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Abstract—Cloudified mobile networks are expected to deliver a
multitude of services with reduced capital and operating expenses.
A characteristic example is 5G networks serving several slices
in parallel. Such mobile networks, therefore, need to ensure that
the SLAs of customised end-to-end sliced services are met. This
requires monitoring the resource usage and characteristics of data
flows at the virtualised network core, as well as tracking the perfor-
mance of the radio interfaces and UEs. A centralised monitoring
architecture can not scale to support millions of UEs though. This
paper, proposes a 2-stage distributed telemetry framework in which
UEs act as early warning sensors. After UEs flag an anomaly,
a ML model is activated, at network controller, to attribute the
cause of the anomaly. The framework achieves 85% F1-score in
detecting anomalies caused by different bottlenecks, and an over-
all 89% F1-score in attributing these bottlenecks. This accuracy
of our distributed framework is similar to that of a centralised
monitoring system, but with no overhead of transmitting UE-based
telemetry data to the centralised controller. The study also finds
that passive in-band network telemetry has the potential to replace
active monitoring and can further reduce the overhead of a network
monitoring system.

Index Terms—Anomaly, bottleneck, classification, congestion,
mobile cloud network, telemetry.

I. INTRODUCTION

A CLOUDIFIED mobile network represents a network
architecture in which the mobile network functions and

services are virtualised, enabling them to be run on cloud-based
platforms. This approach leverages the scalability, flexibility,
and cost-effectiveness of cloud computing technologies to pro-
vide a multi-service infrastructure with service assurance and
simplified network management [1]. In the near future, these
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networks are expected to carry, beside today’s best effort traffic,
a multitude of use cases with stringent requirements e.g., IoT, in-
dustrial automation and highly interactive multiverse traffic [2].

To ensure that the different tenants of a cloudified mobile
network are accommodated, it needs to quickly detect and re-
mediate performance degradation in the end services. Detecting
performance degradation necessitates the timely collection of
representative telemetry, the automation of flagging any perfor-
mance degradation, root cause attribution and finally the design
of an effective control system that re-configures the affected
network elements.

This paper proposes a network monitoring framework to
timely detect and trigger the attribution of a performance issue in
a cloudified mobile network. Unlike data centre networks, the
telemetry architecture in mobile networks have received little
attention. Differences between the two types of networks, espe-
cially the challenging radio interface, make adopting data centre
approaches insufficient. We tackle this by employing a 2-stage
distributed telemetry framework, in which User Equipments
(UEs) act as early warning sensors at stage-1 of the telemetry
framework, and triggers the stage-2 by flagging the occurrence
of an anomaly to the mobile network controller. An anomaly
is flagged as a result of performance degradation in an end-
service. The mobile network controller, then uses a supervised
Machine Learning (ML) algorithm to identify the root cause
of the anomaly. The ML model is built up on periodic active,
passive and in-band telemetry monitoring of different links and
components of the cloudified mobile network, where periodicity
can be tuned after striking right balance between the overhead
of telemetry collection, transmission and the non-deterministic
performance-related state of the mobile network. A classical
shortcoming of a supervised ML approach is the fact that train-
ing may not be comprehensive enough i.e., it does not cover
emerging or unknown anomalies. Other than minimizing the
monitoring overhead, a by-product of our distributed telemetry
framework is that it signals out new types of anomalies and uses
them to further improve the system.

To assess our 2-stage distributed framework, we have built a
mobile network testbed based on the cloudified architecture. We
imitate performance degradation in the network by introducing
a set of bottleneck profiles, both in the Radio Access Network
(RAN) and the mobile network core. These profiles encompass
bandwidth congestion and transmission delays on network links,
data loss at relay components, strained network resources within
the network cloud, and radio interference in the final mile.
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Fig. 1. Impact of network bottleneck on performance degradation at UE.

For troubleshooting mobile networks, its operators collect key
performance indicators (KPIs), usually every hour, at various
network elements like basestations and core servers [3]. These
KPIs are monitored for deviations from the norm using simple
thresholds, but the approach is slow, imprecise, and reactive [4].
To address these challenges, ML methods are increasing con-
sidered [4], [5] to automate network troubleshooting. Deep
learning, a subset of machine learning, is particularly suitable
for such networking issues because it can handle large amounts
of complex and high-dimensional data. Additionally, extract-
ing relevant features or characteristics from the data is often
necessary in troubleshooting network problems. Deep learning
models have the capability to automatically extract these relevant
features during the learning process [6]. We, therefore, use
simple deep learning models both for bottleneck detection, at
stage-1, and for its attribution, at stage-2, of our distributed
telemetry framework.

In this study, we make the following contributions:
1) Proposing bottleneck detection for mobile networks, to

be leveraged from end devices attached to the network
edge, i.e., UEs.. At this stage (i.e., at stage-1), we use
Variational Autoencoder and achieve an impressive per-
formance of 85% F1-score in detecting bottlenecks. This
accuracy is not only 2% higher but also includes detection
of bottlenecks at RAN that are missed by a recent related
work [7].

2) Presenting a viable solution to the problem of using super-
vised ML for classifying problems with potentially, yet,
unlearned classes in the context of mobile networks. At
this stage (i.e., at stage-2) we use Multi-Layer Perceptron
(MLP) that attributes bottlenecks with 89% F1-score. Th
accuracy is 18% higher than that of a similar state-of-the-
art study [4], conducted on cloudified mobile network.

3) Empirically evaluating our approach in the lab in compar-
ison with a widely-used centralised telemetry framework.
Our proposed distributed framework shows comparable
accuracy to that of a centralised approach, but with no
overhead of transmitting telemetry information from UEs
to the centralised controller.

4) Investigating the potential of in-band network telemetry in
comparison with the traditional active and passive moni-
toring methods, in a cloudified mobile network.

The paper comprises of eight more sections. After discussing
the background and motivation of the study in Section II, we
explain our system architecture in Section III. In Section IV, we
present our distributed framework for bottleneck identification.
Section V illustrates the types of bottlenecks that we analyze

along with machine learning models for their detection and at-
tribution. Section VI evaluates the 2-stage distributed telemetry
framework in comparison with a centralised system and with
two state-of-the art works. Furthermore, this section investigates
the potential and overhead of different monitoring approaches
used by the framework. We then point out the challenges in the
distributed framework in Section VII, followed by an overview
of related work in Section VIII. The paper is finally concluded,
in Section IX, with key takeaways from the study.

II. BACKGROUND AND MOTIVATION

We term the events causing performance degradation to end-
users, in the mobile network, as bottlenecks. Bottlenecks may
appear due to issues in the wireless link or network conges-
tion, with an observable impact on end-users, such as depicted
in Fig. 1. The figure shows bit rate (Mbit/s), RTT and percentage
of lost datagrams with IPERF and UDP ping commands from
a User Equipment (UE) to a test server in our experimental
cloudified mobile testbed (mentioned in Section III), without
any bottleneck on end-to-end path and with different bottleneck
profiles (illustrated in Table II). We observe that the bottlenecks
indeed impact the performance parameters at the end-devices,
which in-turn effects Quality-of-Experience (QoE). For exam-
ple, studies like [8], [9], [10] show that poor throughput, latency
and packet loss result in slow and unresponsive applications such
as poor audio or video quality during calls, slow loading times
for apps and websites, and increased buffering during media
streaming.

Identifying bottlenecks helps network operators to optimise
their infrastructure. By pinpointing sources of bottlenecks, op-
erators can allocate resources more effectively, such as adding
to capacity where needed or dedicating more resources to the
affected network function instances. Operators can also assess
the demand patterns, predict future growth, and plan network
expansions accordingly. Compared to other networks, the factors
such as dynamic topology, heterogeneous devices, varying user
behavior, mobility-induced fluctuations, load on the wireless
links, fluctuations of signal level and resource constraints on dif-
ferent network components, add complexity to accurately iden-
tifying and mitigating bottlenecks in mobile networks [11], [12].

Existing literature shows that Machine Learning (ML) can be
leveraged to automate detection of bottlenecks at run time [13].
To identify the root cause of performance degradation in a mobile
network, studies like [5], [14] employed a supervised learning
method, but these methods are dependent upon labeled training
samples and fail when an unlearned issue arises. Furthermore,
for accurate detection and attribution of performance issues, it
is essential to base the ML model upon a holistic view of the
network system. In other words, the monitoring should reflect
the state across different components that inter-connect the end-
to-end paths. A holistic view includes monitoring of both the
services at the UEs and the rest of the network infrastructure.

Monitoring the performance at UEs, can be done with crowd-
sourcing [15], [16], where UEs tracks and reports on Quality-
of-Service (QoS) (e.g., network coverage quality, handovers
and throughput) and QoE features (such as page load time
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in web-browsing applications or jitter in streaming videos).
Crowdsourcing, however, is expensive in terms of data caps and
overhead associated with the periodic reporting of the moni-
tored features to a central monitoring entity [15]. Moreover,
with of the ever increasing density of UEs, mobile networks
may be burdened by the high volume of measurement data.
There is a need to avoid this overhead, without compromising
the in-time and accurate detection of a network performance
degradation.

As far as the network infrastructure is concerned, passive
measurement strategy best suits where the components are op-
erated/controlled by the monitoring entity. It involves recording
and analyzing the user traffic to understand network usage
trends. In situations where it is not possible to select capture
points freely, active probing is used. This method injects test
traffic into the network to find faults or issues. Active probes
are controllable in terms of when and what network features
are to be measured. It, however, burdens the probed devices
and links with additional data. Passive measurements do not
inject additional data, but monitoring all the traffic flows can be
expensive in terms of memory and processing resources. Addi-
tionally, network administrators and operators typically utilise
a component-to-controller [17] monitoring framework, where,
even passive measurements when uploaded to the centralised
controller, incur communication overhead.

Unlike traditional passive monitoring strategies [18] and tools
such as tcpdump [19] and wireshark [20], one can apply
the Inband Network Telemetry (INT) [21] method used in dat-
acenters [22], [23]. INT is a type of passive monitoring system
implemented with Programming Protocol-independent Packet
Processors (P4) [24], [25]. Being programmable, it allows a
centralised network controller not only to configure the mea-
surement frequency and to change the monitored features on
the fly, but also to adjust the monitoring granularity to per-user,
per-link, per-flow down to a packet-level.

In the light of the above discussed potentials and challenges,
we aim to leverage a 2-stage distributed telemetry architecture
with following features:
� Local (or semi-local) learning with minimal monitoring

overhead. Unlike crowdsourcing the UE does not send the
telemetry data to the central monitoring entity i.e., to the
mobile network controller. Instead, anomaly detection on
the monitored QoS/QoE metrics of end-services, local to
the UE, is performed either on the UE itself or at an edge
compute element. Anomaly detection flags both previously
seen and unseen performance issues.

� After an anomaly is detected, the data analytics at the cen-
tral monitoring entity is triggered. The central monitoring
entity runs a supervised bottleneck classification model,
being built upon periodic measurements from different
components and links of the cloudified mobile network. For
an unidentified bottleneck instance, the features are logged
into a file, to be labelled and used in model retraining.

� The framework involves real time attribution of network
issues, that are impacting a significant number of UEs.
We therefore aim for a simple ML model that is not only
scalable, has quicker response time but can also help to

understand the impact of different monitoring methods and
parameters on the model’s accuracy.

III. SYSTEM INFRASTRUCTURE

The hardware and software infrastructure of our mobile net-
work testbed is illustrated in Fig. 2.

A. Cloudified Mobile Network

The main part of the network [26] is an Enhanced Packet Core
(EPC), containing four basic components:

1) Home Subscriber Server (HSS), for managing the network
subscriber accounts;

2) Mobility Management Entity (MME) for managing the
attachment of Evolved Node Bs (eNodeBs), i.e. base
stations, and UEs, e.g. smartphones or modems;

3) Control Plane of the Serving and Packet Data Network
Gateway (SPGW-C), for managing access to a Public Data
Network (PDN), i.e. the Internet;

4) User Plane of the Serving and Packet Data Network Gate-
way (SPGW-U), for forwarding user traffic between UEs
and the PDN.

The HSS, MME, SPGW-C and SPGW-U are using the open
source implementation from OPENAIRINTERFACE (OAI) [27].
In addition to the four EPC components, we also deploy
FLEXRAN [28]. In particular, a FLEXRAN Controller to manage
the Evolved Node B (eNodeB) parameters and provide fine-
granular metrics from the eNodeBs.

The eNodeB is deployed using the open source implementa-
tion from OPENAIRINTERFACE. In addition, the Software Defined
Radio (SDR) ETTUS USRP B210 provides both the antennas and
the Radio Unit (RU), which converts radio waves into digital
waveforms.

Clearly, managing the components of a complex setup manu-
ally is not straightforward. Therefore, we deploy OPEN SOURCE

MANO (OSM) [29] as the orchestration platform for Network
Function Virtualization (NFV). Basically, OSM performs [30,
Chapter 1]:
� Composition of Virtual Network Functions (VNFs) into

Network Services (NSs);
� Instantiation of NSs and their VNFs in an underlying

Network Function Virtualization Infrastructure (NFVI) as
so-called Virtual Deployment Units (VDUs), which are
virtual machines and/or containers;

� Run-time configuration (e.g. initial installation, run-time
change of parameters, reconfiguration) of the VDUs;

� Monitoring of the VDUs (details in Subsection III-B);
� Scaling (i.e. increasing/decreasing the number of in-

stances) and removal of VDUs.
Currently, our setup is running OSM “Release EIGHT” on

UBUNTU 18.04 “Bionic Beaver”. OSM uses JUJU [31] for man-
aging the VDUs. That is, for each Virtual Deployment Unit
(VDU), JUJU maintains a separate container controlling it. Each
container runs the JUJU Charm of the corresponding component,
which is a custom Python program to implement the component-
specific control functionalities. In our setup, we use OPEN-
STACK [32] “Stein” on UBUNTU 19.04 “Disco Dingo” as NFVI
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Fig. 2. Testbed Infrastructure of the Cloudified Mobile Network.

to host the VDUs, which are instantiated as virtual machines
in two OPENSTACK compute nodes. The VDUs of MME, HSS,
SPGW-C and SPGW-U run UBUNTU 18.04 “Bionic Beaver”,
while the VDUs of FLEXRAN Controller and P4 switches run
UBUNTU 20.04 “Focal Fossa”.

B. Telemetry Components

As part of the components orchestration, OSM already pro-
vides two ways of monitoring the deployed NSs:

1) By using features of the NFVI (i.e. by CEILOMETER and
GNOCCHI in OPENSTACK [33]);

2) By JUJU Charms, that run customised monitoring code as
part of the configuration service managing the VDUs.

However, this monitoring only covers coarse metrics [34],
[35] – like CPU utilisation, per-interface packet and byte coun-
ters, etc. – and does not represent the quality of services features
of user data traffic. Particularly, there is no information about
user flows (e.g. TCP connections, etc.) of users. Packet and
byte counters only represent the aggregation of all users and
their flows. We aim at a vendor-independent, “standardised”
solution for passive monitoring of the per-flow user data traffic
with P4 version 16 [25] based software switches. P4 provides a
standardised language for programming packet processors, i.e.
switches, which can be compiled for different target devices.
Currently, we deploy P4 software switches, using the Behavioral
Model Version 2 (BMv2) Simple Switch software implementa-
tion [36]. However, once available, it would be straightforward
to just replace them by more powerful, off-the-shelf P4 hardware
switches. In our testbed, as shown in Fig. 2, we have P4 switches
for the four important interfaces (actually: internal networks):

1) S1-C, between eNodeB and MME (network control traf-
fic);

2) S1-U, between eNodeB and SPGW-U (encapsulated user
traffic);

3) SGi, between SPGW-U and PDN (decapsulated user traf-
fic);

4) FlexRAN, between eNodeB and the FLEXRAN Controller
(only FLEXRAN control traffic).

Particularly, the user traffic is handled on the S1-U interface,
where it is tunnelled via GPRS Tunnelling Protocol (GTP), and
on the SGi interface, where it is “normal” traffic without encap-
sulation. It should also be noted that SGi traffic uses the public
IP address of an SPGW-U. An SPGW-U performs Network/Port
Address Translation (NAT/PAT) between an internal address,
used by a UE, and the public SPGW-U address. Inside the tunnel,
traffic therefore uses the internal address of a UE.

We programmed the P4 switches, at S1-U and SGi, to at-
tach custom telemetry data to packets running over them. For
example, the S1-U switch attaches INT information to a user
packet (in the GTP tunnel), and forwards the modified version
of the packet to the Telemetry Collector (i.e., a part of the mobile
network collector), while the un-modified to its destination (that
is test server in Fig. 3). The SGi switch does the same before
forwarding the packet into the Internet. The Telemetry Collector
correlates the two packet snippets (on the flow identifiers that
come with the INT fields), and generates performance metrics.
Note that the actual outgoing packet into the Internet does not
contain telemetry data i.e., the privacy of the user is not getting
compromised.

With the received INT information of the packets, the Teleme-
try Collector can track both the characteristics of user data traffic
and the status of the P4 switches such as congestion at a port.
Depending on the processing power of the P4 switches and the
Telemetry Collector, such a system can be configured to only
handle a subset of the packets or flows, for creating samples
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Fig. 3. Bottleneck identification in the 2-level distributed monitoring frame-
work.

(e.g. only every n-th packet or flow or only flows of certain
representative users, etc.). Moreover, based on the monitoring
needs, INT can be performed on the data traffic with the granu-
larity of per user, per service type, per flow or per packet.

IV. BOTTLENECK IDENTIFICATION SYSTEM

Fig. 3 depicts a high level overview of the distributed frame-
work of our proposed bottleneck identification system. It com-
prises of three stages:

1) System monitoring
2) Bottleneck detection
3) Bottleneck attribution (or classification)
Each of the three stages are elaborated in the following

subsections.

A. System Monitoring

In our 2-stage distributed framework, we monitor the com-
munication system both at the user side (i.e. at the UE) and at
the rest of the mobile network.

Monitoring at UE: It records QoE-based features of the ap-
plications running on the end-device. The monitored features
depend upon the specific application. This can be page load
time and throughput for a web-browsing service, while for a
streaming video it can be delay, jitter and throughput. For our
test scenario, we generate downlink TCP traffic with IPERF from
the test server as a user data session, the quality features of
which, shown in Table I, are monitored passively at the UE.
This data transfer is performed at the maximum bandwidth
of the end-to-end path. Other than monitoring performance of
the service (i.e, IPERF TCP session) passively, the UE also
tracks RTT to the test server by sending UDP ping messages
every second. This active measurement monitors latency on the

1FEATURES COLLECTED BY FLEXRAN CONTROLLER: https://mosaic5g.io/
apidocs/flexran/flexran_spec_v2.2.3.html

end-to-end path; an additional performance indicator of the end
service. Lastly, the UE passively monitors the radio coverage
quality via NETMONITOR,2 every second. NETMONITOR collects
Reference Signal Received Power (RSRP), Reference Signal
Received Quality (RSRQ) and Received Signal to Noise Ratio
(RSSNR).

Monitoring status of eNodeB: The FLEXRAN controller pro-
vides a northbound RESTful API for issuing control commands
and for obtaining statistics and reports for the connected base
stations using simple HTTP requests.3 We run the curl -
X GET http://127.0.0.1:9999/stats/manager/
all command, every 5 seconds. This gets the RAN configura-
tion and status for the current TTI for all eNodeBs connected to
this controller. It reports on the configuration of eNodeB(s) and
UE(s), and statistics about Medium Access Control (MAC), Ra-
dio Link Control (RLC) and Packet Data Convergence Protocol
(PDCP) layers.

Monitoring network data links: To monitor data flows, net-
work links and status of switching devices, we utilise the P4
switches of S1-U and SGi interfaces (see Fig. 2). The switches
create clones of the passing by packets and add an additional
header of “IP options” [38, Subsection 3.1] with telemetry fields
that comprise both of status of the P4 switches and flow charac-
teristics. The metrics of INT can be programmed depending on
the monitoring requirement. These cloned (mirrored) packets
are then sent to the Telemetry Collector (shown in Fig. 2),
for further analysis. For our test scenario we apply INT, only
on ping packets, to compute four parameters on each of the
two switches. These are 1) packet count of the data flow using
count-min sketch [39], 2) hitter [40] which is a Boolean metric
that assesses if the packet is part of a bursty traffic. We consider
switch queue size of 5000 or more bytes as an indicator of a
bursty traffic, 3) deq_timedelta that measures in microseconds
the amount of time a packet stays in P4 switch queue, and 4)
deq_qdepth which indicates the length of the switch queue when
the packet was dequeued, in number of packets. The last two
parameters are derived from the struct standard_metadata of
the P4 version 16 V1Model architecture.4 Along with these key
parameters the mirrored packet carries the flow identifier and
the switch identifier to the Telemetry collector.

We also leverage active probes in the network system. We
have two such probes, one at the eNodeB and another at the
SPGW-U. The first one measures delay and packet loss at the
S1-U interface, and the other one at the SGi interface by injecting
Ping messages from the eNodeB and the SPGW-U, destined to
the SPGW-U and the test server, respectively.

Monitoring network resources: Lastly, we track the resource
utilization in the mobile network, by monitoring load on the
CPU, memory and I/O disk operations with SYSSTAT. We run
SYSSTAT utility5 [37] periodically, every 5 seconds. In the current

2NETMONITOR is an Android app from https://vavsoftware.ru.
3FLEXRAN NORTHBOUND API: https://mosaic5g.io/apidocs/flexran/#api-

Stats-GetStatsHumanReadable.
4STANDARD METADATA: https://github.com/p4lang/behavioral-model/blob/

main/docs/simple_switch.md
5SYSSTAT: https://bencane.com/2012/07/08/sar-sysstat-linux-performance-

statistics-with-ease

https://mosaic5g.io/apidocs/flexran/flexran_spec_v2.2.3.html
https://mosaic5g.io/apidocs/flexran/flexran_spec_v2.2.3.html
http://127.0.0.1:9999/stats/manager/all
http://127.0.0.1:9999/stats/manager/all
https://vavsoftware.ru
https://mosaic5g.io/apidocs/flexran/#api-Stats-GetStatsHumanReadable
https://mosaic5g.io/apidocs/flexran/#api-Stats-GetStatsHumanReadable
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://github.com/p4lang/behavioral-model/blob/main/docs/simple_switch.md
https://bencane.com/2012/07/08/sar-sysstat-linux-performance-statistics-with-ease
https://bencane.com/2012/07/08/sar-sysstat-linux-performance-statistics-with-ease
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TABLE I
NETWORK-WIDE MONITORING AND MEASUREMENTS

architecture, we exploit SYSSTAT parameters collected at the
SPGW-U and the FlexRAN controller. These two components
reveal impact upon data and control flows, respectively, under
stressed and non-stressed resources. The details of the monitored
features are given in Table I.

Other than UE measurements, rest of the network measure-
ments are periodically transmitted to the Telemetry Collector
part of the mobile network controller.

B. Bottleneck Detection

We formulate the bottleneck detection stage as an anomaly
detection problem. We denote the measurements, used to iden-
tify bottlenecks, as multivariate time series T = {x1, .., xT },
x(t) ∈ Rm is an m-dimensional vector of samples at times-
tamp t. An anomaly detection method learns a model to label a
binary variable yt ∈ {0, 1} at time t as 1 if anomaly is detected,
where anomaly represents a rare or unseen observation x′

t.
The unsupervised anomaly detection allows for a more holis-

tic exploration of the data, enabling the identification of various
types of bottlenecks, including complex patterns that may not
be easily labeled by human operators. The anomaly detection
process is assuming that T contains only normal samples and
the model is trained to learn the distribution of normal data.
An anomalous sample is one that differs significantly from T .
The difference between the sample x′

t and the normal data T
is measured by an anomaly score, which is then compared to
a threshold. If the score is above the threshold, the sample is
considered as anomalous.

C. Bottleneck Attribution

Once a bottleneck has been detected by the stage-1, we need to
specify the type and location of this bottleneck. Note, in the wild,
our framework will only trigger stage-2 or bottleneck attribution
when multiple UEs report it. It is to avoid responding on quality
degradation caused by a context specific to a single UE, e.g., its

end-device defect. For this study we do not follow this restriction
due to our simplistic experimental testbed.

We take bottleneck attribution as a classification problem and
formulate it as a supervised learning model, which is trained
with known class labels. More specifically, we define 10 classes
of single bottlenecks (See Table II). These are bottlenecks that
have a single source of occurrence e.g., congestion only at S1-U.
Besides the single bottlenecks, the classification model should
also be able to classify the composite bottlenecks, that has more
than one sources e.g., data congestion at S1-U and stress on
network resources. Additionally, the model should identify any
bottleneck that is not experienced before as unidentified, instead
of misclassifying it. An unidentified bottleneck is registered in
a log file (as depicted by Fig. 3) along with its corresponding
measurements features. If its occurrences increase, it can be
labelled and used for retraining the classification model.

V. SYSTEM IMPLEMENTATION

A. Types of Bottlenecks

To represent occurrences of different types of performance
issues in the mobile network, we follow the bottleneck profiles
of [4]:

1) generate congestion on network data paths,
2) introduce packet loss at different intensities in the network,
3) overload network resources at different intensities, and
4) create interference at the radio access link.
Table II provides the complete list of bottlenecks that we test

on our system architecture. To emulate congestion, we introduce
an additional downlink TCP traffic flow at the maximum band-
width of the network link(s), using the IPERF [41] tool. Next, for
packet loss induction, we use the Linux traffic control feature
NETEM [42], [43]. These latter experiments consist of either
a high loss percentage of around 5% or a low loss percentage
of 1% and adversely effect the passing by data flows. Thirdly,
to overload the network resources, we stress out the CPU and
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TABLE II
BOTTLENECK PROFILES ANALYSED ON THE TESTBED

memory resources and increase input/output disk operations
with the stress-ng tool [44].6 Lastly, to create radio interference
we deploy a GNU RADIO7 noise source on a separate system
using a dedicated SDR ETTUS USRP B210. The noise source
generates an additive white Gaussian noise (AWGN) signal
which has central frequency similar to that of the eNodeB radio
carrier.

The above bottlenecks are generated at different network links
and components, making it up to fourteen different bottleneck
profiles. In Table II, the source link/component of each bottle-
neck is mentioned in Location column. In terms of ML, each
bottleneck profile represents a class label. Further to it, the
bottleneck profiles are categorised into single and composite
groups depending on their complexity.

B. Bottleneck Detection and Attribution Models

As discussed earlier, in our bottleneck identification frame-
work, the detection stage comes first. Taking bottleneck as an
anomaly, our investigation shows that some of the following
widely used unsupervised anomaly detection techniques result
in excellent performance.

1) Isolation Forest (iForest): iForest algorithm [45] is based
on decision trees to separate outliers from the rest of the
data. It is widely used for anomaly detection [46] [47].
Recursively, it partitions the data by randomly choosing a
feature and then selecting a random split value, i.e. cut-off-
point between the max and min values of that feature. The
algorithm then determines if this isolates an anomalous
measurement sample; if so, it stops; otherwise, it selects
a different feature and a different cut-off point at random.
The anomalous measurement samples are distinguished
from the rest of the measurement data by this random

6For high stress we use: stress-ng –cpu 4 -d 1 –hdd-bytes
1 G -m 1 –vm-bytes 1 G –iomix 1 –iomix-bytes 1 G. For
low stress, we use: stress-ng –cpu 1 -d 1 –hdd-bytes 256 M
-m 1 –vm-bytes 256 M –iomix 1 –iomix-bytes 256 M.

7GNU RADIO: https://www.gnuradio.org.

splitting of features, which will result in shorter routes in
trees. The measurement samples that travel deeper into the
tree are less likely to be anomalies as they required more
cut-off-points to isolate them.

2) Autoencoder (AE) [48]: is an unsupervised artificial neural
network composed of an encoder and a decoder. The
encoder (in (1)) takes the input x and maps it into latent
variable z, whereas the decoder maps the latent variable z
back into the input space as a reconstruction x̂ ((2)). W
and b are the weight and bias of the neural network and σ
is the nonlinear transformation function.

z = σ(Wxzx+ bxz) (1)

x̂ = σ(Wzxz + bzx) (2)

The difference between the original input vector x and
the reconstruction x̂ is the reconstruction error as in (3).
An autoencoder learns to minimize this reconstruction
error (loss).

loss = ||x− x̂|| (3)

The loss is considered to be an anomaly score, which if
above a predefined threshold, depicts an anomalous data
input.

3) Variational Autoencoder (VAE) [49]: To avoid the over-
fitting that may result from decoding the latent space z
without any reconstruction loss, we use VAE i.e., an
extended versions of AE. Instead of encoding an input as a
single point, VAE encodes input as a distribution over z. A
sample point from this distribution is then decoded and the
reconstruction error can be computed. Thus the encoders
and decoders of VAE are called probabilistic encoders
and decoders. Besides the reconstruction error, the loss
function of VAE has to regularise the latent variable z
that can be done using Kulback-Leibler divergence (KL).
The loss function can be expressed in (4), where μ, λ are
the mean and covariance of the distribution and N is the

https://www.gnuradio.org
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Gaussian distribution.

loss = ||x− x̂||+KL[N(μx, λx), N(0, 1)] (4)

After training, VAE reconstructs normal data very well,
while failing to do so with anomalous data which the VAE
has not encountered.VAE uses the reconstruction error as
the anomaly score.

4) Denoising Autoencoder (DAE) [50]: Again an extension
of AE, DAE receives a corrupted data point x̂ as input by
adding random noise to the original input x. The DAE is
then trained to recover the original uncorrupted data point
x as its output.

After detection of a bottleneck anomaly, we aim for the
second stage i.e., a ML classification model to attribute the
type and location of the bottleneck. We, therefore need our
bottleneck classification stage to tackle three different types of
classification problems. These include:

1) Multi-class, to predict one of the 10 single bottleneck
classes mentioned in Table II;

2) Multi-label classification, for predicting composite bottle-
necks mentioned in Table II;

3) Unidentified classes; to predict occurrences of new/unseen
types of bottlenecks. These will include the bottlenecks
profiles, upon which the ML model is not trained.

Neural Networks, as deep learning models, have shown
promising results in different classification tasks [51]. Architec-
tures such as MLP, Convolutional Neural Networks (CNNs), and
Recurrent Neural Networks (RNNs) can be used for multi-class
and multi-label classification by modifying the output layer
to accommodate multiple labels. Among these, CNN is best
suited for image classification while RNN needs long temporal
pattern as input. To be able to tackle the bottleneck classification
problem, we therefore select a MLP model.

An MLP is a neural network with fully connected neurons
among layers. It has the capabilities to approximate, through
supervised learning, the function that relates the input with
the output. It offers flexibility in terms of its architecture, for
example by customizing its number of layers, the number of
nodes in each layer, and the activation functions, MLP can both
classify multi-label instances and isolate the unseen instances.
Although MLP is considered a black-box model, its architecture
allows for some level of interpretability. We can analyze the
weights and activations in the hidden layers to gain insights into
the learned representations and understand how the model makes
decisions.

Our MLP classifier has an input layer that expects 76 inputs
and an output layer that matches with the number of single
bottleneck classes. Each node in the output layer has a sigmoid
activation, which predicts a probability of class membership
for the label, a value between 0 and 1. This means, the MLP
classifier will predict 10 probabilities for each input sample. The
output probability indicates the confidence of the classifier in its
predictions. An activation threshold of 0.5 is then used to convert
the probabilities generated by the MLP into binary predictions.
If the predicted probability for a label is ≥ 0.5, it is considered
as positive (1), and if it is below 0.5, it is considered as negative
(0). Based on this we can identify all types of bottlenecks. For
instance, an input sample with the output [0.1, 0.98, 0.2, 0.4,

0.09, 0.08, 0.3, 0.1, 0.03, 0.12] most likely belongs to the second
bottleneck class. For the composite bottleneck, more than one
class will have high probability ≥ 0.5 threshold. This way, any
sample that does not belong to any of the bottleneck classes can
me marked as unidentified.

VI. EVALUATION

A. Dataset

To evaluate our proposed system, we exploit three different
datasets based on the design choices described above.

1) UE-based Dataset: It comprises the measurements col-
lected at the UE (see Table I). In the UE dataset, 8 features
are measured directly at the UE namely, Average RTT, Packet
loss percentage, Transfer (MiB), Bitrate (Mbit/s), Jitter (ms),
RSRP, RSRQ, and RSSNR. Inter packet gap (IPG) is a metric
computed from the monitored feature of Average RTT. Our
monitoring frequency is every second, but for data analytics we
take mean values of the features in each 5 seconds window. For
each of these windows we also compute other statistical metrics
including median, skewness and kurtosis of all the primary
features given above, except of the radio quality indicators.
The resulting UE dataset consists of 28 features that we use
for bottleneck detection. Within this dataset 8,640 data samples
were collected under normal network conditions, which form
a baseline scenario in our monitoring. In the context of this
study a data sample denotes set of features that were derived
from a single 5 seconds window. In total, 40,320 data samples
were collected when various bottlenecks were emulated in the
network.

2) Mobile Network Dataset: The Mobile Network Dataset
contains the measurements collected from the components of
mobile network, namely, eNodeB, FlexRAN, SPGW-U and P4
switches. These measurements, shown in Table I, are reported to
the Telemetry Collector (Fig. 2), which is a part of Network Con-
troller (Fig. 3). Pre-processing steps are applied to the measure-
ments before feeding into the bottleneck identification model.
Initially, we filter out all the missing values and constant features.
In particular, we remove all configuration and identifier-related
variables such as cell_config.init_nr, cell_config.phy_cell_id,
ue_config.rnti and imsi from the FlexRAN measurements. Sec-
ondly we retain only one of the correlated features from a
single monitoring point, for example, retaining kbmemused and
removing its correlated feature of kbavail from memory usage
features reported by Sysstat at SPGW-U.

The switches at S1-U and SGi perform INT and mirrors the
modified packets to the Telemetry Controller, which not only
extracts the INT features defined in the Table I, but also derives
metrics i.e., percentage of lost packets and uplink & downlink
jitter between corresponding INT packets recieved from the two
P4 switches. All mobile network-based measurements make it
to 54 different features. For the measurements that we collect
frequently, that is every second, their statistical metrics including
mean, median, kurtosis and skewness are computed for every 5
seconds window. This increases the number of features to 76.
Just like the UE dataset, the final dataset from the mobile network
has 40,320 data samples.
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3) Network-Wide Dataset: It combines all features from both
the UE-based dataset and the network dataset. It is used to in-
vestigate the trade-off between a centralised and the distributed
monitoring and analysis frameworks.

We divided the above datasets into two subsets of ratio 60 : 40
for training and testing sets respectively. During training, 30%
of the training data is held for validation.

B. Evaluation Metrics

To evaluate the performance of our bottleneck identifica-
tion framework, we use prediction (P), recall (R) and F1-
score (F1) [52]:

P =
TP

TP + FP
, R =

TP

TP + FN
, F1 = 2 ∗ P ∗R

P +R
,

where TP is True Positives, FP is False Positives and FN is False
Negatives.

We formulate the composite bottlenecks as multi-label
classes, and use the following metrics to evaluate their clas-
sification accuracy:
� Hamming Loss: It is equal to the number of incorrect

predicted labels (TNIP) of the individual classes divided
by the total number of predictions (TNP). In hamming loss
the smaller the result, the better is the model [53].

Hamming Loss =
TNIP

TNP

In other words if a composite bottleneck comprises of c
number of bottlenecks and there aren instances of the com-
posite bottleneck, then TNP = n× c. TNIP denotes the
number of single bottlenecks, within n× c bottlenecks
being classified incorrectly.

� Exact Match Ratio (EMR): is the most strict metric, indi-
cating the percentage of samples that have all their labels
classified correctly. In our case, the two single bottlenecks
that form the composite have to be classified correctly in
order to be considered as TP. The disadvantage of this
measure is that multi-class classification problems have a
chance of being partially correct, but here we ignore those
partially correct matches [54].

For bottleneck detection, we define the threshold for the
anomaly score that provides the best F1-score.

C. Models Implementation

We implement the MLP model using three hidden layers with
64, 24, 16 neurons respectively (these are chosen with trial
and error method). We use the rectified linear unit (ReLU) as
an activation function in the hidden layers which converges
very quickly during the training. The input data propagates
through the MLP layers, where each layer performs a matrix
multiplication followed by an activation function. The compu-
tational complexity of a MLP model depends on the number
of layers, the number of neurons in each layer, and the di-
mensionality of the input and output [55]. For an MLP model
with L layers, Ni neurons at layer i, input dimension Nin,
and output dimension Nout, the computational complexity is
roughlyO(Nin ×N1 +N1 ×N2 + · · ·+NL ×Nout). So, the

TABLE III
HYPER-PARAMETER SETTINGS OF THE DIFFERENT METHODS

TABLE IV
PERFORMANCE COMPARISON BETWEEN DIFFERENT ANOMALY (I.E.,

BOTTLENECK) DETECTION METHODS USING UE DATASET

approximate computational complexity of our MLP model with
Nin = 76, Nout = 10, three hidden layers and different num-
bers of neurons per layer (i.e., N1 = 64, N2 = 24, N3 = 16)
would be O(N2

in).
In our implementation for AE, VAE and DAE, the encoder and

decoder both have two hidden layers with 28, 14 dimensions at
the first and second hidden layer, respectively. Each layer has
N = 64 neurons. The computational complexity of the encoder
can be approximated as O(N2) for each layer. Since there are
two hidden layers, the overall complexity of the encoder would
be proportional to O(2×N2). Similarly, the computational
complexity of the decoder is also proportional to O(2×N2).
Both encoder and decoder approximate it to O(N2). In short,
both the bottleneck detection and the classification ML models
make it to a quadratic complexity.

Table III details the hyper-parameter setup used for each
model. The hyper-parameters are estimated using cross-
validation. Where a parameter is not specified, it indicates that it
is set by its default value. The MLP, AE, VAE, and DAE models
are implemented using Pytorch8 whereas iForest is implemented
with scikit-learn 1.2.2.9 All these models are trained on NVIDIA
V100 GPU 32 GB.

D. Performance Analysis of the Bottleneck Identification
Framework

For the bottleneck detection stage, of our proposed bottleneck
identification system, we investigate the different methods listed
in Section V-B, using UE-based dataset. Table IV shows that
AE-based methods demonstrate superior precision compared
with the iForest model. However, VAE outperforms all the other
methods by up to 26% F1-score. The better performance of VAE

8https://pytorch.org/
9https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

IsolationForest.html

https://pytorch.org/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
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TABLE V
PERFORMANCE OF OUR PROPOSED BOTTLENECK IDENTIFICATION SYSTEM

USING DIFFERENT TYPES OF MEASUREMENTS

Fig. 4. Distribution of the most important UE features collected under different
test scenarios.

is due to its learning the underlying distribution of normal data.
In contrast, DAE and traditional AE focus more on identifying
anomalies based on deviations from normal patterns without
explicitly modeling the underlying distribution. iForest, on the
other hand, do not explicitly learn a latent representation and rely
on proximity measures to partition the data, limiting its ability
to capture complex patterns. We, therefore, proceed with VAE
in our further experimentation.

We train the VAE model with baseline measurements and test
it using a mix of baseline and bottleneck measurements. The
baseline measurements are captured when data traffic does not
co-exist with a bottleneck.

Table V provides comparative bottleneck identification results
both for the distributed and centralised monitoring and analysis
frameworks. For distributed, it separately evaluates the worth
of the two measurement sets i.e., one collected at UE and
other within the mobile network. The table shows that by using
only measurements collected at UE, VAE achieves an F1-score
of 0.85 to detect different types of bottlenecks collectively.
When compared to the F1-score of the model built upon mobile
network-based measurements, it is 4% lower. Reason of which
is the low intensity bottlenecks such as low packet loss and low
stress (SPGW-U and FlexRAN) that have negligible impact on
the end-users QoS and QoE features, as are depicted in Fig. 4.
The UE measurements of these two bottlenecks have similar

distributions to that of the baseline, making them go un-detected
most of the time. Although the VAE model built upon only
mobile network-based measurements succeeds in identifying the
bottlenecks that directly affect the mobile network, it fails when
the source of performance degradation lies on the last mile such
as in case of radio interference and. In our experiments, the
majority of the bottlenecks originate from the mobile network
infrastructure which results in high bottleneck detection accu-
racy using the mobile network based measurements.

Our distributed framework achieves 0.89 F1-score in the
classification of the bottlenecks that are identified by the UE
as anomalies. The results of our distributed architecture are
highlighted by cyan color in Table V. When compared to the
centralised framework, ours lag behind by just 2% in detec-
tion and 4% in classification accuracy, respectively. This slight
accuracy lag is out-weighted by the scalability and substantial
reduction in overhead by the 2-stage distributed monitoring and
analysis framework. In other words, the distributed framework
is a feasible and better choice as:
� It relieves network from the overhead of transmitting mon-

itored features from a UE to the Telemetry Collector, where
in our experimental scenario, a single UE collects 13% of
total network-wide features.

� It is scalable, since the the monitoring and analysis load
of the mobile network does not increase with increase in
number of UEs. Each UE performs bottleneck detection on
either its own end or at its mobile edge.

� It triggers bottleneck classification at Telemetry Collector
only when an anomaly is reported by a substantial number
of connected UEs. This process relieves the network con-
troller from the classification exercise until QoS/QoE of its
end devices does not deteriorate.

Takeaways: Leveraging measurements at UE can help in
detecting bottlenecks that arise from issues in the last mile as
well as rest of end-to-end path. On one hand, UE based triggering
of an anomaly, relieves the mobile network from continuous data
analytics and on the other hand it helps the system identify the
bottlenecks that are out of cloudified mobile network domain
such as radio interference. Low intensity bottlenecks at the
mobile network are hardly detectable by the UE, as they have
negligible impact on end-user services. We, however, argue that
unless status of a network does not deteriorate user experience,
it should not be considered a bottleneck.

E. Dissecting Classification Accuracy of Bottlenecks

Here, we dig deeper into understanding the performance of
our system in classifying single and composite bottlenecks based
on mobile network-based measurements. We also evaluate the
effectiveness of our classification model in dealing with bottle-
necks unknown to the model i.e., unidentified bottlenecks.

1) Single and Composite Bottlenecks: Table VI presents the
evaluation results of our classifier per bottleneck type for single
bottlenecks. Our model is able to classify the defined bottlenecks
with high accuracy; F1-score is above 0.84 and in some types
even above 0.9. A closer look reveals that the model predicts
a considerable number of the bottleneck events caused by low
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TABLE VI
PERFORMANCE EVALUATION OF SINGLE BOTTLENECK CLASSIFICATION

TABLE VII
PERFORMANCE EVALUATION OF COMPOSITE BOTTLENECK CLASSIFICATION

loss at SPGW-U as caused by high loss bottleneck events at
SPGW-U and vice versa. The same applies for low and high
stress at SPGW-U and FlexRAN. The good point, however, is
that the reason of the bottleneck is correctly localised. Bottleneck
generated by radio interference is mainly identified by UE
measurements, more specifically RSSNR metric, as is shown by
Fig. 4. Features collected by FlexRAN Controller about eNodeB
and its UE such as pdcp_stats.pkt_tx_bytes and .wb_cqi too
have partial contribution in identifying bottlenecks caused by
the interference.

Next we evaluate the performance of composite bottlenecks
classification. These results are summarised in Table VII using
the EMR method and the hamming loss. The hamming loss
shows that our model is able to detect high proportion of the
single bottlenecks within composite bottlenecks. For example,
in the case of <S1-U congestion, High SPGW-U loss > the
hamming loss is 0.2 which means if there are 100 samples for
composite bottlenecks, our model will predict correctly about
80% of the individual bottlenecks that form the composite
bottleneck. Unlike hamming loss, EMR marks a prediction to
be correct only when both classes within a composite bottleneck
are labeled correctly. Based on EMR metric we can observe that
the performance of the model in detecting composite bottleneck
in the same location is marginally worse than the case of bottle-
necks from different locations. For instance, < SPGW-U stress,
High SPGW-U loss> exhibits lower F1EMR which means the
model can hardly identify the composite bottleneck.

Although, our classifier shows good performance in attribut-
ing single bottlenecks, the performance degrades in composite
bottleneck profiles. Reasons of which are:

� We assume that there is no correlation between the sin-
gle bottlenecks that form a composite bottleneck; but in
terms of cloudified mobile network stress generated at one
virtualised component impacts the rest of the network, at
different intensities. This phenomena leads to 10% drop
in accuracy of the composite <SPGW-U stress, FlexRAN
stress> bottleneck, compared to the corresponding single
bottlenecks (see Table VI).

� Two single bottlenecks, emerging from same location such
as in the case of <SPGW-U stress, High SPGW-U loss >
increases attribution error. The model is classifying it as
a single bottleneck with < SPGW-U stress> only. The
reason of this miss-classification is that the set of features
that are impacted by the resource-stress is super-set of the
feature set affected by loss, at SPGW-U.

Takeaways: Our bottleneck classification model achieves high
performance of above 0.83 up to 0.93 F1-score in the different
types of single bottlenecks. The False negatives are mainly due
to confusion between low and high intensity bottlenecks, in
addition to bottlenecks caused by the interference. In case of
the composite bottlenecks, the model can classify them fairly
well if the individual bottlenecks are introduced in different
network components, but when introduced at the same location,
the model accuracy drops.

2) Unidentified Bottlenecks: To investigate the behaviour of
our model with an unseen bottleneck type, we train our model
using a dataset labelled with 9 types of single bottlenecks
from Table II. For evaluation we apply the trained model on
the single bottleneck type that is absent in the training dataset.
We refer to bottleneck type as unidentified when it does not
exist in the training dataset. Table VI shows the performance
of our classification model in case it experiences an unidentified
bottleneck. The resulted performance metrics are averaged from
10 experiments where we test 10 different single bottlenecks,
one at a time, as being unidentified. Interestingly, the F1-score is
similar to the identified bottleneck types i.e., 0.85. It is 2% higher
than F1-score of one of the single bottleneck types (see Table
VI).

Fig. 5 depicts the average probabilities of classifying uniden-
tified bottlenecks per labelled bottlenecks. For example, if the
unidentified bottleneck is S1-U congestion, our model predicts
it as SGi congestion with a probability of 0.21 which is rounded
to 0. In case of all probabilities below 0.5, the bottleneck is
marked as unidentified. Bottlenecks such as S1-U congestion,
SGi congestion and radio interference are classified as uniden-
tified bottlenecks with high accuracy (≈ 98%) if they are not
introduced into our model during training. On the other hand, the
model can identify the type and the location of the bottleneck if
it experiences the same bottleneck during training however with
different severity. For example, if the model is trained with high
stress at SPGW-U and tested against low stress at SPGW-U, our
model classifies it as high stress with a confidence of 63%. This
also applies to other bottlenecks with different severity such as
stress at FlexRAN and loss at SPGW-U.

Takeaways: When the mobile network experiences new type
of bottleneck that is not known before, our model can correctly
classify such bottlenecks as unidentified with an F1-score of 85%
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Fig. 5. Average probability of each bottleneck classes computed by the clas-
sification model in case of unidentified bottlenecks.

TABLE VIII
COMPARISON BETWEEN OUR AND TWO MOST RELATED WORKS FROM

LITERATURE

(see Table VI). The miss-classification by the model is due to its
lack in differentiation between the bottlenecks that have same
cause but with varying intensity.

F. Comparison With State-of-the-Art Methods

In Table VIII, we compare our proposed framework against
two recent works from state-of-the-art [4], [7]. We choose these
methods because they show some similarities to our work. The
work presented in [7] leverages DAE and Convolutional Au-
toencoder (CAE) for bottleneck detection in a cloudified mobile
core testbed. The authors did only active and passive monitoring
and did not collect measurements from UEs. In our work, with
UE-based measurements and VAE, we can detect bottlenecks
both at RAN and at core. The accuracy is slightly better than
that of DAE (see Table IV), that is a preferred detection model of
[7]. Other than using DAE, [7] examines only four types of high
severity bottlenecks at the core network and does not consider
bottlenecks occurring at RAN. Also, they focused on detecting

Fig. 6. Contribution of different types of mobile network measurements in
identifying issues at this domain. Measurements contribution is calculated based
on the features importance using SHAP framework [57]. A higher contribution
of measurements is represented by a larger hexagon.

a single bottleneck, whereas in real network deployment there
might be several simultaneous bottlenecks at different parts of
the networks.

G. Patouna et al. [4] on the other hand worked on bottleneck
attribution. They preferred an unsupervised machine learning
model for identifying bottlenecks across different locations of
the network and layers of the system architecture. Similar to
our work, they defined different bottleneck profiles, both single
and composite. Hierarchical clustering with number of clusters k
equal to number of bottleneck profiles was used by [4] to identify
single bottlenecks.

By using mobile network dataset, the hierarchical clustering
(with k = 10) shows a performance of 74.8% F1-score, which
is 17% lower than our MLP classifier for single bottlenecks.
Furthermore, the hierarchical clustering doesn’t work well in the
case of composite bottlenecks, therefore, the authors of [4] lever-
aged fuzzy clustering model to identify composite bottlenecks.
Fuzzy clustering achieves F1_EMR of 66.2% that is 18.3% lower
than that of MLP, in the case of the composite bottlenecks. The
advantage of our work extends to have a single model that works
fairly well for both single and composite bottlenecks. Moreover,
our model has the ability to identify unknown bottlenecks.

G. Potential of P4-Based INT Monitoring

In our telemetry framework, the impact of issues on data links
i.e., S1-U and SGi interfaces are monitored in two ways that is
by active monitoring and by P4 based INT monitoring. Since
active monitoring injects additional load on the network links
by interfering with the user data, we investigate if P4 based
telemetry can replace active monitoring in capturing bottlenecks
on the data links. Fig. 6 depicts separate contribution of these two
types of measurements along with other measurements, from the
mobile network, in classifying the bottlenecks that emit from the
mobile network domain. ‘Other’ measurements here represent
the telemetry features collected by resource monitoring and
FlexRAN controller.
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Fig. 7. Impact on queuing delay of data packets when a virtual P4 switch
performs in-band network telemetry in a mobile network.

The figure shows that P4-based INT plays significant role in
classifying bottlenecks caused by congestion as well as by high
packet loss and stress at SPGW-U. The features from active
measurements too, help in attributing these bottlenecks but with
much less impact. As expected, for the rest of the bottlenecks
including stress at resources, ‘other’ measurements have higher
classification power. We argue, that the P4-switch lying on
the eNodeB to FlexRAN controller link (see Fig. 3) can catch
the high stress in FlexRAN controller, if it is programmed for
telemetry collection.

Takeaways: The above comparative analysis depicts that
P4 based INT monitoring has the potential to replace active
monitoring within mobile network. It assists in classifying the
bottlenecks that are introduced by stress, congestion or packet
loss at connected components and data links, respectively.

H. System Overhead

Telemetry comes with processing, memory and bandwidth
cost of different intensities. Passive monitoring induces band-
width cost, only, when measurements are sent to a central
entity for data analytics. Compared to passive monitoring, active
monitoring places additional overhead on network links by
interfering with the actual user traffic. In our tested scenarios,
active monitoring increases the overhead on network data links
by 6.2%. As for passive monitoring of the resource utilization
and its reporting towards the Telemetry Collector of our cloud-
ified mobile network testbed, it has negligible impact on the
VMs memory and interfaces. Same is the case with measure-
ment features of eNodeB and its UE configuration and other
characteristics at FlexRAN controller. The reason of negligible
impact of our passive monitoring is that we do not apply it for
tracking data flows, in the mobile network. According to [58],
when passive monitoring is performed on data flows, it not only
incurs significant disk I/O operations but also reduces end-to-end
throughput by 22%.

We track status of data flows and switches with P4-based INT.
We notice that INT-based monitoring increases the processing
overhead of the software switches by 48%, which is inline to
the findings of [58]. In Fig. 7, we illustrate the impact of the
P4-based INT on the queuing delay of user data packets i.e.,
deq_timedelta. When the switches are programmed to monitor

packet count of each incoming flow and identify if a packet is
part of a bursty traffic, the median deq_timedelta of packets
increases by 27%. A BMv2 software switch suffers from per-
formance inconsistencies. In Fig. 7 we, therefore, present<0.05,
0.25, 0.5, 0.75, 0.95> percentiles of the observed deq_timedelta
for both the No INT and With INT P4-programs. Other than
inconsistency, latency with a BMv2 is significantly higher than
that of a production-grade software switch like Open vSwitch10

or hardware P4 switch, that we intend to replace BMv2 switch
with.

To reduce the processing burden on the P4 switches and on
the Telemetry Collector, we programmed our P4 switches to
create cloned packets with INT information only on the end-to-
end Ping messages. Furthermore, one can reduce the processing
overhead and delay incurred by programmable switches by only
adding needed INT to the packets and at a minimum acceptable
frequency.

As for the overhead of data analytics methods, the training
time for the bottleneck detection model can be measured by the
average time taken per epoch on UE dataset. Off-line training
for VAE requires 3 minutes per epoch to converge in 100 epochs.
MLP training for bottlenecks classification requires 2.3 minutes
per epoch (we train it for 200 epochs). Once trained both can
perform inference in less than 2 ms.

VII. DISCUSSION

In this study we have presented a monitoring framework for
cloudified mobile networks. Our testbed is simplistic, as our aim
is to investigate the proposed framework‘s feasibility, accuracy
and overhead in comparison with a traditional centralised mon-
itoring system. There are certain aspects of this study that have
nuances which require further exploration. These include:

1) How will the distributed monitoring framework behave
in-case some of the UEs either do not participate or have
no compute resources to perform anomaly detection on
QoS/QoE features of their end-service(s)?

2) Once an anomaly is detected, how will a UE report it to
the central telemetry collector/analyser?

3) What will be the monitoring frequency, before and after
an anomaly is reported to the mobile network?

As a solution to the first question, if a set of UEs lack the ability
to detect an anomaly, the network coverage measurements and
monitoring features of user applications can be off-loaded to an
edge computing device for data analytics. In case a set of UEs do
not participate at all, then the framework will depend upon the
UEs that do contribute. Since the bottleneck attribution by the
mobile network only works for the issues that affect multiple
UEs, non-involvement of a subset of UEs will not hinder the
functionality of the framework. Other than an anomaly that
is affecting only a single UE or very few UEs on their last
mile, the network wide bottlenecks will not go un-detected. We
argue that like crowdsourced solutions such as [59], monetary or
gaming incentives such as in [60] can be exploited to encourage

10https://www.openvswitch.org/
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end-users to participate in reporting anomalies, in the perfor-
mance of their end-services.

For the second challenge, we recommend a P4-INT like so-
lution for the UEs to report about the occurrence of an anomaly.
For example, any currently un-used or rarely used field of the
protocol header(s) in uplink data transfer can be exploited to flag
the detection of an anomaly. It can be as simple as a flip of a single
bit; once the data packet arrives at a P4 switch, with P4-INT
based telemetry the switch can notify the Telemetry Collector,
which can then proceed to perform bottleneck classification.

Lastly, the monitoring frequency in mobile networks should
be dynamic that can be adjusted to how frequently different
issues arise in the mobile network. For example it should be
reduced in case the mobile network runs smoothly, most of
the time. Same should be the case with the frequency of re-
training the bottleneck classification model. In case an anomaly
is reported, the Telemetry Collector can increase the monitoring
frequency until no more anomalies are reported by UEs. To avoid
acting upon isolated cases of anomalies being reported by one or
very few UEs, the monitoring and analysis system of the mobile
network should only activate if a threshold percentage of UEs
per base station, report an anomaly at same time.

VIII. RELATED WORK

In the following subsections, we explore the related work in
the areas of bottleneck identification, INT based telemetry and
anomaly detection in the mobile networks.

A. Telemetry for Identifying Bottlenecks

There is a big interest in developing telemetry solutions for
softwarised networks [61], [62], [63]. Advanced monitoring
solutions have been proposed to identify bottlenecks, while
attempting to balance high detection rates with minimal moni-
toring overhead costs.

Some of the earlier research studies used a single telemetry
approach such as passive monitoring [64], [65] to detect if a
capacity bottleneck is inflicting the network. As most transmis-
sions comprise of TCP communications, these early works mon-
itored the status of individual TCP transmissions just outside of
the 3 G network on a link to the server in the Internet [65], or
inside the core network [64] to see if there is any congestion
in the mobile network. These studies provide a coarse grained
indication of presence or absence of a bottleneck in the network
but do not identify the segment of the mobile network having
the issue. With both active and passive measurements, an other
study [7] preferred deep-learning method to detect bottleneck in
the core of a cloudified mobile network.

A somewhat granular approach is proposed by QProbe [66],
in which a train of small UDP probe packets are transmitted
by a server, outside the mobile network, to a UE investigating
if the end-to-end medium is congested. Using Decision-Tree
ML model, it exploits the inter-packet arrival delay between
the first and last probe packets of the probe train, as well as
the inter-packet gap between each two adjacent probe packets
arriving at the UE to locate, with above 80% of accuracy, if
the congestion has sprawled from the last mile or rest of the
end-to-end path. With Random-Forest as an ML model, the

study in Q-TSLP [5], reduces the granularity of characterizing
congestion related bottlenecks into radio access link, RAN, core
of the mobile network, and rest of end-to-end path towards
a server. It however, uses only active monitoring, similar to
QProbe, and TSLP [67] a scheme originally designed to measure
congestion on inter-domain links in Internet.

A recent experimental study conducted by G. Patounas
et al. [4] used a hierarchical clustering method with So-
ergel/Tanimoto distance to separate different single bottleneck
profiles from the baseline performance and from each other.
They preferred Fuzzy clustering for identifying composite bot-
tleneck profiles. The study was conducted on a testbed that de-
ployed Orion RAN slice and virtualised EPC components based
on OAI 4 G LTE. Using passive monitoring, measurements were
logged at all components and VNFs of the mobile system as well
as at UE and server. The monitored measurements were divided
into 3 groups i.e., service, network and infrastructure layers.
The study performed a centralised analysis of all the collected
measurements and concluded that infrastructure layer, followed
by network layer measurement features are the most predictive
in bottleneck identification.

B. Use of P4-INT

Other than traditional monitoring approaches of passive and
active probing, the third type of telemetry based on P4 program-
ming was initiated by data centers. To track status of switches
and the data flows between its end-hosts, the data centers used
both INT and out-of-band monitoring. For example R. Joshi et
al. proposed BurstRadar [22], an out-of-band method, to monitor
microbursts at the egress pipeline of each switch in the network.
To make good use of the computing, memory and bandwidth
resources of the end-hosts, switches and the controller in a data
center, OmniMon [23] splits the telemetry tasks between the
end-hosts and switches and merges the results for analysis at the
controller. To reduce bandwidth overhead, PINT [68] proposes
the use of constant bit-budget i.e., 16 bits per packet to carry
queue occupancy, switch utilization statistics, path tracing and
tail latency of flows. Use of P4 based telemetry has gradually
being employed in other networks such as Software Defined
Networks (SDN). N.V. Tu et al. [69] present an INT based mon-
itoring system for Open Network Operating System (ONOS), a
widely used SDN controller for SDN data plane. It employed
P4-INT to be aware of real time traffic, real time latency and
link changes to detect anomalies (e.g., traffic spikes) or failures
(e.g., terminated links) and hence to take right actions quickly.

In the context of mobile core networks, P4 switches have
been used for real-time attack detection and mitigation [70],
identification of malicious data [71], enhancing the User Plane
Function (UPF) [72] and ensuring QoS at the slice level [73].
A recent study [58] investigated impact of P4-INT on network
performance compared to the traditional active and passive
monitoring approaches. [58] built a 4 G network with OAI
upon virtual box, with its different components as VMs. It
deployed two switches, both in network core at SGi interface,
with a dummy forwarder node in between the two switches.
The authors found that processing and memory overhead of
software switches is more than both the active (Ping) and passive
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(packet capture) monitoring on the switches. But that passive
approach suffered high I/O disk activities and both the active
and passive monitoring dropped the throughput substantially,
while for P4-INT it was similar to the baseline.

C. Detecting Anomaly in Mobile Networks

Several machine learning-based methods have been presented
focusing on detecting anomalies in network traffic. For example,
Hadj-Kacem et al. [74] proposed an anomaly detection model
that captured the correlation between the different KPIs in a
mobile network using functional principal component analy-
sis (FPCA). They used the logistic regression classifier for the
functional data to predict anomalies. The logistic regression
model achieved accuracy and F1-score of 71% and 70%, respec-
tively. Also, [75] leveraged supervised classification models,
namely logistic regression, random forest, LightGBM and an
ensemble classifier of these earlier three models to detect high
latency in mobile broadband networks.

Other than supervised ML, various unsupervised meth-
ods have been proposed for anomaly detection in mobile
networks. [76] presented an autoencoder-based unsupervised
model to detect cell outages in mobile networks leveraging
measurements from the UEs namely, RSRP and RSRQ values
of the serving cell and the neighboring cells, and the radio
link failure (RLF). Also, [77] proposed a framework based on
LSTM-autoencoder and One-class SVM (OC-SVM) to detect
abnormal traffic data. Recently, [78] proposed a distributed
anomaly detection framework for network data forwarding la-
tency in an unsupervised fashion. The study used the hierarchical
temporal memory (HTM) algorithm for the online detection of
anomalies.

Among the above-mentioned studies [7], [4], [58] and [76] are
similar in certain aspects to ours. [7] worked on bottleneck detec-
tion in a cloudified mobile network as we do in stage-1. We aim to
characterise different bottleneck profiles as in [4]. We employ a
combination of monitoring approaches including active, passive
and P4-INT based measurements such as in [58]. For anomaly
detection at UE, we run an an autoencoder-based unsupervised
method like that of [76]. As for dissimilarities, [7] is limited
to bottlenecks sourced from network core only. [4], aimed to
identify the monitoring layer whose parameters played primary
role in distinguishing among different bottleneck profiles. [58]
performed a limited study on network core, to understand the
overhead and impact of the three monitoring mechanisms of
active, passive and P4-INT on end-to-end performance. As for
anomaly detection at UE, [76] worked only on cell outage
detection.

IX. CONCLUSION

In this paper, we present a 2-stage distributed telemetry frame-
work to identify and attribute bottlenecks in a cloudified mobile
network and its last mile. The system includes monitoring both
at the mobile network and its UEs. Monitoring at UEs assists in
triggering identification of bottleneck events that impact user’s
experience. Inclusion of a UE not only relieves the mobile
network from continuous computation of data analytics but

also helps the monitoring system to catch a bottleneck that is
beyond the internal scope of the mobile network, such as radio
interference. Mild bottlenecks at the mobile network, however
may go un-noticed by a UE when they do not degrade its
application performance.

By leveraging measurements at a UE, our VAE based model
accurately detects different types of bottlenecks with 0.85 F1-
score. To attribute the cause and location of the bottlenecks,
our classification model achieves 0.89 F1-score. Overall, the
bottleneck identification accuracy of our distributed framework
is comparable to that of a centralized approach, making it a better
choice due to the non-feasibility of a centralized system.

Working with a combination of monitoring approaches, our
study further reveals that in-band network telemetry can be
the potential future alternate for active monitoring of mobile
network links.

In this study, we have provided a proof-of-concept of our
distributed telemetry framework using generic application traffic
at the UEs, virtual P4 switches and a cloudified mobile core
based on 4G VNFs. In the future, we plan to focus on real
applications of our framework. We will upgrade our testbed
with 5G VNFs realizing a 5G standalone core and hardware P4
switches. This will allow us to evaluate our framework on use
cases where the UE is using novel applications with very high
requirements, such as live broadcasting and networked music
over 5G networks. Finally, we will explore the feasibility of
applying the framework online.
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