IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

9191

LLoRa Meets IP: A Container-Based Architecture to
Virtualize LoRaWAN End Nodes

Antonio Cilfone ¥, Luca Davoli

Abstract—In this work, a container-based architecture for the
integration of Long Range Wide Area Network (LoRaWAN) end
nodes—e.g., used to monitor industrial machines or mobile entities
in specific environments—with Internet Protocol (IP)-based net-
works is proposed and its performance is investigated. To this end,
we exploit the native service and resource discovery support of the
Constrained Application Protocol (CoAP), as well as its light traffic
requirements, owing to its use of User Datagram Protocol (UDP)
rather than Transmission Control Protocol (TCP). This approach
(i) adapts transparently (with no impact) to both private and public
LoRaWAN networks, (ii) enables seamless interaction between
LoRaWAN-based and CoAP-based nodes, through a logical “vir-
tualization” of LoRaWAN nodes at server side, and (iii) enables
routing among LoRaWAN end nodes, overcoming LoRaWAN’s
absence of inter-node communication and lack of compliance (at
the end nodes’ side) with IP. Two virtualization approaches are
proposed: (i) virtualization of a single end node (represented as
a CoAP server) per container and (ii) virtualization of multiple
end nodes (as CoAP servers) per container. Finally, deployments
of the proposed virtualization architectures, using both a laptop
and an Internet of Things (IoT) device (e.g., a Raspberry Pi), are
considered, highlighting how the best solution relies on the use of
several containers, with more than one CoAP server per container.

Index Terms—Internet of Things, LoRaWAN, virtualization,
Constrained Application Protocol (CoAP).

Manuscript received 26 September 2022; revised 21 January 2024; accepted
23 January 2024. Date of publication 26 January 2024; date of current version
3 September 2024. The work of Luca Davoli and Gianluigi Ferrari received
funding from in part by the European Union’s Horizon 2020 research and
innovation program ECSEL Joint Undertaking (JU) under Grant 876019, in
part by ADACORSA project - “Airborne Data Collection on Resilient System
Architectures;” under Grant 876038, in part by InSecTT project - “Intelligent
Secure Trustable Things.” It has also received funding from in part by the
European Union’s Horizon Europe Research and Innovation Program Key
Digital Technology (KDT) JU under Grant 101097267, in part by OPEVA
project - “OPtimization of Electric Vehicle Autonomy.” Finally, we acknowledge
also partial support from in part by the Agritech project - “National Research
Centre for Agricultural Technologies,” under Grant CN00000022, funded under
the National Recovery and Resilience Plan (NRRP), Mission 4 Component 2
Investment 1.4 - Call for tender no. 3138 of 16/12/2021 of Italian Ministry of
University and Research funded by the European Union — NextGenerationEU,
Concession Decree no. 1032 of 17/06/2022 adopted by the Italian Ministry
of University and Research. The ECSEL/KDT JUs received support from
the European Union’s Horizon 2020/Horizon Europe research and innovation
programme and the nations involved in the mentioned projects. Recommended
for acceptance by X. Han. (Corresponding author: Luca Davoli.)

Antonio Cilfone was with the Internet of Things (IoT) Lab, Department
of Engineering and Architecture, University of Parma, 43124 Parma, Italy.
He is now with Tesmec Automation s.r.l., 43036 Fidenza, Italy (e-mail: an-
tonio.cilfone @tesmec.com).

Luca Davoli and Gianluigi Ferrari are with the Internet of Things (IoT) Lab,
Department of Engineering and Architecture, University of Parma, 43124 Parma,
Italy (e-mail: luca.davoli @unipr.it; gianluigi.ferrari @unipr.it).

Digital Object Identifier 10.1109/TMC.2024.3359150

, Member;, IEEE, and Gianluigi Ferrari

, Senior Member, IEEE

1. INTRODUCTION

HE Internet of Things (IoT) applies to heterogeneous
T ecosystems where a massive number of (typically) con-
strained devices is deployed and connected in order to cooperate
for multiple purposes, such as data collection and actuation,
in both Human-to-Machine (H2M)-oriented and Machine-to-
Machine (M2M)-oriented ways. In this context, one of the main
challenges is the seamless interaction between heterogeneous
networks (e.g., in terms of transmission range capabilities [1]
and especially targeting interactions at higher layers, rather than
at physical layer) to improve plants’ safety and operation.

Among [oT network technologies, Low-Power Wide Area
Networks (LPWANS) are attracting a significant interest, having
the advantage to meet almost all IoT requirements, such as: (i)
easy and inexpensive deployment (i.e., unlike solutions based on
cellular 4G/LTE communications, which incur costs related to
SIM renting and traffic data plans), (ii) wide coverage, (iii) sim-
ple and scalable architecture, and (iv) low-power consumption.
This comes at the cost of a few limitations such as: (i) limited
datarate and (ii) restrictions on uplink and downlink capabilities.
To this end, one of the most attractive LPWANSs is Long Range
WAN (LoRaWAN) [2], operating in the unlicensed Industrial,
Scientific and Medical (ISM) bands [3] and emerging as a key
enabler for typical (and heterogeneous) IoT contexts (e.g., smart
city, smart farming, and Industrial IoT, IIoT) [4], with its appeal
confirmed by extensive performance analysis [5]. As an exam-
ple, future operational services offered by an integrated data
collection from manufacturing machines and mobile vehicles
will benefit from the possibility to expand their communication
range [6], [7]. In order for the above heterogeneous contexts
(e.g., IIoT) to support real applications, one of the most inter-
esting key paradigms is the Web of Things (WoT), which corre-
sponds to an extension of the IoT focusing on the integration of
smart devices following World Wide Web (WWW)-like designs.
More in detail, the WoT fosters a set of standard mechanisms and
protocols for seamless communication and interaction between
IoT devices and the Web, making them more accessible and
interoperable [8]. This will thus simplify the creation of appli-
cations and services leveraging the integration of IoT-generated
data with the Internet, providing a simple and user-friendly
experience, and bridging the gap between the physical world
of IoT devices and the digital world of the Web [9].

An attractive approach to the design of LPWAN-based sys-
tems would be to leave the architecture of LPWANs unmod-
ified (considering them as backbone networks), thus adopting
self-organizing mechanisms enabling heterogeneous networks

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-0242-5227
https://orcid.org/0000-0002-4396-8885
https://orcid.org/0000-0001-6688-0934
mailto:antonio.cilfone@tesmec.com
mailto:antonio.cilfone@tesmec.com
mailto:luca.davoli@unipr.it
mailto:gianluigi.ferrari@unipr.it

9192

to interact with each other, in a transparent way from the point
of view of the end nodes. This should be guaranteed even taking
into account constraints on power consumption and (sometimes)
post-deployment critical maintenance due to environmental lim-
itations. In this context, devices’ logical virtualization will likely
play a key role in enabling the desired trade-off between network
flexibility and performance (e.g., especially in the case LPWANSs
will not be natively IP-compliant and, thus, with nodes not
natively addressable in a “standard” way). However, despite
many implementations, LoRaWAN-based solutions are often
considered as standalone, with very limited integrability with
other protocols.

In this work, a novel networking architecture, based on the
Constrained Application Protocol (CoAP) [10] and enabling the
interaction between (non-IP-compliant) LoORaWAN end nodes
and non-LoRaWAN IP-compliant nodes, is proposed and its
performance is evaluated. More in detail, through one or multiple
containers, LORaWAN end nodes are virtualized [11]—they
are represented with corresponding digital replicas, following
a “digital twin” approach [12]—both on-premise (e.g., at the
edge), as well as in the cloud. In this way, our solution enables
a seamless interaction between LoRaWAN end nodes and ex-
ternal IP-compliant devices, without any impact on the existing
LoRaWAN stack and on power requirements of the end nodes,
which would still be unaware of this additional virtualization
layer and would not be affected in their internal implementation.

The remainder of this work is organized as follows. In
Section II, a short introduction on LoRaWAN, Cayenne Low
Power Payload (CLPP), and alternative data representation for-
mats, is provided. In Section III, we comment on research
works available in the literature. In Section IV, the proposed
architecture, where a container may allow the virtualization of
one or more servers corresponding to LoORaWAN end nodes, is
described. In Section V, the system performance is investigated.
Finally, in Section VI conclusions are drawn.

II. OVERVIEW ON LORAWAN AND DATA REPRESENTATION

LPWANSs are designed to offer affordable connectivity to
a large number of constrained devices distributed over large
areas (e.g., different plants of the same production site). To
this end, various LPWAN technologies are available, such as
(just to name a few) Narrowband IoT (NB-IoT) [13], [14],
Sigfox [15], and LoRa [16]. LoRa refers only to the physical
(PHY) layer in the LPWAN stack and does not provide sufficient
reliability mechanisms to be used as-is in [oT contexts. In fact, as
LoRaWAN operates in licence-free frequency bands (as further
detailed in Section II-A), coexistence challenges with other
well-known radio standards (e.g., Zigbee, Bluetooth, etc.) in
these frequency bands might emerge, leading to interference
problems [17], [18]. More in detail, a “background noise” may
appear, due to the presence of devices exchanging data in parallel
via heterogeneous radio communication protocols, as well as
vehicles emitting electromagnetic waves through their electronic
boards (e.g., in urban and sub-urban contexts). Finally, it is not
possible to completely neglect environmental interference even
caused by LoRa devices interfering with each other, because

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Wi-Fi / Cellular / Ethernet

.I PO \Lol{a

Network Server
(+ Application Server)

A
@0

End nodes Applications

Fig. 1. General LoRaWAN architecture providing loT-oriented information
to external applications.

of simultaneous retransmissions (owing to the Aloha-like trans-
mission behaviour of this protocol). With regard to the Sigfox
protocol, in 2022 Sigfox (as a company) went into bankruptcy
proceedings, so its adoption is not attractive. Finally, NB-IoT re-
quires a cellular network coverage, which is not always available
(depending on both location and environmental conditions), and
bears costs due to the SIM card to be included in the IoT/IloT
devices.

Hence, among the available LPWAN protocols, one of the
most interesting (as anticipated in Section I) is LoRaWAN.
More precisely, LoORaWAN has been defined by the LoRa Al-
liance [19], relies on LoRa modulation (based on Chirp Spread
Spectrum, CSS, patented by Semtech Corporation [20]), and
specifies the channel access method and the network architecture
to be exploited in operational scenarios.

A. Basics of LORaWAN

From an architectural point of view, as shown in Fig. 1, a
“pure” LoRaWAN architecture (either private or public) is com-
posed by (on-field) end nodes, intermediate gateways (GWs),
and a Network Server (NS, often combined with an Application
Server, AS) managing the overall LPWAN. In detail, the link
between an end node and a GW is based on the PHY-layer LoRa
protocol, while GWs are connected to the NS through the IP
protocol. Focusing on on-field LoORaWAN end nodes, depending
on their downlink capability, they can belong to one operational
class among Class A, Class B, and Class C [2]. In detail, in
Class A, which must be supported by all LoRaWAN devices, a
node can receive downlink packets only inside two receive slots,
following an uplink transmission act, thus resulting in the lowest
energy consumption mode. Class B devices are allowed to open
extra receive slots at scheduled intervals (regardless of uplink
transmissions), identified by the reception of synchronization
beacons from the GWs—therefore, they support applications re-
quiring a more intense downlink traffic. Finally, Class C devices
are always listening to the channel, thus presenting the highest
energy consumption level among these operating classes, but,
at the same time, being able to receive a downlink packet at
any time, leading to the lowest downlink latency. The channel
access mechanism is based on Aloha: once an end node wakes
up, it sends a packet on a selected radio channel. At this point,
one or more GWs (within the end node’s transmission range)
(i) receive the packet and (ii) forward it to the NS, which keeps
only one instance of the received (potentially multiple times)

CILFONE et al.: LORA MEETS IP: A CONTAINER-BASED ARCHITECTURE TO VIRTUALIZE LORAWAN END NODES

packet. Since operations are carried out in unlicensed bands (in
Europe, the European Telecommunications Standards Institute,
ETSI [21]-defined 868 MHz band), end nodes and GWs must
operate with a proper duty cycle (in Europe, between 0.1% and
10%, depending on the adopted frequency), unless end nodes
perform Listen-Before-Talk (LBT) or frequency-hopping tech-
niques. Hence, each time a frame is transmitted, the airtime is
calculated and, subsequently, the time interval during which the
transmitter cannot use the channel, denoted as time off (Torr),
is derived.

Moreover, LoORaWAN end nodes are required to “join” the
LoRaWAN network to participate to network operations. In
detail, the join operation can be carried out through two acti-
vation methods: (i) Over-The-Air-Activation (OTAA) and (ii)
Activation-By-Personalization (ABP), with OTAA being the
most secure method, as session parameters change at each
session establishment. Thus, owing to this feature, OTAA is
the join mechanism which will be considered in this work,
being recommended by the LoRa Alliance because of its high
security level, that perfectly fits scenarios where communication
security is crucial. With ABP, end nodes already know all the
configuration parameters required for activation. With OTAA,
the LoRaWAN specifications [2] define the use of (i) static
root keys (only provisioned in OTAA end devices) and (ii)
session keys dynamically generated from the root keys and
derived when an OTAA device executes a join procedure to
the LoORaWAN network. Hence, once installed on the field, an
OTAA-activated end device will protect its over-the-air traf-
fic by using the session keys. At the opposite, end devices
using the ABP activation procedure will not be provisioned
with root keys, but they will feature only a set of session
keys for a pre-defined network, with session keys remaining
unmodified throughout the lifetime of the ABP end device
itself.

B. Cayenne LPP (CLPP)

One of the main constraints of LoRaWAN (and, in general,
of all LPWAN) is the available payload space inside a network
packet: with reference to EU regulation, the smallest available
payloadis equal to 59 bytes. Nevertheless, the parameter of inter-
est (in order to send as much information as possible) is the max-
imum payload size, which, in the case of LoORaWAN, depends
on the chosen Spreading Factor (SF). In several scenarios, the
focus would be on the possibility to shorten the payload to be sent
through such a constrained protocol, but, at the same time, guar-
anteeing to transmit all the required information (e.g., through
multiple packets), by devising a mechanism to “auto-describe”
the data without the need to a-priori define a rigid packet format
(e.g., avoiding the need to reserve a fixed space in the packet
for each information). In order to meet these goals, one of the
widely adopted formats is the Cayenne Low Power Payload
(CLPP) [22], which can be “squeezed” to 11 bytes (thus fitting
the available payload size given by any LoORaWAN SF), avoiding
useless separators, and allows an end node to send multiple sen-
sors’ data at once by splitting the information across consecutive
frames.

9193

TABLE I
LPP SENSOR CODES

HEX Length Data Resolution

Sensor Value [bytes] (per bit)
Analog input 0x02 2 0.01 Signed
Temperature 0x67 2 0.1°C Signed MSB
Humidity 0x68 1 0.5% Unsigned
Accelerometer 0x71 6 0.001 G Signed MSB per axis
Barometer 0x73 2 0.1 hPa Unsigned MSB
Noise sensor OxE9 2 0.1dB Unsigned MSB
Filling level OxEB 2 0.01% Unsigned
Air quality OxE4 2 1 ug/m?® Unsigned MSB
Lat: 0.0001° Signed MSB
Location 0x88 9 Lng: 0.0001° Signed MSB

Alt: 0.01 m Signed MSB

B Data channel
00 73 26FA | 01 67 010A | 02 68 6F

\ l

/temperature

® Data type B Actual Data

/pressure /humidity

Fig.2. Example of received CLPP-encoded uplink packet, with corresponding
CoAP resources (as detailed in Section IV).

More in detail, each CLPP-formatted data packet has a prefix
given by the following 2 bytes:

® data channel byte, used to identify the node’s sensors

across multiple frames (in the presence of multiple sensors
of the same type);

® data type byte, used to identify the nature of the sensor

inside the frame, as regulated by the Internet Protocol for
Smart Objects (IPSO) guidelines [23].

As a clarification example, Table I summarizes the identifiers
and data resolution (per bit) related to the sensors that will be
assumed as reference on-field data collectors in this work. In
Fig. 2, we show an illustrative CLPP frame sent by a LoRaWAN
endnode (e.g., located in a drying cell in a production plant) with
three on-board sensors (pressure, temperature, and humidity)
measuring 997.8 hPa, 26.6 °C, and 55.5%, respectively. For
each type of sensor a byte sequence is sent: data channel (one
byte), data type (one bye), and “raw” sensor data (at least
one byte). In this case, the CLPP-encoded payload is equal to
007326FA0167010A02686F, where:

e 0x00, 0x01, and 0x02 are the indexes of the sensors;

0x73 identifies a pressure sensor (barometer);

® (0x26FAis the pressure value that, once converted to deci-

mal (i.e., 9978), has to be multiplied by 0.1 hPa (according
to the rules shown in Table I), leading to a final value equal
to 997.8 hPa;

® (0x67 identifies a temperature sensor;

® 0x010 Aisthe (2-byte) temperature value that, once con-

verted to decimal, has to be multiplied by 0.1 °C, leading
to a final value equal to 26.6 °C;

0x68 identifies a humidity sensor;

0x6F is the humidity value that, once converted to decimal,
has to be multiplied by 0.5 and expressed in %, leading to
a final value equal to 55.5%.

9194

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

<r>

{"c 00", "t": "73", "v": "26FA"}, <i c="00" t="73">26FA</i>
{"c": "01", "t": "67", "v": "010A"}, <i c="01" t="67">010A</i>
{"c": "e2", "t": "68", "v': "6F"} <i c="02" t="68">6F</i>
] </r>
Listing 1. JSON-Encoded LoRaWAN Payload. Listing 2. XML-Encoded LoRaWAN Payload.

As will be discussed later, in this work the CLPP format will be
exploited to perform automatic sensor discovery at each (static or
mobile) end node, in order to simplify distributed environmental
monitoring [24].

C. Alternative Data Representation Formats

Besides the CLPP format detailed in Section II-B, there exist
alternative ways to represent data to be exchanged between
parties in a communication, obviously requiring proper encod-
ing/decoding operations in order to encode and decode infor-
mation. In the following, we overview four possible alternative
data representation formats in a comparative way with respect
to CLPP.

1) JavaScript Object Notation (JSON): JavaScript Object
Notation (JSON) is a text-based, language-independent data
interchange format based on JavaScript object syntax and on
a set of formatting rules for the serialization and representation
of structured data, commonly used for transmitting data in Web
applications [25]. In detail, many programming environments
can parse JSON (that is provided with the specific MIME type
application/json) which allows to represent primitive
(e.g., strings, etc.) and structured (e.g., objects and arrays) types.
This leads to a serialized sequence of tokens, with strings being
sequences of zero or more Unicode characters to be enclosed
inside double quotes, and objects corresponding to an unordered
collection of zero or more name/value pairs to be enclosed inside
square and curly brackets. Colons and commas are used as name
and value separators.

Owing to the above features, it is clear that JSON represents a
good candidate in scenarios where a lightweight but structured
data format is required, at the same time not presenting con-
straints on the available payload size. Therefore, JSON cannot be
considered as an attractive candidate for constrained information
exchanges via LORaWAN packets (particularly with reference
to CLPP). For the sake of comparison, with reference to Fig. 2,
assume to represent each single CLPP block (composed by data
channel, data type, and “raw” data) as an array of JSON objects,
in which each single JSON object features (i) the CLPP data
type associated with the key t, (i) the unit of measurement
being a-priori known thanks to a static mapping available in an
external registry (similarly to CLPP), (iii) the CLPP data channel
associated with the key c, and (iv) the “raw” data mapped as the
value of a tuple with key v. A possible corresponding JSON-
encoded LoRaWAN payload (with a length equal to 92 bytes) is
shown in Listing 1 (expanded on multiple lines for readability).

It can be thus concluded that CLPP is much more efficient, in
terms of compact data representation, than JSON.

2) Extensible Markup Language (XML): Extensible Markup
Language (XML) is a text-based markup language (similar to
HTML) defined for exchanging information between systems
(in general, in M2M applications), and used to define the so-
called XML documents [26]. In detail, each XML document is
composed of XML entities and needs to begin with a unique root
element. In order to encapsulate information, an XML document
can have a starting (case-sensitive) XML declaration followed
by several XML elements, denoted as XML nodes or XML tags,
to be enclosed in triangular brackets. Moreover, each element
can in turn contain multiple elements as its children, which need
not to overlap (i.e., an element’s end tag must have the same
name as that of the most recent unmatched start tag). Finally, as
for the XML declaration, even names and attributes (specifying
single properties through name/value pairs) of an XML element
are case-sensitive, too.

As highlighted for JSON, even XML is characterized by a
long data representation, difficult to be enclosed in constrained
payloads. Therefore, it cannot be considered as a valid alternative
with respect to CLPP. For the sake of comparison, with reference
to Fig. 2, assume that the XML root element is represented by
the XML tag <r> and that each single CLPP block (composed
by data channel, data type, and “raw” data) is represented as a
list of XML elements, in which each single XML element <i>
features (i) the CLPP data type associated with the key t, (ii)
the unit of measurement being a-priori known, thanks to a static
mapping available in an external registry (similarly to CLPP),
(iii) the CLPP data channel associated with the key c, and (iv)
the “raw” data mapped as the value of the XML element itself.
A possible corresponding XML-encoded LoRaWAN payload
(with a length equal to 80 bytes) is shown in Listing 2 (expanded
on multiple lines for readability).

As for JSON, it can be concluded in this case as well that
CLPP is more concise than XML.

3) Constrained RESTful Environments (CoRE) Link Format:
The Constrained RESTful Environments (CoRE) Link Format
is a serialization mechanism defined to describe (using a link-
header style format [27]) relationships between entities (e.g.,
CoAP resources) in constrained nodes and networks, especially
in M2M-like scenarios [28]. More in detail, CoRE Link For-
mat has an associated MIME type (application/link-
format), is encoded as UTF-8 (thus each character should be
represented “wasting” a byte of space in the payload), and re-
quires the use of commas to separate multiple link descriptions.

Therefore, being similar to XML (except for the attribute
position inside the encoded payload), CoRE Link Format re-
quires a non-negligible payload length, which is critical in
the case payload size-constrained protocols have to used (e.g.,
LoRaWAN). For the sake of comparison, with reference to Fig. 2,

CILFONE et al.: LORA MEETS IP: A CONTAINER-BASED ARCHITECTURE TO VIRTUALIZE LORAWAN END NODES

</r0>;ct="26FA";t="73";c="00",
</rl>;ct="010A";t="67";c="01",
</r2>;ct="6F";t="68";c="02"

Listing 3. CoRE Link Format-Encoded LoRaWAN Payload.

assume to represent each single CLPP block (composed by data
channel, data type, and “raw” data) as a list of link descriptors,
in which each single link descriptor features (i) a resource name
starting with /r and followed by an incremental index (e.g.,
/x0, /rl, etc., required to distinguish among multiple links),
(ii) the CLPP data type mapped as the value of a custom attribute
t, (iii) the unit of measurement being a-priori known thanks to
a static mapping available in an external registry (similarly to
CLPP), (iv) the CLPP data channel associated with a custom
attribute c, and (v) the “raw” data mapped as the value of the
standard attribute ct. A possible corresponding CoRE Link
Format-encoded LoRaWAN payload (with a length equal to
87 bytes) is shown in Listing 3 (expanded on multiple lines
for readability).

As in the previous cases, in this case as well CLPP is more
efficient (in terms of representation compactness) than CoRE
Link Format.

4) Custom Raw Data Encoding: As a final data representa-
tion approach, one may not exploit well-known, standardized,
and structured data representation mechanisms, such as those
mentioned in Sections II-B and II-C1-II-C3. In this case, one
may encode the information to be sent from an on-field source
node toward remote entities through a customized (raw bytes)
representation. To this end, unlike CLPP, the definition of a cus-
tom data formatting mechanism requires to “manually” define
encode/decoding policies for the data to be exchanged. These
policies, in turn, often (i) strictly depend on the specific device’s
vendor, (ii) have a “position-based” significance (i.e., each byte
has a specific meaning depending on its position inside the pay-
load, with consequent decoding issues in the case of disturbed
communications), and (iii) require the vendor itself to release
documentation and specifications to allow the end user to encode
and decode the collected data. Hence, these drawbacks may
hinder the applicability of “custom-made” encoding/decoding
strategies with respect to standardized (and constrained, in terms
of payload length) solutions like CLPP.

III. RELATED WORKS

In [29], cloud and edge computing are combined with Lo-
RaWAN to develop a campus air quality monitoring system. No
seamless integration of LPWAN-based end devices is consid-
ered, as high-layer computing infrastructures are exploited only
for visualization and processing needs.

In [30], a probabilistic approach is proposed to enable effi-
cient sharing of LoRaWAN access networks between different
services/slices and integration of admission control mechanisms
(expedient to the devices from transmitting). In this case, the
focus is on the physical layer of the chosen communication
protocol, allowing multiple end nodes to send their messages
toward natively defined LoORaWAN high-layer systems (i.e., NS

9195

and AS), rather than focusing on end nodes’ virtualization for
enhanced services.

In [31], the interest is on the integration of a 5G mobile
network (with very high capacity) to provide backbone con-
nectivity for the LoRaWAN architecture, thus focusing not on a
seamless integration at service layer but, rather, on speeding up
the transmission of information on the backbone layer.

In [32], a solution to seamlessly integrate LoRaWAN with
4G/5G mobile networks is proposed, claimed to be transparent to
LoRaWAN end devices since only the LoORaWAN gateway needs
to be modified. The integration thus requires the modification
of a component of the architecture, thus being not completely
seamless and without providing high-layer services to external
consumers which might request data collected by on-field Lo-
RaWAN end devices.

In [33], virtualization technologies are used to simulate Lo-
RaWAN at the application layer (i.e., the design, development
and testing for roaming in LoORaWAN networks in the context
of future smart cities). The focus is on the simulation of such
scenarios, rather than providing a way to seamlessly enable
high-layer services’ exploitation by possible external entities
interested in interacting with LoORaWAN end nodes (in both
uplink and downlink directions).

Given that the topics of the literature works summarized above
differ from the main topic of our paper, in the following we
detail and describe the design and implementation of a novel and
effective virtualization architecture to allow LoRaWAN (non-IP-
based) end nodes to interact seamlessly with IP-based nodes.

IV. CONTAINER-BASED VIRTUALIZATION ARCHITECTURE

The main goal of the proposed architecture is to create replicas
of LoRaWAN end nodes on top of the IP layer, in order to manage
different on-field mobile and static sensing and actuating devices
in a modular way (e.g., through an application layer control
system). As detailed in Section I, our focus is not on the chosen
virtualization solution itself, but, instead, on the definition of
a “high-layer digital twin” of a set of LoRaWAN end nodes,
which natively do not support IP-based routing and inter-node
communication. To this end, the virtual replica of a physical
LoRaWAN end node is denoted as virtual End Node (VEN)
and is implemented as a CoAP server (following an IoT-like
approach). Then, following this CoAP-oriented approach, each
sensor equipping a physical LoRaWAN end node will be repre-
sented as a virtual CoAP resource attached to its own VEN, thus
allowing external CoAP-enabled entities to virtually interact
with the (physical) LoRaWAN end nodes. In detail, CoAP has
been chosen thanks to its light traffic requirements (e.g., being
based on UDP instead of TCP) and native support to service
and resource discovery mechanisms [34], [35], [36] (even if
requiring additional information descriptors [37]), as well as to
increase the number of application protocols (e.g., the traditional
HTTP and MQTT protocols [38]) able to cooperate with the
LoRaWAN’s AS. This enables communication heterogeneity in
several IoT scenarios. We remark that, as the aforementioned
traditional protocols (HTTP, MQTT) to be possibly adopted in
IoT/HoT scenarios, even CoAP is not exempt from possible

9196

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

e

<7 oW

/noise

/oil-level

virtual End Node

CoAP
Server

Network Server 3

CoAP clients

LoRaWAN ecosystem

Fig. 3. LoRaWAN architecture extended with the Virtualizer.

drawbacks (i.e., packet losses or delays). Nevertheless, CoAP
represents an effective choice for the implementation of the “log-
ical abstraction” framework proposed in this manuscript for the
following main reasons: (i) “readyness-by-design” for 1oT; (ii)
lightweight service discovery mechanisms; (iii) binary nature;
(iv) native support of the observing relation (“moving” the pros
of the publish/subscribe paradigm, representative of MQTT, into
arequest/response-like protocol, like HTTP); and (v) support to
real-time instantiation of operating CoAP resources on top of a
CoAP server (unlike HTTP, in which the same resources should
be HTML documents or predefined APIs).

As an example, consider an IoT context in which mobile
LoRaWAN end nodes are installed in a mobile vehicle (e.g., an
industrial forklift or a bulldozer), allowing them to seamlessly
interact with other equipment (e.g., automatic barriers, safety
cameras, and lights) during working hours, as shown in Fig. 3.
Each LoRaWAN end node can send mobile vehicle-related
data (e.g., oil level, in-vehicle conditions, position), as well
as information related to the surrounding environment (e.g.,
air quality). The mobile vehicles may also be equipped with
safety controllers to avoid certain areas or paths toward certain
operational locations.

Regardless of the scenario of interest, the proposed virtual-
ization architecture allows a seamless information exchange,
guaranteeing a transparent compatibility between (non-IP) Lo-
RaWAN end nodes and IP-compliant entities, thus leaving
the “core” LoRaWAN architecture unmodified (i.e., compli-
ant with the corresponding definitions and protocol specifi-
cations). Hence, the virtualization add-on can be seen as a
“proxy” among heterogeneous networks, allowing to model a
LoRaWAN “ecosystem” as a “black box” left unmodified by
our virtualization architecture, which would be deployed on
top of the LoRaWAN ecosystem itself. Since the LoRaWAN
core infrastructure is left as-is, the latency among LoRaWAN
nodes and IP-based nodes is the same experienced in a classical
LoRaWAN network (with some possibly additional minor pro-
cessing delays). In particular, the specific LoORaWAN end node
operational mode (i.e., Class A, B, or C) is not influenced (in its
internal transmission/reception intervals) by the proposed vir-
tualization infrastructure. As an example, should a LoRaWAN
downlink message be steered from the NS toward a specific
LoRaWAN Class A end node, this will always correspond to an
asynchronous operation (as downlink packets need to wait the
first available LoRaWAN receive slot to be sent from the NS to
the field). Hence, the downlink packets are queued in the native

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

LoRaWAN AS by the proposed virtualization infrastructure as
soon as its corresponding modules have received this enqueuing
request from an external entity, but certainly in advance with
respect to the reception slot of the LoRaWAN end node. In
the case of LoORaWAN Class C end devices, the overall delay
(from the time instant at which an external entity requires to
send a downlink message to a LoORaWAN end node to the time
instant at which this packet will be queued in the core LoRaWAN
NS) would not be increased significantly by the presence of
the virtualization infrastructure, e.g., by exploiting native inte-
grators provided by the classical LoORaWAN architecture (e.g.,
via HTTP REpresentational State Transfer, REST, Application
Programming Interfaces, APIs).

The same transparent compatibility introduced above holds
for aspects depending on the LoRaWAN SF, which is not
affected by the proposed virtualization. The adoption of the
proposed virtualization architecture allows also data routing
among LoRaWAN end nodes (through their CoAP-based virtual
replicas). This would not be possible with a “pure” LoRaWAN
architecture, as LoORaWAN requires that interactions should fol-
low a “tree-like” structure, with messages following the classic
LoRaWAN uplink (from end node to NS/AS) and downlink
(from AS/NS to end node) sequence, thus preventing a direct
interaction among end nodes.

In Fig. 4, we show the building blocks (and their interactions)
of the proposed virtualization architecture, whose operations
can be described as follows. Upon receiving new data from a
LoRaWAN end node (through the NS/AS), the Data Manager
(DaM), shown in Fig. 4, looks for the corresponding VEN and
updates the value of the proper resource, until new updates
arrive. Therefore, the main advantage of this approach is that
if a node receives two independent requests from an external
IP-enabled entity within a time interval shorter than Togp, it
can still use the latest available data to reply to these requests,
thus providing a caching mechanism to the entire virtualization
infrastructure.

Moreover, as highlighted above, the resource discovery func-
tionality is another key aspect of the proposed virtualization
architecture, since when a LoRaWAN end node is deployed
on-field, the back-end architecture does not a-priori know which
data types will be sent. In the same way, the LoORaWAN NS does
not know in advance the amount and nature of the sensors each
LoRaWAN end node is equipped with. Therefore, exploiting the
CLPP format, it is possible to introduce automatic sensors’ dis-
covery by simply parsing the LoORaWAN packet’s payload. This
is even true since: (i) LoRaWAN end nodes know which kind
of data they are producing, so they are aware of the CLPP data
encoding to be applied before sending their information, while,
on the other end; (ii) the proposed virtualization infrastructure
will be able to know the exact amount of sensors maintained by
each end node simply by parsing the CLPP payload. Since the
virtualization infrastructure is resourceful, it might interact with
external entities to retrieve additional information (e.g., the first
time an “unknown” payload arrives and has to be parsed). Ac-
cording to this approach, the behavior of the LoRaWAN network
becomes transparent to external (CoAP and, more generally, IP)
clients.

CILFONE et al.: LORA MEETS IP: A CONTAINER-BASED ARCHITECTURE TO VIRTUALIZE LORAWAN END NODES

Docker container fm e mmmmmmm e o

/battery

External
CoAP Client #1

CoAP
Server@QIP-1

9197

External
CoAP Client #2

CoAP
Server@QIP-2

/res-handler

External
CoAP Client #3

. Resource
. Directory
O
Network [~ W Join
Server @ ‘ Manager -
& : ‘B
Application [W TS - -
Server Manager 2097
"’u Downlink
Manager
U
LoRaWAN Core Manager

virtual End Nodes External Nodes

Virtualizer

Fig. 4.

Finally, from an implementation point of view, the proposed
virtualization architecture relies on the use of Docker contain-
ers [39], thus ensuring isolation and independence between the
applications (i.e., COAP servers) executed inside them and possi-
bly deployed on-premise in local data centers. We highlight that
there may be alternative approaches to automatic sensor discov-
ery (e.g., SLP [40], Zeroconf [41], mDNS [42], DNS-SD [43],
etc.). However, as discussed and motivated in Sections II-B and
II-C, CLPP is preferrable as it is compact and, thus, abides more
effectively by LoRaWAN protocol’s constraints.

We remark that future research activities will involve the
analysis (and comparison) of pros and cons between an archi-
tectural deployment based on containers and a corresponding
deployment based on a different approach, such as one based
on microservices. In fact, both these approaches have recently
emerged as attractive paradigms revolutionizing how applica-
tions are built, deployed, and scaled. In the following, we shortly
highlight the benefits of each approach.

e Containers give the developer (and the end user) a
lightweight and isolated environment in which applications
and libraries can be packed and encapsulated into a single
unit. This ensures a consistent behavior across different
infrastructures and avoids drawbacks due to different op-
erating systems’ configurations, without worrying about
underlying infrastructure variations. Therefore, containers
enable (i) seamless deployment and scalability, (ii) high
portability and isolation (leading to enhanced security and
stability since changes or issues within a container do not
affect others), (iii) efficiency, in terms of fewer consumed
resources (if compared to traditional VMs), and (iv) fast
startup times.

® Architectures based on microservices tend to be exploited
when there is the need to “break down” complex ap-
plications into smaller and independent services, each
one specifically responsible for a particular functionality
and interacting with other microservices through APIs
(as shared information channels). Therefore, microservice-
based architectures can, in general, benefit from (i) granular
scaling, with only high demand specific services having to

Building blocks and interactions of the virtualization architecture following the “parallel container” approach.

be scaled (thus optimizing resources utilization), (ii) fault
isolation, since if one service experiences criticalities or
fails, it can be singularly rescued without affecting the
overall application life cycle (thus enhancing the system’s
resilience), and (iii) technology heterogeneity, as deployed
microservices may be based on different frameworks and
programming languages, thus enhancing the system’s flex-
ibility.

It is clear that these two approaches cannot be considered as
mutually exclusive, while, instead, as complementary to each
other. A container-based approach seems preferrable for our
proposed virtualization architecture, since the initial deployment
may require to instantiate multiple clones (i.e., containers) of
the same instance, in order to virtualize multiple on-field Lo-
RaWAN end nodes: each container runs the same applications
written with the same programming language. Nevertheless, the
design, deployment, and orchestration of microservices within
containers is an attractive research direction, expedient to en-
hance performance, security, and management of our proposed
virtualization architecture. This goes beyond the scope of the
current manuscript and is subject of future research.

A. “Parallel Container” Virtualization: One Server per
Container

With reference to Fig. 4, a “parallel container” approach
requires that one single Docker container is started for each
VvEN, i.e., only one CoAP server runs inside a container. More
in detail, the operations of the virtualized architecture involve
the following tasks: (i) solid arrows, describing the “discovery”
phase; (i) dashed arrows, representing “regular” operations
carried out by LoRaWAN end nodes (e.g., uplink messages
collected by vENs and sent, as CoAP response’s payload, to
external CoAP entities); and (iii) dotted arrows, denoting the
data flows for LoORaWAN downlink messages.

As highlighted in Section II-A, in the proposed architec-
ture the OTAA join procedure mechanism is adopted for the
LoRaWAN end nodes, in order to provide a higher self-
configurability. More generally, each specific LoORaWAN NS

9198

may be properly implemented and uses a specific approach
to make collected data available to external non-LoRaWAN
networks. To this end, the most common approaches rely on
(1) the REST paradigm, through specific APIs, (ii) the MQTT
protocol, and (iii) the WebSocket protocol [44]. Although all
these approaches are effective, in the proposed virtualization ar-
chitecture MQTT will be considered due to its publish/subscribe
nature, useful to notify the presence of a new data, instead of
continuously polling an endpoint to check the availability of
a new information (e.g., according to the REST paradigm).!
In particular, the LoRaWAN NS exposes the following three
MQTT topics:

® join events, on the join/ MQTT topic;

® uplink messages, on the uplink/ MQTT topic;

® downlink messages, on the downlink/ MQTT topic.

In detail, once a LoORaWAN end node joins the network, the
join event is published in the corresponding MQTT topic and
the Join Manager, subscribed to this topic via a MQTT client
(step (Din Fig. 4), retrieves the device address of the LoRaWAN
end node and instantiates a corresponding Docker container
where the VEN will be (i) executed (step (2) in Fig. 4) with
a certain IP address and (ii) associated with the “discovered”
address. Then, for each LoRaWAN end node, a new container,
associated with one VEN, is instantiated and started. Moreover,
the VEN is added to the company’s Resource Directory (RD),
which acts as a sort of “white pages” service and is in charge
of listing all the CoAP resources of the VENs corresponding to
deployed physical nodes.

Once a vEN is created, an additional “reserved” CoAP re-
source, denoted as /res-handler and not visible outside
the Virtualizer, is attached to the corresponding CoAP server. In
detail, this specific CoAP resource is used to manage the sensors’
discovery phase—as stated earlier, resource discovery is a key
feature in IoT scenarios, avoiding an a-priori knowledge of the
number and nature of the available LoORaWAN end nodes.

According to the approach presented in Section II-B, the
CLPP format will be exploited to allow automatic discovery
of the sensors equipping a LoRaWAN end node by parsing the
LoRaWAN packet’s payload. In detail, for each sensor installed
in the end node, the corresponding VEN generates a CoAP
resource as a virtual replica of the specific sensor. Then, the
MQTT client contained inside the DaM listens to the uplink/
topic and gathers data from the NS (step (3)in Fig. 4) and, once a
packet is received through this MQTT topic, the Payload Parser
Block (PPB) module is triggered. Depending on the type of
received data and the resource list, the PPB can perform two
different actions:

e if the sensor is new, no CoAP resource is associated with

it and, therefore, a sensor discovery is performed;

e if the CoAP resource already exists, the received packet

corresponds to an update packet and, therefore, the PPB
(i) extracts the values from the packet and (ii) updates the
related CoAP resources.

Being WebSocket and MQTT similar (in terms of operational paradigm), the
adoption of WebSockets in place of MQTT and the corresponding performance
evaluation is left for future research.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

TABLE II
SENSORS MAPPING ON COAP RESOURCES

Sensor CoAP Resource Endpoint
Battery voltage reader /battery

Temperature /temp

Humidity /humidity

Accelerometer /accelerometer

Noise sensor /noise

Filling level /0il-level

Air quality /air-quality

GPS /position

In detail, in the presence of a new sensor, the PPB parses the
received payload, analyzing the CLPP data types found in the
message, and, then, requires the DaM to send a CoAP POST
request to the specific vEN replica of the LoRaWAN end node
(step @)in Fig. 4) targeting the proper CoAP resource endpoint
(as defined in Table II) and the name of the CoAP resource
that must be created, as POST payload. Then, as shown in
step 63 in Fig. 4, the vEN eventually creates the requested CoAP
resource: as an example, with reference to Fig. 2, if the CLPP
data type corresponds to 0x73, then a /pressure CoAP
resource is created and executed. In general, the syntax adopted
in the proposed virtualization architecture is kept as simple as
possible, with the name of the CoAP resource corresponding to
the human-readable name of the sensor, as detailed in Table II.

More in detail, considering the uplink CLPP payload shown
in Fig. 2, for each sensor attached to the “real” LoRaWAN end
node, the PPB obtains the data channel and type (in green and
red colors in Fig. 2, respectively), and raw data. Then, the PPB
decodes the values according to the bit resolution rules shown
in Table I and, for each sensor, the DaM sends a CoAP PUT
request (step (B)in Fig. 4) to the CoAP resource corresponding
to the specific sensor, with the decoded values as CoAP PUT’s
payload.

The following CoAP POST requests will be sent to the VEN
(available at its <vEN-IP> IP address) in order to associate
the proper CoAP resources with the VEN:

® POST /pressure to coap://<vEN-IP>/res-

handler

e POST /temp to coap://<VEN-IP>/res-
handler

® POST /humidity to coap://<VEN-IP>/res-
handler

Regarding the update task on the different sensors, the fol-
lowing CoAP PUT requests will be sent to the specific VEN:

® PUT 997.8t0 coap://<VEN-IP>/pressure

e PUT 26.6to coap://<VEN-IP>/temp

® PUT 55.5to coap://<VEN-IP>/humidity

If the VEN is still present in the RD, only the sensors’ update
is performed. Once VENs and their related CoAP resources are
discovered and added to the RD, the rest of the message exchange
corresponds to the classical exchange between CoAP nodes [10],
[45]: an external CoAP client looks for resources of interest in
the RD and, then, sends CoAP-supported requests to the vVEN.

Finally, if an external CoAP-enabled node is interested in
sending a downlink message to a LoRaWAN end node (e.g.,

CILFONE et al.: LORA MEETS IP: A CONTAINER-BASED ARCHITECTURE TO VIRTUALIZE LORAWAN END NODES

Docker container

................

9199

| ’
H Resource {/\ 0
. ! atter:
E Directory ! CoAP J External
@ ' E @ vEN Handler @ Server:5684 /noise / CoAP Client #1
| ; —
Network /—\'A Join /./ /ven-handler fres tonder /position
Server @ i Manager .
& e A P - External
Applicati L 1T & B, -7 CoAP Client #2
pplication N Data |+— 5 -
Server , :&\\ 0 Manager |okooooocem-=m===770 /oil-level
SN < S C'oAé)689 v
A erver: humidity External
‘~... ! Downlink /res-handler Jvomp \ CoAP Client #3
E Manager
[—
LoRaWAN Core Manager virtual End Nodes External Nodes

Virtualizer

Fig. 5.

requesting a vehicle’s position or an oil level), it simply needs to
target a CoAP PUT request to the VEN’s CoAP resource. In turn,
this request will trigger the Downlink Manager (DoM) (step (©)in
Fig. 4) that, eventually, forwards it to the NS (step D)in Fig. 4)
to reach the LoRaWAN end node with the specific downlink
payload.

B. “Parallel vVEN” Virtualization: Multiple vENs per
Container

Unlike the virtualization approach proposed in Section IV-A,
we now consider multiple VENs running in the same Docker
container. In this case, instead of executing vENs in separate
Docker containers (one VEN per container, with different IP
addresses), a few VENs run in the same container, sharing the
same [P but being identified by different ports (at transport
layer). Hence, this solution makes VENs less independent but, as
will be discussed in Section V, it represents a good compromise
for its use in constrained devices (e.g., because of deployments
in remote areas far from a stable energy supply).

With respect to the “parallel container” approach discussed
in Section IV-A, in the “parallel vVEN” approach there is a
new entity, implemented as a CoAP server and denoted as
vEN Handler, which (i) has to handle the generation of new
VENS, (i) is accessible only from the Join Manager, and (iii)
exposes (only internally to the Virtualizer) the /ven-handler
CoAP resource. As in Section IV-A, when a LoRaWAN end
node joins the LoRaWAN network, the join event is published
in the join/ MQTT topic and the Join Manager, subscribed
to this topic (step (Din Fig. 5), retrieves the LoRaWAN end
node’s device address and sends a CoAP POST request to the
/ven-handler CoAP resource, with the LoRaWAN device’s
address as payload (step (2)in Fig. 5). Then, the vEN Handler
starts a Docker container with a specific IP address (step (3)in
Fig. 5). In this container, a VEN is created on a UDP port
associated with the “discovered” address and added to the RD.
Thanks to this approach, once the VEN is started, its reserved
/res-handler CoAP resource is also started. Therefore, in
the case new LoRaWAN end nodes are discovered (e.g., new
mobile nodes are deployed to monitor specific environments

Building blocks and interactions of the virtualization architecture following the “parallel VEN”" approach.

for safety reasons), their vENs will run inside the same Docker
container, with each VEN associated with a specific port.
Finally, the following steps remain the same as discussed in
Section IV-A: CoAP resources are added sending a CoAP POST
request to /res-handler (step (3)in Fig. 5) and updated
sending a CoAP PUT request to the corresponding resource

(step ®)in Fig. 5).

C. “Pure MQTT” Virtualization

Before assessing the experimental performance of the virtu-
alization approaches presented in Sections IV-A and IV-B, we
now describe how the “parallel container” approach (chosen for
simplicity) would transform if MQTT would the only available
protocol to be used by the different entities of the virtualization
architecture to interact with each other. The building blocks and
their interactions in such a “pure MQTT” virtualization architec-
ture are shown in Fig. 6, where it can be clearly observed how
each information exchange between different blocks requires
the definition of a specific MQTT topic, trying to “mimic” the
CoAP-based request/response paradigm available in the archi-
tectures shown in Figs. 4 and 5.

With regard to Fig. 6, the LoRaWAN NS is still active
on its reserved MQTT topics (namely: join/, uplink/,
and downlink/). Then, as detailed in Section IV-A, when
a LoRaWAN end node joins the LoRaWAN network, the Join
Manager, subscribed to the join/ topic (step (Din Fig. 6), re-
trieves the LoRaWAN end node’s device address (e.g., DADDR,;)
and instantiates a new corresponding VEN (step (2) in Fig. 6).
Then, the newly created VEN features an internal MQTT client
allowing the VEN (i) to subscribe to the device/DADDR, / #
topic of interest (associated with its “discovered” address) and
(i) to inform the RD about its creation (step 3)in Fig. 6), in
detail publishing an MQTT message on the rd/join topic
(which the RD is subscribed to). This allows the VEN to “lis-
ten” for MQTT messages published on two particular MQTT
topics (highlighted with a diagonal lines pattern in Fig. 6): (i)
device/DADDR; /downlink, used for scheduling downlink
messages toward its corresponding on-field LoRaWAN end

9200

Docker container

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

»
“‘-4%/803

'
']l;iseocl::;e A External
y MQTT MQTT
B @ il Client SUB @ PU@ NS Client #1
v — Sty device/DADDR, /# s
Joins &} r/position .
4 . client/CID1/DADDR; /RES,,
Join o A -
Network 1 Manager %0’/
Server PUB @ 5 g L External
& UPLin NG ! e MQTT
Application » Client #2
Sorver M Dpata
' Manager
H r/oil-level
i MQTT
: Client SUB @ | Extemal
g Downlink device/DADDRy/# pU MQTT
| Manager ! W Client #3
: - e
L —————— '

LoRaWAN Core Manager

Virtualizer

Fig. 6.
protocol.

node; and (ii) device/DADDR, /res-handler, not Vvisi-
ble and accessible outside the Virtualizer (but comparable, in
terms of functionality, to the corresponding /res-handler
CoAP resource detailed in Section IV-A), used to manage the
sensors’ discovery phase. Then, since for each sensor installed
in the LoRaWAN end node, the corresponding VEN manages a
corresponding virtual replica of the specific sensor, each time
an uplink packet (sent by the LoRaWAN end node) is received
by the DaM and parsed (on the basis of the chosen data repre-
sentation format) by the PPM (step (#)in Fig. 6), two different
actions can be performed (similarly to what was discussed in
Section IV-A), as follows.

e If the sensor RES, is new, the DaM publishes a spe-
cific JSON message on the device/DADDR,/res-
handler topic (step (5)in Fig. 6). Then, the vEN (i) will
be aware of the need to handle future incoming values
linked with this sensor’s virtual replica (associated with the
device/DADDR, /r/RES, topic), and (ii) will publish
a specific JSON message on the rd/post topic to notify
the RD (subscribed to this topic) about this new sensor
(step (®in Fig. 6).

e If the sensor RES, already exists, the DaM publishes
a specific JSON update message (containing the up-
dated sensor’s value) on the device/DADDR, /r/RES,
topic, with the vEN internally storing this updated value
(step (Din Fig. 6).

Finally, the interaction of an external MQTT client (identified
by a generic client identifier CID,) with the fully MQTT-based
virtualization architecture may involve the following two differ-
ent actions.

o If the external client is interested in obtaining the current
value of a sensor, it asks for resources of interest to the RD,
publishing a JSON message (including its client identifier
CID,) on the rd/get topic, handled by the RD (step
in Fig. 6). Then, the RD publishes back its content on
the client/CID,/rd topic, which the external client
has subscribed to (step in Fig. 6). Finally, the exter-
nal client selects the VEN (and the associated sensor) of

virtual End Nodes External Nodes

Building blocks and interactions of the virtualization architecture following the “parallel container” approach, but only featuring MQTT as data exchange

interest and publishes a specific JSON message on the
device/DADDR,/r/RES, topic (step @9 in Fig. 6),
obtaining the VEN publishing its response back on the
client/CID,/DADDR, /RES, topic (step Ob in Fig. 6).

e [f the external client is interested in sending a downlink
message to a LoRaWAN end node, it publishes a specific
JSON message (with the payload to be carried) on the
device/DADDR, /downlink topic (step (win Fig. 6).
Then, the corresponding VEN will forward this request to
the DoM on the dom/engueue topic, which the DoM
has subscribed to (step in Fig. 6). Finally, once the
PPB translates (in the reverse way) the downlink payload
according to the chosen data representation format (e.g.,
CLPP), the DoM publishes the obtained downlink mes-
sage on the downlink/ topic, which the NS is handling
(step (O in Fig. 6).

On the basis of the operational steps described above, it can
be concluded that a pure MQTT-based architecture might not
represent the best approach to be followed to virtualize on-field
remote end nodes. In fact, the absence of interactions based on a
request/response paradigm forces the architecture’s components
to (sometimes temporarily) subscribe to interim MQTT topics
to emulate this paradigm. A deeper analysis of the proposed
pure MQTT architecture goes beyond the scope of this paper
and represents an interesting research direction.

V. EXPERIMENTAL PERFORMANCE EVALUATION
A. Programming Language Evaluation

The proposed virtualization architecture has been developed
in Java. This makes the Virtualizer compatible with a generic
computing platform where a Java Virtual Machine (JVM) can
run. Moreover, the choice of Java is also motivated by the
availability of a complete CoAP implementation (based on the
Californium library [46]) and the Paho library [47], in detail
enabling to use CoAP and to implement the MQTT client
needed to subscribe to the MQTT topics described in Section IV,
respectively.

CILFONE et al.: LORA MEETS IP: A CONTAINER-BASED ARCHITECTURE TO VIRTUALIZE LORAWAN END NODES

For the sake of completeness, it should be mentioned that
alternative programming languages might be adopted to de-
velop and implement the virtualization architecture detailed in
Section IV. The choice of alternative languages represents a
future research extension, possibly targeting a performance
comparison (among different languages) in terms of (i) amount
of code statements required to define the same behavior, (ii)
execution time, (iii) required host resources (e.g., CPU, RAM,
persistent storage, etc.), and (iv) end-user experience. To this
end, the pros in favor of the Java language can be summarized
as follows (as anticipated above): (i) its widespread use in several
fields and contexts, making it attractive to developers who can
carry out supplementary developments and, usually, allowing
faster updates [48]; (ii) its portability across heterogeneous
hardware devices, especially thanks to the presence of a run-time
system (i.e., the JVM) able to make use of hardware resources
without the developers’ intervention—exploiting the traditional
“write once, run everywhere” philosophy of Java [49]. The cons
against the use of Java can be summarized as follows: (i) the need
of a JVM for running the source code, instead of the execution
of a compiled executable file; (ii) the availability of particular
data structures and code statements that may speed up (at least
at low levels) the execution of a particular task. The outlined
pros and cons highlight the fact that there no programming
language can be a-propri chosen as the best, since the choice
of the programming language in a certain scenario may depend
on several factors. Nevertheless, as discussed before, an anal-
ysis and comparison of different approaches and possibilities
(even developing different parts of our proposed virtualization
infrastructure through different programming languages, and
establishing an inter-process data sharing through internal com-
munication buses) represents an interesting research direction.

B. Experimental Setup

The Virtualizer has been tested on two different systems:
(1) a laptop with an Intel i7-7700HQ CPU, running Ubuntu
20.10 OS; and (ii) a Raspberry Pi 3 Model B (RPi3) Single
Board Computer (SBC), running Raspbian OS. In detail, the
RPi3 has been chosen to evaluate the feasibility of the proposed
approach with an IoT node, which could be potentially deployed
on-premise in the scenarios mentioned in Section I. In fact, the
RPi3 is widely adopted in the IoT arena and guarantees a very
attractive trade-off among complexity, performance, and cost.
In other words, the RPi3 can be interpreted as a “technology
enabler” for the IoT. The LoRaWAN end nodes are based on
STM STEVAL-STRKTO1 LoRa devices [50], equipped with
a Cortex MO+ CPU and different sensors (e.g., temperature,
humidity, accelerometer) and interfaces (e.g., GNSS). Due to
their portability, the LoRaWAN end nodes (both static or mobile)
can be placed flexibly inside a production plant, as well as
worn by workers for safety monitoring purposes. Finally, both
LoRaWAN GW and NS run on top of two RPi3 boards, with one
acting as NS running an open source software implementation
denoted as lorawan-server [51].

Although the proposed virtualization architecture has been
tested also using the public LoRaWAN network “The Things

9201

Network” (TTN) [52] (thus confirming the modularity of the pro-
posed container-based approach and demonstrating its indepen-
dence from a specific network provider), in order to fully control
the LoRaWAN network’s settings the performance evaluation
has been carried out on a private LoRaWAN network. This also
highlights how a company may benefit (from both technical and
economical sides) from deploying its own LoRaWAN network
to support its transition toward IoT.

In order to complement the experimental performance anal-
ysis compliant with the duty-cycle limitations of the EU ISM
bands, a simulation environment has been developed (at applica-
tion layer) to investigate the behavior of the proposed virtualiza-
tion approach. This has been achieved by deploying a Java-based
application (later denoted as node simulator) composed of the
following software modules: (i) a module (identified as Creator
in Fig. 7) corresponding to a CoAP client triggering the Virtu-
alizer to start a variable number of new VENs as CoAP servers;
and (ii) a module (identified as Updater in Fig. 7) updating the
values of the VENs’ resources.

As shown in Fig. 7, the experimental setup is composed of the
node simulator (shown on the left side of Fig. 7) connected via an
Ethernet-based Local Area Network (LAN) to the Virtualizer. In
Fig. 7, the Virtualizer is implemented on a RPi3, but the system
performance with the Virtualizer running on a laptop has also
been evaluated (this is not shown in Fig. 7 for simplicity). Then,
external CoAP clients (shown on the right side of Fig. 7) are
started with two settings: (i) set in observing mode on the CoAP
resources or (ii) set in polling mode on the CoAP resources, thus
emitting periodic CoAP GET requests. In observing mode, the
value of a CoAP resource is automatically sent from the VEN to
the external “listening” CoAP client each time the VEN’s CoAP
resource is updated—in detail, “stimulated” by the Updater
(inside the node simulator) triggering the Virtualizer. In the
experimental evaluation, we compare (i) the CPU percentage
utilization by the Virtualizer hosted on laptop or RPi3 and (ii) the
RAM utilization by the Virtualizer hosted on the laptop—as mo-
tivated in the following, due to some restrictions the RPi3-based
implementation of the Virtualizer does not allow to evaluate
the RAM utilization. In particular, the performance differences
between observing and polling strategies are first evaluated
and, then, the different behaviors of “parallel container” and
“parallel VEN” approaches are investigated. In detail, both per-
formance indicators are retrieved through the docker stats
command-line tool given by the Docker daemon—this tool does
not provide information on the RAM on the RPi3. In order to
evaluate the CPU percentage utilization, in all the experimental
campaigns the VENs associated with the LoRaWAN-enabled
IoT nodes (based on STM STEVAL-STRKTO1) are considered,
with the sensors exposed as resources according to Table II.

C. CPU Percentage Utilization

The first performance evaluation has been carried out analyz-
ing the CPU percentage utilization on both laptop and RPi3. As
shown in Fig. 8, the containerized architecture does not require
significant resources. In detail, three phases can be identified in
both experimented processing platforms: (i) JVM loading; (ii)

9202

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

coap://192.168.1.146:5684/air-quality 3
coap://192.168.1.146:5684/noise
CoAP @
@ @ coap://192.168.1.146:5684/battery
Creator | | Updater @
coap://192.168.1.146:5684/0il-1level Q
= coap://192.168.1.146:5684/accelerometer
Node Simulator Virtualizer CoAP Clients
coap://192.168.1.146:5684/position

Fig. 7.
evaluation has also been carried out hosting the Virtualizer on a laptop.

60 ‘ ‘ ‘
—Raspberry Pi 3 Model B
50 — Asus laptop with i7 CPU
X
g 40 Starting JVM |
o]
+~
g
g 30]
=
)
A Di
- 20 iscovery ,
% Observe notifications
10 - A ~
OJ I Ly Lub bile |I.J.
0 10 20 30 40 50
Time [min]
Fig. 8. Experimental CPU percentage utilization on laptop (ASUS with i7
CPU) and RPi3.

resource discovery, in which the CoAP resources are added to
the vEN; and (iii) observe notifications, in which a VEN sends
updates to the external observing CoAP client(s)—we only refer
to observing because both observing and polling modes lead the
same CPU utilization. From the obtained experimental results, it
is clear how the first phase is the most expensive for both laptop
and RPi3, as both the devices present CPU percentage utiliza-
tion’s peaks. Moreover, considering the CPU peaks associated
with JVM loading (20% on the laptop and 58% on the RPi3),
we can conclude that if multiple physical nodes are virtualized
at the same time and one container is started for each VEN, the
CPU percentage utilization should be higher than 100% and,
thus, the system would immediately crash.

Focusing on the JVM loading time, one can observe that it is
up to 3 s on the laptop and up to 8 s on the RPi3. Therefore,
on the RPi3, if two nodes are discovered in less than 10 s,
then the CPU would saturate (it should reach a CPU percentage
utilization equal to 116%). Hence, this motivates the need to
define a “guard (time) interval.” During performance evaluation,
we discovered that the laptop (given the specific CPU equipping
the laptop itself) can start up to 20 containers/JVMs without
any problem; the RPi3 begins instead to be unstable if we run
3 containers/JVMs at the same time. Therefore, in order to be
more conservative, the guard interval for each newly discovered

Setup for the experimental evaluation of the proposed virtualization architecture, with the Virtualizer hosted on a RPi3. The experimental performance

device has been set to 5 s on the laptop and to 10 s on the RPi3.
Finally, considering that a LoORaWAN network is “quasi-static”
(with sporadic transmissions and almost static network topology,
even in the presence of mobile nodes in a limited region), this
delay in the discovery phase should not represent a relevant issue
and could be tolerated in real IoT deployments.

We make the following final observations. The high CPU
consumption (e.g., in terms of percentage utilization peaks) in
the RPi3 is likely due to the chosen programming language:
Java guarantees good performance at the cost of higher resource
consumption. If small networks (handled by a RPi3-like board)
are considered, then the number of devices to be discovered
is likely to be smaller. In the presence of denser and wider
networks, with hundreds of devices, the Virtualizer needs to run
on adedicated server machine (either in the Cloud or on-premise)
with higher computational power. Considering the discovery
phase, the results are comparable: the laptop’s CPU percentage
utilization ratio is around 8%, whereas the RPi3’s CPU percent-
age utilization is around 14%. Finally, focusing on the observing
notifications, the interactions with the external CoAP clients
result in a CPU percentage utilization in the interval 2% + 8%
for both laptop and RPi3.

D. Comparison Between Observing and Polling Strategies
From External CoAP Clients

Given the experimental setup shown in Fig. 7, we investigate
the scalability of the proposed container-based virtualization
architecture. In detail, we set a variable number of external CoAP
clients (selected among 50, 100, and 200) and we assume that
each of them retrieves all the CoAP resources from the Virtual-
izer. Hence, we exploit both observing and polling approaches
with the same update interval: (i) in observing mode, the Updater
module (with reference to Fig. 7) updates the value of each CoAP
resource every 10 min (which may be a reasonable interval in
IoT scenarios, in the presence of non-critical monitoring tasks),
whereas (ii) in polling mode, CoAP GET requests are sent by
external clients every 10 min—this allows to perform a fair
comparison with the observing mode.

As shown in Fig. 9, with 50 external CoAP clients, observing
and polling modes return different results. In the beginning
of the experimental evaluation, the observing setup requires
an increased RAM utilization, while after three rounds of
updates—we recall that, every 10 min, the CoAP resources

CILFONE et al.: LORA MEETS IP: A CONTAINER-BASED ARCHITECTURE TO VIRTUALIZE LORAWAN END NODES

100 — . .
80 b
g
= 60
=
= 40 O—0 -9-50 cl?ents %n obse:*rving]
2 ﬂ:l —6-50 clients in polling
) -8-100 clients in observing
20 --100 clients in polling
--#-200 clients in observing]
—-200 clients in polling
I -©-100 observing, 100 polling
0 , ; ; ; , ,
0 10 20 30 40 50 60
Time [min]
Fig. 9. Experimental RAM utilization comparison (on an ASUS laptop with

i7 CPU), splitting the CoAP clients in observing and polling.

are updated—the required RAM amount basically converges
(there are small increments from then on). At the opposite,
RAM utilization increases at each round with CoAP resource
polling: after three rounds, it is higher than in observing mode.
Considering the experiment with 100 external CoAP clients,
in the beginning the difference between observing and polling
modes is quite relevant. However, also in this case the RAM
required in observing mode oscillates, with limited fluctuations,
around 73 MB. In polling mode, instead, the RAM utilization
slowly increases and, eventually, reaches the same value as in
observing mode. Finally, the evaluation with 200 external CoAP
clients shows that polling mode leads to the same performance
as in the experiment with 100 clients, while the observing mode
requires an higher RAM occupation with 200 external CoAP
clients then with 100.

Therefore, the results shown in Fig. 9 highlight that: (i) with
50 external CoAP clients, it is preferrable to set the observing
mode for all the clients; (ii) with 100 CoAP clients, there are no
significant differences between observing and polling modes;
and (iii) with 200 (or more) CoAP clients, it is convenient to
adopt the polling mode. A good trade-off, e.g., because the
resources are not regularly updated (we recall that, in observing
mode, a notification is sent only when the CoAP resource is
updated), would be to set a portion of the external CoAP clients
in polling mode and the remaining ones in observing mode. In
fact, looking at the case with 200 external CoAP clients, since
the performance in both polling and observing modes is the
same as in the case with 100 nodes, the best solution would be
to evenly split the 200 clients, as shown in Fig. 9. As expected,
this “network optimization” leads to a performance between the
one with all 200 CoAP clients set in observing mode and the
one with all 200 CoAP clients set in polling mode.

E. Comparison Between Virtualization Approaches: “Parallel
Container” versus “Parallel vEN”

The risk of CPU saturation due to simultaneous virtualization
of multiple nodes can be solved running multiple VENs in the

9203

60

(S
(=)

>
(==}

i

-6-1 server per container in 2 containers 1
—©-20 servers in 1 container
15 servers in 1 container

Used RAM [MB]
8 g

=10 servers in 1 container]
—»-5 servers in 1 container
1 server in 1 container
0 \ \ \
0 5 10 15 20 25 30 35
Time [min]

—
(=)

=

Fig. 10. Experimental comparison between RAM memory occupation (on
an ASUS laptop with i7 CPU) with “parallel container” and “parallel VEN”
virtualization approaches.

same container. As shown in Fig. 8, most of the CPU is required
during the JVM loading. Therefore, an effective approach is to
exploit the already running JVM and start several VENs in the
same JVM. In this experimental evaluation, we first start one
container with one VEN. Then, with a pre-set activation interval
of 5 min (expedient to highlight the “RAM steps” in Fig. 10), we
start a new VEN, reaching the final configuration with 5 VENSs.
This has been repeated with 10, 15, and 20 VENSs.

In order to extend our analysis, we start two containers,
each running a vEN, and evaluate the total occupied memory
by adding the occupied RAM of each single container. The
results, shown in Fig. 10, can be commented focusing on the
steady-state regime (highlighted in gray). The setup with 20
vENS per container is comparable to the scenario with two VENs
running in two separated containers. This is reasonable, since,
when a VEN is started, most of the memory (around 25 MB) is
occupied by the JVM: running two containers would thus lead
to a utilization of 50 MB only for the JVMs. In order to obtain
the same RAM utilization with a single container, indicating the
memory occupied by a VEN as vENgran, the optimal number
of VENs per container can be expressed as follows:

2JVM —JVM
Nopx = JVMgram — JVMRraM . M
VENRAM
Under the assumption that vENgay = 1.2 MB, then

Nyen = 20.

Therefore, one can conclude that, in the case of constrained
environments (e.g., in [oT contexts), a feasible approach would
be to start more containers, each of them running multiple
vENS, and possibly grouping VENs with the same subset of
functionalities/services.

Finally, we comment on the challenges at each “sub-layer” of
the proposed container-based virtualization architecture (e.g.,
private/public “core” LoRaWAN network, virtualization layer,
and CoAP-based layer) [53]. No particular challenges are en-
visioned in any of them, since: (i) known security aspects and

9204

vulnerabilities of “pure” LoRaWAN networks [54], [55] are not
worsened by the virtualization layer and have still to be managed
in the “core” LoRaWAN layer; (ii) threats and vulnerabilities
related to virtualization platforms and orchestrators [56] do not
affect the LoORaWAN component; and (iii) the application layer
suffers from well-known CoAP-related vulnerabilities [57], that
should be dealt with at this layer. In other words, the proposed
virtualization architecture does not introduce vulnerabilities in
any “sub-layer.”

FE. Performance Comparison Between Data Formats

We now investigate, in a comparative way, how the data
formats discussed in Section II (namely: CLPP, presented in
Section II-B; JSON, presented in Section II-C1; XML, pre-
sented in Section II-C2; and CoRE Link Format, presented in
Section II-C3) adapt to the constraints of the LoRaWAN proto-
col, in terms of information encoding/decoding between on-field
LoRaWAN end devices and high-layer entities.

In order to compare the considered data formats, we assume
(according to the assumptions adopted for CLPP in Section II-B
and with reference to the information contained in Fig. 2) that
each “raw packet” contains 1 B for the data channel, 1 B
for the data type, and 1 B for the sensor data (e.g., humid-
ity). We denote the number of required bytes of data format
d € {CLPP,JSON, XML, CoRE} as Lyytes,. In detail, since
CLPP does not require any delimiter, its corresponding number
of required bytes Liytes.,; . Can be expressed as

)

With regard to JSON, as shown in Listing 1, it requires 2 external
square brackets. Then, for each raw packet to be encoded,
JSON needs 2 curly brackets (enclosing the raw packet as a
JSON object), 26 bytes for encoding the raw packet itself, and,
optionally, a comma for each represented raw packet (except
for the last one), should more raw packets be encoded. Then,
its corresponding number of required bytes Liytes o, €an be
expressed as follows:

LbyteSCLPp =3 Nraw -

LbytesJSON =242 Npaw + 26 - Npaw + Npaw — 1

Concerning XML, as shown in Listing 2, it requires: a 3-byte
opening XML root element and a corresponding 4-byte closing
XML root element; and 23 bytes for encoding each raw packet.
Then, its corresponding number of required bytes Li,ytes,,,; an
be expressed as follows:

LbyteSXML =3+4+23 Nraw

=23 Nyaw + 7. “

Finally, with regard to CoRE Link Format, as shown in Listing 3,
given the notation assumption on the resource name starting
with /r and followed by an incremental index (as detailed in
Section II-C3), it requires a number of bytes « € {27, 28} for
encoding each raw packet—a = 27 for the first 9 raw packets,
and o = 28 for the following ones—and, optionally, a comma
for each represented raw packet (except for the last one), should

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

oCLPP
20002 530N
2 1500 |+ XML
= CoRE Link Format
5 10001
500
S0 20 30 40 50 60 70 80
nraw

Fig. 11. Number of required bytes as a function of the number of raw packets
to be sent, for the chosen data formatting mechanisms: CLPP, JSON, XML,
CoRE Link Format.

5

©SF7-SF8
=SF9
+SF10-SF12

'S

w

TNlorawan

D
T

—_

10 20 30 40 50

Nraw

60 70 80

Fig. 12. Number of CLPP-encoded LoRaWAN packets as a function of the
number of raw packets to be sent, for various values of the SF.

50
l©SFT7-SF8

=SF9
+SF10-SF12

TNraw

Fig. 13. Number of JSON-encoded LoRaWAN packets as a function of the
number of raw packets to be sent, for various values of the SF.

40

l©SF7-SF8
=SF9
+*SF10-SF12

30

20

TNorawan

PEEEEaaaeAEEEEERRRT Y

Fig. 14. Number of XML-encoded LoRaWAN packets as a function of the
number of raw packets to be sent, for various values of the SF.

more raw packets be encoded. Then, its corresponding number
of required bytes Lyytes, ., Can be expressed as follows:

LbytcscoRE = Q- Nypaw + Nraw — 1

=(a+1) Npaw — 1. (5)

In Fig. 11, the number of required bytes Ly,ycs is shown as
a function of the number of raw packets n.,y to be sent, for
the chosen data formatting mechanisms (CLPP, JSON, XML,
CoRE Link Format), according to (2)—(5).

CILFONE et al.: LORA MEETS IP: A CONTAINER-BASED ARCHITECTURE TO VIRTUALIZE LORAWAN END NODES

leSF7-SFs8
40}lzSF9
30 1+ SF10-SF12

10 20 30 40 50 60 70 80

Traw

Fig. 15. Number of CoRE Link Format-encoded LoRaWAN packets as a
function of the number of raw packets to be sent, for various values of the
SE.

eCLPP
=JSON
8 e XML
5CoRE Link Format zzzzzz

Siirdvirddy

FTETeEEY

Nlorawan
=)

10 20 30 40 50 60 70 80

TNraw

Fig. 16. Number of LoRaWAN packets as a function of the number of raw
packets to be sent adopting a LoRaWAN SF equal to SF7-SF8 (sharing the
same maximum payload length {gp7 = fgpg = 222 bytes), shown for each
considered data representation format.

Figs. 12, 13, 14, and 15 show the total number of LoRaWAN
packets needed (denoted as nrorawan), as a function of of
the number of raw packets 7.,y to be sent, in the cases with
CLPP, JSON, XML, and CoRE Link Format, respectively. For
the sake of comparison, we show them considering the cho-
sen LoRaWAN SFs, denoting the maximum allowed payload
for each LoRaWAN SF as fgp, and taking into account that:
SF7 and SF8 allow a maximum 222-byte payload ({sp7 =
lsps = 222); SF9 allows a maximum 115-byte payload ({spg =
115); SF10, SF11, and SF12 allow a maximum 51-byte pay-
load (Usp19 = ¢sr11 = fsr12 = 51). Therefore, the total num-
ber of LoRaWAN packets, as a function of the number of raw
packets to be sent, for the chosen data representation format
d € {CLPP, JSON, XML, CoRE}, and the chosen LoORaWAN
SF € {SF7,SF8,...,SF12}, can be expressed as follows:

L 3
SF bytes
nioR)aWANd = ’V Z;F d-‘ . (6)

In order to further investigate the impact of the considered
data formats, we compare directly the encoding efficiencies of
the various data formats for a given SF. In Figs. 16, 17, and
18, the number of LoRaWAN packets is shown as a function of
the number of raw packets in the cases with SF7-SF8, SF9, and
SF10-SF12, respectively.

From all the results presented, it clearly emerges that CLPP
is the most efficient data formatting strategy, requiring the
smallest number of LoRaWAN packets regardless of the chosen
LoRaWAN SF, especially for a large number of raw packets to
be sent.

9205

20 o CLPP
=JSON
g 15[XML
ig 10 %CoRE Link Format
1S
5k
00 20 g0 40 50 60 70 80
nraw
Fig. 17. Number of LoRaWAN packets as a function of the number of raw

packets to be sent adopting a LoORaWAN SF9 (having a maximum payload length
lspg = 115 bytes), shown for each considered data representation format.

oCLPP
=JSON
30 [+ XML
<CoRE Link Format

10 20 30 40 50 60 70 80

Nraw

Fig. 18. Number of LoRaWAN packets as a function of the number of raw
packets to be sent adopting a LoRaWAN SF equal to SF10-SF12 (sharing the
same maximum payload length sp10 = lsp11 = fspi12 = 51 bytes), shown
for each considered data representation format.

VI. CONCLUSION

In this work, a container-based virtualization architecture
for IoT scenarios with LoRaWAN nodes has been presented.
Each LoRaWAN end node is virtualized as a CoAP server,
denoted as VEN, in a central Virtualizer entity interacting with
the LoRaWAN NS. The sensors equipping each LoRaWAN
end node can be discovered by analyzing its packets’ payload
(encoded according to CLPP format) and emulated as CoAP
resources associated with the VEN representing the virtualized
version of the LoRaWAN end node. In this way, following a
digital twin-like strategy, an [P-based external CoAP client can
virtually interact with a LoRaWAN end node in both uplink and
downlink directions.

The proposed virtualization approach allows both communi-
cation and routing among LoRaWAN nodes, thus overcoming
the native impossibility of inter-node communication (imposed
by the LoORaWAN’s specifications) and simplifying H2M and
M2M approaches. In fact, the proposed LoRaWAN-to-IP con-
version does not affect the original LoORaWAN stack and has
no impact on the performance of the LoORaWAN end nodes, in
terms of power and operational requirements (e.g., LoORaWAN’s
Class A, B, or C, as well as SF value). To this end, the LoORaWAN
network’s behavior is completely transparent to external CoAP
clients, which are unaware of the real nature of the entities host-
ing sensors and sending updated values to their neighboring Lo-
RaWAN GWs. The proposed approach can be further extended
to other types of networks and application layer protocols, thus
making the integration of heterogeneous IoT devices feasible.
For example, this has been motivated and demonstrated through
a comparative discussion detailing how heterogeneous data rep-
resentation formats (namely: CLPP, JSON, XML, and CoRE

9206

Link Format) can adapt to the constraints of the LoRaWAN pro-
tocol (i.e., in terms of information encoding/decoding between
on-field LoRaWAN end devices and high-layer entities). Our
results show that CLPP is the most efficient data formatting
strategy, requiring the smallest number of LoRaWAN packets,
regardless of the chosen LoRaWAN SF, especially for a large
number of raw packets to be sent. As an interesting extension,
it could be possible to define proper adaptation and protocol
translation mechanisms to enable HTTP-based clients to interact
with the LoORaWAN environment: this could be the case of a
control system in an industrial environment.

We remark that the focus of the proposed virtualization
architecture is not on the specific adopted virtualization soft-
ware, but, rather, on the virtualization of the functionalities of
each LoRaWAN end node, thus exploiting a Virtual Network
Function (VNF)-like strategy. Our experimental evaluation has
highlighted the feasibility of the proposed virtualization archi-
tecture on a RPi3, a widely adopted IoT SBC. In general, two
virtualization approaches have been compared: (i) running one
VEN per container and (ii) running multiple vENs per container.
The main finding is that the best solution is hybrid: there should
be several containers, each running more than one VEN. Finally,
the proposed container-based architecture has the advantage of
being compliant with standard protocols, such as CoAP, which is
relevant in IoT-oriented scenarios. To this end, further research
activities (besides those already mentioned in the manuscript)
will focus on comparisons between the current architecture
and an equivalent implementation where CoAP is replaced by
MQTT, another widely adopted communication protocol in IoT
scenarios.

ACKNOWLEDGMENT

The work reflects only the authors’ views; the European
Commission is not responsible for any use that may be made
of the information it contains.

REFERENCES
[1] M. Mangia, F. Pareschi, R. Rovatti, and G. Setti, “Rakeness-based com-
pressed sensing and hub spreading to administer short/long-range com-
munication tradeoff in 10T settings,” IEEE Internet of Things J., vol. 5,
no. 3, pp. 2220-2233, Jun. 2018, doi: 10.1109/JI0T.2018.2828647.
LoRa Alliance, “LoRaWAN specification,” 2024. Accessed: Jan. 21, 2024.
[Online]. Available: https://tinyurl.com/lwspec1 1
Electromagnetic compatibility and Radio spectrum Matters (ERM), “Data
transmission systems using wide band technologies in the 2,4 GHz band,”
Eur. Telecommun. Standards Inst. (ETSI) Tech. Committee, Technical
Report ETSI SRD ETSI TR 103 665, May 2021. [Online]. Available:
https://tinyurl.com/etsiism
M. Centenaro, L. Vangelista, A. Zanella, and M. Zorzi, “Long-range
communications in unlicensed bands: The rising stars in the IoT and
smart city scenarios,” IEEE Wireless Commun., vol. 23, no. 5, pp. 60-67,
Oct. 2016, doi: 10.1109/MWC.2016.7721743.
D. Magrin, M. Centenaro, and L. Vangelista, “Performance evaluation of
LoRanetworks in a smart city scenario,” in Proc. IEEE Int. Conf. Commun.,
Paris, France, 2017, pp. 1-7, doi: 10.1109/ICC.2017.7996384.
F. Mason, M. Capuzzo, D. Magrin, F. Chiariotti, A. Zanella, and M.
Zorzi, “Remote tracking of UAV swarms via 3D mobility models and
LoRaWAN communications,” IEEE Trans. Wireless Commun., vol. 21,
no. 5, pp. 2953-2968, May 2022, doi: 10.1109/TWC.2021.3117142.
L. Davoli, E. Pagliari, and G. Ferrari, “Hybrid LoRa-IEEE 802.11 s op-
portunistic mesh networking for flexible UAV swarming,” Drones, vol. 5,
no. 2, pp. 1-32, 2021, doi: 10.3390/drones5020026.

[2]
(3]

(4]

[3]

(6]

(71

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

[8] D.Raggett, “The web of things: Challenges and opportunities,” Computer,
vol. 48, no. 5, pp. 26-32, May 2015, doi: 10.1109/MC.2015.149.

C. Bartoli et al., “Toward the web of industrial things: A publish-subscribe
oriented architecture for data and power management,” Sensors, vol. 22,
no. 13, pp. 1-15,2022, doi: 10.3390/s22134882.

Z. Shelby, K. Hartke, and C. Bormann, “The constrained application
protocol (CoAP),” Internet Requests Comments, Internet Engineering
Task Force (IETF), RFC 7252, Jun. 2014. [Online]. Available: https:
//tools.ietf.org/html/rfc7252

R. Morabito, “Virtualization on Internet of Things edge devices with
container technologies: A performance evaluation,” IEEE Access, vol. 5,
pp. 8835-8850, May 2017, doi: 10.1109/ACCESS.2017.2704444.

S. Mihai et al, “Digital twins: A survey on enabling technolo-
gies, challenges, trends and future prospects,” IEEE Commun. Sur-
veys Tuts., vol. 24, no. 4, pp. 2255-2291, Fourth Quarter, 2022,
doi: 10.1109/COMST.2022.3208773.

R. Marini, K. Mikhaylov, G. Pasolini, and C. Buratti, “Low-power wide-
area networks: Comparison of LoRaWAN and NB-IoT performance,”
IEEE Internet of Things J., vol. 9, no. 21, pp. 21051-21063, Nov. 2022,
doi: 10.1109/J10T.2022.3176394.

A. Lombardo, S. Parrino, G. Peruzzi, and A. Pozzebon, “LoRaWAN
versus NB-IoT: Transmission performance analysis within critical en-
vironments,” IEEE Internet of Things J., vol. 9, no. 2, pp. 1068-1081,
Jan. 2022, doi: 10.1109/JI0T.2021.3079567.

M. Stusek et al., “LPWAN coverage assessment planning without explicit
knowledge of base station locations,” IEEE Internet of Things J., vol. 9,
no. 6, pp. 4031-4050, Mar. 2022, doi: 10.1109/JI0T.2021.3102694.

Z. Zhang, R. Rathi, S. Perez, J. Bukhari, and Y. Zhong, “ZC-
NET: Achieving high capacity in low power wide area networks,”
IEEE/ACM Trans. Netw., vol. 30, no. 5, pp. 2032-2045, Oct. 2022,
doi: 10.1109/TNET.2022.3158482.

K. Staniec and M. Kowal, “LoRa performance under variable interference
and heavy-multipath conditions,” Wireless Commun. Mobile Comput.,
vol. 2018, pp. 1-9, 2018, doi: 10.1155/2018/6931083.

Q. M. Qadir, “Analysis of the reliability of LoRa,”
Commun. Lett., vol. 25, no. 3, pp. 1037-1040, Mar.
doi: 10.1109/LCOMM.2020.3034865.

LoRa Alliance, 2024. Accessed: Jan. 21, 2024. [Online]. Available: https:
/Nora-alliance.org/

Semtech Corporation, 2024. Accessed: Jan. 21, 2024. [Online]. Available:
https://www.semtech.com/

European Telecommunications Standards Institute (ETSI), 2024. Ac-
cessed: Jan. 21, 2024. [Online]. Available: https://www.etsi.org/
Cayenne, “Cayenne LPP,” 2024. Accessed: Jan. 21, 2024. [On-
line]. Available: https://www.thethingsindustries.com/docs/integrations/
payload-formatters/cayenne/

J. Jimenez, M. Koster, and H. Tschofenig, “IPSO smart objects,” in
Proc. IoT Semantic Interoperability Workshop, San Jose, California,
2016, pp. 1-7. [Online]. Available: https://www.iab.org/wp-content/IAB-
uploads/2016/03/ipso-paper.pdf

A. Cilfone, L. Davoli, and G. Ferrari, “Virtualizing LoORaWAN nodes: A
CoAP-based approach,” in Proc. Int. Symp. Adv. Elect. Commun. Technol.,
Rome, Italy, 2019, pp. 1-6, doi: 10.1109/ISAECT47714.2019.9069691.
T. Bray, “The JavaScript object notation (JSON) data interchange format,”
Internet Requests Comments, Internet Engineering Task Force (IETF),
RFC 8259, Dec. 2017. [Online]. Available: https://tools.ietf.org/html/
rfc8259

World Wide Web Consortium (W3C), “Extensible markup language
(XML) 1.0,” 2024. Accessed: Jan. 21, 2024. [Online]. Available: https:
/Iwww.w3.org/TR/xml/

M. Nottingham, “Web linking,” Internet Requests Comments, Internet
Engineering Task Force (IETF), RFC 8288, Oct. 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8288

Z. Shelby, “Constrained RESTful environments (CoRE) link format,”
Internet Requests for Comments, Internet Engineering Task Force (IETF),
RFC 6690, Aug. 2012. [Online]. Available: https://tools.ietf.org/html/
rfc6690

E. Kristiani et al., “The implementation of an edge computing architecture
with LoRaWAN for air quality monitoring applications,” in Lecture Notes
of the Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, Berlin, Germany: Springer International Pub-
lishing, 2020, pp. 210-219, doi: 10.1007/978-3-030-52988-8_19.

G. Dandachi and Y. Hadjadj-Aoul, “A frequency-based intelligent slicing
in LoRaWAN with admission control aspects,” in Proc. Int. Conf. Model.
Anal. Simul. Wireless Mobile Syst., Montreal, QC, Canada, 2022, pp. 189—
196, doi: 10.1145/3551659.3559055.

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18] IEEE

2021,
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

https://dx.doi.org/10.1109/JIOT.2018.2828647
https://tinyurl.com/lwspec11
https://tinyurl.com/etsiism
https://dx.doi.org/10.1109/MWC.2016.7721743
https://dx.doi.org/10.1109/ICC.2017.7996384
https://dx.doi.org/10.1109/TWC.2021.3117142
https://dx.doi.org/10.3390/drones5020026
https://dx.doi.org/10.1109/MC.2015.149
https://dx.doi.org/10.3390/s22134882
https://tools.ietf.org/html/rfc7252
https://tools.ietf.org/html/rfc7252
https://dx.doi.org/10.1109/ACCESS.2017.2704444
https://dx.doi.org/10.1109/COMST.2022.3208773
https://dx.doi.org/10.1109/JIOT.2022.3176394
https://dx.doi.org/10.1109/JIOT.2021.3079567
https://dx.doi.org/10.1109/JIOT.2021.3102694
https://dx.doi.org/10.1109/TNET.2022.3158482
https://dx.doi.org/10.1155/2018/6931083
https://dx.doi.org/10.1109/LCOMM.2020.3034865
https://lora-alliance.org/
https://lora-alliance.org/
https://www.semtech.com/
https://www.etsi.org/
https://www.thethingsindustries.com/docs/integrations/payload-formatters/cayenne/
https://www.thethingsindustries.com/docs/integrations/payload-formatters/cayenne/
https://www.iab.org/wp-content/IAB-uploads/2016/03/ipso-paper.pdf
https://www.iab.org/wp-content/IAB-uploads/2016/03/ipso-paper.pdf
https://dx.doi.org/10.1109/ISAECT47714.2019.9069691
https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259
https://www.w3.org/TR/xml/
https://www.w3.org/TR/xml/
https://tools.ietf.org/html/rfc8288
https://tools.ietf.org/html/rfc6690
https://tools.ietf.org/html/rfc6690
https://dx.doi.org/10.1007/978-3-030-52988-8_19
https://dx.doi.org/10.1145/3551659.3559055

CILFONE et al.: LORA MEETS IP: A CONTAINER-BASED ARCHITECTURE TO VIRTUALIZE LORAWAN END NODES

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

R. Yasmin, J. Petdjdjérvi, K. Mikhaylov, and A. Pouttu, “On the integration
of lorawan with the 5G test network,” in Proc. IEEE 28th Annu. Int.
Symp. Pers. Indoor Mobile Radio Commun., Montreal, QC, Canada, 2017,
pp. 1-6, doi: 10.1109/PIMRC.2017.8292557.

J. Navarro-Ortiz, S. Sendra, P. Ameigeiras, and J. M. Lopez-Soler,
“Integration of LoRaWAN and 4G/5G for the industrial Internet of
Things,” IEEE Commun. Mag., vol. 56, no. 2, pp. 60-67, Feb. 2018,
doi: 10.1109/MCOM.2018.1700625.

F. Flammini et al., “Virtualization technology for LoORaWAN roaming
simulation in smart cities,” in Studies in Computational Intelligence,
Berlin, Germany: Springer International Publishing, 2021, pp. 251-265,
doi: 10.1007/978-3-030-72065-0_14.

G. Tanganelli, C. Vallati, and E. Mingozzi, “Edge-centric distributed
discovery and access in the Internet of Things,” IEEE Internet Things J.,
vol. 5, no. 1, pp. 425-438, Feb. 2018, doi: 10.1109/JI0T.2017.2767381.
S. Cirani et al., “A scalable and self-configuring architecture for service
discovery in the Internet of Things,” IEEE Internet Things J., vol. 1,no. 5,
pp- 508-521, Oct. 2014, doi: 10.1109/JI0T.2014.2358296.

L. Rodrigues, J. Guerreiro, and N. Correia, “Resource design in federated
sensor networks using RELOAD/CoAP overlay architectures,” Comput.
Commun.,vol. 179, pp. 11-21,2021, doi: 10.1016/j.comcom.2021.07.019.
L. Belli et al., “A novel smart object-driven Ul generation approach for
mobile devices in the Internet of Things,” in Proc. Ist Int. Workshop
Exp. Des. Implementation Smart Objects, Paris, France, 2015, pp. 1-6,
doi: 10.1145/2797044.2797046.

OASIS Open, “MQ telemetry transport (MQTT) specifications,” 2024.
Accessed: Jan. 21, 2024. [Online]. Available: https://docs.oasis-open.org/
mqtt/mqtt/v5.0/mqtt-v5.0.html

Docker, 2024. Accessed: Jan. 21, 2024. [Online]. Available: https://www.
docker.com/

M. D. Day, C. E. Perkins, J. Veizades, and E. Guttman, “Service lo-
cation protocol, version 2,” Internet Requests for Comments, Internet
Engineering Task Force (IETF), RFC 2608, Jun. 1999. [Online]. Available:
https://tools.ietf.org/html/rfc2608

Zero configuration networking (Zeroconf), 2024. Accessed: Jan. 21, 2024.
[Online]. Available: http://www.zeroconf.org/

S. Cheshire and M. Krochmal, “Multicast DNS,” Internet Requests for
Comments, Internet Engineering Task Force (IETF), RFC 6762, Feb. 2013.
[Online]. Available: https://tools.ietf.org/html/rfc6762

S. Cheshire and M. Krochmal, “DNS-Based service discovery,” Internet
Requests Comments, Internet Engineering Task Force (IETF), RFC 6763,
Feb. 2013. [Online]. Available: https://tools.ietf.org/html/rfc6763

I. Fette and A. Melnikov, “The WebSocket protocol,” Internet Requests
Comments, Internet Engineering Task Force (IETF), RFC 6455, Dec. 2011.
[Online]. Available: https://tools.ietf.org/html/rfc6455

L. Davoli et al., “Integration of Wi-Fi mobile nodes in a web
of things testbed,” ICT Exp., vol. 2, no. 3, pp. 95-99, 2016,
doi: 10.1016/j.icte.2016.07.001.

Eclipse Foundation, “Eclipse californium (Cf) CoAP framework,”
2024. Accessed: Jan. 21, 2024. [Online]. Available: https://eclipse.dev/
californium/

Eclipse Foundation, “MQTT Paho,” 2024. Accessed: Jan. 21, 2024. [On-
line]. Available: https://www.eclipse.org/paho/clients/java/

G. Fu, Y. Zhang, and G. Yu, “A fair comparison of message queuing
systems,” IEEE Access, vol. 9, pp. 421-432, 2021, doi: 10.1109/AC-
CESS.2020.3046503.

A. Stratikopoulos et al., “Transparent acceleration of Java-based deep
learning engines,” in Proc. 17th Int. Conf. Managed Program. Lang.
Runtimes, U.K., 2020, pp. 73-79, doi: 10.1145/3426182.3426188.
STMicroelectronics, “STEVAL-STRKTO1 LoRa IoT Tracker,” 2024.
Accessed: Jan. 21, 2024. [Online]. Available: https://www.st.com/en/
evaluation-tools/steval-strktO1.html

Petr Gotthard, “Compact LoRaWAN network server for private LoRaWAN
networks,” 2024. Accessed: Jan. 21, 2024. [Online]. Available: https:/
github.com/gotthardp/lorawan-server

The Things Industries, “The things network (TTN),” 2024. Accessed: Jan.
21, 2024. [Online]. Available: https://www.thethingsnetwork.org/

[53]

[54]

[55]

[56]

[57]

9207

E. Guttman and N. Brownlee, “Expectations for computer security incident
response,” Internet Requests for Comments, Internet Engineering Task
Force (IETF), RFC 2350, Jun. 1998. [Online]. Available: https://tools.ietf.
org/html/rfc2350

M. Eldefrawy et al., “Formal security analysis of LoRaWAN,” Comput.
Netw., vol. 148, pp. 328-339, 2019, doi: 10.1016/j.comnet.2018.11.017.

R. Kloibhofer, E. Kristen, and L. Davoli, “LoRaWAN with
HSM as a security improvement for agriculture applications,” in
Proc. Comput. Saf. Rel. Secur. Workshops, 2020, pp. 176-188,
doi: 10.1007/978-3-030-55583-2_13.

A. Martin et al., “Docker ecosystem—Vulnerability analysis,” Comput.
Commun., vol. 122, pp. 30-43,2018, doi: 10.1016/j.comcom.2018.03.011.
I. Butun, P. Osterberg, and H. Song, “Security of the Internet of
Things: Vulnerabilities, attacks, and countermeasures,” I[EEE Com-
mun. Surveys Tuts., vol. 22, no. 1, pp. 616-644, First Quarter, 2020,
doi: 10.1109/COMST.2019.2953364.

Antonio Cilfone received the MSc degree in com-
munication engineering and the PhD degree in infor-
mation technologies from the University of Parma,
Parma, Italy, in 2016 and 2019, respectively. He has
been member of the Internet of Things (IoT) Lab with
the Department of Engineering and Architecture of
the University of Parma from 2016 until 2020, work-
ing on heterogeneous networking, signal processing,
and smart systems topics. He is currently working
as R&D software engineer with Tesmec Automation
s.r.l., Italy.

Luca Davoli (Member, IEEE) received the Dr Ing
degree in computer engineering, and the PhD degree
in information technologies from the Department of
Information Engineering of the University of Parma,
Parma, Italy, in 2013 and 2017, respectively. He is a
non-tenured assistant professor with the Internet of
Things (IoT) Laboratory, Department of Engineering
and Architecture, University of Parma, Parma, Italy.
His research interests focus on IoT, pervasive com-
puting, Big stream and software-defined networking.

Gianluigi Ferrari (Senior Member, IEEE) received
the laurea (summa cum laude) and PhD degrees in
electrical engineering from the University of Parma,
Parma, Italy, in 1998 and 2002, respectively. Since
2002, he has been with the University of Parma, where
he is currently a full professor of telecommunications
and also the coordinator of the Internet of Things
(IoT) Laboratory, Department of Engineering and
Architecture. His current research interests include
signal processing, advanced communication and net-
working, and IoT and smart systems.

Open Access funding provided by ‘Universita degli Studi di Parma’ within the CRUI CARE Agreement

https://dx.doi.org/10.1109/PIMRC.2017.8292557
https://dx.doi.org/10.1109/MCOM.2018.1700625
https://dx.doi.org/10.1007/978–3-030-72065-0_14
https://dx.doi.org/10.1109/JIOT.2017.2767381
https://dx.doi.org/10.1109/JIOT.2014.2358296
https://dx.doi.org/10.1016/j.comcom.2021.07.019
https://dx.doi.org/10.1145/2797044.2797046
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://www.docker.com/
https://www.docker.com/
https://tools.ietf.org/html/rfc2608
http://www.zeroconf.org/
https://tools.ietf.org/html/rfc6762
https://tools.ietf.org/html/rfc6763
https://tools.ietf.org/html/rfc6455
https://dx.doi.org/10.1016/j.icte.2016.07.001
https://eclipse.dev/californium/
https://eclipse.dev/californium/
https://www.eclipse.org/paho/clients/java/
https://dx.doi.org/10.1109/ACCESS.2020.3046503
https://dx.doi.org/10.1109/ACCESS.2020.3046503
https://dx.doi.org/10.1145/3426182.3426188
https://www.st.com/en/evaluation-tools/steval-strkt01.html
https://www.st.com/en/evaluation-tools/steval-strkt01.html
https://github.com/gotthardp/lorawan-server
https://github.com/gotthardp/lorawan-server
https://www.thethingsnetwork.org/
https://tools.ietf.org/html/rfc2350
https://tools.ietf.org/html/rfc2350
https://dx.doi.org/10.1016/j.comnet.2018.11.017
https://dx.doi.org/10.1007/978–3-030-55583-2_13
https://dx.doi.org/10.1016/j.comcom.2018.03.011
https://dx.doi.org/10.1109/COMST.2019.2953364

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

