above analyses, we conclude that the
proposed TRUST method can ensure the truthfulness of the
auction. In the proposed TRUST auction, the sensors cannot
improve their own utilities by dishonest bidding. However,
the sensors can increase their own utilities while harming

Fig. 20. Utilities of the winning sensors under different auction modes
(Sensors whose bids are lower than the actual bid will lose the bid).

Fig. 21. The Jain fairness index versus the round of auction.

the utilities of other coalition members by dishonestly re-
porting their bids in the maximize-profit auction.

6.4 Auction fairness verification

The sensors can no longer decide whether they win the
auction by raising their bids to satisfy their urgent data
collection requests due to the lowest bid coalition rule.
Hence, it is not fair for the sensors with urgent needs.
Motivated by [38] and [39], a priority-based fair mechanism
is designed to guarantee the fairness attribute. Each sensor
is given a priority factor based on its bid and auction results
in each auction round. In our auction, sensor n’s priority
factor in rth round is designed as

prn (r + 1) =


0, if coalition S

(r)
k wins

the auction;
b
(r)
n − min

n∈S
(r)
k

b
(r)
n

+γprn (r) ,

if coalition S
(r)
k loses

the auction.

(34)
where b

(r)
n − min

n∈S
(r)
k

b
(r)
n is the amount by which the sensor

is dragged down by the lowest bid in the coalition; γ is
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the discount factor and is set at less 1. If the buyers have
higher bids but failed in previous rounds, they are given
a better chance of winning in the next round. In addition,
once the sensor wins the auction, its priority factor is reset
to be 0. This design is to prevent malicious sensors from
deliberately raising bids to preempt resources in consecutive
rounds of auctions. The auctioneer needs to consider the
coalition bid and the priority factor to determine the winner
comprehensively.

The Jain fairness index is used to measure the fairness of
the auction [40], and its expression is

Fairn (r) =

( ∑
n∈N

Γn (r)

)2

N
∑

n∈N
(Γn (r))

2 , (35)

where Γn is the average utility of sensor n in auction rounds,
i.e.,

Γn (r) =

r∑
i=1

u
(i)
n

r
. (36)

Fig. 21 presents the curves of the Jain fairness index
versus the round of auction. After many rounds of auctions,
it can be seen that the Jain fairness index of auctions with the
priority-based fair mechanism is increased by 12.4% than
those without it.

7 CONCLUSION

This paper studies the group-buying coalition formation-
based method for UAV-enabled data collection in WSNs.
To improve the efficiency of data collection by UAVs and
the competitiveness of sensors’ bids, sensors form multiple
group-buying coalitions to bid for UAV data collection
services. Then, the coalition formation game is leveraged
to design a bid maximization-based problem, which is
solved by our proposed parallel variable neighborhood
ascent search algorithm. To ensure truthfulness and indi-
vidual rationality, a sTrategy-proof VickeRy groUp-buying
Sensor coaliTion (TRUST) auction is designed. Numerical
results show that the sensors’ average age of information
(AoI) under the proposed method is reduced by 16.7% and
44.5% compared with the coalition formation game (CFG)
and joint trajectory design task scheduling (TDTS) UAV-
to-community methods. Besides, the social welfare of the
proposed TRUST auction increases by 41.3% compared with
the non-cooperative auction schemes.
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