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Abstract—Over the past few years, the concept of Virtual Reality
(VR) has attracted increasing interest thanks to its extensive indus-
trial and commercial applications. Currently, the 3D models of the
virtual scenes are generally stored in the VR visor itself, which
operates as a standalone device. However, applications that entail
multi-party interactions will likely require the scene to be processed
by an external server and then streamed to the visors. However,
the stringent Quality of Service (QoS) constraints imposed by the
VR’s interactive nature require Network Slicing (NS) solutions,
for which profiling the traffic generated by the VR application
is crucial. To this end, we collected more than 4 hours of traces
in a real setup and analyzed their temporal correlation, focusing
on the Constant Bit Rate (CBR) encoding mode, which should
generate more predictable traffic streams. From the collected data,
we then distilled two prediction models for future frame size, which
can be instrumental in the design of dynamic resource allocation
algorithms. Our results show that even the state-of-the-art H.264
CBR mode may have significant frame size fluctuations, impacting
NS optimization. We then exploited the models to dynamically
determine requirements in an NS scenario, providing the required
QoS while minimizing resource usage.

Index Terms—Virtual reality, extended reality, traffic modeling,
network slicing, resource provisioning.

I. INTRODUCTION

OVER the past few years, the rapid technological de-
velopment of Head Mounted Devices (HMDs) and the

strong push towards the virtual world caused by the COVID-19
pandemic led to an explosion of the eXtended Reality (XR)
market, which includes technologies such as VR, Augmented
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Reality (AR), and Mixed Reality (MR). Recent studies estimate
hundreds of millions of users of these technologies in a time
span of just 3 years [1], requiring millions of new devices to
be developed, produced, and shipped around the world for a
business in the order of billions of dollars [2].

While the latest news on the metaverse seem to indicate that
the fastest growth will be in the entertainment and social media
industries, XR is expected to make an impact in a wide variety of
scenarios [3], [4]. Interactive design, marketing, healthcare, and
employee training are just a few of the proposed use cases, but
industrial remote control in manufacturing and agriculture might
have the largest impact, allowing human operators to remotely
control machines in risky, hard to reach or unsafe environments,
through a fully interactive virtual framework.

A common characteristic of all these new applications is their
interactive nature: users do not passively receive the information
or stream a video, but need to manipulate the environment while
maintaining an illusion of presence that requires the application
to operate under very strict end-to-end delay constraints [5],
[6]. In particular, safety-critical and industrial applications will
have even stricter constraints, as the consequences of network
impairments can be significantly more serious. Cybersickness is
another important issue, as a delay over 20 ms between move-
ments and visual and auditory feedback can cause disorientation
and dizziness [1], [7].

In order to fulfill these stringent latency requirements over a
wireless connection, the application and the network need to co-
operate. The NS paradigm [8] divides the resources of a 5th Gen-
eration (5G) network [9] among different slices, i.e., services or
groups of services who share similar QoS constraints, expressed
in terms of bitrate, latency, jitter, and traffic statistics [10]. By
dividing users and services into distinct logical connections, NS
limits the stochastic effect of cross-traffic, guaranteeing each
service a certain amount of resources, according to its Service
Level Agreement (SLA) [11], to achieve the desired Quality of
Experience (QoE). Most works in this area, however, focus on
relatively predictable applications. In this setting, the need for
predictability in XR traffic becomes extremely important, lead-
ing to a resurgence of quasi-CBR encoders, which are not used
in non-interactive streaming due to the slightly lower overall
perceptual quality [12] and picture quality stability [13]. On the
other hand, traditional Variable Bit Rate (VBR) encoders may
have frame size differences between independent and predictive
frames of up to two orders of magnitude, making the problem
of allocating network resources extremely hard. In particular,
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resource allocation algorithms for this type of encoder would
require an explicit exchange of information between the appli-
cation and the network to perform well, requiring additional
signaling protocols to enable cross-layer functionalities.

While some efforts have been devoted by prominent stan-
dard bodies on this topic [5], [6], the current availability of
traffic models for XR is scarce. Furthermore, to the best of
our knowledge, no detailed analysis of the temporal statistics of
quasi-CBR video streams can be found in the literature, making
existing slicing schemes rely on uncertain foundations. This
makes the definition of a SLA for XR traffic more complex:
most NS solutions assume that each application’s demand in
terms of required throughput and latency is known, but such a
characterization may be difficult in case of streams with variable
frame size, requiring significant overprovisioning.

However, quasi-CBR encoders are not perfect, and the inter-
play between the video content and the movements and actions
of the users may cause significant fluctuations. In this work,
we analyze the traffic from a real VR application using the
Periodic-Intra Refresh mode of the H.264 codec, which results in
relatively small differences in the frame sizes. Recent analyses
of Oculus Quest VR traffic have shown that similar settings
are used in what is perhaps the most common commercial VR
platform [14]. Modeling these imperfections and, consequently,
predicting the size of future frames in advance can be extremely
important in the allocation of network resources, particularly if
some critical QoS constraints, such as maximum latency and
jitter, have to be met [15]. Furthermore, the recent Cloud XR
trend pursued by some major players in the telecommunications
industry [16], [17] pushed the latency and throughput require-
ments even further, as the processing and rendering steps of
the XR content are moved from the user’s local network to the
Cloud.

This increases the need for a dynamic SLA that can allow an
NS system to provide low-latency service to XR applications
without wasting too many resources: most slicing schemes in
the literature define static SLAs that specify a constant required
bitrate, which would be fine for perfectly CBR video (in which
all frames have the same size, and Motion-To-Photon (MTP)
latency becomes deterministic with slicing), but may result in
poor performance if frames have different sizes. While quasi-
CBR encoders do not have the extreme, order-of-magnitude
differences in frame sizes common to traditional VBR encoders,
the only way to strictly bound the MTP latency is to overprovi-
sion resources to accommodate the largest frames. While static
overprovisioning is wasteful, as it requires allocating additional
resources to all frames, having a temporal model of the XR traffic
stream could allow the Base Station (BS) to predict the future
needs of the application, tailoring the QoS requirements in the
SLA to what will actually be needed.

Hence, in this paper we address the problem of providing a
stochastic characterization of a real VR traffic source, so as to
allow for a dynamic provisioning of bandwidth resources for
VR users to satisfy the latency constraints. Our analysis can
also be applied to the downlink part of generic XR traffic, and
the basic statistical methods could theoretically be applied to

any type of interactive content, although the considerations and
the performance of the proposed schemes would depend on the
specific features of the source application.

Building upon our previous works [18], [19], in which we
collected more than 4 hours of live sessions and performed basic
traffic characterization, in this paper we take the analysis one
step further by modeling the size of VR frames in the stream as
a correlated time series, that is then used to derive an adaptive
and predictive SLA. The contributions of this paper are the
following:
� We propose two parametric regression models to predict

the size of future frames, and show that these models can be
generalized to other traces and even different applications
with limited regression performance loss;

� We analyze the residual error of these predictors, providing
a full statistical model of future frame sizes;

� We show that the prediction can be successfully used for ef-
ficient resource allocation in an NS scenario in which a BS
must allocate Radio Access Network (RAN) resources to
provide high-quality service to a Cloud VR flow streamed
from a remote server to the user’s HMD;

� We consider different NS modes, including per-user or
application-level slicing, and compare the performance
of different schemes in terms of the trade-off between
resource utilization and latency.

A partial version of this work was presented in [20], where we
empirically proved the quasi-CBR nature of VR traffic flows.
This work significantly extends it by exploring the statistical
analysis of frame sizes at a deeper level, including the charac-
terization of the residual error of the predictors, and expanding
on the SLA definition, including the use case with multiple VR
users. All our traces, as well as the analysis and simulation code,
are publicly available.1

The rest of the paper is structured as follows. Section II
will discuss the current state of the art on the modeling of XR
traffic sources and NS, and our experimental setup is briefly
presented in Section III. Our analysis is reported in Section IV,
while Section V illustrates how our analysis can be leveraged for
a simple NS use case by designing predictive resource allocation
mechanisms and testing their performance in a simple simulation
scenario. Finally, Section VII draws conclusions and presents
some avenues for future work.

II. STATE OF THE ART

Despite a steady scientific interest in VR since the 1990s [21],
relatively little work has been done to characterize the details of
this type of traffic, and its possible consequences on resource
allocation schemes. In this section we provide an overview of
what has been done in the literature to try to fill these gaps, while
also providing the key concepts needed to understand why NS
could be a powerful to enable XR scenarios.

1The VR traffic traces and code are available in this repository: https://github.
com/signetlabdei/vr-trace-analysis

https://github.com/signetlabdei/vr-trace-analysis
https://github.com/signetlabdei/vr-trace-analysis
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A. Motion-to-Photon Latency and VR Sickness

The MTP latency is defined as the time difference between
the beginning of a movement of the user’s head and the instant
when the image that corresponds to the user motion is shown
on the HMD screen. This phenomenon is one of the main
factors causing sickness when experiencing XR content, the
main symptoms being discomfort, nausea, cold sweating, eye
fatigue, and disorientation. From a research point of view, a lot
of effort has been devoted to avoiding such episodes in the first
place, and the IEEE issued a dedicated standard in 2021 [22],
which addressed the content design, sickness assessment and
measurement, and the network requirements that may influence
the MTP latency.

First of all, measuring the MTP latency represents a challenge
per se. The architecture described in [23], which consists of
a control PC, a head position model-based rotary platform, a
pixel luminance change detector which converts the change
in the display into a voltage value, and a digital oscilloscope
to show it, is used as reference in [22]. Specifically, after a
movement of the rotary platform is generated by the control PC,
the MTP latency is measured as the time difference between the
platform’s movement and the corresponding voltage change on
the oscilloscope.

To obtain a robust estimate of the MTP latency, a precise
head tracking algorithm is of the utmost importance. The authors
of [24] presented a 6 Degrees of Freedom (6DoF), optical head
tracking instrument with a declared motion-to-pose latency (i.e.,
the time between a change in the user’s pose and the tracker
actually detecting the movement) of about 28 μs, at a sample
rate of 50 kHz. They also showed that the difference between
the tracker’s pose output and the user’s true pose is dependent on
pose velocity, tracker sampling rate, tracking latency, and noise.
Moreover, the authors of [25] showed that latency jitter artefacts
already occur with a low system load by injecting artificial la-
tency in a VR simulation. Even though their hypothesis included
the tracking algorithm of the HMD as a possible cause of such
jitter spikes, they did not prove it empirically.

Both rotational and translational MTP latencies were esti-
mated in [26] by calculating the phase shift between the captured
signals of the physical motion of the HMD and a motion-
dependent gradient stimulus rendered on the display. They were
able to conclude that rapid head movements may elicit stronger
disorientation to users in VR environments than slower head
movements do. Even though the measurements were carried
out with an Oculus Rift DK2, the proposed methodology is
general and can be applied to other HMDs as well. The authors
of [27] also measured the MTP latency with different workloads
(determined by the complexity of the scene to render), finding
that it can span from a minimum of 45 ms to a maximum of
155 ms. In general, the network requirements defined by the
standard [22] are way more stringent: approximately 5 ms for
the wireless transmission and 20 ms in total for the MTP latency,
with a jitter strictly lower than 5 ms.

B. XR Traffic Characterization

XR traffic modeling is closely related to 2D video content,
and, even more so, to live, interactive applications such as video

conferencing and gaming. However, most of the work on the
subject has considered the customary encoding schemes for
pre-recorded video streaming, i.e., the VBR encoding based
on either the H.264 or the H.265 standard [28]. VBR can
provide a stable visual quality, improving the user’s QoE [29],
but is also subject to significant jitter due to the large frame
size fluctuations. Transmitting VBR videos with low latency
can then be a significant challenge even over channels with
constant capacity [30]. On the other hand, CBR encoding
sacrifices some visual quality stability to obtain an encoded
video stream with a stable transmission rate [31]. Although
the higher predictability of the encoded output makes CBR
encoding attractive for interactive video and XR content, it is still
relatively unexplored in the relevant literature. However, a recent
black box study on Oculus traffic [14] shows that frame size
distributions from Cloud gaming traces closely resemble those
we obtained with H.264 CBR encoding, suggesting that similar
settings are used by state of the art commercial applications as
well.

Perhaps the most similar application that has been studied
in the literature is Cloud gaming: just like in XR streaming,
interactive video content is rendered on a remote server and
streamed directly to the users without the need for client-side
computation. While these applications stream traditional video
content instead of binocular, 3D content, some of the require-
ments in terms of latency and reliability are similar, and the need
to address them with optimized protocols and new transmission
strategies has led to a significant interest in Cloud gaming traffic
characterization, from which we can draw some insights. The
authors of [32] carried out an extensive measurement campaign
in Google Stadia, a popular Cloud gaming platform, giving an
overview of its inner working. They studied the distributions
of downlink traffic, packet size and inter-packet time under
multiple settings, including different resolutions, video codecs,
and network conditions. On the other hand, in [33], [34] direct
comparisons were made between different Cloud gaming plat-
forms, mostly focusing only on the bitrate of the video stream,
without including latencies or user QoE.

A more comprehensive Cloud gaming testbed, including au-
tomated trace acquisition over Ethernet, WiFi, and LTE, was
presented in [35]. Automating the acquisitions surely gives an
advantage in terms of reproducibility and speed of the experi-
ments, but the unpredictability of the users’ actions in gaming
scenarios (and, more importantly, in XR) is the real challenge
that the network has to face, limiting the usefulness of the results.
These works represent a good starting point for the collection
and modeling of VR traffic, as it is reasonable to assume that
most of these Cloud gaming companies will start providing VR
services soon. However, most works still focused on simple
applications, such as interactive data visualization [36], and
do not provide much insight on more complex scenarios. The
extensive literature on immersive video streaming [37] has been
mostly focused on passive applications in which the user is
only a viewer, with different QoE and encoding considerations.
A recent 3GPP report [38] also provided a simple model for
XR traffic, which does not consider temporal or video content
aspects, and is thus usable for general feasibility studies, but not
for fine-grained optimization.
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C. Network Slicing

Network Slicing (NS) has been identified as a key technology
in 5G and Beyond networks [9], and has been successfully
employed in a number of different applications, from the Internet
of Things (IoT) [10] to vehicular networks [39].

Network slices are logical entities that allow service sepa-
ration over the same physical network, tailoring the reserved
network resources to the requirements of each service. The NS
allocation process can be broadly summarized as follows [10]:
first, a network slice is requested, and the required Virtual
Network Functions (VNFs) and the connection between them
are identified. The resources for the slice are then reserved in the
physical network infrastructure, scaling the allocation dynam-
ically according to the variations of the service requirements.
The employed VNFs and/or their connection are also flexible,
and may be changed seamlessly. Finally, when the slice is no
longer required, it is destroyed and its resources are released.

In general, the NS research has focused on the automation
of the above process, on the definition of the slices, and on
the orchestration and management of the network resources,
designing solutions to ensure and enhance the efficiency and
the safety of this paradigm. Both these aspects are extremely
challenging due the complexity of the underlying network in-
frastructure and the heterogeneous and dynamic nature of the
service requirements [11], [40].

The resource allocation problem has been modeled through
classical approaches, like in [41], where a 2-level matching game
is formulated with the infrastructure provider as the vendor
and the virtual network operator as the buyer, that in turn
acts as the vendor to the users. The authors of [42] model
the function placement as an integer optimization problem and
propose an effective simplification strategy, while [43] defines
a path-search allocation strategy to deal with an elastic traffic
demand while ensuring reliable communication over a slice. Due
to the complexity of the problem, heuristic solutions have also
been explored [42].

Recent works have focused on data-driven approaches [44],
[45], leveraging the recent advancements of Machine, Deep and
Reinforcement Learning techniques. Specifically, assigning the
allocation and the orchestration tasks to a controller makes the
problem particularly suitable for Reinforcement Learning (RL)
approaches. In [46], a centralized controller admits and assigns
slices to the users according to their SLAs and traffic usage.
The controller takes into account the heterogeneous mobility
and traffic models among diverse slices to make decisions. A
deep RL approach is proposed in [47] to maximize the welfare
of each service provider by jointly allocating communication
and computing resources.

D. Prediction-Based Slicing

The use of traffic prediction in NS is a concept that was first
explored in [48]: as slicing requires precise SLAs to provide
QoS to different services, but most practical applications are
VBR, characterizing the traffic and predicting future requests is
a way to allocate resources in a foresighted manner, performing
resource allocation on a short timescale and admission control

on a longer one. If we consider wider networks with massive
numbers of users, the daily, weekly, and seasonal cycles of
network usage can also be exploited to allocate resources more
effectively [49]. This work, however, will focus on shorter-term
predictions over a limited number of XR flows. Other works
such as [50] have also explored the possibility of exploiting
longer-term trends for a rough resource allocation, while using
a short-term scheduler for fine-grained optimization.

In particular, the use of Auto-Regressive Moving Average
(ARMA) models has been explored in [51] as a potential
application-agnostic prediction method to perform resource al-
location: as the orchestrator knows the state of the packet buffer
for each slice, it can perform the moving average and allocate re-
sources accordingly. However, ARMA models require a certain
number of past samples, and this approach cannot discriminate
between different applications: consequently, the initial perfor-
mance will be lower when compared to an application-aware
model that takes knowledge of the traffic source into account. In
order to capture the behavior of more complex traffic sources,
it is also possible to replace the ARMA model with a Long
Short-Term Memory (LSTM) deep neural network [52], which
can generalize to non-linear and longer-term patterns. Deep
reinforcement learning [53] is another alternative, as it can
implicitly learn even complex application behaviors and take
them into account when slicing.

Another recent idea is to combine NS with video bitrate
adaptation: if we consider QoE as a flexible metric over which
we can compromise in high traffic conditions, a cross-layer
approach allows the orchestrator to dictate the video bitrate for
the next few frames [54], limiting the demands of the interactive
video flow to what the network is able to support. This approach
is complementary to the prediction-based one, as these bitrate
changes need to be relatively infrequent to avoid annoying the
user, and such a system would operate over a longer timescale:
while the prediction and allocation of resources is usually per-
formed over tens or hundreds of milliseconds, video bitrate
adaptation spans multiple seconds, and the two approaches can
be integrated.

E. XR Resource Management

Although the management of XR flows is a relatively new
problem, a few works have already discussed efficient schemes
for providing QoS to these applications. For example, in [55],
[56] game-theoretic approaches are proposed to tackle the op-
timization of multi-user VR streaming over a small cell, with
the help of machine learning. The authors of [57] analyze
the scheduling problem from the perspective of Mobile Edge
Cloud (MEC), proposing scheduling strategies and analyzing
communication, computing, and caching trade-offs. While the
models proposed for the network architectures considered in
these works are extremely complex, there is no comparison with
real-world VR streaming.

To the best of our knowledge, our previous works, which
proposed a simple architecture for collecting traffic traces from
VR games [18] and a simple generative model for the frame
size [19], were the first to use real VR traffic traces, along with
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Fig. 1. Basic experimental setup schematic.

the aforementioned passive study of Oculus traces [14]. This
paper extends our previous works by characterizing the temporal
behavior of the VR traces and drawing novel conclusions for NS
optimization.

III. EXPERIMENTAL ARCHITECTURE

In this section, we describe the architecture of our VR
streaming acquisition and give some perspective on the full
end-to-end setup. To further understand what are the steps that
most influence the VR performance, it is useful to describe a
common end-to-end VR architecture. First, we can start from
the collection and processing of tracking information, delegated
to the HMD. Then, this information is sent to a remote server
to compose the viewport, i.e., what is actually shown to the
user. This process includes the rendering of the scene, the video
encoding providing a more robust transmission towards the
mobile device, and possibly some additional information, e.g.,
the direction in which the rendered frame is supposed to be dis-
played. After receiving and decoding the video stream together
with all the additional meta-information, the HMD generates
the images to display at the occurring screen refresh rate.VR
The MTP latency, which considers all of these steps, is crucial
for determining the user QoE [29], as higher latencies will be
perceived by the user and may even cause cybersickness. Recent
IEEE [22] and 3GPP [38] standards specify strict MTP latency
constraints, and one of the objectives of our modeling effort is to
provide a framework for delivering VR content efficiently while
respecting these latency requirements.

Our experimental setup consisted of a desktop computer
equipped with an NVIDIA GeForce RTX 2080 Ti graphics
card acting as the rendering server, and an iPhone XS enclosed
in a VR cardboard acting as the HMD. VR applications were
thus run on the rendering server and streamed to the headset
using the RiftCat 2.0 application (on the server), and VRidge
2.7.7 (on the phone).2 A basic schematic of the setup is shown
in Fig. 1, which includes the main exchanges of information
between the desktop computer, acting as a remote server by
rendering and encoding the video, and the iPhone XS, which
functioned as the HMD. The setup was purposefully simple,
with a dedicated WiFi network with enough capacity to maintain
a constant visual quality and model the VR source without
any effect of rate adaptation or long delays. The behavior of
VR applications over connections with time-varying capacity
would be determined by a number of factors, e.g., the employed
rate adaptation scheme, that have been extensively studied in

2https://riftcat.com/vridge

the literature and are outside the scope of this work, where we
focus on deriving a channel-agnostic application model. In the
following, we will describe the encoding and communication
features of the application in more detail.

The application uses hardware-accelerated H.264 encoding
via Nvidia Encoder (NVENC) as long as a compatible graphics
card is available to the system. At the time of our experiments, the
newer H.265 standard was not supported by the application, as
even commercial visors have only recently started supporting the
newer encoding standard due to its computational complexity.
However, most of the considerations in the following would
be the same for H.265 content, although with a higher picture
quality at the same bitrate. RiftCat’s developers disclosed that
Periodic Intra-Refresh is used, a setting provided by the encoder
that allows each frame to be roughly the same size, making the
stream almost CBR and thus easier to handle from a network
perspective. It does so by replacing key frames with waves of re-
freshed intra-coded blocks, i.e., blocks without any dependence
on other frames, effectively spreading a key frame over multiple
frames. Image quality is balanced with resilience to packet
loss by setting the intraRefreshPeriod, a parameter that
determines the period after which an intra refresh happens again,
and theintraRefreshCnt parameter, which sets the number
of frames over which the intra refresh happens [58]. If we
consider a 30 Frames per Second (FPS) video, a value of 30
for the intraRefreshPeriod would ensure that the frame
is fully recovered every second. On the other hand, choosing
small values of intraRefreshCnt leads to a quicker refresh
but lower quality.

Detailed information about the video encoder is fundamental
for our work, since different encoders typically behave differ-
ently, especially when analyzing the temporal behavior of the
encoded source. Still, we believe that our work offers network
researchers a peek into the intricacies of this topic, showing
some key results on how a VR traffic flow can be analyzed for
resource provisioning.

Different freely available games and applications were used
to acquire our dataset, including Minecraft, Virus Popper, and
Google Earth VR. Further details on the acquisition setup and
our traces can be found in [19]. In the following, we will
mostly concentrate on one trace acquired using the Virus Popper
application, but the methodology applies throughout the dataset,
and can be easily replicated for any of the other traces.

IV. VIDEO TRACE ANALYSIS

By analyzing the acquired traces, we determined that the
application used User Datagram Protocol (UDP) over IPv4.
It also used an additional application-layer protocol header
of variable size, which we decoded to determine the types of
the exchanged packets. More specifically, synchronization and
acknowledgment packets were exchanged in both directions,
while the Uplink (UL) stream from the HMD to the rendering
server also contained frequent and relatively small head-tracking
information packets. Naturally, the Downlink (DL) stream also
had regular video frame packet bursts. Fig. 2 is a visual represen-
tation of a short period of bidirectional VR streaming, showing

https://riftcat.com/vridge
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Fig. 2. Portion of traffic trace from Virus Popper (50 Mb/s, 30 FPS). In this trace, each video frame burst consists in about 130–140 individual fragments.

Fig. 3. Head tracking packet inter-arrival time.

the main data streams in both DL and UL. As the figure clearly
shows, most of the traffic is concentrated in DL and consists
of packet bursts encoding video frames. Video frame fragments
were consistently 1320 B long in all acquired traces, with a data
size (the UDP payload) of 1278 B.

First, we considered the head tracking packets in the UL,
which were all 192 B long. The distribution of the inter-packet
interval Δu is shown in Fig. 3: tracking packets are relatively
frequent, with a median interval of about 7 ms, but the distri-
bution has a long tail. This suggests that head-tracking packets
are usually sent at regular intervals, but some are transmitted
adaptively if there were significant headset movements that can
affect the video rendering on the HMD. As we did not manage
to decode the content of the tracking packets, a deeper analysis
of their relation to head movements is left as future work.

By decoding the application protocol, we managed to identify
frame boundaries and distinguish the video data frames from
metadata and control information. We can then consider the size
of individual frames in a video trace. We note that non-video
packets have a low impact on the total streaming data rate.
Considering this, as well as the strong dependence of metadata
on the application setup, we decided to focus mostly on the video
frame data, discarding all other packets from our analysis. Our
results can then be applied to any VR application using the same
encoder.

The encoder uses the H.264 Periodic Intra-Refresh compres-
sion scheme to reduce the variation between frame sizes, so we
do not expect a multimodal distribution, as would be the case for
a classical keyframe-based encoding. As we mentioned above,
encoding VR traffic as CBR offers a significant advantage for the
network optimization, because frames of constant size make it

Fig. 4. Rate distribution for different MA window sizesS [number of frames].

possible for NS schemes to provide a guaranteed latency without
wasting resources.

However, CBR encoding is not perfect, and frames may still
have variable size, although the average rate almost perfectly
matches the required one. We can use a simple Moving Average
(MA) filter with a rectangular windowS to examine the behavior
of the traffic on longer timescales, which is useful if resource
allocation is performed at a slower pace. Naturally, allocating
resources every S frames leads to a larger jitter between frames,
but it can also improve the resource allocation efficiency, as size
fluctuations tend to average out over multiple frames.

In order to measure this effect, we consider the Virus Popper
trace, with a required rate R = 30 Mb/s and a ϕ = 60 FPS
refresh rate. We only measure the video traffic, without packet
headers and redundancy added by the application, which results
in an average rate of 29.76 Mb/s. Fig. 4 shows the empirical
Cumulative Distribution Function (CDF) of the rate, considering
different values of the MA window sizes. If we consider each
frame individually, there is a significant variation in the rate,
which gradually reduces as we increase the window size.

However, even looking at longer time horizons, traffic is still
far from the ideal CBR: Fig. 5 shows the overflow rate, i.e.,
the difference between the actual rate and the expected 30 Mb/s
CBR rate, as a function of the MA window sizes. The plot shows
the standard deviation, as well as the 95th and 99th percentile
overflow rates. If our aim is to provide 99% reliability, we need
to overprovision by more than 8 Mb/s (i.e., almost 30% of the
CBR rate) even if we consider a timescale of 100 ms for re-
source allocation, i.e., 6 frames. Even averaging over periods of
multiple seconds leads to worst-case rates almost 4 Mb/s higher
than the target, probably because of highly dynamic content
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Fig. 5. Overflow rate for a target CBR of 30 Mb/s.

Fig. 6. Video frame size autocorrelation for Virus Popper (30 Mb/s, 60 FPS).

in the video. Interestingly, the overflow standard deviation is
approximately constant if the MA window is longer than 50
frames, while the higher percentiles of the overflow continue to
decay: this suggests that higher throughput periods tend to be
shorter and more frequent, while there are longer periods of time
with a bitrate below the average. Fig. 4 also hints at a skew in
the distribution, as the left tail of the frame size empirical CDF
is much longer.

Finally, we can analyze the autocorrelation of the frame size
sequenceF (t), to identify patterns in how the sequence changes.
Fig. 6 shows the autocorrelation of F (t) and of ΔF (t) =
F (t)− F (t− 1). While F (t) has a strong long-term autocor-
relation, due to the constant component, the ΔF (t) sequence
has a strong negative autocorrelation between one frame and
the next, while almost all longer time differences fall within the
±0.05 range. This means that the encoder tends to balance out
fluctuations between one frame and the next, such that a frame
that is bigger than the previous one tends to be followed by a
smaller one again. We can check that this holds throughout the
whole video by computing a rolling window autocorrelation,
shown in Fig. 7 for ΔF (t). In this case, the plot clearly shows
that there are no strong long-term correlations in any part of
the video. The frame difference sequence has a noticeable and
consistent autocorrelation only with lags 1, 3, and 5, confirming
the result from Fig. 6. In the following, we will determine a
prediction model for future frame sizes, exploiting the patterns
we found in the frame size time series: the main symbols we use
and their meaning are listed in Table I.

Fig. 7. Rolling windowed ΔF autocorrelation for Virus Popper (30 Mb/s,
60 FPS). The windows were 600 frames (10 s) long, with a time shift of 60
frames (1 s).

TABLE I
SYMBOLS USED IN THE PREDICTION MODEL DEFINITION

A. Frame Size Prediction

Let us consider the average size of future frames in the time
interval [t, t+ T ), given by

FT (t) =
1

T

T−1∑

i=0

F (t+ i). (1)

We denote by F̂T (t, τ) an estimate of FT (t+ τ), τ > 0, i.e.,
considering a look-ahead of τ frames. We focus on linear pre-
dictors based on the last N ≥ 0 samples, so that

F̂T (t, τ) = θ0 +

N∑

j=1

θjF (t− j + 1), (2)

where θ = [θ0, . . . , θN ] is a weight vector, which determines
the accuracy of the estimate. IfN = 0, the estimate is just given
by the parameter θ0, and does not consider any past frames. The
difference between actual and estimated value is captured by
the error term w(t, τ, T ) = FT (t+ τ)− F̂T (t, τ), which will
be denoted just as w in the following, for ease of writing. We
can then consider two regression methods to determine the value
of the parameter vector θ:
� Ordinary Least Squares (OLS) linear regression: least

squares regression was independently developed by Gauss
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Fig. 8. Complementary CDF of the error w with τ = 1 and different values of N and T .

and Legendre in the 19th century [59], and is the most
classic form of regression. In this case, the objective is to
minimize the �2 norm of the sequence w. OLS regression
can be useful in determining the average behavior of the
underlying stochastic process, giving easily interpretable
results on the quality of the prediction and the dynamics of
the frame size over time;

� Quantile regression [60]: this technique estimates F̂T (t, τ)
so that the probability that it is higher than the real value
is not larger than ps. This has obvious implications for
network resource provisioning: as we are interested in pro-
viding enough resources to send a frame within the required
latency with probability ps, estimating the corresponding
quantile might be the best way to get the required quality.

We also used Robust linear regression [61] to verify that the
OLS prediction was not too sensitive to outliers. We considered
a robust method using Huber’s T norm instead of the �2 norm:
the two norms have the same quadratic behavior if the error is
smaller than a threshold δ, but Huber’s T increases linearly for
larger values. Setting the threshold to δ = E[|F |]

4 , we found that
the results matched exactly those of the OLS model, suggesting
that outliers are not playing a relevant role in this case.

Fig. 8 shows the complementary CDF of the residual error w
for the Virus Popper trace, considering a rate of 30 Mb/s and
60 FPS. We focus on this video trace as the standard example in
the paper, but other traces, even at different bitrates and frame
rates, exhibit a similar behavior. As we stated above, while the
results from OLS are more immediate, quantile regression is
useful when focusing on scheduling network resources for a
VR stream, which requires a model of the tail of the frame
size distribution to provide latency guarantees. In the following,
we considered τ = 1 and two different values of the averaging
interval T .

The first thing we can notice from the figure is that the
error distribution has a slightly different shape for the OLS and

quantile regression models: indeed, our analysis of the model
coefficients shows that the difference in the models is not simply
caused by a shift in the value of the intercept θ0, but the two
models also have different coefficients for past samples. We
can also notice that there is some benefit from having a longer
memory, although increasing N yields diminishing returns in
terms of increased accuracy. Finally, we can confirm that the
reliable transmission of this VR content will require significant
overprovisioning: for T = 1, the 95th percentile error of the
OLS prediction is approximately 15 kB higher than the mean
with any of the models, i.e., about 25% of the average frame
size (which is 62.5 kB for this trace). In fact, this is close to the
difference between the average predictions of the OLS and the
quantile models.

This difference is about halved for T = 6, due to the fact that
errors cancel each other out when computing the average over
multiple frames. However, provisioning over multiple frames
means that only the average amount of resources will be assigned
to the stream, which will cause larger frames to have a higher
latency, thus causing additional queuing delay to subsequent
frames. Since the frame cannot be properly shown on screen
until it is fully received, this translates to a higher jitter and
reduces the QoE, making a lower value of T preferable.

Another fundamental component in evaluating the quality of
a predictor is the autocorrelation of the residual error w: if the
autocorrelation between subsequent samples of the residual error
is high, the model did not capture some effect, usually due to
an insufficient memory, i.e., too low a value of N . Fig. 9 shows
the autocorrelation of w for different values of N : it is easy to
see that models with N < 4, and particularly with N = 0 and
N = 1, do not have enough memory to capture the frame size
dynamics. This is more evident in quantile regression, which
shows a higher autocorrelation for these models.

Finally, we can examine the effect of N and τ on the qual-
ity of the prediction by looking at Fig. 10, which shows the
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Fig. 9. Autocorrelation of the residual error w for next-frame prediction (T = 1, τ = 1) for different values of N .

Fig. 10. Heatmap of the residual error standard deviation (measured in kB) as
a function of N and τ , with T = 1.

standard deviation of the residual error w as a function of these
two parameters with T = 1. The vertical axis of the colormap
represents the feedback delay τ , while the horizontal axis maps
to the memoryN : we can easily see that the error increases with
τ and decreases with N . The gains from increasing N when it
is small (on the left side of the colormap) are significant, while
the color changes imperceptibly between N = 6 and N = 10:
the diminishing returns from increasing memory are consistent
with our autocorrelation analysis, which showed that further in-
creasing memory does not give any benefit in terms of prediction
quality. Interestingly, the error is not a monotonically increasing
function of τ forN < 3: this might be due to the autocorrelation
we observed in the w sequence, as N < 3 is not sufficient to
fully represent the state of the stochastic process, resulting in
suboptimal predictions. In general, the error reduction from
using N = 6 is around 20% with respect to the perfect CBR
assumption.

B. Residual Error Characterization

We can then analyze the residual error w in more detail: as
Fig. 11 shows, we attempted to fit the residual error on the frame
size to various common bilateral distributions. The maximum
likelihood fit was a Laplace(μ, b) distribution, whose Probability
Density Function (PDF) is given by

pw(x;μ, b) = (2b)−1e−
|x−µ|

b , (3)

where μ and b are the location and shape parameters. The same
result held for all other traces in the dataset, leading us to infer

Fig. 11. Residual error after OLS prediction for Virus Popper (30 Mb/s,
60 FPS), with T = 1, τ = 1, and N = 6.

that this distribution depends on some inherent property of the
encoder and the way it generates frames, instead of specific
features in the video content.

If we consider the residual error of the OLS regression
method, the best estimate of the parameter μ is μ̂ = 0, as
having a non zero-mean residual error would imply a bias in
the OLS estimator. The maximum likelihood estimator of the
shape parameter b is then given in [62] by

b̂ =
1

N

N∑

i=1

|xi − μ̂|. (4)

The instantaneous value b̂T (t, τ) can then be determined from
the model. As we are considering a regression model, we can
simply perform an OLS regression on the magnitude of the resid-
ual error |w| to find b̂T (t, τ). We can then represent the future
frame size as a value F̂T (t, τ) given by the prediction plus a
noise termw, whose distribution is Laplace(F̂T (t, τ), b̂T (t, τ)).
Interestingly, if we adopt this model, we have the complete
distribution of the frame size, making it extremely easy to derive
the quantile values for any desired point and considerably reduc-
ing the computational impact with respect to multiple quantile
regressions. The quantile function P−1(ps|T, τ, t) is then

P−1(ps|T, τ, t) = F̂T (t, τ)+b̂T (t, τ) log(min(2ps, 2− 2ps)).
(5)



CHIARIOTTI et al.: TEMPORAL CHARACTERIZATION AND PREDICTION OF VR TRAFFIC: A NETWORK SLICING USE CASE 3899

Fig. 12. Complementary CDF of the error w (T = 1, τ = 1, N = 6), with different polynomial regression ranks K.

C. Polynomial Regression

In order to further validate the model, and to ensure a better
prediction, we extend our study to consider polynomial models:
instead of a vector θ, a polynomial predictor of rank K with
memory N is given by the constant parameter θ0, along with a
matrix Ψ, so that

F̂T (t, τ) = θ0 +

N∑

j=1

K∑

k=1

ψj,k (F (t− j − τ + 1))k . (6)

Fig. 12 shows the right tail of the residual error distribution
as a function of the rank: we can note that the gain from
considering polynomial regression with a rank higher than 1
is extremely limited for standard regression (i.e., predicting
the size of the next frame with minimal Mean Square Error
(MSE)), as shown in Fig. 12(a). On the other hand, Fig. 12(b)
shows that the distribution of the residual error is skewed when
performing polynomial quantile regression withK > 1, leading
to a lower worst-case error but a very similar average error. While
the performance of quadratic regression is slightly better with
respect to linear quantile regression, we will use the linear model
in the rest of this paper due to its simplicity, interpretability,
and stability. As we discuss in the following, the linear model
also provides more general results, with a smaller error when
predicting frame size over different traces.

D. Model Generalization

In the above, we studied how well regression models can
predict future frame sizes F̂T (t, τ), but we always found the pa-
rameter vector θ based on the same video trace. In the following,
we study how prediction models perform when the regression is
performed over multiple traces, with different bitrates and types
of content. Finding a predictor for each specific video content
requires acquiring traces for each content and quality level, while
generalizing the predictor would simplify the system.

We considerN = 6 and τ = 1, as we determined thatN = 6
is sufficient to capture the dynamics of the model. In order to
directly compare traces with different bitratesR and frame rates
ϕ, we normalize the video traces by the expected frame size
ϕ−1R, obtaining a normalized parameter vector θ̃, which, given
the linearity of our models, can be converted back to the original
parameter vector in (1) as θ = Rθ̃

ϕ . By normalizing our frame
sizes, we can train and use our models on multiple traces with

different values of R and ϕ. We then consider three generalized
models:

1) A general model (GM), which computesθ using the whole
dataset, with different frame rates, bitrates, and video
content types;

2) A content-dependent model (CM), which computes θ
using a single type of content (e.g., the Virus Popper
game), but with different bitrates and frame rates;

3) A content- and rate-dependent model (CRM), which de-
rives the parameter vector on a per-content, frame rate,
and bitrate basis, i.e., a single trace.

Given that different values of R and ϕ may have different
scales of errors which can be difficult to compare directly, in
Fig. 13 we show the error normalized to the expected frame size
R/ϕ. As the figure shows, the model can generalize quite well:
the performance of CM is almost always similar to that obtained
by CRM, making generalization across different bitrates and
frame rates possible for the same video content. On the other
hand, GM performs slightly worse, and has a large error in the
Minecraft trace with R = 40 Mb/s: it is possible that this trace
involves different dynamics in the content or head movements,
leading to sharp differences even with other traces with the same
type of content. On the other hand, GM has similar performance
to CM and CRM with the OLS predictor, but shows a less
consistent behavior for the quantile regressor. For example,
the Minecraft trace with R = 40 Mb/s shows very different
performance between the three models and different values of
T . Furthermore, the Virus Popper trace seems to have a smaller
tail, as GM is more conservative than the models based only on
that video content.

If we consider the performance of the models across all
videos, we can note that the general model introduces a slight
negative bias of about 0.3% of the average size, but the gap
between the 5th and 95th percentiles increases by about 2%
with respect to the CRM model for each trace: this indicates
that the derived model is highly general, as well as robust across
different contents and rates.

As we can see, using the quantile model leads to a prediction
between 25% and 40% higher than the average, skewing the
error distribution. We also note that averaging over multiple
frames can also significantly reduce the error across almost all
traces. Finally, we can look at Fig. 13(e)–(f), which show the
generalization performance of a polynomial quantile regressor
with K = 2: we can note that the generalization performance
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Fig. 13. Boxplot of the normalized residual error ϕw
R for different levels of generalization with N = 6 and τ = 1. The traces are grouped by video content, and

each group of boxplots shows the error at different bitrates for that video content.

is actually worse than in the linear model, providing further
justification for the choice of a simpler regression model with
fewer parameters.

V. PREDICTIVE NETWORK SLICING

In this section, we consider an NS use case for the models
we developed in Section IV. We assume that a number M of
VR clients share the same RAN and need to minimize their
resource consumption, while still delivering each VR frame
of each client with strict latency constraints. Provisioning the
time and frequency resources for VR is a critical component of
Beyond 5 G networks, and guaranteeing limited latency while
reducing the impact on other users is an important application
of our model. Each clientm then has a different bitrateRm and,
potentially, a different application, but we assume that the clients
all share the same frame rate ϕ. Furthermore, each client m has
a different spectral efficiency ηm, depending on its connection’s
Signal-to-Noise Ratio (SNR): users closer to the base station will

have a stronger signal, and consequently, a higher transmission
efficiency.

With a small loss of generality, we assume that clients are
synchronized, i.e., frames are generated at the same time. The
orchestration can be adapted relatively easily to the more general
case, but the notation would be much more cumbersome, and we
maintain this simplifying assumption for the sake of readability.
We can then assume that the network slicing orchestrator is
equipped with the general frame size distribution model from
Section IV-D, and can estimate the frame size distribution for
arbitrary values of T and τ for each client m. We consider an
orchestrator that can make decisions on the resource allocation
only at times t = kS, k ∈ Z, i.e., every S frames or, conversely,
every Δt = S

ϕ ms. In the following, we consider queued bytes
from earlier frames in the slicing as well. At time t = kS, we
consider that the previous slice might have been unable to send
all the data in time, leaving in the queue qm(t) bytes that have
to be sent in the following frame intervals. The main parameters
in the NS analysis are listed in Table II.
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TABLE II
SYMBOLS USED IN THE NS DEFINITION

Fig. 14. Schematic of the components of the MTP latency.

A. Motion-to-Photon Latency

We can now analyze the MTP latency by dividing it into 6
components, which are shown in Fig. 14:

1) The movement of the user needs to be recorded and
transmitted. For simplicity, we can assume head tracking
packets to be transmitted at a constant interval Δu; in this
case, the time between the motion and its transmission is
τm ∼ U(0,Δu).

2) The head tracking packet needs to be transmitted to the
Cloud VR server. Considering that the uplink traffic is very
light, and the packet is small, we can assume that it only in-
curs a constant propagation delay τp. We can also assume
that Δu includes the uplink transmission time to the BS,
simplifying the model. In general, the transmission time
from the HMD to the BS should be extremely low: while
the wireless link is often the bottleneck, cellular systems
use orthogonal resources for the uplink and downlink, and
short packets with commands and sensory readings incur
negligible delays with respect to batches of full-sized data
packets.

3) The head tracking data is received by the Cloud server,
which then needs to produce a frame. The frame genera-
tion delay is τf ∼ U(0, ϕ−1).

4) The server needs to generate, render, and encode the frame.
We denote this delay as τr, and assume that it is constant
across short periods of time.

5) The frame is transmitted to the BS through a series of
fiber optic links. As the capacity of fiber optic links is
much higher than the RAN’s, we can assume this to take
only the propagation time τp.

6) The frame is transmitted from the BS to the HMD. This
component depends on both the frame size and the down-
link bandwidth allocated to its slice by the orchestrator.

If we set a maximum allowed MTP latency Tmax, we can
then derive a condition on the minimum bandwidth B(k) to be
assigned to the nth customer in the kth interval of time

B(k) ≥ F (k)

η (Tmax − τm − 2τp − τf − τr)
. (7)

where η is the spectral efficiency, known to the BS. However, τm
and τf are random variables, so we can set a stricter condition
that guarantees that the latency requirement is met in the worst
case by substituting their maximum values, i.e., Δu and ϕ−1,
respectively. We hence obtain

B(k) ≥ F (k)

η (Tmax −Δu − 2τp − ϕ−1 − τr)
. (8)

For the sake of readability, we denote the maximum time allowed
for the RAN transmission to fulfill the MTP latency requirement
as Ttx, i.e.,

Ttx = Tmax −Δu − 2τp − ϕ−1 − τr. (9)

Finally, to ensure the stability of the queue at the BS, the average
allocated bitrate, ηE[B(k)], must be larger than the application’s
average bitrate, i.e.,

ηE[B(k)] > ϕE[F (k)]. (10)

B. Slicing Schemes

We can then define four ways of allocating resources to the
VR users:

1) Individual FDMA (IF): each individual VR user is allo-
cated to a different slice that it can fully exploit, and each
slice has a constant bandwidth over the nextS frames. The
bandwidth is then given by

B
(m)
IF (kS + �) =

P−1
m (ps|S, 1, kS) + qm(t)

S

ηmTtx
, (11)

with � ∈ {1, . . . , S}. The scheme uses Frequency Divi-
sion Multiple Access (FDMA), as the bandwidth B is
constant over the whole slicing interval. In order to avoid
instability, the qm(t) queued bits need to be considered in
the slicing, but they are spread out over the S frames in the
slicing period, so as to avoid excessive overprovisioning.

2) Individual OFDMA (IO): in this case, each user is still
assigned to their own individual slice, but there is a
finer-grained control over the assignment of bandwidth
resources, allowing frame-by-frame control of the band-
width assignment by using Orthogonal Frequency Divi-
sion Multiple Access (OFDMA). In this case, the queued
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bits can be handled in the first frame

B
(m)
IO (kS + 1) =

P−1
m (ps|1, 1, kS) + qm(t)

ηmTtx
. (12)

In all subsequent frames, i.e., for � ∈ {2, . . . , S}, the
bandwidth assignment B(m)

IF (t) is then given by

B
(m)
IO (kS + �) =

P−1
m (ps|1, �, kS)

ηmTtx
. (13)

3) Aggregated FDMA (AF): while the two schemes described
above give each user a slice of their own, this scheme
performs FDMA, so it maintains a constant bandwidth
throughout, but considers a single slice for the VR ser-
vice, which is shared by all users. This allows users with
larger than expected frames to exploit the bandwidth left
unused by others with smaller than expected frames, but
requires another, more fine-grained scheduler to divide the
resources among users, which we will describe below. If
we consider an oracle prediction, the required bandwidth
B∗(kS) to deliver all the generated data is given by

B∗(kS) =
M∑

m=1

qm(t)
S +

∑S
�=1 F

(m)(kS + �)

ηmTtx
. (14)

We can express the required bandwidth as the sum of two
components, B∗

q(kS) and B∗
f (kS)

B∗
q(kS) =

M∑

m=1

qm(t)

SηmTtx
; (15)

B∗
f (kS) =

M∑

m=1

S∑

�=1

F (m)(kS + �)

ηmTtx
. (16)

While B∗
q(kS) is a deterministic, known value, as it only

depends on the amount of queued bytes for each user,
the bandwidth B∗

f (kS) required to transmit future frames
is unknown, as the size of these frames is stochastic. The
distribution ofB∗

f (kS) is given by the convolution ofMS
Laplace distributions, and the details of its computation are
given in the Appendix, available online. If we denote the
quantile function of this distribution asP−1

1,...,M (ps|S, 1, t),
we get, with � ∈ {1, . . . , S}

BAF(kS + �) =
P−1
1,...,M (ps|S, 1, kS) +

∑M
m=1

qm(t)
S

ηmTtx
.

(17)
We assume that users are synchronized, so that frames
arrive approximately at the same time: this results in
a need-based scheduler delivering the frames from all
users approximately at the same time, allocating more
bandwidth to users with a larger frame (or a lower spectral
efficiency). This is a slight simplification, but we can easily
adapt the mechanism to the asynchronous case with a
limited loss of performance. The choice of a need-based
scheduler leaves the decision of setting user rates to flow
admission, serving users equitably once they access the
system.

TABLE III
BASIC SCENARIO PARAMETERS

4) Aggregated OFDMA (AO): as we did for the individual
slicing, we can also create aggregated slices with a finer-
grained control of the bandwidth allocation. In the first
frame, the queues need to be flushed before new data can
be transmitted

BAF(kS + 1) =
P−1
1,...,M (ps|1, 1, kS) +

∑M
m=1 qm(t)

ηmTtx
.

(18)
For � ∈ {2, . . . , S}, we then have

BAO(kS + �) =
P−1
1,...,M (ps|1, �, kS)

ηmTtx
. (19)

Naturally, if there is only one user, i.e.,M = 1, the AF and AO
slicing schemes are the same, as are the IF and IO, respectively.
In the same way, the FDMA and OFDMA slicing schemes are
equivalent if S = 1, as the allocation is performed over the
shortest possible unit of time, i.e., a single frame period. All
slicing schemes ensure the stability of the queue by considering
qm(t) in the bandwidth allocation, inherently ensuring that the
condition in (10) is met. The calculation of the aggregated traffic
distribution is given in the Appendix, available online.

VI. SIMULATION RESULTS

In order to evaluate the performance of predictive slicing
schemes, we run a Monte Carlo simulation based on a simple
system: we set fixed values for τp and τr, and considered a simple
point to point channel with a constant capacity. The simulations
were run through a Python script, which is available with the
analysis code, and are meant to highlight the trade-off between
the two fundamental Key Performance Indicators (KPIs) of the
system: the MTP latency and the bandwidth B reserved to the
VR users. Ideally, a system should be able to maintain the
MTP latency below the required threshold while limiting the
required bandwidth. The main parameters of the scenario are
listed in Table III, and will be used in all simulations, unless
stated otherwise. We chose Tmax = 50 ms, which is consistent
with the relevant literature, though looser than in the IEEE
standard [22]: as the application we used for measuring has
Δu = 7ms (on average) andϕ = 60 FPS, even an instantaneous
transmission would incur an MTP latency over 20 ms in the
worst case. The stricter deadline set by the IEEE standard is
then impossible to meet with the considered application, and we
chose a looser but still realistic deadline, leaving the fulfillment
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Fig. 15. Average and worst-case percentiles of the latency and assigned bandwidth of a single user as a function of the quantile ps, with S = 6.

of the more demanding one to future work with more powerful
XR applications. The simulation setup is simplified, as it only
involves a simple channel without any mobility or wireless fad-
ing, but it can highlight the main features of predictive NS. More
complex scenarios, which could include channel prediction into
the system, will be considered as future work.

We also considered τp = 5 ms and τr = 5 ms, considering
a powerful Cloud VR server located relatively close to the
user. The final parameters are close to the 3GPP recommenda-
tion [38], which specifies a rate R = 30 Mb/s and ϕ = 60 FPS,
although our DL latency budget is slightly looser, as the BS has
11.3 ms to stream each frame, while 3GPP specifies 10 ms as
the target.

A. Single User

We can now examine the simulation results for a single user.
Fig. 16 shows the schemes’ latency and assigned bandwidth
as a function of S, setting ps = 0.95 and N = 6: we can note
that IO manages to maintain a constant latency, with a 95th
percentile latency of 51 ms, while the latency for IF tends to
increase with S. This is due to the effect mentioned above, as IO
can assign each frame enough resources to satisfy the latency
bound even in the worst-case outcome, while IF must rely on
a rougher prediction. However, this comes at a cost: IO needs
to allocate more bandwidth resources to maintain the latency
as S grows, while IO can allow some frames to arrive with
a higher latency, compensating the frame size variation while
using fewer resources. The performance of static slicing is not
shown here, as it would require expanding the boundaries of the
plot: a fixed allocation close to the bandwidth that IF and IO
use leads to a significantly higher average latency, with peaks of
hundreds of milliseconds, highlighting the need for predictive
slicing schemes.

Both models are realistic, as they work under different as-
sumptions: in the first case, the resources that are allocated for
each frame need to be over both time and frequency, while
the second case gives the slice a constant bandwidth over the
slicing interval, which is the most common slicing model in
the literature. Naturally, the choice between the two models
depends not only on the desired point in the trade-off between
QoS and resource efficiency, but also on the capabilities of
the underlying system: state-of-the-art slicing frameworks often

consider a period Δt = 100 ms, which would correspond to
S = 6 frames, and the granularity of the slicing over time and
frequency will dictate whether IO is even an option.

We can also consider the performance of the schemes as
a function of ps, which allows the schemes to move along
the trade-off between bandwidth and latency: higher values
correspond to more extreme percentiles on the tail of the frame
size distribution, causing the NS algorithms to assign more
bandwidth to the VR flow. Fig. 15 shows the slicing performance
as a function of the value of ps. We can notice that the closer
ps gets to 1, the larger the effect of small changes in the
parameter becomes, as we approach the right tail of the estimated
distribution. Additionally, IO maintains an advantage over IF in
terms of latency, which is around 1 ms for all percentiles, but
on the other hand, it also requires between 500 kHz and 1 MHz
more at any given percentile. The trade-off between latency and
bandwidth is crucial, and by setting the appropriate value of
ps, we can adapt the priorities of the schemes. Interestingly,
setting ps = 0.985 with IF results in similar performance to IO
with ps = 0.95, with an only slightly higher bandwidth and the
same latency. This shows that a properly tuned IF can perform
almost as well as IO, without the additional requirements for
finer-grained slicing: in this case, IF is a more attractive scheme
for implementation, as it fits better with the assumptions of most
RAN NS solution. The only downside is that choosing the correct
value of ps to compensate for the slicing scheme’s optimism
is not simple, particularly in more complex network scenarios,
while it is relatively straightforward for IO.

B. Multiple Users

We can now consider a more complex scenario, in which
multiple VR users are served by the same BS. We will first
analyze the impact of the number of users M on the system,
considering the case in which all users have the same spectral
efficiency η = 5 b/s/Hz, and stream the same content (i.e., the
Virus popper trace at 60 FPS and 30 Mb/s), although starting
with a random offset. Furthermore, as we stated in Section V-B,
we assume that all VR users are synchronized, i.e., frames from
all users come at the same time: this is a slight simplification,
which does not have a significant effect on performance.

Fig. 17 shows the latency and assigned bandwidth for the
scenario: as for the single user case, static slicing is not shown,
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Fig. 16. Boxplot of slicing performance for IF and IO for a single user.

Fig. 17. Boxplot of the latency and per-user bandwidth as a function of the number of users.

Fig. 18. Boxplot of the latency and bandwidth for each user in the scenario from Table IV.

as the latency for similar bandwidth allocations can explode,
with peaks close to 1 s. In general, IF and IO maintain a lower
average latency, as shown by Fig. 17(a), but their aggregated
versions have the same maximum latency violation probabilities.
The same pattern that was present in the single user simulations,
with the FDMA slicing schemes having a higher latency but
using less bandwidth than the OFDMA ones, is present here.
However, there is an interesting pattern in Fig. 17(b): while the IF
and IO schemes have the same per-user bandwidth performance
regardless of the number of users, AF and AO gradually use
less bandwidth for each user as M increases. This is a sig-
nificant advantage with respect to individual slicing, which is
compounded by the lower jitter: it is caused by the aggregated
schemes compensating for larger frames by exploiting the law
of large numbers. Aggregating multiple users results in a dis-
tribution with a relatively shorter tail, as the 95th percentile of

TABLE IV
MULTI-USER SCENARIO PARAMETERS

the sum of M random variables is smaller than the sum of the
95th percentiles of their M distributions. This effect has a dual
benefit, as it simplifies the NS algorithm, grouping all VR users
in the same slice and using simpler scheduling mechanisms to
assign resources inside the slice.
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Fig. 19. Average and worst-case percentiles of the latency and assigned bandwidth as a function of the quantile ps in the multi-user scenario defined by the
parameters in Table IV.

We can also analyze the results for each user in a more
challenging scenario, whose detailed parameters are given in
Table IV: each user has a different video bitrate Rm and a
different spectral efficiency, but they have a common frame rate
ϕ and are synchronized.

Fig. 18 shows the latency and assigned bandwidth for the 6
users, presenting some interesting patterns. As Fig. 18(a) shows,
the latency for all users is the same when using the aggregated
slicing schemes, as resources are assigned with a fair scheduler,
while individual slicing can cause some additional variability for
users with a higher frame size variability. However, in general
all slicing schemes try to maintain a latency close to the bound,
avoiding the waste of bandwidth resources while respecting the
latency requirements. On the other hand, the bandwidth assigned
to each user, shown in Fig. 18(b), is similar for all schemes, with
the aggregated ones having a slightly lower resource utilization.
This is due to the fact that the average required bandwidth
B̄m = Rm

ηm
, whose value for each user is given in Table IV,

is the main factor in assigning bandwidth resources, both with
individual and aggregated schemes: we can easily see that users
1, 2, and 5, who have the lowest values of B̄m, are also assigned
the least bandwidth by the slicing schemes. Interestingly, user 5
is actually the one with the lowest bandwidth, although users
1 and 2 have lower values of B̄m: this is due to the higher
relative variations in the video traces at lower bitrates, as can be
easily seen from Fig. 13, so that in order to meet the ps = 0.95
requirement, the slicing schemes have to overprovision more for
those users.

C. Performance Considerations

In order to draw some design insights from the results in the
previous subsections, we consider the scenario given in Table IV

and look at the performance as a function of ps, as we did for the
single-user case. Fig. 19 shows the performance of the individual
(on the left) and aggregated (on the right) slicing schemes in the
multi-user scenario defined in the previous section: it is easy to
see that aggregated schemes are superior, as they both maintain
an overall latency closer to the bound at all percentiles, with a
much lower jitter, and use significantly fewer resources. We can
note that the fine-grained allocation of resources that OFDMA
allows is not actually necessary, as the performance difference
between it and FDMA is negligible: this is because the prediction
errors are effectively compensated by other users or frames,
significantly simplifying the scheduling requirements.

We can further analyze the performance difference between
the schemes by plotting their Pareto curves. Pareto curves are
useful to show two-dimensional performance metrics which
need to be traded against one another: the curve includes all
points at the edge of the achievable performance region, i.e.,
points for which it is impossible to improve one metric without
making the other worse. In our case, the two metrics are the MTP
latency and the bandwidth: ideally, we would like both to be as
low as possible, and the Pareto curve is another way of showing
the trade-off we discussed above.

If we define the performance of a slicing scheme g in terms
of latency and bandwidth as qg(ps) = (T,B), we can say that
ps dominates p′s, and we write ps � p′s where ps has a better
performance for both metrics, i.e.,

T (g, ps) < T (g, p′s) ∧B(g, ps) < B(g, p′s). (20)

We can then define the Pareto curve Pg as the set of points that
are not dominated by any other point

Pg � {qg(ps), ∀ps | �p′s : p′s � ps} . (21)
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Fig. 20. Pareto curve of slicing scheme performance.

Fig. 20 shows the Pareto curves for the four schemes, considering
ps ∈ [0.9, 0.995]. The two plots show the performance in terms
of the average assigned bandwidth per user and the 95th and
99th percentiles of latency, and confirm our earlier analysis: the
aggregated schemes can significantly outperform the individual
ones, with a bandwidth reduction of more than 10% to obtain
the same latency performance at the 95th percentile and more
than 20% at the 99th percentile. We can also note that, while
the difference between IF and IO is relatively small for the
95th percentile, it grows for the 99th percentile, as taking the
worst case highlights the limits of the FDMA approach. On the
other hand, the difference between AF and AO is negligible. The
figure also shows a comparison with the Individual Static (IS)
and Aggregated Static (AS) allocation schemes, which give a
constant bandwidth to each slice and represent the state of the
art in NS. We can note two things from the comparison: first,
assigning each user to an individual slice is wasteful even with
respect to static allocation, and second, the AF and AO schemes
reduce the bandwidth consumption per user by about 5% with
respect to the AS scheme, showing the effectiveness of predictive
slicing. This gain is even more noticeable for individual slices,
and cases with 1 or 2 simultaneous clients will show a bandwidth
reduction of about 10% for the same latency reduction.

In addition to significantly improving the performance, ag-
gregated schemes can also simplify the NS mechanism, as they
require fewer decisions by grouping VR users in a single slice.
This fact, along with the negligible performance gap with respect
to AO, makes AF the most attractive algorithm for a real imple-
mentation in 5 G and Beyond networks. We remark again that
the need for predictive slicing is dire, as static slicing schemes
cannot provide reliable MTP latency performance without sig-
nificant resource overprovisioning. All these considerations are
even more significant for VBR VR content, as the variations with
that encoder setting are at least an order of magnitude bigger.

VII. CONCLUSION

This work aims at closing a gap in the literature on traffic
source modeling: there are several analyses for passive stream-
ing, both 2D and in immersive setups with Head Mounted
Devices (HMDs), and some for live gaming traffic in 2D,
but none for interactive VR with strict latency requirements
and quasi-CBR encoding. We analyzed live captures from a

setup we devised, publishing both the dataset and the code for
the analysis, and presented the performance of two regression
models. The first part of our discussion analyzes the predic-
tion models, determining the necessary memory in the linear
regression, the residual distribution, and the correctness of the
linear model. The prediction models are simple and flexible,
as they generalize extremely well across different traces and
bitrate settings: this means that a shared pre-trained model can be
used with good performance across different video contents and
bitrates.

We then showed a simple Network Slicing (NS) scenario,
which highlights the importance of the trade-off between re-
source efficiency and QoE. This is a first step towards fully
designing an NS system able to satisfy the stringent QoS re-
quirements of XR applications also in critical scenarios, e.g.,
in industrial settings, in which the consequences of network
failures are not only discomfort and nausea for the user, but
also significant delays in production and even safety hazards.
The results we obtained show a significant trade-off between
resource efficiency and MTP latency guarantees, which can be
improved significantly if multiple VR users are put together in
the same slice, sharing Radio Access Network (RAN) resources
using a fair scheduler.

The results that we obtained are specific to the H.264 quasi-
CBR mode, but the basic experimental and analytical method-
ology would be the same for other encoders, or even VBR
traffic. In the latter case, we expect the variability of frame
size, and the error in any prediction, to be higher by up to
an order of magnitude, making predictive slicing without any
application-level inputs extremely hard.

There are several additional analyses and opportunities for
future work, that can be divided in two main directions. The
first potential avenue of research is a wider characterization,
with different encoding parameters and even different encoders,
and considering different applications, going beyond simple VR
games to include the industrial and commercial use cases we
mentioned above, and a wider set of subjects. The traces should
also integrate a record of the head movements of the users, as
they correspond to shifts in the point of view of the VR headset
and are expected to be strongly correlated with frame size
changes. In order to consider the complex interactions between
user movements, video content, and the generated traffic, more
advanced predictors such as neural networks could be helpful,
but would incur the risk of overfitting the model and the need
for a wider dataset.

The other challenge is to actually design slicing schemes and
scheduling algorithms able to take into account the nature of the
traffic and accommodate it, efficiently exploiting the prediction
and adapting to the peculiarities of different communication
technologies or even multiple independent links. The use of
packet-level coding to protect the stream from link failures
and deep fading events can be a promising avenue to design
a solid framework to support XR in mission-critical scenarios.
The study of these techniques at all levels of the communication
stack, simulating connection impairments in repeatable condi-
tions through a full-stack network simulator, is our first priority
in the ongoing work on this subject.
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