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Abstract—Mobile edge computing (MEC) has emerged as a
solution to address the demands of computation-intensive network
services by providing computational capabilities at the network
edge, thus reducing service delays. Due to the flexible deployment,
wide coverage and reliable wireless communication, unmanned
aerial vehicles (UAVs) have been employed to assist MEC. This
paper investigates the task offloading problem in a UAV-assisted
MEC system with collaboration of multiple UAVs, highlighting
task priorities and binary offloading mode. We defined the system
gain based on energy consumption and task delay. The joint op-
timization of UAVs’ trajectory design, binary offloading decision,
computation resources allocation, and communication resources
management is formulated as a mixed integer programming prob-
lem with the goal of maximizing the long-term average system gain.
Considering the discrete-continuous hybrid action space of this
problem, we propose a novel deep reinforcement learning (DRL)
algorithm based on the latent space to solve it. The evaluation re-
sults demonstrate that our proposed algorithm outperforms three
state-of-the-art alternative solutions in terms of task delay and
system gain.
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I. INTRODUCTION

LATELY, many new computation-intensive and delay-
sensitive network services which require large amounts of

computation resources are emerging. Multi-access/mobile edge
computing (MEC) [1] is an innovative computing paradigm
that provides computational functions at the network edge to
support such services. However, the current MEC solutions are
not suitable for the situations with very high number of users
or when network facilities are sparsely distributed [2]. In these
situations, unmanned aerial vehicles (UAVs) can be employed
to assist the MEC systems with their flexible deployment and
large coverage potential, making UAV-assisted MEC systems
promising solutions to enable execution of highly distributed
computation-intensive tasks.

In terrestrial MEC networks both the location and service
coverage of edge nodes are fixed and the edge servers can provide
services for users in the local area only [5]. The UAV-assisted
MEC systems have some unique features compared to the tra-
ditional terrestrial MEC systems [3], [4]. First of all, UAVs
introduce mobility and offer flexibility, and therefore can support
close-range services and can increase system computing capac-
ity dynamically. When the computation workload of an edge
server is very high or users need support beyond the coverage
area, UAVs’ flight trajectory can be adjusted flexibly to provide
service. Additionally, the scalability of the UAV-assisted MEC
system is also unrivalled. Secondly, the onboard computing re-
sources and energy supply of UAVs are very limited when com-
pared with terrestrial edge servers, making very challenging any
related task offloading decision. Therefore, unfortunately, the
task offloading methods designed for terrestrial MEC-enabled
networks can not be applied directly to the UAV-assisted MEC
systems and new solutions are sought.

The single UAV-assisted task offloading problem has been
extensively studied [6], [7], [8], [9], [10]. Due to its limited
resources, a single UAV is adaptable to scenarios with small
tasks, and the improvement provided to any task performance
is limited. Also, it is often hard to meet the requirements for
increasing task demands for computation resources. Instead, a
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more complex system which relies on collaboration of multiple
UAVs can provide rich computation resources and large service
coverage is worth investigating [11]. However, there are many
challenges in relation to the task offloading problem in a multi-
UAV MEC system, including trajectory design of multiple UAVs
to avoid collisions of UAVs, management of communication
resources between UAVs to improve transmission efficiency,
collaborative task offloading to balance computation workload
of UAVs, and so on.

In this context, few works on UAV-assisted MEC systems
consider task priority. Diverse tasks have different tolerance of
delay and their related services have diverse consequences [12].
For example, failure to complete navigation or road sensing tasks
within the expected timeframe can have serious consequences
(i.e. car accidents), while failure during live video streaming
only affects user experience. Tasks with strict delay constraints
should have high priority and need to be processed first to
meet their delay requirements. Using preemptive scheduling
methods makes it difficult for the low-priority tasks to get
their required computing resources from UAVs, causing high
delays and low quality services. A different approach should
be used in order to avoid the starvation of low-priority tasks.
Therefore, the task offloading decision in a UAV-assisted MEC
system should be carefully designed to satisfy the different task
requirements.

Most existing UAV-assisted task offloading schemes focus
on partial offloading, allowing some flexibility in allocating
resources for smaller sub-tasks and further reduce task pro-
cessing delay [3], [13]. Although partial offloading has many
advantages, it may be difficult to be applied to indivisible com-
putation tasks [14]. Binary offloading may not be suitable to
all cases, but is worth investigating as a complement to partial
offloading, as it may provide more choices in the quest to achieve
a good performance of task offloading in many scenarios. How-
ever, employing binary offloading may turn the task offload-
ing problem into a joint optimization problem of continuous
and discrete variables, which further increases the difficulty of
solving the problem. Besides, both the requests and resource
requirements associated with each UAV are highly time-varying.
In this context, to improve the system performance, long-term
average optimization is essential. However, it is hard to solve
this problem of a non-convex nature, in a dynamic environment
and with incomplete future information. Following the recent
improvements of artificial intelligence (AI) approaches, deep
reinforcement learning (DRL) has demonstrated good results in
long-term optimization problem solving, which is very useful in
wireless communications. Through training on historical data
and exploring the dynamic environments, DRL can help take
appropriate actions to get the optimal long-term average reward
and make intelligent decisions under uncertainty, which can help
solve our problem.

In order to address the above challenges, this paper focuses
on task offloading in collaborative UAV-assisted MEC systems
while considering task priorities and binary offloading. We
optimize the long-term average system gain which is defined
as being composed of task delay and energy consumption. The
problem is formulated as a Markov Decision Process (MDP)

with a discrete-continuous hybrid action space, and a novel DRL
algorithm is proposed to solve it. The major contributions of this
paper are as follows:
� We investigate the priority-aware task offloading prob-

lem in a collaborative multi-UAV-assisted system, whose
goal is to maximize the long-term average system gain.
The joint optimization of UAVs’ trajectory design, of-
floading decision, computation resources allocation, and
communication resources management is formulated as a
mixed integer programming problem with the constraints
of transmit power, computation capacity and task delay.
Furthermore, this problem is transformed into a MDP.

� Considering that the traditional DRL algorithms are not
compatible with a discrete-continuous hybrid action space,
we introduce an embedding table for discrete actions and
a conditional variational auto-encoder for continuous ac-
tions. Using the encoder, we construct a latent space for
hybrid actions. Combining the latent space and a twin de-
layed deep deterministic policy gradient (TD3) algorithm,
a novel DRL algorithm which can deal with a discrete-
continuous hybrid action space is proposed to solve our
joint optimization problem.

� We evaluate comparatively the proposed algorithm and
experimental results show that our algorithm has better
performance than three alternative solutions in terms of
task delay and system gain.

The rest of this paper is organized as follows. The related
works are discussed in Section II. The system model is intro-
duced in Section III and the optimization problem formulation is
shown in Section IV. Algorithm design and analysis of solutions
are given in Section V. Section VI shows the performance of the
proposed algorithm in terms of experimental results. Finally,
Section VII concludes this paper.

II. RELATED WORKS

Employing UAV-assisted MEC systems is a promising ap-
proach to dynamically expand network computing capacity and
support emergency events. Task offloading in a UAV-assisted
MEC system is a key issue and is becoming the focus of the
latest research. From the optimization scenario point of view,
the existing works can been mainly divided into single UAV
solutions and multi-UAV cooperative approaches.

For single UAV-assisted MEC networks, authors of [6] de-
signed a resource allocation framework, which maximizes the
computation rate by jointly optimizing computation resources,
communication resources and UAV trajectory. An alternative
algorithm was proposed to solve the non-convex problem, and
the successive convex approximation (SCA) method was used
to optimize the UAV trajectory. Authors of [7] designed a
UAV-assisted MEC system to reduce terrestrial signal block-
age and shadowing. The joint optimization of UAV position,
task offloading decision and resource allocation was formu-
lated as a problem with the goal of minimizing task delay and
UAV energy consumption. To solve the problem, an algorithm
based on SCA was proposed. In [8], UAVs were applied to
a 5G-enabled community task offloading system. The authors
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clustered users into communities based on geographic locations,
and formulated the UAV-assisted task offloading problem as a
mixed integer non-linear programming problem to maximize
the average throughput. Researchers in [9] proposed an evo-
lutionary multi-objective reinforcement learning algorithm to
solve the UAV trajectory design and task offloading problem.
They focused on three optimization sub-problems: minimize
task delay, minimize energy consumption of UAV, and maximize
the number of tasks collected by the UAV. The dependency
among different tasks were highlighted in [10]. The joint op-
timization problem of resource allocation and trajectory design
was formulated to minimize the system energy consumption
with the constraints of task delay and dependency. The problem
was further decomposed into two sub-problems iteratively and a
joint dynamic programming and convex optimization algorithm
was proposed to solve it. However, as mentioned, a single UAV
has limited power and computation resources, and may not
significantly improve the system performance to meet users’
requirements.

Multiple UAVs collaborative MEC systems which can uti-
lize the resources of multiple UAVs have attracted increasing
attention. Authors of [15] focused on the task offloading opti-
mization problem in multiple UAV-enabled wireless networks.
A two-layer cooperative framework based on software-defined
networks to optimize the computation resources was designed,
and a queue-based algorithm was proposed to minimize task
delay. Authors of [16] formulated a delay minimization problem
for the multi-UAVs enabled MEC networks. The load balancing
of multiple UAVs was formulated as a no-convex problem. To
get online task offloading decisions, authors further transformed
the problem and utilized Lyapunov stochastic optimization to
address it. DRL was used for the multi-UAV MEC systems in
[17]. Authors formulated a MDP by jointly optimizing UAV
trajectories, task offloading and transmit power. Considering the
high-dimensional continuous action space, a multi-agent DRL
based on the TD3 algorithm was proposed to minimize total
system cost. In addition to the task offloading problem in UAV-
enabled systems, service caching problem was also taken into
account in [18]. UAVs made task offloading decision and service
caching decision at different time frequencies where caching
decision had a longer time window. The energy consumption
is formulated as a virtual queue and an algorithm based on the
Lyapunov optimization was proposed to minimize the long-term
average service delay. The vehicular fog computing based UAV
system which combined unmanned ground vehicles and UAVs
was introduced in [19]. The task offloading was transformed
into a two-sided matching problem, then the authors designed
a distributed algorithm by the dynamic of UAVs to reduce task
delay. The UAVs-assisted MEC technology was combined with
intelligent transportation systems in [20]. The authors proposed
a UAV-enabled multi-hop collaborative framework to maximize
user experience and task delay in each time slot.

However, the above works do not consider the priority of tasks
when making task offloading decisions. Different tasks have
different delay requirements. If we schedule all tasks equally,
some important tasks may not be finished within the allowed
delay threshold, which has serious consequences.

Fig. 1. UAV-assisted MEC system.

Few works on computing offloading consider task priority.
The authors of [21] assigned a priority to each task based on
its deadline and proposed a new delay-dependent priority-aware
task offloading strategy for scheduling tasks, which can reduce
the waiting time of the delay-sensitive tasks. The researchers
who published [22] studied the priority-aware task offloading
problem in a vehicular fog computing context. They formulated
this problem as a MDP and proposed a DRL algorithm to solve it.
Unfortunately, the research solutions proposed these papers rely
on the fog computing framework and cannot be directly applied
to UAV-enabled MEC networks. The authors of [23] studied the
priority-aware task offloading problem with one UAV providing
service. They employed a deep Q-learning algorithm for the
problem and considered the scenario of a single UAV only,
without any cooperation between multiple UAVs. The authors
of [24] paid more attention to users’ satisfaction of servers in
UAV-enabled MEC networks and considered the task priority
based on the delay requirements of users’ tasks and remaining
energy status of users. By jointly optimizing task offloading
decisions and UAV scheduling strategy, the multi-UAVs enabled
task offloading problem is formulated to maximize the total
user satisfaction with constraints related to UAV energy con-
sumption. This work mainly focused on the design of offloading
decisions and UAV scheduling strategy and did not consider the
allocation of transmit power and computation resources. Addi-
tionally, the authors of [24] studied the partial task offloading
problem, which applies to many scenarios. In real world, there
are many indivisible computation tasks, and the study of binary
task offloading is still highly valuable.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A UAV-assisted MEC-based system with N UAVs, M user
equipments (UEs) and access to an edge cloud server (EC) is
considered as shown in Fig. 1. UAVs have two main roles related
to data transmission and computation, respectively. On one hand,
UAVs can forward computing tasks to other UAVs or the EC. On
the other hand, UAVs can also provide computation resources
to help UEs accomplish their tasks. Without loss of generality,
the time is slotted, i.e., T = {1, 2, . . ., T}. A time slot refers
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to a short period of time, which can be in the region of several
hundred milliseconds. Time slots are used to describe small time
intervals in the proposed model design. Each UE m needs to
handle computation-intensive tasks in each time slot; this can be
defined via a four tuple qm(t) = (cm(t), um(t), vm(t), om(t)),
where cm(t) is the computing workload (the number of CPU
cycles), um(t) is the transmitted data size, vm(t) is the allowed
delay threshold and om(t) is the task priority.

UAVs are equipped with multiple antennae, and can serve
multiple UEs at the same time [25]. There are three transmission
modes: ground-to-air (G2A) transmission from UE to UAV, air-
to-air (A2A) transmission from UAV to UAV, and air-to-ground
(A2G) transmission from UAV to EC.

A. UAVs Movement

We design the 3D coordinate of UAV n as wn(t) =
[xn(t), yn(t), zn(t)]

T , where xn(t), yn(t) and zn(t) are the X,
Y, Z coordinates of UAVn at time slot t, respectively. Denote the
vn(t) = [xn(t), yn(t)]

T as the 2D coordinate of UAV n. UAVs
always have limited flight distances because of their limited
horizontal and vertical flight speeds, which can be given by:

�vn(t) = ||vn(t+ 1)− vn(t)|| ≤ Lhmax (1)

�zn(t) = |zn(t+ 1)− zn(t)| ≤ Lvmax (2)

Zmin ≤ zn(t) ≤ Zmax (3)

where �vn(t) and �zn(t) denote the horizontal travel distance
and vertical travel distance, respectively; Lhmax and Lvmax are
the maximum horizontal and vertical distances of the UAVs,
respectively and Zmin and Zmax denote the minimum and
maximum heights of UAVs.

To avoid collision between any two UAVs, the distance be-
tween UAVs should not be less than a minimum distanceDmin.
The collision constraint is:

||wn(t)−wj(t)|| ≥ Dmin, ∀n, j, n �= j (4)

When a rotary-wing UAV flies, its flight energy power is
related to the speed v [26], which is defined as:

P flyn (v) =
Wn

2
v2 (5)

whereWn is the mass of UAV n. The flight energy consumption
of UAV is obtained by:

Eflyn (t) = P flyn

(
||wn(t+ 1)−wn(t)||

�t

)
�t (6)

where �t is the interval duration of time slot.

B. Communication Model

We consider an UAV-enhanced MEC system which involves
collaboration between multiple UAVs, which can communicate
with each-other. We denote the bandwidths of the three main
links as follows: BG for the G2A links, BA for the A2A links
and BE for the A2G links. As the output data size of sub-tasks
is usually much smaller than the input data, next we ignore the

cost of result downloading [8]. Beside, the cross-interference
between UAVs and UEs is also neglected in this paper [27].
This can be the focus of future work.

1) G2A Transmission: For G2A communication links, there
are many scatters or obstacles in the real environment. So the
radio signals do not propagate in free space because of the
shadowing or scattering caused by obstacles, which results in
additional path loss. As a result, the use of the simplified free
space path loss (FSPL) model [26] is not accurate enough to
model the communication between ground UEs and air UAVs.
Instead, a probabilistic path loss model which considers the
occurrence probabilities and path loss of LoS and Non-LoS
(NLoS) communication is introduced to model the G2A com-
munications.

The occurrence probabilities of LoS and NLoS communica-
tions between UE m and UAV n are:

PLoSm,n (t) =
1

1 + ae−b((180/π)arcsin(zn(t)/dm,n(t))−a)
(7)

PNLoSm,n (t) = 1− PLoSm,n (8)

wheredm,n(t) = ||wn(t)−wm(t)|| is the distance between UE
m and UAV n and a and b are constant values related to the
environment. Thus, the path loss between UEm and UAV n for
LoS and NLoS communication is modeled as follows:

PLζm,n(t) = Lm,n(t) + ηζ , ζ ∈ {LoS,NLoS} (9)

where Lm,n(t) = 20lg(4π/c) + 20lg(frc) + 20lg(dm,n(t))
denotes the free space path loss, lg is log10, frc means the
carrier frequency, cmeans the speed of light, and ηζ is excessive
path loss of LoS or NLoS links. We get the average path loss
for the G2A links next:

P̄Lm,n(t) = PLLoSm,n(t)P
LoS
m,n (t) + PLNLoSm,n (t)PNLoSm,n (t)

(10)

The channel gain between UE m and UAV n is

gm,n(t) = 1/P̄Lm,n(t) (11)

Therefore, we denote uplink transmission rate from UE m to
UAV n as follows:

rG2A
m,n (t) = BG log2(1 +

pm(t)gm,n(t)

INm,n +NG
) (12)

where INm,n =
∑m0∈Nn

m0 �=m pm0
(t)gm0,n(t) is the interference

power signal from other UEs in the coverage area of UAV n,
pm(t) is the transmit power of UEm, andNG is the noise power.

Due to the limited coverage of a UAV, if UEm communicates
with UAV n, the distance between UE m and UAV n cannot
exceed the specified communication distance RG2A, which is
expressed as follows:

dm,n(t) ≤ RG2A (13)

2) A2A Transmission: When the offloading target of UEm is
UAV n′ rather than UVA n which it belongs to, UEm transmits
data to UAV n and UAV n forwards it to UAV n′. As UAVs can
communicate in full duplex mode. UAV n can receive data from
UE m while forwarding data to UAV n′. Considering the high
hovering altitude of UAVs, the LoS link is the dominant one
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in A2A communications, and the communication environment
between UAVs can be approximated as a free space. So, we
apply the FSPL model to describe the A2A communications
[28], where the path loss between UAV n and UAV n′ is given
as

PLA2A
n,n′ = 32.45 + 20lg(frc) + 20lg(dn,n′(t)) (14)

where dn,n′(t) = ||wn(t)−wn′(t)|| is the distance between
UAV n′ and UAV n.

The data rate between UAV n and n′ is expressed as

rA2A
n,n′ (t) = BA log2

⎛
⎜⎝1 +

pn(t)10
−

PLA2A
n,n′
10

NA

⎞
⎟⎠ (15)

where pn(t) is the transmit power of UAV n, NA is the noise
power.

3) A2G Transmission: We denote the fixed location of EC
as: wEC = [xEC , yEC , zEC ]T . The distance between UAV n
and EC at time slot t is:

dECn (t) = ||wn(t)−wEC || (16)

Similar to the G2A transmissions from UEs to UAVs, the
channel gain between UAV n and the EC at time slot t is:

gn(t) =
1

PLLoSn PLoSn + PLNLoSn PNLoSn

(17)

where PLLoSn and PLNLoSn are the path loss of LoS and NLoS,
and PLoSn and PNLoSn are the occurrence probabilities of LoS
and NLoS communication between UAV n and the EC, respec-
tively. For the calculation of these parameters, refer to (7)–(9).

The transmission rate from UAV n to the EC is:

rA2G
n (t) = BE log2

(
1 +

pn(t)gn(t)∑n0∈N
n0 �=n pn0

(t)gn0
(t) +NE

)

(18)

where NE is the noise power.

C. Computation Model

We denote the task offloading decision as γnm(t) ∈ {0, 1},
where γnm(t) = 1 if UEm offloads task to computation location
n at time t, otherwise, γnm(t) = 0. Here, n ∈ {0, 1, . . ., N,N +
1} indicates the computation location. If n = 0, the location is
UE itself; if 1 ≤ n ≤ N , the location is UAV n; if n = N + 1,
the location is EC. For example, if UE m completes the task
locally, then γ0m(t) = 1. So, the tasks from UE m have N + 2
options for computation locations: local device, anyone of N
UAVs, and edge cloud server. In other words, an UAV can offload
computing tasks from users within its own coverage area to other
UAVs; this illustrates the collaboration between multiple UAVs.
In a classic model without the collaboration between UAVs,
tasks have three options only for computation locations: local
device, the UAV they belongs to, and edge cloud server. In that
case, an UAV cannot offload any task to other UAVs, even if
they are free.

We assume that computing tasks are indivisible, and a task
can only be processed at one location in each time slot. The

constraints of tasks are as follows:
N+1∑
n=0

γnm(t) = 1 (19)

The computation delay of UEs is:

tUEm (t) =
γ0m(t)cm(t)

f0m
(20)

where f0m is the computing capability of UEm. The computation
delay of UAVs is

tUAVm (t) =

N∑
n=1

γnm(t)cm(t)

fnm(t)
(21)

where fnm(t) is the computing capability that UAV n allocates
to UE m at time slot t. UAV n has limited computing resources
[29], the constraint is:

M∑
m=1

fnm(t) ≤ Fn (22)

where Fn is the computing capacity of UAV n. If tasks are
offloaded to EC, the computation delay is:

tECm (t) =
γN+1
m (t)cm(t)

fN+1
m

(23)

where fN+1
m is the fixed computing power allocated to UE m

by the EC.

D. Task Priority Model

Tasks are classified into high-priority tasks and low-priority
tasks according to their allowed delay threshold. High-priority
tasks have strict delay constraint (i.e. navigation, road-sensing
in vehicular). If we cannot finish a high-priority task within its
maximum tolerable delay, the task will be failed and results
in severe impact. The tasks with tolerant delay are classified
as low priority tasks, such as entertainment applications. If the
allotted time for a low-priority task surpasses the allowed delay
threshold, it might solely impact the user experience without
compromising the overall usefulness of the result.

To prevent low-priority computational tasks from starvation,
we utilize distinct utility functions to represent task priorities,
rather than employing preemptive scheduling methods directly.
Similar to [22], [30], we consider a definition of task utility
based on priority, completion time (task delay), and allowed
delay threshold. For high-priority tasks, it is mandatory that
they are completed within the designated delay threshold. When
a high-priority task satisfies its allowed delay threshold, it is
considered available, and its utility is non-negative and inversely
proportional to the completion time. However, if a high-priority
task exceeds the allowed delay threshold and cannot be com-
pleted in time, it is deemed a failure and incurs a negative utility
as a penalty. We establish the utility function of a high-priority
task following the principles mentioned above, as follows:

UHm (t) =

{
log2(1 + vm(t)− Tm(t)), Tm(t) ≤ vm(t)
−PH , Tm(t) > vm(t)

(24)
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where Tm(t) is the completion time, and −PH is a negative
constant, which represents the penalty for not completing the
high-priority task within its allowed delay threshold.

For a low-priority task, the completion time requirement is
relatively lenient. If a low-priority task cannot be completed
within its allowed delay threshold, it is still considered available,
but the utility decreases exponentially with time. On the other
hand, if a low-priority task is completed before the deadline, the
utility is a positive constant as a reward. We define the utility
function for a low-priority task next:

ULm(t) =

{
PL, Tm(t) ≤ vm(t)
PLe−ρ(Tm(t)−vm(t)), Tm(t) > vm(t)

(25)

where PL is a fixed positive value that represents the reward for
successfully completing a low-priority task within its specified
time limit, and ρ > 0 is a constant. Specifically, if a low-priority
task cannot be completed (i.e. tn = −∞), then the utility is zero.

The task priority model employed, which uses logarithmic and
negative exponential expressions, is appropriate. Logarithmic
and negative exponential forms have long tail effects which are
close to how user experience manifests. For example, if the
latency of a service changes from 0.1 s to 1 s, it will have a
big impact on the user experience. However, if the latency of a
service changes from 10.1 s to 11 s, it will have little impact on
the user experience. Logarithmic and negative exponential forms
can describe this property very well. Besides, the minimum value
of a logarithmic expression is 0 if the high-priority task can been
completed within the allowed delay threshold, which guarantees
that the utility of on-time completion is higher than the utility
of a task overtime. Similarly, the maximum value of a negative
exponential expression is 1 if the low-priority task cannot be
completed within the allowed delay threshold, which guarantees
that the utility of a task overtime is lower than the utility of the
on-time completion.

IV. PROBLEM OPTIMIZATION

A. Multi-UAV Cooperative Computation Model

Based on location, there are three computation types: com-
putation at UEs, computation at UAVs and computation at the
EC.

1) Computation at UEs: There is no transmission delay if
UEs finish tasks locally, so the total delay is equal to the compu-
tation delay T 0

m(t) = tUEm (t). There is only energy consumption
of local computation.

E0
m(t) = κ0(f

0
m)3tUEm (t) (26)

where κ0 ≤ 0 is the effective switched capacitance of UEs.
2) Computation at UAVs: We assume that UE m offloads

data to UAV n′ in time slot t. UE m first needs to transfer the
data to UAV n that it belongs to. If the data target is not n,
which means n′ �= n, UAV n has to further transfer the data to
UAV n′. As the UAVs communicate in full duplex. UAV n can
receive the data from UEmwhile also can forward the received
data to the target UAV n′. In this process, UAV n assumes
the role of a transmission relay, and the G2A and A2A data
transmissions are done in parallel. Therefore, the transmission

delay takes the maximum values of the time needed for G2A and
A2A communications. Otherwise, UAV n allocates computing
resource to UEs m directly. The transmission delay is:

tn
′

m(t) = max

{
ok

rG2A
m,n (t)

,
ok

rA2A
n,n′ (t)

}
(27)

where ok/rA2A
n,n′ (t) = 0 if n = n′. The total delay is:

Tn
′

m (t) = tn
′

m(t) + tUAVm (t) (28)

The transmission energy consumption from UE m to UAV n
can be obtained as follows:

enm(t) =
pm(t)ok
rG2A
m,n (t)

(29)

Similarly, if the target UAVn′ is notn, the transmission energy
consumption from UAV n to UAV n′ can be obtained as follows:

en
′

n (t) =
pn(t)ok
rA2A
n,n′ (t)

(30)

The computation energy consumption of UAV n′ is:

eUAVm,n′ (t) = κn′ [fn
′

m (t)]3tUAVm (t) (31)

where κn′ is the effective switched capacitance of UAV n′.
The total energy consumption if UE m offloads task to UAV

n′ can be obtained as follows:

En
′

m(t) = enm(t) + en
′

n (t) + eUAVm,n′ (t) (32)

3) Computation at EC: Similar to computation at UAVs, UE
m transmits data to EC l through UAVn. The transmission delay
is:

tN+1
m (t) = max

{
ok

rG2A
m,n (t)

,
ok

rA2G
n (t)

}
(33)

and the total delay is:

TN+1
m (t) = tN+1

m (t) + tECm (t) (34)

The transmission energy consumption from UAV n to the EC
is as follows:

en(t) =
pn(t)ok
rA2G
n (t)

(35)

Considering that the EC has sufficient power, we do not
incorporate the energy consumption of EC into the optimization.
The total energy consumption is then:

EN+1
m (t) = enm(t) + en(t) (36)

B. Problem Design

The service delay of UE m at time slot t is:

Tm(t) = γ0m(t)T 0
m(t) + γN+1

m (t)TN+1
m (t)

+

N∑
n′=1

γn
′

m(t)Tn
′

m (t) (37)

As previously mentioned, computational tasks of varying
priorities have distinct requirements regarding task delay. Rather
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than directly optimizing task delay, we optimize the priority-
based utility function of task delay, which is defined as follows:

Um(t) = (1− om(t))UHm (t) + om(t)ULm(t) (38)

where om(t) = 0 is the high-priority task, and om(t) = 1 is the
low-priority task.

The total energy consumption is:

Em(t) = γ0m(t)E0
m(t) + γN+1

m (t)EN+1
m (t)

+

N∑
n′=1

(γn
′

m(t)En
′

m(t) + Eflyn (t)) (39)

Task delay and energy consumption are two main factors in
UAV-assisted MEC systems, which are also our optimization
objectives. Similar to [7], [15], [17], we define the system gain
as a weighted sum of the energy consumption Em(t) and the
priority-based utility functionUm(t)which combines task delay
and priority. The utility function of system gain is defined as
follows:

Fm(t) = w1Um(t)− w2Em(t) (40)

where w1 and w2 are weight parameters. We can adjust the
weight parameters according to the system deployment scenario.
For example, in delay-sensitive systems, we can increase the
weight parameterw1 or decrease the weight parameterw2. Even
we can optimize the task delay only by setting w2 = 0.

Thus, by jointly optimizing offloading decision γ, UAVs
position w, transmit power p, and the computation resource
allocation of UAVs f , the task offloading optimization problem
can be designed to maximize the total system gain. The problem
is formulated as follows:

max
γ,w,p,f

lim
T→∞

1

T

T∑
t=1

M∑
m=1

Fm(t)

s.t. 0 ≤ pn(t) ≤ PUAVmax , ∀n ∈ N (41a)

0 ≤ pm(t) ≤ PUEmax, ∀m ∈ M (41b)

γnm(t) ∈ {0, 1} (41c)

xmin ≤ xn(t) ≤ xmax, ymin ≤ yn(t) ≤ ymax (41d)

�wn(t) ≤ vmax�t (41e)

(1)− (4), (13), (19), (22) (41f)

where the optimization goal is to maximize the long-term aver-
age system gain. Constraints (41a) and (41b) indicate that the
transmit power of UAVs and UEs are limited. Constraint (41c)
denotes the constraints of task offloading and (41d) and (41e)
are the constraints related to the movement area and movement
speed of UAVs, respectively. Eq. (1)–(4) describe the position
constraints of UAVs, (13) denotes UE is within the coverage
range of the UAV, (19) denotes that there is one and only one
device available to process the task, and (22) is the constraints
about the limited computing resources of UAVs.

Generally, it is intractable to solve the optimization problem
(41). The optimization objective is the long-term average system

gain, which always need the future information in traditional
methods (i.e. dynamic programming). However, it is challenging
to predict system state in dynamically networks. Moreover, DRL
can achieve model-free learning by data sampling instead of state
transition. Although DRL is an effective method to solve long-
term average optimization problem, this is a discrete-continuous
hybrid optimization problem. There are scalability issue and
additional approximation difficulty which may decrease the
model performance if we use traditional DRL methods directly.
To address these challenges, a novel DRL method will be inves-
tigated to learn the near-optimal policy with discrete-continuous
hybrid action space in the next section.

C. MDP Formulation

In UAV-assisted MEC systems, we optimize the offloading
decision, UAVs position, transmit power and computation re-
source allocation to maximize the system gain. The system state
in the next time slot depends on the state and action at the
current time only. In this case, the UAV-assisted task offloading
problem (41) can be formulated as a MDP. In time slot t, we
observe system state and then select the action. The system will
generate a corresponding reward to reflect the action. The goal
is to maximize the long-term system reward by employing an
optimization strategy that maps states to actions.

1) State SpaceS: If we add the channel quality of each trans-
mission link into the state space, the state space will increase
rapidly with the number of UAVs, increasing the complexity of
any associated algorithm toO(N2). In order to reduce the size of
the state space, we noted that the channel quality is related to the
positions of UAVs due to the time-invariant signal interference
(i.e. noise power) between two positions in the model. In other
words, the channel quality of links varies with the positions of
UAVs, and we can calculate the channel quality of links accord-
ing to the positions of UAVs if the signal interference is fixed.
Therefore, we add the positions of UAVs into the state space
to describe the channel quality and the associated complexity
is O(N). Additionally, we do not add the variables that are not
time-varying (such asLhmax andLvmin) to the state space. We can
use these variables directly during training without them being
part of the state space. Therefore in the optimization problem,
the state s(t) is composed of properties of computing tasks and
3D coordinate positions of UAVs, that is:

s(t) = {q(t),w(t)} (42)

where q(t) = [q1(t),q2(t), . . .,qM (t)] and w(t) =
[w1(t),w2(t), . . .,wN (t)]. Since the total dimension of
computing tasks’ properties is 4M and the total dimension
of UAVs’ positions is 3N , the total dimension of state s(t)
is 4M + 3N , where N is the number of UAVs and M is the
number of UEs.

2) Action SpaceA: If we directly use the γnm(t) as the action,
the action space is M(N + 2). This both increases the number
of output neurons and leads to additional consideration of con-
straint (19), which increases the complexity of training. For each
computing task of UE m, there are N + 2 positions to choose
from. We can complete it in UE locally, or offload it to UAVn, or
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offload it to EC. To simplify the discrete action in action space,
we use im(t) ∈ {0, 1, . . ., N + 1} to denote the computation
position, where im(t) = 0 means we complete the task at the
UE locally, im(t) = N + 1 means the task is offloaded to EC,
otherwise, the task is offloaded to UAV im(t). In this way, we
can reduce the number of neurons for task offloading variable to
M , and do not need to consider constraint (19) during training.

In addition to task offloading variable, we have to determine
the mobility of UAVs, the transmit power and the allocation of
computation resources. To be specific, the action at time slot t
is defined as:

a(t) = {i(t),�w(t),p(t), f(t)} (43)

where i(t) = [i1(t), i2(t), . . ., iM (t)] is the decision of task
offloading, �w(t) = {�w1(t),�w2(t), . . .,�wN (t)} is the
mobility of all UAVs, p(t) = [p1(t), i2(t), . . ., pM+N (t)] is the
transmit power of all UEs and UAVs, f(t) = [fnm(t)], ∀m ∈
{1, . . .,M}, ∀n ∈ {1, . . ., N} is the allocated computation re-
sources from UAV n to UE m. The dimension of action a(t) is
M + 3N + (M +N) +MN = 4N + 2M +MN .

3) Reward Function: The goal of the formulated task of-
floading optimization problem (41) is to maximize the system
gain while satisfying certain constraints. Therefore, an action
has a larger reward if it can bring a higher system gain and
satisfies all constraints [31]. Otherwise, if certain constraints
are not satisfied, there will be corresponding penalties in the
reward function. The reward function is defined as follows:

r(t) =

{∑M
m=1 Fm(t), if sastifies constraints

−Pu, otherwise
(44)

where Pu is a positive value and −Pu is the penalty for actions
that do not satisfy constraints. Notable is that, we can influence
the reward function by adjusting the value ofPH in (24) andPL

in (25), which affect the completion ratio of high-priority tasks
and low-priority tasks. For example, if we increase the value of
PL, the reward for completing a low-priority task increases, and
the model will allocate more resources to low-priority tasks. As
a result, the completion rate of low-priority tasks will increase.
However, as the total amount of resources is limited, improving
the completion rate of low-priority tasks is expected to reduce
the completion rate of high-priority tasks.

V. DRL-BASED ALGORITHM DESIGN

Because the above-described MDP has a discrete-continuous
hybrid action space, conventional DRL algorithms are not suit-
able for it. If we convert the hybrid action space into either a
discrete or a continuous action space directly, it may lead to a
degradation in model performance due to scalability issues and
increased approximation complexity. To address this problem,
we propose a novel algorithm, which is based on a hybrid action
representation, as introduced in [32].

A. Latent Space

In terms of the formulated MDP, there are discrete variable
i(t) and continuous variables {w(t),p(t), f(t)}. Hybrid action
representation can convert the discrete-continuous hybrid action
space problem into a continuous policy learning problem which

considers the dependence between the two heterogeneous com-
ponents. With some abuse of notation, we use p to uniformly
refer to continuous actions, and we get rid of the subscript t
(i.e., action a = (i1, i2, . . ., iM , p)) to help clarify the algorithm.
We detail the method from dependence-aware encoding and
decoding of hybrid action.

There areN + 2 locations for computation offloading for each
task. We first establish an embedding table Gω ∈ R(N+2)×l1

with learnable parameters ω to denote the N + 2 discrete ac-
tions. In the table, each row gω,im = Gω(im) is a l1-dimensional
continuous vector for the discrete action i. Note that there are
M UEs to make decisions in each time slot, so M embedding
tables should be established for learning. However, the action
space for each UE and the meaning represented by each action
are both consistent, which means all UEs can share a common
embedding table.

To construct a l2-dimensional latent representation space
for the continuous parameters, a conditional Variational Auto-
Encoder (VAE) [33] is utilized. In the mathematical formulation,
given a hybrid action a = (i1, i2, . . ., iM , p) and a state s, the
encoder qφ(z|p, s, gω,im) with parameters φmaps p to the latent
variable z ∈ Rl2 conditioned on s and gω,im . In this case, a
Gaussian latent distribution Γ(μq, σq) is employed to describe
the encoder qφ(z|p, s, gω,im). The encoder outputs the mean μq
and standard deviation σq of the latent distribution. By sam-
pling from this distribution, we obtain the latent representation
z ∼ Γ(μq, σq).

Under the same condition, the decoder qψ(p̃|z, s, gω,im) with
parameters ψ reconstructs the continuous parameter p̃ from z.
Given a sample z ∼ Γ(μq, σq), the decoder deterministically de-
codes it, resulting in p̃ = qψ(z, s, gω,im). Furthermore, through
nearest-neighbor lookup in the embedding table for gω,im , we
can decode the discrete parameter im.

We use the encoder to construct a hybrid action representation
space (∈ RMl1+l2) for hybrid actions. Additionally, we can
decode latent variables g ∈ RMl1 and z ∈ Rl2 into a hybrid
action (i1, . . ., iM , p) based on the decoder. To formalize this,
the encoding and decoding processes are summarized as follows:

Encoding:

gω,im = Gω(im), z ∼ qφ(·|p, s, gω,im) (45)

Decoding:

im = argmini′∈I ||gω,i′ − g||2, p̃ = qψ(z, s, gω,im) (46)

We trainGω and qφ, qψ together using experiences from buffer
D by minimizing the loss function:

LV (ψ, φ, ω) = E[||p− p̃||22
+DKL(qφ(·|p, s, gω,im)||Γ(0, I))] (47)

where the first term represents the squared L2-norm reconstruc-
tion error, and the second term represents the Kullback-Leibler
divergence (DKL) between the variational posterior of the latent
representation z and the standard Gaussian prior.

Because hybrid actions have varying impacts on the envi-
ronment, we incorporate a cascaded structure that follows the
transformation network of the conditional VAE decoder. For
any experience sample (s, a, s′), we define the state residual as
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TABLE I
NETWORK STRUCTURES OF ENCODER AND DECODER

δs,s′ = s′ − s. By introducing the cascaded structure into the
decoder, we can generate predictions according to the following
process:

δ̄s,s′ = qψ(z, s, gω,im), for z, s, gω,im (48)

Then the L2-norm square prediction error is:

LD(ψ, φ, ω) = E[||δ̄s,s′ − δs,s′ ||22] (49)

So, we minimize the ultimate training loss:

LH(ψ, φ, ω) = LV (ψ, φ, ω) + αLD(ψ, φ, ω) (50)

whereα is a weight parameter that depends on the importance of
the loss associated with the dynamics predictive representation.
We denote the dimension of the system state s as dim, and
the dimension of the continuous policy p as Xp. The network
structures of the encoder and decoder are illustrated in Table I.

Although the latent space for hybrid action representation in-
creases the complexity of the algorithm, it is necessary. Take the
DRL algorithm DDPG as an example. The actions outputted by
DDPG are continuous. For the discrete variable in hybrid action,
we need to convert the continuous actions outputted by the model
into discrete values by crude methods such as rounding. In this
case, even though the model outputs for instance 4.6 and 4.9,
the results will be the same (both are rounded to 5), which leads
to a degradation in the model’s performance. Therefore, using
a latent space which can convert between continuous output
values and discrete variables is more accurate. Considering that
discrete variables and continuous variables in a hybrid action
space are coupled with each other, we did not encode only

TABLE II
NETWORK STRUCTURES OF TD3

discrete variables, but the whole hybrid action, to ensure the
correlation of variables

B. Cooperative Long-Term Average Optimization Algorithm

In the previous section, we discussed the construction of
the hybrid action representation space. Now, this representation
space will be combined with the model-free TD3 algorithm [34]
to solve the task offloading problem.

TD3 is an algorithm for deterministic strategy reinforcement
learning that is well-suited for continuous action spaces with
high dimensions. It utilizes two types of networks: the actor and
the critic. The actor network maps various states to their corre-
sponding actions, influencing the decision-making process. The
critic network estimates the potential rewards associated with
different actions given specific states, influencing the action’s
value. The actor and critic networks are implemented separately
using distinct neural networks, which are shown in Table II.

The actor network takes the state s as input and produces
a latent action vector, represented as g and z, (i.e. g, z = πζ(s)
where g ∈ RMl1 , z ∈ Rl2 ). Next, we utilize a decoder to decode
this latent action vector (g, z) into a corresponding discrete-
continuous hybrid action a = (i1, . . .iM , p). To approximate
the hybrid-action value function Qπζ , we employ twin critic
networks Qθ1 , Qθ2 . These networks take the hybrid action a
as input. In training, we use the collected experience (s, a, r, s′)
stored in the bufferD to train the critics using the Clipped Double
Q-Learning algorithm. The loss function for training the critics
is as follows:

LCDQ(θj) = E[(ς −Qθj (s, g, z))
2], for j = 1, 2 (51)

where ς = r + γminQθ̄j (s
′, πζ̄(s

′)) and θ̄j , ζ̄ are the target
network parameters. The actor (latent policy) is updated with
Deterministic Policy Gradient [35] as follows:

∇ζJ(ζ) = E[∇πζ(s)Qθ1(s, πζ(s))∇ζπζ(s)] (52)

Combining the latent representation space and TD3, we pro-
pose the Cooperative Long-term average oPtimization (CLP)
algorithm to solve the joint optimization problem of UAV place-
ment and resource allocation in UAV-assisted MEC system.
The proposed CLP algorithm is detailed in Algorithm 1. We
first initialize the parameters of networks and embedding table



8658 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 9, SEPTEMBER 2024

Algorithm 1: CLP Training Algorithm.
1: Initialize actor πζ and critic networks Qθ1 , Qθ2 with

random parameters ζ, θ1, θ2;
2: Initialize discrete action embedding table Gω and

conditional VAE qφ, qψ with random parameters ω, φ, ψ;
3: Initialize state information s1;
4: Prepare replay buffer D;
5: while not reach maximum warm-up training times do
6: Update ω, φ, ψ using samples in D by (50);
7: end while
8: while not reach maximum total environment steps do
9: Observe current system state s;

10: /* select latent actions by actor network */
11: g, z = πζ(s) + εg with εg ∼ Γ(0, σ);
12: /* decode into original hybrid actions */
13: Decode i = fD(g), p = qψ(z, s, g) by decoder;
14: Execute (i, p), get reward r and new state s′;
15: Store (s, i, p, g, z, r, s′) in replay buffer D;
16: /* evaluate hybrid actions by critic network */
17: Sample a mini-batch experience from D;
18: Update Qθ1 , Qθ2 according to the loss function (51);
19: Update πζ with policy gradient according to (52);
20: while not reach representation training times do
21: Update ω, φ, ψ using samples in D by (50);
22: end while
23: end while

randomly, and initialize the system state s(1) with the UAV start
positions. There are two major stages in training: warm-up stage
and learning stage. In the warm-up stage, the encoder and de-
coder are pre-trained by experiences found in the replay bufferD
(line 5–7). In the learning stage, the actor outputs a latent action
g, z perturbed by a Gaussian exploration noise based on current
s. Then the decoder decodes the latent actiong, z into the original
hybrid action i, p to interact with the environment and get the
reward r and the new state s′. The experience (s, i, p, g, z, r, s′)
is stored in the replay buffer D. To avoid the correlation of input
samples, we randomly sample a mini-batch experience from D.
We will calculate the loss function according the evaluation of
critic network, and update parameters of the actor network and
critic network with a policy gradient (lines 18–19). In addition,
the encoder and decoder are updated concurrently in the training
stage to adapt the change of data distribution as shown in lines
20–22. Note that the actor network can be used without the critic
network (lines 9–15) when the model has been trained. The CLP
framework is illustrated in Fig. 2.

C. Complexity Analysis

The complexity of our proposed algorithm can be anal-
ysed after considering its two main aspects. First, there is the
complexity related to the encoding and decoding of hybrid
actions. Secondly, there is the complexity associated with train-
ing the actor and critic networks. As referenced in [36], the
computational complexity of back-propagation algorithm for a
fully-connected neural network with fixed number of hidden

Fig. 2. Framework of CLP algorithm.

layers and neurons is proportional to the product of input size
and output size.

In the encoding and decoding of hybrid actions, the input
size of encoder is dim+Ml1 + Xp =MN +Ml1 + 5M +
7N where dim = 4M + 3N and Xp =MN + 4N +M . The
output size of encoder is l2, so the computational complexity
of encoder is O((MN +Ml1)l2). The input size of decoder is
dim+Ml1 + l2 = 4M + 3N +Ml1 + l2, and the output size
is dim+ Xp = 3MN + 5M + 7N . So the decoder complexity
is O(M2Nl1 +MNl2 +MN2).

In the training actor and critic networks, the input size of
actor is the dimensions of system space dim = 4M + 3N , the
output size is the dimensions of hybrid action representation
space Ml1 + l2, so the complexity of the actor is O((Ml1 +
l2)(N +M)). The input size of critic is dim+ Xp +M , the
output is 1, so the critic complexity is O(MN).

Finally, the overall complexity of our algorithm is
O((MN +Ml1)l2) +O(M2Nl1 +MNl2 +MN2) +
O((Ml1 + l2)(N +M)) +O(MN) = O(M2Nl1 +
MNl2 +MN2 +Ml1l2).

VI. PERFORMANCE EVALUATION

In this section, we describe the experimental setup and in-
troduce the alternative solutions used for comparison-based as-
sessment. Then the experimental results and related analysis are
presented to validate the performance of the proposed algorithm.

A. Experimental Setup

We consider a UAVs-assisted MEC scenario with 30 UEs
randomly distributed in an area of 1000× 1000m2 as set in
[37]. Three UAVs with random initial positions can help UEs
to complete their computing tasks. For UE tasks, the data size
um(t) is set from 1 to 3 MB [37] and the computing workload
cm(t) is generated randomly within [300, 500] Megacycles [38].
For the UAVs, the computing capability Fn is set from 10 to
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TABLE III
PARAMETER SETTINGS FOR SIMULATIONS

20 Gigacycles [16]. According to [17], we set the minimum
height for UAVsZmin to 50 m, maximum heightZmax to 100 m,
maximum horizontal distance Lhmax to 49 m, maximum vertical
distance Lvmax to 12 m, the maximum transmit power PUAVmax

to 5 W, effective switched capacitance κ to 10−28, and noise
powerNg, NA, NE to -100 dBm. Constant values and excessive
path loss a, b, ηLoS , and ηNLoS are set to 9.61, 0.16, 1, and
20, respectively [37]. The channel bandwidth values for G2A,
A2A, and G2A communications are set to 20 MHz, 40 MHz,
and 10 MHz, respectively [15], [38]. The actor learning rate γ1,
critic learning rate γ2 and representation model learning rate γ3
are set based on [32]. Table III presents the values of system
parameters, the numbers in bold are the default values.

B. Alternative Solutions

CLP, our proposed algorithm, is compared with the following
four alternative algorithms.
� Optimization of Single UAV (OSU) [39]: This solution

studies the task offloading problem in a single UAV sce-
nario, which takes the energy consumption as a constraint
and task delay as the optimization objective. It employs
an algorithm based on deep deterministic policy gradient
(DDPG) to search for near-optimal solutions in highly
dynamic environments.

� No cooperation between UAVs (NCO) [9]: This solution
also considers a single UAV scenario and therefore there is
no cooperation between multiple UAVs. Its optimization
objective considers task delay, energy consumption and
number of tasks collected by the UAV. The proposed so-
lution is based on the multi-task multi-objective proximal
policy optimization (PPO) algorithm.

Fig. 3. Convergence.

� Cooperation without long-term optimization (CNL) [40]:
This solution involves some cooperation between UAVs.
Its authors decomposed the UAV-assisted MEC problem
into three subproblems and proposed a greedy approxi-
mation algorithm as a solution. Rather than optimizing
the long-term average system performance, this solution
only focuses on achieving the optimal performance in the
current time slot.

� Cooperation with multi-agent reinforcement (CMA) [17]:
This solution employs a partial task offloading strategy
which considers cooperation between UAVs and optimiza-
tion of long-term performance. A multi-agent TD3 algo-
rithm is designed to find the efficient UAVs’ movements,
task offloading allocation, and communication resource
management based on dynamic MEC environments. In
order to accommodate binary computing offloads, the node
with the largest offload proportion to offload is chosen.

C. Experiment Results

We show the convergence of our proposed CLP algorithm
with different learning rates in Fig. 3. Different learning rates
lead to different training performance results. When learning
rates are very large (i.e. 10−2), there are great fluctuations in the
process of model convergence. Additionally, the convergence
points are also often local optimal solutions. When learning
rates are very small (i.e. 10−4), the convergence state is stable,
but the convergence is slow, taking about 1500 episodes. When
learning rates are set to 10−3, the model converges quickly
(almost 600 episodes) and has a relatively stable convergence
state. Therefore, the learning rates are set to γ1 = 10−3, γ2 =
10−3, γ3 = 10−3 in our model training.

To show the effectiveness of the hybrid action representa-
tion method in CLP, we perform ablation experiments. The
representation method is to transform discrete variables in action
space into continuous values to improve the training perfor-
mance of the model. Considering that discrete variables and
continuous variables in the action space are interrelated, the
hybrid action representation method in CLP jointly trains the
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Fig. 4. Ablation experiment.

Fig. 5. Effect of weight.

whole action space. Therefore, we use two comparison methods
in our ablation experiments. Comparison one employs a no
action representation (NAR) method. NAR only discretizes the
variables directly by rounding, without any action representation
algorithm. Comparison two uses an ORD method, which only
represents discrete variables. The method ignores the correlation
between discrete variables and continuous variables in the action
space, and only represents discrete variables instead of the whole
action space. Considering that the goal of the optimization
problem is to maximize average system gain, we show the system
gain in each time slot for the three algorithms in Fig. 4. We note
that NAR has the worst performance and greatest fluctuations,
as the crude approximation method leads to a degradation in
model performance. ORD only represents discrete variables and
ignores the correlation between discrete variables and continu-
ous variables in the action space, so it performs better than NAR,
but not as well as CLP. CLP represents the whole action space
and has the best performance in terms of system gain from the
three methods.

Fig. 5 shows the impact of weight parameters. The opti-
mization objective of our problem is the combination of task

Fig. 6. System gain.

delay and system energy consumption by weight parameters.
Whenw1/w2 is larger, task delay accounts for more weight and
becomes more important. Accordingly, the task delay is reduced
but the system energy consumption is increased. When w1/w2

is smaller, system energy consumption is more important. Our
solution tends to sacrifice the task delay to obtain smaller system
energy consumption. In practice, the weight parameters can be
adjusted according to the system requirements.

The system gains of the five algorithms in the experiment
are illustrated in Fig. 6. The subfigures of Fig. 6 show that the
average system gain of CLP in 200 time slots is around 78,
CMA’s is around 70, CNL’s is about 64, NCO’s is around 58,
and OSU’s is approximately 54. Our optimization goal is to
maximize the long-term average system gain. The average sys-
tem gain of CLP is the largest of the five algorithms, demon-
strating that our algorithm CLP has the best performance. As
OSU is a task offloading algorithm in a single UAV scenario and
its goal is to optimize task delay only, it has the worst system
gain of all tested solutions. NCO also lacks the cooperation
between multiple UAVs, but optimizes both task delay and
energy consumption, so it has better performance than OSU.
CNL considers the multi-UAV cooperative scenario, but only
optimizes the current time decision, which easily leads to finding
local optimal solutions only. CMA takes both the cooperation
between UAVs and long-term average optimization into account,
and has the best performance among the alternative solutions.
Unfortunately, some performance is lost when converting partial
offloading to binary offloading, so CMA is slightly worse than
CLP.

Fig. 7 presents the effects of variations in the numbers of
UAVs and UEs. Considering that tasks with different priorities
have different performance in our algorithm, we will analyze
separately the high-priority tasks in CLP (CLP-H) and low-
priority tasks in CLP (CLP-L). Fig. 7(a) and (b) show the
impact of the number of UAVs on the task delay. In general,
as the number of UAVs increases, the task delay gradually
decreases. More UAVs means more edge computation resources,
and consequently more tasks can be completed on UAVs, which
determines a reduction in task delay. It is worth noting that
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Fig. 7. Effect of UAVs and UEs.

CLP-L performs the worst among all algorithms when the
number of UAVs is 1. When there is a single UAV, the available
computing resources are very limited. To ensure the comple-
tion of high priority tasks, CLP allocates most resources to
high-priority tasks which leads to the best performance when
completing these tasks. Unfortunately, low-priority tasks cannot
be allocated sufficient computing resources, so the task delay
associated with these tasks is the highest. As the number of
UAVs increases, so do computing resources. Although CLP still
allocates most resources to high-priority tasks, lower-priority
tasks can also receive more resources. Therefore, the task delay
of CLP-L gradually approaches the values experienced by other
algorithms.

To show the effect of the number of UEs, we set different
numbers of users in the experiment, with a maximum value of
240. Fig. 7(b) shows that the increase in the number of UEs
leads to an increase in task delay. More UEs imply more tasks,
but due to the limited computing resources of UAVs, some tasks
must be offloaded to the remote cloud server, which determines
longer task delays. It is worth noting that OSU focuses on
the optimization of task delay, while NCO optimizes both task
delay and energy consumption, so OSU performs better than
NCO in terms of task delay, but worse in terms of system gain.
Additionally, OSU and NCO only consider the scenario with a
single UAV, so they cannot be compared against when analyzing
the impact of the number of UAVs.

We define the completion rate as the number of tasks com-
pleted within the allowed delay threshold divided by the total
number of tasks. A similar metric is the task completion rate, as
shown in Fig. 7(c) and (d). The increase in the number of UAVs
improves the completion rate, while the increase in the number
of UEs decreases the completion rate. However, as the number

of users continues to increase, the completion rate will also level
off. The reason is that limited resources of UAVs are difficult
to meet the needs of a large number of users. As the number of
users increases, most computing tasks will be offloaded to cloud
servers and the completion rate will be stable. Note that the high-
priority tasks in our algorithm benefit in terms of performance
in both task delay and completion rate, while low-priority tasks
in our algorithm perform worse in many cases. This is because
we set different reward functions for different priority tasks, and
the CLP algorithm is more inclined to complete the high-priority
tasks first, which sacrifice the performance of low-priority tasks.
However, the alternative solutions have no priority considera-
tion, and there is no difference in task performance. Considering
that the system gain is the sum of all UEs

∑M
m=1 Fm(t), which

is related to the number of UEs, we use the average perfor-
mance

∑M
m=1 Fm(t)/M to show the impact of the number of

UAVs and UEs, as shown in Fig. 7(e) and (f), respectively.
Similar, the increase of UAVs will improve average system
gain and the increase of UEs will decrease average system
gain.

Fig. 8 compares our CLP with the four alternative solutions in
terms of four performance indicators. We find that our proposed
CLP algorithm has obvious advantages in terms of task delay,
completion rate and system gain. In terms of energy consump-
tion, CLP is better than CMA and CNL, but is inferior to NCO
and OSU. Note that NCO and OSU consider the scenario with
only one UAV, so they have the lowest energy consumption. This
also causes the task delay of NCO and OSU to be far inferior
to that of the other algorithms. OSU focuses on optimizing task
delay, so it performs better than NCO in terms of task delay
and completion ratio, but worse in terms of system gain and
energy consumption. The performance of CMA is better than
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Fig. 8. Performance in terms of four metrics.

that of CNL due to its long-term average optimization. Our
CLP considers task priority, long-term average optimization and
binary optimization, which leads to the maximum system gain,
which is an excellent result.

VII. CONCLUSION

In this paper, we focused on the UAV-assisted task offloading
problem with task priority. A long-term average problem with
the collaboration between multiple UAVs was formulated to
optimize task delay and energy consumption by jointly de-
signing the UAV trajectories, task offloading, computation re-
sources allocation, and communication resource management.
To solve this problem, we transformed it to a MDP. Consider-
ing a discrete-continuous hybrid action space, the Cooperative
Long-term average oPtimization (CLP), a novel DRL algorithm
was proposed. Following detailed experimental testing, our
algorithm CLP outperforms three state-of-the-art optimization
approaches in terms of task delay, system gain and system energy
consumption.
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