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Abstract—Indoor positioning performed directly at the end-user
device ensures reliability in case the network connection fails but is
limited by the size of the Received Signal Strength (RSS) radio map
necessary to match the measured array to the device’s location. Re-
ducing the size of the RSS database enables faster processing, and
saves storage space and radio resources necessary for the database
transfer, thus cutting implementation and operation costs, and
increasing the quality of service. In this work, we propose EWOk,
an Element-Wise cOmpression using k-means, which reduces the
size of the individual radio measurements within the fingerprinting
radio map while sustaining or boosting the dataset’s positioning
capabilities. We show that the 7-bit representation of measurements
is sufficient in positioning scenarios, and reducing the data size
further using EWOk results in higher compression and faster data
transfer and processing. To eliminate the inherent uncertainty
of k-means we propose a data-dependent, non-random initiation
scheme to ensure stability and limit variance. We further combine
EWOk with principal component analysis to show its applicability
in combination with other methods, and to demonstrate the effi-
ciency of the resulting multidimensional compression. We evaluate
EWOk on 25 RSS fingerprinting datasets and show that it positively
impacts compression efficiency, and positioning performance.

Index Terms—Clustering, compression, dimensionality reduc-
tion, fingerprinting, indoor positioning, k-means, k-nearest
neighbors, on-device computing.

I. INTRODUCTION

P ERFORMING localization and positioning in indoor en-
vironments on end-user devices is a crucial requirement

for various mobile-centric applications in public and industrial

Manuscript received 22 November 2021; revised 14 March 2023; accepted
12 May 2023. Date of publication 17 May 2023; date of current version 4
April 2024. This work was supported in part by the European Unions Horizon
2020 Research and Innovation programme under the Marie Sklodowska Curie
under Grants 813278 and 101023072, and in part by the Academy of Finland
under Grants 319994 and 323244. (A-WEAR: A network for dynamic wearable
applications with privacy constraints, http://www.a-wear.eu/) (ORIENTATE:
Low-cost Reliable Indoor Positioning in Smart Factories, http://orientate.dsi.
uminho.pt) Recommended for acceptance by Q. Zhang. (Corresponding author:
Lucie Klus.)

Lucie Klus is with the Department of Electrical Engineering, Tampere Uni-
versity, 33720 Tampere, Finland, and also with the Institute of New Imaging
Technologies, Universitat Jaume I, 12071 Castellón de la Plana, Spain (e-mail:
lucie.klus@tuni.fi).

Roman Klus, Elena Simona Lohan, and Jari Nurmi are with the Department of
Electrical Engineering, Tampere University, 33720 Tampere, Finland (e-mail:
roman.klus@tuni.fi; elena-simona.lohan@tuni.fi; jari.nurmi@tuni.fi).

Joaquín Torres-Sospedra is with ALGORITMI Research Center, Universi-
dade do Minho, 4800-058 Guimarães, Portugal (e-mail: jtorres@uji.es).

Carlos Granell is with the Institute of New Imaging Technologies, Universitat
Jaume I, 12071 Castellón de la Plana, Spain (e-mail: carlos.granell@uji.es).

Digital Object Identifier 10.1109/TMC.2023.3277333

sectors, extending beyond location-based services to mobility
management, resource management, and user-centric applica-
tions. The arrival of Fifth Generation Mobile Networks (5G)
technologies enables sub-meter positioning accuracy in out-
door scenarios, but a global and unified solution is still miss-
ing in Global Navigation Satellite System (GNSS)-restricted
situations. Cloud, fog, or network-based localization methods
proposed in recent studies, such as [1], require a continuous
network connection, and therefore any connectivity loss results
in simultaneous localization failure. End-user devices or User
Equipment (UE)s, such as mobile phones, wearables, or Internet
of Things (IoT) devices are often limited in their performance by
battery limitations, network accessibility, or other computational
constraints. Therefore, reducing the computational, storage, and
network requirements is essential to run efficient positioning
algorithms on such devices [2]. Whether applied in an indus-
trial complex, hospital, entertainment center, or shopping mall,
finding fast and lightweight techniques for reliable localization
is essential for asset security, user safety, Quality of Experience
(QoE) and Quality of Service (QoS).

Utilizing radio signal measurements for indoor localization
is widely applied across technologies, including IEEE 802.11
Wireless LAN (Wi-Fi), Bluetooth Low Energy (BLE), Ultra
Wide-Band (UWB) or cellular network signals, while utiliz-
ing various techniques, such as propagation-based models, fin-
gerprinting, or dead-reckoning [3], [4]. The signals used for
localization range across signal strength measurements (RSS,
Reference Signal Received Power (RSRP)), directional mea-
surements (Angle of Arrival (AoA)) and temporal information
(Time Difference of Arrival (TDoA)).

In a typical indoor environment, such as a factory, office
complex, or university, the signal propagation is characterized
by sparse Line of Sight (LoS) and strong multipath propagation,
making the model-based localization techniques unreliable, just
like directional or temporal signal measurements, which is why
RSS measurements and non-parametric methods are utilized. In
the scope of this work, we focus on RSS-based indoor position-
ing called fingerprinting as one of the most relevant indoor po-
sitioning methods [5], [6], which typically utilizes a K-Nearest
Neighbors (K-NN) [7] model to estimate the UE position by
finding the closest samples from the labeled training database
(radio map). The volume and quality of the radio map determine
the achievable performance, but the more samples the radio map
consists of, the slower and more computationally complex the
positioning task is. Consequently, K-NN-based fingerprinting
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Fig. 1. Simplified block diagram of the proposed system, where EWOk is used
to create the reduced radio map and K-NN estimates the user’s position.

creates a trade-off between maximizing and minimizing the size
of the radio map and its efficient utilization becomes challenging
in large-scale deployments, as well as on performance-restricted
devices [8].

To reduce the strain on the positioning device we propose and
evaluate EWOk, an Element-Wise cOmpression using k-means,
which reduces the size of the individual elements of the RSS
radio map on the bit level while sustaining the database’s po-
sitioning capabilities. The simplified implementation of EWOk
to a K-NN-based positioning scheme is introduced in Fig. 1.
EWOk, as a compression scheme, achieves a substantial re-
duction of the radio map data size, while leaving the number
of samples and Access Point (AP)s in the dataset unchanged.
Multi-dimensional compression can be achieved by combin-
ing EWOk with additional sample-wise compression schemes.
EWOK performs initial compression and offline evaluation of
the dataset positioning performance on the network side, while
the end-user devices only perform localization on the reduced
database in real-time. The proposed implementation of EWOk
with K-NN positioning has the following advantages over the
plain K-NN deployment:
� Due to the reduced radio map, the system effectively saves

network data, as well as on-device storage.
� Adjustable trade-off between Compression Ratio (CR) and

positioning error, which enables EWOk to adapt smoothly
to deployment requirements.

� A faster operation of the fingerprinting models while using
K-NN, especially on voluminous datasets.

The main contributions of this paper are as follows:
� We implement EWOk, an Element-Wise cOmpression us-

ing k-means, as an effective RSS radio map compression
technique applicable on fingerprinting datasets. We show
that all RSS data points can be stored using a 7-bit represen-
tation with negligible compression error, and that they can
be further compressed into lower-bit representations using
EWOk. Consequently, we propose an RSS-based Indoor
Positioning System (IPS) with an offline training phase
performed on the network, and prediction phase at the
UE, while minimizing computational, memory, and data
transfer loads.

� We propose 6 different initialization methods for k-means
clustering based on the input data distribution, removing
the effect of randomness from the resulting positioning
performance. The initialization methods work on arbitrary
data and are not limited to the proposed system.

� We apply and analyse EWOk with K-NN positioning
on 25 different RSS positioning datasets (Wi-Fi, BLE,
and simulated), and compare the localization performance
before and after the compression, when utilizing both the
simple configuration and the best-performing positioning
algorithm settings of theK-NN, according to the known lit-
erature. We then further improve the compressed-datasets
positioning performance by finding the optimum param-
eters for our implementation, resulting in improved posi-
tioning compared to the best-performing parameter results
across all datasets.

� We demonstrate the multi-dimensional compression capa-
bilities of EWOk by combining it with Principal Compo-
nent Analysis (PCA) to achieve the combined compression
of both feature-vector and individual data elements. We
show, that the combined approach outperforms the stan-
dalone solution in terms of trade-off between the position-
ing accuracy and CR by a significant margin.

All the contributions mentioned above have a positive impact
on extending the capabilities of the current on-device IPSs by
enabling UEs to operate with larger, and therefore more robust
and accurate positioning databases. The solution can be imple-
mented across the spectrum of technologies and deployments,
and ensures the efficient and uninterrupted localization regard-
less the connectivity status. Additionally, stand-alone EWOk
might be applied on other (including non-positioning) kinds of
data.

The rest of this paper is structured as follows: Section II
presents the overview of the current State-of-the-Art and pin-
points the knowledge gaps, which are filled by this paper. Sec-
tion III describes the methods and materials used in this paper.
These are further utilized in Section IV, where the proposed
method is explained in detail. Section V introduces the metrics
used for the evaluation of the proposed system and presents
the numerical results, followed by the Discussion subsection.
Section VI summarizes the main findings.

II. RELATED LITERATURE

A. Fingerprinting-Based Indoor Positioning

Fingerprinting localization is one of the most popular solu-
tions of IPS, mostly as it does not require previous knowledge
of the environment or location of APs on the side of the model.
As a trade-off, its performance is strongly determined by the
database of available fingerprints, namely the database’s quality,
granularity, and up-to-dateness. The State-of-the-art (SOTA) on
indoor positioning is surveyed in [3], [4], [9], [10], discussing
available solutions, algorithms, and technologies for IPS. These
surveys list and evaluate localization techniques, used tech-
nologies, and/or applications of indoor localization in health,
security, or tracking services.

The key challenge of fingerprinting is to ensure a stable
environment with a high-quality radio map. The authors of [11]
proposed a secondary BLE beacon deployment in areas poorly
covered by Wi-Fi signal and proposed a hierarchical system
to perform localization. The authors achieved good positioning
accuracy, but the additionally needed infrastructure could prove
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unfeasible in certain cases (cost, restrictions, etc.). To cope
with the rapid changes within the localization environment,
such as AP movement or power adjustment, the authors of [1]
proposed an automatic fingerprint update algorithm to filter out
any outdated APs in the environment by using Gaussian process
regression. The work proposed that the UE localization and
database update are performed at the server side, which, on one
hand, reduces the computational load for the UE, but, on the
other hand, disables the localization if the connection link is lost.
In contrast, our proposed scheme does not reduce the number of
APs, nor the number of measurements. The authors of [12] built
an IPS without performing a site survey from the Full Model
(FM) signal distributions. They proposed a model based on
public data about base stations’ locations to obtain the radio map
by using a path-loss model. The localization is then performed
using K-NN method and path-matching with promising results.
Another Wi-Fi localization system without the requirement of
prior site survey was designed in [13]. Tilejunction model pro-
posed in [14] utilizes a linear programming approach to mitigate
the noise contained within Wi-Fi fingerprints for accurate local-
ization by matching the results to created tiles, rather than the
training fingerprints. The presented results showed an improved
positioning performance over the benchmark methods, such as
Kullback-Leibler divergence-based method or RADAR [15].
The low-overhead fingerprinting system proposed in [16] re-
duces the implementation overheads by region-partitioning the
APs in the deployment. The evaluation performed with het-
erogeneous devices over a long period showed the method’s
robustness. Similar conclusions were found in [17], implement-
ing a self-updating algorithm for RSS samples. The authors
of [18] propose a novel matching algorithm for localization that
considers spatial relations between the samples on top of their
similarity in feature space.

B. Boosting the Performance of K-NN Fingerprinting

Much research has focused on improving the K-NN’s per-
formance by utilizing additional algorithms or physical quan-
tities [5]. For instance, combining RSS, magnetic, and motion
data can highly increase the quality of the crowdsourced finger-
printing database, as well as that of the prediction itself. The
UbiF in system proposed in [19] mitigates signal bias and path
error while mapping both Radio Frequency (RF) and magnetic
data into the training database. The presented results outperform
the stand-alone RSS solution by a significant margin. When
performing prior clustering, as proposed by [20], their algorithm
is able to boost the fingerprinting prediction speed. Specifically,
it narrows the K-NN search space to the fingerprints with the
same strongest AP as a reference measurement. Consequently,
the improvement in the prediction speed leads to a decrease in
positioning accuracy.

Numerous works aim to improve the performance of K-NN
by optimizing the algorithm itself by e.g., weighting samples or
features. A two-fold, Weighted K-NN algorithm is proposed
in [21], where in the first iteration the algorithm selects the
closest cluster of fingerprints, and it finds in the second iteration
the positioning estimates from searching in the selected cluster’s

samples. The method boosts prediction time at the cost of
positioning accuracy.

In this work, we focus on improving the performance of
K-NN by combining it with additional methods (clustering and
PCA). As a side note, the utilized code performs matrix-based
distance search and task parallelization, which boost the predic-
tion speed compared to the plain algorithm but are not the main
research objectives of this work.

C. RSS Radio Map Compression

The initial idea of utilizing k-means clustering as a compres-
sion method was previously presented by the authors in [6]. The
work introduced an offline compression scheme with an online
adaptive loop, which allows datasets to update over time and
therefore is able to adjust to a slowly changing environment.
Although the resulting adaptive algorithm does not decrease
positioning performance, it assumes all online fingerprints as
trustworthy and indirectly incorporates them into the training
dataset. The work simplifies the setting of parameter k depend-
ing on the number of unique values in the training data only,
leading to sub-optimal settings for certain datasets, resulting in
higher errors at the same compression level. The uncertainty of
the random initialization is not considered as well.

The authors of [22] combine the floor-wise k-means cluster-
ing with K-NN algorithm to significantly reduce the radio map
and the floor prediction time, compared to the standard K-NN
approach. The proposed model extracts several representative
centroid heads per floor, which are later used to estimate the floor.
The resulting floor hit rate is comparable with the benchmark
method.

The topic of radio map compression while boosting the per-
formance capabilities was also broadly covered by [23]. The
fingerprinting dataset is transformed into a radio map image,
which is compressed using Discrete Cosine Transform (DCT).
This method allows significant size reduction while its position-
ing capabilities are comparable to the traditional fingerprinting
approach. The disadvantage of utilizing DCT to compress the
radio map is the necessity to perform inverse DCT to recover all
fingerprints before utilizing the data further.

In contrast to the literature presented above, we propose a
lightweight compression method that can be implemented into
any existing mobile system that boosts the desired system’s
data storage and transfer capabilities. Additionally, we consider
25 different indoor positioning datasets previously used in the
literature for evaluation, rather than considering only a single,
convenient deployment, in order to show the wide and unre-
stricted applicability.

III. MATERIALS AND METHODS

In this section, we introduce the algorithms, parameters and
datasets that contribute to the proposed solution. The symbols
and notations used in the paper are summarized in Table I. For
the sake of clarity, we denote the number of clusters of k-means
as k, while the number of considered neighbors of K-NN is
represented by capital K.
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TABLE I
SYMBOLS AND NOTATION USED IN THIS PAPER

A. K-Nearest Neighbors Algorithm

The K-NN algorithm is one of the most commonly used
indoor positioning methods, especially in the context of finger-
printing approaches [3], [7], [12]. The algorithm requires the
existing (training) database of fingerprints consisting of features
(RSS measurement array) and the corresponding labels (posi-
tioning coordinates, building, and floor indexes). To estimate
the labels of a new sample, it calculates its distance to each sam-
ple’s features from the training database based on the specified
distance metric. For K-NN algorithm, the training dataset is not
used to train the specific weights or parameters of the model, as
is the case with Neural Network (NN), Support Vector Machine
(SVM) or other Machine Learning (ML) algorithms. Here, the
training database serves directly as a source of samples that are
used to predict the currently considered labels. As such, the plain
version of K-NN does require no training, but as a trade-off,
prediction is usually more resource-expensive than in the other
methods, especially if the training dataset is voluminous. The
lack of training phase forK-NN is often considered an advantage
since there is no risk of poorly training the model, which can
occur when using ML methods. Despite K-NN’s drawbacks
and limitations, it is still one of the most efficient, accurate
and well-performing algorithms used for indoor positioning
purposes [24], [25].

In terms of complexity, the training phase of K-NN is de-
scribed as O(1) as no prior training is required, while the
complexity of prediction is generally defined as

O(Stest ·K ·AP ), (1)

depending on the size of the vocabulary (num. of training
samples), the number of considered neighbors, and the dimen-
sionality of the input. Moreover, the complexity of K-NN is
dependent on the selected distance metric.

Much research in the related literature has resulted in numer-
ous extensions and alterations of the K-NN. Weighted K-NN
(WKNN) and its alternatives [26], authors in [27] additionally
consider the importance of chosen nearest neighbors by the
inverse of their distance, which in certain cases leads to improved
performance. The optimization of K-NN’s prediction time by

applying clustering is widely described in Section II. The authors
of [28] propose the kTree method to choose the optimal number
of neighborsK without the costly cross-validation. In this work,
we utilize the plain version of K-NN.

B. k-Means Algorithm

One of the fundamental building blocks of the proposed
compression algorithm is the utilization of k-means clustering
algorithm [7] to reduce the number of possible values in the
RSS data. Consequently, the allowed values are based on the
data distribution of the specific dataset, minimizing the resulting
reconstruction error caused by the compression. As a result, we
are able to represent each value from the whole RSS dataset
using a smaller number of bits, as we described below.

Despite the k-means clustering algorithm being one of the ba-
sic clustering approaches, careful choice of its hyper-parameters
and behavior is crucial in order to maximize performance. The
first and foremost parameter of the method is the selection of
the number of clusters, denoted as k. In k-means, each cluster
is specified solely by its centroid coordinates, and the final k is
selected most commonly by parameter sweeping. The proposed
k-means compression in EWOk is based on substituting the
values of the RSS data in the dataset with the coordinate of
their closest centroid (a single number).

The second parameter, the distance metric, defines how the
similarity between each sample and the centroids is calculated.
In addition, other parameters and configurable functions in-
cluded in the algorithm are defining the iterative behavior, the
means of centroid initialization before the first iteration, the
action after finding the empty centroid, the maximum number
of iterations, convergence definition, number of replicates, and
more.

The k-means is initialized by selecting k initial clusters ac-
cording to the pre-defined initialization method. Next, the algo-
rithm repeats the following two steps until convergence. First,
each input sample is assigned to its closest centroid based on the
distance metric. Second, the centroid coordinate is adjusted to
minimize the distance to all its assigned samples. The algorithm
finishes after the centroid coordinates do not change between two
iterations (convergence) or the maximum number of iterations
is reached.

We utilize k-means, rather than other, more complex clus-
tering algorithms since our goal is to define each cluster by
a singular value in order to perform efficient compression.
Compared to Gaussian mixture model clustering, which defines
each cluster centroid by its center coordinate and its covariance,
k-means is much faster to train since it does not have to fit the
distributions in each iteration. One of k-means’ advantages is
its linear complexity of training defined as

O(n · k · d · i) (2)

where n determines the number of d-dimensional samples, k
represents the number of clusters and i the number of required
iterations to converge [7]. For EWOk, the complexity is defined
as

O(Strain ·AP · k · i) (3)
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as the inputs are one-dimensional and the number of input
samples equals Strain ·AP . The k-means’ downside of being
able to represent only symmetric shapes is diminished by the fact
that we consider single numbers as inputs. Other methods, e.g.,
density-based clustering methods, are unsuitable for the task.

C. Data Representations and Distance Metrics

As described above, both k-means and K-NN algorithms
measure the similarity between samples based on their calcu-
lated distance. As a result, two separate parameters are imple-
mented and applied on the data within the system, namely data
representation and distance metrics.

Signal strengths are traditionally measured in decibel-
milliwatts (dBm), and the difference of 3 dBm means a double
increase or decrease of the signal strength measured in Watts.
This example clearly shows that the choice of the units in
which we represent the data has a large impact on the result-
ing differences between two samples. The ”units” in which
we represent the data are specified by the data representation
parameter. We consider 3 data representation options: positive,
powed with β = e, and exponential with α = 24, as defined
in [29]. Positive data representation is a linear transformation,
which subtracts the minimum value from the database from
all samples and represents the unmeasured APs by 0. Powed
and exponential representations introduce non-linearity to the
measurements, which improve later positioning performance of
certain datasets [5].

After turning the data into the desired format by changing their
data representation, it is necessary for both k-means and K-NN
algorithms to calculate the distances between the samples. In
this work, we utilize 9 different distance metrics for K-NN,
namely Manhattan, euclidean, Squared euclidean, Hamming,
Logarithmic Gaussian Distance (LGD), Neyman, Penalized
Logarithmic Gaussian Distance with penalty 10 (PLGD10) and
40 (PLGD40), and Sørensen [29], [30],to optimize the per-
formance of K-NN positioning. The selected distances were
chosen from numerous alternatives based on their performance
and applicability in the related literature.

For k-means clustering, only Manhattan and Squared eu-
clidean distance metrics were considered. When utilizing Man-
hattan distance, compared to the Squared euclidean, the samples
further from the centroid have lesser impact on the result, while
samples closer to it have a stronger impact on the coordinates
of the centroid. Consequently, the centroid selection is more
affected by the “close samples’ majority vote”. The remaining
distances are found unsuitable for the task due to e.g., their
regularization parameters.

D. PCA

PCA is an algorithm, which extracts the principal eigenvectors
from the multi-dimensional data and uses them to transfer the
data into their orthogonal basis [31]. It is usually calculated using
Singular Value Decomposition (SVD) algorithm and is often
utilized for data compression, dimensionality reduction [32], or
feature extraction [33] as stand-alone solution or combined with
other methods.

Fig. 2. General system model, including offline training and online prediction
phases.

We utilize PCA as the compression scheme with the adjustable
CR mechanism based on the desired total variance (denoted
as threshold or Thr) that is meant to be preserved within the
data. After calculating all principal component coefficients, we
only choose the N strongest eigenvectors, within which the
desired total variance is included. The principle of PCA is
widely covered in the referenced literature, therefore we omit
the detailed mathematical description.

E. Available Datasets

In this work, we utilize 25 fingerprinting datasets in order
to evaluate our proposed methods, and compare them to other
previously published works. These datasets were created by
University of Minho, Portugal (DSI 1&2 [34], MINT 1 [35]),
Universitat Jaume I, Spain (SIM 1 [5], UJI 1&2 [36], UJIB 1&2
[37], and LIB 1&2 [38]), University of Extremadura, Spain
(UEXB 1&2&3 [39]), University of Mannheim, Germany
(MAN 1&2 [40], [41]), University of Sydney, Australia
(UTS 1 [42]) and Tampere University, Finland (TUT 1&2 [22],
[30], TUT 3&4 [43], TUT 5 [44], TUT 6&7 [45], SAH 1
and TIE 1 [46]). Additional and detailed information about
the majority of the datasets may be found in [5], including the
SIM 1 dataset. Moreover, we choose the fingerprinting datasets
gathered using multiple technologies, namely Wi-Fi (DSI 1&2,
LIB 1&2, MAN 1&2, MINT 1, TUT 1-7, UJI 1&2, UTS 1),
BLE (UJIB 1&2, UEXB 1&2&3) and simulated environment
(SIM 1), to demonstrate the universal applicability of the pro-
posed solution. Some or all of these datasets were previously
used in many other publications including (but not limited
to) [26], [47].

IV. PROPOSED SYSTEM MODEL

A. General System Model

Below we specify the individual components of the con-
sidered indoor positioning scheme, visualized in Fig. 2. The
proposed Element-Wise cOmpression usingk-means, or EWOk,
includes the k-means clustering of the training features, the
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Fig. 3. Simplified EWOk compression flow with an example of a single
fingerprint compression.

creation of the reduced training database, and the compression
of new samples. The considered positioning prediction (with
the K-NN algorithm) is performed after EWOk. We denote,
that K-NN can be interchanged for an arbitrary positioning
algorithm as it works independently with the EWOk scheme.

In order to off-load the majority of the computational load to
train and evaluate the model from the UE to the network side,
the proposed system model is divided into offline and online
stages. The offline training is realized on the network side,
and its main objectives are to find the representative centroid
coordinates from the training data, compress the original radio
map and evaluate the performance of the system while tuning
the system parameters such as k, initialization method, K in
K-NN or the distance metrics. Online prediction is realized on
the UE’s side and its only objective is to accurately estimate the
device’s location. In practice, to enable the online prediction,
the UE requires the reduced radio map and the centroids. Fig. 2
depicts the overall system model along with the most impactful
parameters of each building block. The offline training is initi-
ated by applying the chosen data representation on the training
features (of the training dataset). Then, the EWOk algorithm is
initiated. As shown in Fig. 2, the main parameters defining the
EWOk’s behavior are the chosen number of clusters k, which
directly sets the achieved CR, initialization method, which is
further discussed below, and the distance metric. The data fed
to the k-means is the matrix of all training features, reshaped
into a single, 1-dimensional vector. The algorithm returns the
coordinates of the centroids and the clustered feature vector. The
matrix of reduced training features is then created by reshaping
the clustered vector to the original matrix shape. In order to
create the reconstructed radio map, the centroid indexes are
substituted with the corresponding centroid coordinates. The
reduced training database is created by pairing the reduced
training features with the corresponding labels (positioning co-
ordinates). The simplified example of k-means training and later
compression of a single fingerprint (AP=8) is depicted in Fig. 3
with k = 4 clusters and without applying data representation on
RSS data for better visualization.

The online prediction is performed sample-wise on the side
of the UE. First, the data representation is applied onto the
sample, after which EWOk algorithm substitutes all values in
the measurement array with the closest centroid coordinate.
Afterward, the K-NN algorithm estimates the corresponding
location by matching the reduced measurement array with the

reduced training database. The behavior of K-NN regressor is
defined by the chosen number of considered neighbors K and
the selected distance metric [5]. Apart from that, the algorithm
averages the neighbors’ labels in case of equal distance from
the sample when exceeding the chosen K, along with additional
supporting functions ensuring the seamless flow of data.

B. Compression Efficiency of RSS Data

In this work, we consider the CR metric as the ratio between
the original and compressed size of the radio map as:

CR =
size(original radiomap)

size(compressed radiomap)
, (4)

where size() denotes the size used to represent the considered
radio map. Therefore, CR = 3 denotes the three-fold decrease of
the radio map size. Since the number of samples is unchanged
throughout the compression process, the interpretation can be
simplified to the ratio of sizes of a single measured RSS sample
before and after its compression.

In order to objectively evaluate the compression capabilities
of the algorithm, which compresses every individual RSS value,
we first define the appropriate benchmark for the CR metric. Ac-
cording to the Institute of Electrical and Electronics Engineers
(IEEE) 802.11 wireless Local Area Network (LAN) standard
on radio resource measurements [48], ETSI EN 300 328 [49]
and ETSI EN 302 502 [50] specifications, the maximum Wi-Fi
antenna transmit power is 20 dBm for 2.4 GHz bands and up to
30 dBm in 5 GHz bands. The highest possible detectable Wi-Fi
RSS values are approx. 10 dBm. Furthermore, the noise floor
of the Wi-Fi signal is approx. −100 dBm, depending on the
device, therefore lower RSS does not have to be considered.
Moreover, the network reports of RSRP within Long Term
Evolution (LTE) system map the measured signal strength into
113 integer values, with the reporting range from −156 dBm
to −44 dBm with 1 dB resolution, as defined in 3rd Generation
Partnership Project (3GPP) standards [51], while the New Radio
(NR) standards consider 128 values [52] instead. According to
the current standards, the RSS values are reported as the whole
numbers Z, limiting their resolution. Consequently, the whole
range of possible RSS values may be represented using 7 bits
data format, since 7 bits are able to represent up to 128 different
values. As the result, the benchmark and the CR value of 1
(no compression) refers to the raw RSS values with 7-bit rep-
resentation. Nevertheless, the measured RSS values in datasets
MAN 2, TUT 1, TUT 2, TUT 5, MINT 1, UEX 1, UEX 2,
UEX 3, UJI B1, and UJI B2 were post-processed by means such
as averaging or interpolating the measurements over a predefined
area. As an outcome, the RSS values in these datasets are stored
in 64 bit (double) format (values belong to a subset of real
numbers R). In our previous work [6], we considered 64 bit
representation as the benchmark for such data. We prove that
the highly accurate data format of the RSS values is redundant
in Section V and that such data can be equivalently represented
using 7 bits only. As such, all RSS values in all datasets are
transformed into the 7-bit representation and thus we are able to
define the common baseline for the CR. Nevertheless, the true
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Fig. 4. Achievable CR using EWOk based on the number of clusters (possible
values) in the data.

CR of real-valued datasets is considerably higher, as we reduce
their bit-wise representation from 64 bits, instead of just from 7.

As described above, EWOk performs the compression of each
element in the radio map. Consequently, the obtained CR of
EWOk towards the 7-bit baseline is calculated as:

CREWOk =
7

ceil(log2(k))
(5)

where ceil() denotes a function rounding up to the nearest inte-
ger, and k is the number of clusters in k-means. We generalize
the EWOk CR to the full radio map compression since the
total number of elements during EWOk (number of APs and
measurements) compression remains unchanged.

It is also possible to show the dependency of the CREWOk

on the number of clusters k in the proposed method, as the
number of clusters directly states the amount of possible RSS
values across the whole compressed dataset. Fig. 4 visualizes
such dependency and shows that the higher the compression
ratio, the lower number of clusters, and therefore fewer bits are
required to distinguish different RSS values.

Fig. 4 also shows that for the maximum CR and the highest
possible number of clusters, it is necessary to choose the number
of clusters k equal to the powers of 2, e.g., 2, 4, 8, or 16, since
those refer to the maximum number of values stored using 1,
2, 3, or 4 bits, respectively. The CR is then calculated as stated
above.

When the multidimensional compression involving PCA is
considered, the CR calculation has to be adjusted accordingly.
PCA reduces the number of APs in the dataset, this is why the
resulting CR (CRpca) is obtained as a ratio of the number of
APs in the original dataset to the number of APs after the PCA
compression. We then combine the two compression schemes,
as described later. The resulting CR of the combined methods
(CRtot) is calculated as:

CRtot = CRpca · CREWOk (6)

Fig. 5. Simplified random initialization example.

In addition, when calculating the CR we consider only the
ratio of the training and test feature sizes before and after
compression. The size of both training and test labels is omitted
in the calculation, as the compression is not applied there and
its impact on the total size is different for each dataset. Addi-
tionally, we omit the additional overhead necessary to perform
the positioning, namely the array of cluster centroids and, in the
case of utilizing PCA, the coefficient matrix. Nevertheless, their
size is insignificant compared to the size of each dataset.

C. Random Initialization Effect of k-Means Algorithm

The main aspect affecting the performance of the K-NN
algorithm is the actual input data (given the same parame-
ters), resulting in an identical outcome each time the algorithm
is repeated. In contrast, the k-means algorithm in its default
version randomly initiates the initial centroid coordinates and
consequently converges to different final constellations. Fig. 5
demonstrates such behavior, depicting three different runs of
EWOk with the same settings and training data while resulting
in different centroid coordinates. As a result, the reconstruc-
tion error of the RSS data, as well as a resulting positioning
performance while utilizing the reduced dataset may vary after
each run. The issue of k-means random initialization effect
was extensively studied in [53], where the authors highlight
the importance of proper initialization algorithm. Moreover, the
survey states that the most reliable way to find the true cluster
centroids is by repeating the algorithm, which creates additional
training overhead.

The initialization of the algorithm also determines the num-
ber of iterations that the algorithm needs to perform before
convergence, as introduced in (2), effectively determining the
algorithm’s complexity. In this work, we evaluate two distinct
random initialization algorithms combined with EWOk, namely
random sample initialization and k++ initialization. Random
sample initialization, further denoted as ”random”, initiates the
centroid locations by drawing k different samples at random
from the input data. The k++ initialization, proposed by [54], is a
randomized version of ”Furthest point heuristic” algorithm [55].
The k++ selects the first centroid at random from the training
samples’ population, and each subsequent centroid is chosen as
a random training sample with the probability proportional to
the sample’s distance from the currently chosen centroids. The
method increases both convergence speed and accuracy of k-
means. Nevertheless, due to the randomness of the initialization
method, the final result after each run may significantly vary and
numerous repetitions of the algorithm have to be performed in
order to find the desired solution.
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In case the evaluation metric is the error between the original
feature vector (all training samples’ features reshaped into a
single vector) and its reconstruction after EWOk, the resulting
performance after each iteration can be easily calculated, and
the best-performing centroid selection can be selected directly.
When applying the clustered dataset’s 3-Dimensional (3D) posi-
tioning accuracy as the primary evaluation metric, as is the case
in this work, the performance evaluation requires extra steps and
effort. According to our experiments, lower difference between
the original and reconstructed samples does not necessarily
mean better positioning performance. Consequently, to evaluate
the centroid selection after each iteration, the system has to
perform K-NN positioning using the compressed dataset to
obtain the value of the 3D positioning error. As such, the cost of
evaluating and optimizing the solution substantially increases.

In this work, we propose several approaches to select the
initial cluster coordinates for k-means algorithm in order to
completely remove the ”different run, different result” method-
ology from the initialization. Those approaches are derived from
the training samples’ distribution. The proposed initialization
settings are based on the Empirical Cumulative Distribution
Function (ECDF) of the input data and their goal is to always
set a reasonable starting point for the clustering algorithm. The
general idea behind all proposed settings is to divide the ECDF
of the vector of training features into segments, whose borders
are selected as the initial centroid coordinates. All initialization
settings disregard the unmeasured values from the input vector
since the majority of samples across all databases include more
than half of their measurements as unmeasured values, which
would consequently skew the ECDF. We propose “max”, “min”,
“xtr”, “imax”, “imin”, and “ixtr” initialization settings based
solely on the input’s distribution, from which the best performing
one can be obtained while evaluating the training database.

The “max” and “min” initializations equidistantly divide the
cumulative distribution function into N segments using N − 1
horizontal lines, where N equals the number of clusters k.
Thus, each segment contains approximately the same number
of (measured) samples. The N − 1 values at which the hori-
zontal lines intersect the distribution are selected as the initial
centroid coordinates. Additionally, ”max” initialization sets the
maximum measured value to theN th cluster, whereas the ”min”
method assigns the minimum measured value - 1 to the N th

cluster (the value considered as the unmeasured in the dataset).
The “xtr” setting equidistantly divides the distribution using
N − 2 lines, and the two remaining clusters are assigned to the
minimum and the maximum, respectively.

The “imax” and “imin” settings (incremental max and min)
divide the ECDF similarly, only the distances between the hor-
izontal lines are linearly increasing. The ECDF is first divided
into

∑N−1
i=o (N − i) segments, and starting from the top, the 1st

horizontal line spans 1 segment, the 2nd line 2 segments, etc. The
intersections of lines and the distribution curve are then chosen
as the first N − 1 centroid coordinates, and the last centroid
is assigned to the maximum and minimum, respectively. The
”ixtr” setting performs the division similarly into

∑N−2
i=o (N − i)

segments and the first N − 2 centroids are chosen accordingly.
The two remaining centroids are assigned to the maximum and

Fig. 6. Simplified system model with implemented PCA compression scheme
applied after data representation. The threshold Thr defines the variance kept
after compression.

minimum value from the input vector. The individual initializa-
tion methods are depicted in Section V.

D. Multidimensional Compression

In order to boost the compression capabilities of the presented
system, and to achieve a true multidimensional compression,
we additionally implement the PCA-based compression into the
scheme in order to reduce the number of APs while minimizing
the loss of information included within the data. Applying PCA
results in deeper compression, improved prediction times, and
in certain cases, improved positioning performance, as we will
show in the following Section V. The PCA compression is
applied after applying the data representation onto the data in
the scheme, as shown in Fig. 6 and before applying EWOk. The
coefficients and the eigenvectors are obtained by performing the
analysis on the training features only, and then they are applied
to the test features. The rest of the compression scheme is left
unchanged, and therefore EWOk is now applied to the resulting
principal components’ elements.

The only parameter we consider for PCA is the percentage
of total variance left within the data, defined by the threshold
(Thr). The same selection of Thr results in a varying number
of principal components left per each dataset, and therefore the
CR is different per dataset as well.

Additionally, as PCA reduces the number of elements in each
feature vector, it reduces the complexity of the K-NN algorithm
at the same time to

O
(
Stest ·K · AP

CRpca

)
(7)

as the number of APs is effectively reduced.
We implement the additional dimensionality reduction

scheme to demonstrate EWOk’s compatibility with other meth-
ods and the PCA applied prior to the EWOk can be freely
changed to any other dimensionality reduction method, such
as autoencoder, spectral embedding [56], or isomap embed-
ding [57].

V. EVALUATION AND NUMERICAL RESULTS

In this section, we introduce the means of evaluation of
the proposed model, including the evaluation metrics and used
benchmarks. Further, we present the numerical results.
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In order to ensure the repeatability, replicability, and repro-
ducibility of our work, we provide all information required to
reproduce the experiment. We also provide the source code,
which is available online on Zenodo.1

A. Evaluation Metrics and Baselines

1) Evaluation Metrics: In order to objectively evaluate the
proposed method along with all utilized algorithms, we imple-
mented the following metrics.

Floor-hit, further denoted as ζ, evaluates the ability of the
positioning algorithm, such as K-NN, to correctly establish the
correct building and floor number for the given dataset. Floor
hit is calculated as the percentage of correctly estimated samples
(for both building and floor label) as:

ζ =

(
1

n

) n∑
i=1

(
bldi == bldi&flri == flri

) · 100% (8)

where n is the number of samples, bldi denotes the building
index of the ith sample, bldi denotes the estimated building
index of the ith sample, flri denotes the floor index of the ith

sample and finally flri denotes the estimated floor index of the
ith sample.

We evaluate the positioning accuracy of the positioning algo-
rithm using mean 3D positioning error ε3D. 3D positioning error
is calculated as the euclidean distance between the coordinates
of the original sample and the estimated sample. ε3D is then the
average error across all samples from the test dataset, as:

ε3D =
1

n

n∑
i=1

√√√√ 3∑
j=1

(
yj,i − yj,i

)2
(9)

where j denotes the coordinate index, yj,i is the jth coordinate
of the ith original sample and yj,i is the jth coordinate of the
ith sample’s prediction.

Finally, we consider normalized values for all considered po-
sitioning metrics to better reflect the difference in performance
between the baseline model and the proposed solution [58]. The
considered metrics are normalized floor-hit ζ̃, and normalized
3D positioning error ε̃3D. The normalized metrics are obtained
as Ã in:

Ã =
Atest

Abaseline
(10)

where Atest stands for any of the evaluated results, namely ζtest
or ε3D,test, and Abaseline stands for ζbaseline, or ε3D,baseline,
respectively, and refers to the benchmark results obtained using
the corresponding positioning baseline method α or β. Conse-
quently, the 3D positioning error normalized to theα benchmark
is denoted as ε3D,α.

Normalized metrics directly compare the tested method’s
performance to the baseline. In case the resulting ε̃3D is smaller
than 1, the resulting positioning error is smaller than that of
the baseline, e.g., ε̃3D equal to 0.9 means that the method’s 3D
positioning error was decreased by 10%. As such, we aim to

1[Online]. Available: https://doi.org/10.5281/zenodo.7954926.

TABLE II
64-BIT VS. 7-BIT DATASET REPRESENTATION COMPARISON

achieve ε̃3D lower than 1. On contrary, we aim for ζ̃ larger than
1 (as we aim to decrease the positioning errors and increase the
floor hit).

Additionally, we introduce a parameterΔwhen evaluating the
dissimilarity of two methods’ normalized metrics, namely the
dissimilarity of the normalized 3D positioning error as Δε3D or
normalized floor-hit asΔζ . Given the normalized 3D positioning
error of method A as ε̃3D(A) and the normalized 3D positioning
error of methodB as ε̃3D(B), theirΔε3D parameter is calculated
as:

Δε3D = 1− ε̃3D(A)

ε̃3D(B)
(11)

Consequently,Δε3D > 0 denotes the decrease of the normalized
3D positioning error of the method A, compared to method B
by Δε3D · 100%. The Δζ evaluating the normalized floor-hits is
calculated similarly, and Δζ > 0 denotes a lower floor-hit of the
method A than that of the method B.

2) 7-Bit Benchmark: In this paper, we consider 7-bit rep-
resentation as a benchmark for compression as described in
Section IV. The stated CRs are calculated as if all datasets were
represented by 7-bit formats, although some were originally
represented by higher-bit representations (up to 64-bit), and
therefore their actual CRs are up to 64/7 times higher. These in-
clude datasets MAN 2, TUT 1, TUT 2, TUT 5, MINT 1, UEX 1,
UEX 2, UEX 3, UJI B1 and UJI B2. The rest of the datasets are
originally in integer format which can be transformed to 7-bit
without the loss of data resolution.

To demonstrate the RSS dataset’s positioning capabilities are
not degraded by transforming the data from 64-bit to 7-bit
representation, we first evaluate the positioning performance
of the 64-bit datasets in their original data format. Next, we
transform the RSS values in the above datasets into the 7-bit data
format (represented by integer values obtained from rounding
the original data) and evaluate the positioning accuracy of the
transformed dataset. For both cases, we utilize a plain K-NN
algorithm with K equal to 1, Manhattan distance metric and
positive data representation. The precise results of the evalua-
tion show close-to-equal positioning performance in both cases
(Table II).

https://doi.org/10.5281/zenodo.7954926
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TABLE III
DATASET INFORMATION AND BASELINES

Table II also proves that the performance of the 64-bit dataset
is almost identical to that of the 7-bit dataset in terms of both
the 3D positioning error and the floor-hit ratio. As such, we
concluded that all RSS values in the datasets using 64-bit format
can be reduced to 7-bits without any loss in positioning accuracy.
Moreover, the smaller data size allows for faster data processing
and more efficient storage.

3) Benchmark Results and Database Parameters: To fairly
and unambiguously evaluate the impact of EWOk on the po-
sitioning performance, we utilize two positioning benchmarks
for the evaluation. The first baseline, “Simple Configuration” or
α, refers to results obtained while evaluating each dataset with
the K-NN set to K = 1, Manhattan distance metric and positive
data representation. The second baseline, ”Best Coefficient” or
β, follows the best parameter settings for each dataset from [5],
using which the plain K-NN achieved the lowest positioning
error. As 9 of the considered datasets were not included in [5],
their ”Best Coefficient” benchmark performance was obtained
by performing the full parameter sweep, as described in the
aforementioned work.

Table III includes the overview and the performance of all
25 considered databases, and lists the total number of samples
in each database S, the number of training samples Strain, the
number of test samples Stest, the number of APs and the type of
wireless technology on which the databases were measured. The
table then lists the 3D positioning error ε3D, and floor-hit ζ of
each dataset when evaluating the positioning performance using
both baseline configurations (α andβ). We selected a wide range
of indoor positioning datasets, using different base technologies,
different granularity of measurements and different density of
APs in order to perform the analysis in different deployments.

B. Random Vs. Non-Random Initialization

We evaluate the impact of random initialization (as explained
in Section IV) on the resulting positioning accuracy across
datasets and compare its performance across multiple repetitions
with the proposed initialization methods, which require only a
single run of EWOk.

Fig. 7 depicts the comparison of the positioning accuracy
results between two random initialization methods, namely ran-
dom sample initialization and k++ [54], along with the result
of max initialization as the example non-random initialization
defined later in the text. The figure presents the results for
the number of clusters k from 2 to 25 and shows, that from
the two random initializations, k++ is able to achieve better
positioning accuracy despite the higher variance of the result.
Fig. 7 additionally shows, that the variance of the results strongly
differs across the individual runs of the algorithm and that in
order to obtain the favorable result it is necessary to repeat
the algorithm multiple times. On top of that, we show that the
non-random initialization is able to achieve comparable results
to the expected result of k++ without introducing uncertainty,
and outperforms random sample initialization across the sweep
with only a single repetition of the algorithm.

The results in Fig. 7 were obtained by running the proposed
system with Manhattan distance for k-means, and K-NN with
K = 1 and Manhattan distance metric. Each algorithm setting
was repeated 100 times for each dataset, and the resulting
positioning accuracy was normalized with the corresponding
Simple Configuration (α) baseline. Each box in the resulting
boxplot shows the median, 50% and 95% confidence interval of
the sorted positioning results averaged across all databases.
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Fig. 7. Visualization of resulting 3D positioning error uncertainty after EWOk with k++ and random sample initializations, along with the non-random initialization
max. The corresponding CRs are indicated by the vertical lines.

TABLE IV
THE MEAN NUMBER OF ITERATIONS OF k-MEANS BEFORE CONVERGENCE FOR

DIFFERENT INITIALIZATIONS

Fig. 8. Initial centroid values for 6 proposed k-means initializations (solid
lines), and the corresponding centroid coordinates after clustering (dashed lines)
performed on the dataset DSI 1 with k = 4.

Additionally, we show in Table IV the mean number of iter-
ations of the k-means algorithm performed before convergence
for randomly initialzied algorithm, k++ initialization and the
proposed max initialization. The results are aggregated across
all 25 datasets and show that the proposed initialization method
requires a significantly lower number of iterations than the ran-
domly initialized algorithm, effectively reducing the complexity
of k-means by minimizing the number of required iterations i,
as introduced in (2).

As described in Section IV, we propose 6 non-random ini-
tialization methods that offer reasonable starting points for
k-means. Fig. 8 depicts the initial centroid settings, as well
as the centroid coordinates after clustering for the proposed
initialization schemes on the dataset DSI 1 with k = 4. The
lines mark the distribution points according to the initialization
setting, and the selected centroid values are the RSS values at the

Fig. 9. Performance evaluation of the initialization schemes with k = 8, 16,
and 32 across all datasets. The color of the dot refers to the normalized 3D
positioning error ε̃3Dα .

intersections of lines with the dataset’s ECDF. The figure shows
that all 6 different initializations result in 6 different, although
similar final centroid settings.

In Fig. 9 we present the performance of the individual pro-
posed initialization schemes. The figure visualizes the normal-
ized 3D positioning error ε̃3Dα

of the compression towards the
α benchmark (both with the same K-NN parameters) with the
most compression-efficient number of clusters (k = 8, 16, 32).
The results on the horizontal axis present the performance of
each initialization and k setting per dataset, and clearly show that
the compression scheme improves the positioning performance
of certain datasets (UJI 1, TUT 7), and worsens the performance
of others (MAN 1, UE B3). In some cases, the initialization
setting defines, whether ε̃3Dα

is improved or not (SAH 1, UTS 1).
The last row of results presents the aggregated ε̃3Dα

across all
datasets as the representative metric, proposed in [58].
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TABLE V
RESULTS BASED ON β K-NN SETTING WITH max INIT. AND MANHATTAN

DISTANCE METRIC OF k-MEANS

Fig. 9 shows that there is no single, best-performing initial-
ization method. As a result, we propose to repeat the algorithm
once with each setting during offline training and choose the
best-performing one as a part of the system validation. Despite
the proposed approach forcing the algorithm to repeat up to
6 times, it still drastically decreases the number of required
repetitions and the variance of ε̃3Dα

compared to the random
initialization approach.

The rest of this work presents the results obtained using the
proposed, non-random initialization schemes while considering
either all of them or only max initialization as the represen-
tative method in cases where the evaluation does not consider
parameter sweeping.

C. Numerical Results of EWOk

In this section, we evaluate the performance of the proposed
method with the best-performing models on each of the consid-
ered datasets. As the baseline for the comparison, we consider
the β (Best Coefficient) K-NN setting, as found in [5], which
obtained the best positioning performance across the performed
in-depth parameter sweep. In order to impartially evaluate the
impact of the k-means compression on the resulting positioning
performance, we first performed a single repetition of the clus-
tering with Manhattan distance metric and max initialization,
while applying the K-NN with β parameters for positioning.

Table V presents the normalized 3D positioning error ε̃3Dβ
,

and the normalized floor-hit ζ̃β . Table V displays the results for
the number of clusters k equal to 8, 16, and 32, all maximizing
the number of clusters at their corresponding CR. Similarly

TABLE VI
BEST-CASE RESULTS FROM THE FULL PARAMETER SWEEP

to Fig. 9, the positioning performance of certain datasets is
improved (ε̃3D smaller than 1 and floor-hit ζ̃ larger than 1;
dataset TIE 1), or degraded (dataset TUT 2). Table V additionally
shows the aggregated ε̃3D and ζ̃ over all datasets. On average,
the 8-means setting increases the ε̃3D by 5% while reducing
the size of the radio map by 57.1%, 16-means by 2% with
42.9% reduction, and 32-means by only 1% with 29.6% radio
map reduction, compared to the benchmark. The results show a
negligible increase in positioning error and a relevant decrease
in requirements for storage and energy savings.

Next, we performed a full parameter sweep across all 25
datasets, k-means distances and initializations, and K-NN pa-
rameters in order to find the best-performing settings for the
compression scheme. The sweep was realized over 3 data repre-
sentations, 6 k-means initialization methods, 2 k-means distance
metrics, 1 to 35 Ks for K-NN, and 9 K-NN distance metrics
(for details see Sections III), resulting in 11 340 repetitions per
dataset while considering only the single number of clusters k.

The results of the full sweep are reported in Table VI, includ-
ing the best parameter settings, normalized 3D positioning error
ε̃3Dβ

and normalized floor-hit ζ̃β with the number of clusters k
= 8 (CR = 7/3). We note that the best-case performance was
chosen based on the lowest 3D positioning error ε3D parameter.
If the objective was to find the best floor-hit ζ, the chosen solution
would differ in certain cases. Table VI shows, that the parameters
are unique for each individual dataset and that there is no univer-
sal parameter that ensures optimum positioning performance in
every case. The aggregated results present the improvement in
positioning performance across both evaluation metrics. When
compared to the results from Table V, the parameter sweep found
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the parameters achieving 7% better normalized 3D positioning
error ε̃3Dβ

across all datasets (0.98 in Table VI and 1.05 in
Table V).

For many datasets, the best-performing parameters are identi-
cal (TUT 6 or TUT 7) or very similar (DSI 1) to theβ (Best Coef.)
benchmark (see Tables VI and III), if the k-means parameters are
disregarded. Therefore, if applying the proposed compression
scheme to an existing and evaluated dataset, it is likely that the
previously found best-case parameters will remain optimal after
applying the compression as well.

The results presented above show, that EWOk can signifi-
cantly reduce the size of the IPS’s radio map, without degrading
the actual positioning performance of the dataset. If the ap-
propriate parameter sweep is performed, the compression can
further boost the positioning performance. Consequently, we can
conclude that applying EWOk and optimizing the parameters of
K-NN lead to improvements in positioning performance on top
of preserving energy and resources within the positioning system
achieved with the compression.

D. Multidimensional Compression With PCA

To demonstrate the possible co-existence of EWOk with other
compression or clustering mechanisms from the existing litera-
ture [20], [22], we combine it with additional, feature-space-wise
compression scheme, namely PCA (although any other dimen-
sionality reduction technique can be applied in practical system).
PCA is incorporated into the system as specified in Section IV.

We evaluate the positioning and compression performance
of the following schemes. First, we combine the PCA with
the α (Simple) configuration K-NN, further denoted PCA.
Second, we combine the PCA with EWOk (k = 8, Manhattan
distance), followed by the α configuration K-NN, denoted as
PCA+ EWO8. We normalize both solutions towards the α
baseline. We consider α baseline since the regularized distance
metrics included in the β baseline are incompatible with the
PCA method. The common parameter of the PCA compression
is Thr = 90, specifying the minimum total variance left in the
training features.

Table VII lists the results of the evaluation on all datasets. We
note, that the CR of the PCA method is calculated as CRpca,
and the CR of the PCA+ EWO8 method is calculated as
CRtot (see Section IV). Additionally, the Δε3D and Δζ param-
eters characterize the potential improvement of the positioning.
The aggregated result shows that the average CR of the PCA
method equals 10.95, the average CR of the combination of
PCA+ EWO8 is equal to 25.54, and that the PCA achieves
2% smaller positioning error while evaluating with the same
parameters at Thr = 90. At the presented settings, we trade 2%
higher positioning error for more than 2.3 times larger CR when
considering PCA+ EWO8.

In the next part of the evaluation, we report only the aggregated
results [58] of the PCA and PCA+ EWOk schemes across
all datasets. Now, we consider multiple values of k as well,
denoted in the abbreviation accordingly. Table VIII lists theThr,
k, and aggregated normalized 3D positioning errors ε̃3Dα

for the

TABLE VII
PERFORMANCE OF PCA AND PCA+EWO8

TABLE VIII
AGGREGATED RESULTS FOR DIFFERENT PCA THRESHOLD Thr AND VARYING

NUMBER OF CLUSTERS

considered schemes, along with their dissimilarities Δε3D and
Δζ .

The aggregated results in Table VIII show the configurable CR
and the corresponding trade-off in terms of 3D positioning error.
The table compares the performance of the PCA+ EWOk
method at k = 8, 16, and 32 with the PCA setting at different
Thr levels. The results show the increasing ε̃3Dα

with the
increasing CR as the general trend, with several exceptions.
When comparing PCA+ EWOk to the PCA methods at
the same Thr levels, the normalized 3D positioning errors are
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Fig. 10. Dependency of the CR on normalized 3D positioning error ε̃3Dα for
the plain PCA and the proposed methods.

comparable. If, on the other hand, we compare their performance
at the same CR levels, e.g., PCA+ EWO16 at 90 Thr (and
k = 16) and PCA at 80 Thr, both achieving approx. 20 CR,
the difference in 3D positioning error is substantial. A similar
occurrence is observed at the CR = approx. 10. Table VIII
shows, that when combining EWOk and PCA compression, the
achieved positioning results are better than when using the PCA
compression only while considering the same CR.

In order to demonstrate the effectiveness of EWOk in com-
bination with PCA compression, we show the dependency of
CR on the normalized 3D positioning error ε̃3Dα

in Fig. 10.
The figure plots the aggregated results for the stand-alone PCA
compression (denotedPCA), as well as the combination of PCA
with EWOk with k = 8, 16, and 32 (denoted PCA+ EWO8,
PCA+ EWO16, and PCA+ EWO32) on varying Thr lev-
els. In case the maximum allowed positioning error increase
due to the compression is set to 35%, PCA achieves 36.7 CR,
while PCA+ EWO8’s CR is 76.5 (see the horizontal line in
Fig. 10). Alternatively, if the required CR is set to 20, ε̃3Dα

increases by 23% when considering the PCA method, and 16%
when considering either PCA+ EWO8 or PCA+ EWO16
solutions (see vertical line). The results unambiguously show the
favorable trade-off between the compression efficiency and the
positioning error of the proposed compression scheme combined
with PCA, compared to the stand-alone PCA compression.

E. Discussion

In this section, we present the exhaustive evaluation of
EWOk’s impact on the positioning performance and its com-
pression capabilities when applying it in the IPS. In the following
lines, we summarize and discuss the most crucial findings and
observations.

From evaluating the positioning performance when reducing
the original 64-bit datasets to a common 7-bit data benchmark,
we observe almost identical positioning accuracy. Similarly,
the proposed EWOk further reduces the granularity of the
individual values in the radio map and, in certain cases, results
in improved positioning. This observation can be explained
by high uncertainty in the data, which may be filtered out by
reducing the data quality.

When utilizing EWOk on the indoor positioning dataset, it
is highly recommended to consider the number of cluster k
maximizing the compression efficiency, namely

k = 2n, (12)

where n = 1,2...6 to utilize the whole available alphabet of
symbols in the compressed radio map. Namely n = 3 (8-means)
offers a very good trade-off between the high CR and the
tolerable positioning error.

The proposed non-random initialization schemes not only
remove the uncertainties caused by the randomness and ensure
advantageous positioning performance but at the same time
reduce the number of iterations of the k-means, effectively
reducing the algorithm’s complexity.

In this work, we combine the proposed system with the PCA
compression to demonstrate its compatibility. Nevertheless, it
is possible to combine the EWOk compression scheme with
numerous other methods proposed in the literature that could
further increase the storage and processing speed efficiency,
along with numerous other solutions that can co-exist with
the proposed scheme including prior clustering to reduce the
search-space of k-means [20], additional feature-space-based
compression schemes [59], or any heuristic applied onto the
dataset [60]. Similarly, the positioning algorithm can be freely
chosen, not limited to K-NN or its alternatives.

VI. CONCLUSION

This work proposes EWOk, an Element-Wise cOmpression
using k-means, which reduces the radio map to up to 1% of
its original size when combined with additional PCA feature-
space dimensionality reduction. The proposed solution enables
flexible adjustment of the CR, to obtain the desired storage and
transfer savings while preserving high positioning performance
using K-NN algorithm. The proposed positioning system is
designed to be trained and validated on the network or cloud, and
it aims to reduce the computational, memory, and data transfer
load for the online prediction at the UE. We proposed the 7-bit
data representation based on the current standardization as the
benchmark for evaluating all RSS-based datasets and showed
that using 7-bit representation does not degrade the data. The
reported CRs achieved by the proposed method are substantially
higher in case the benchmark is not based on the 7-bit data
representation, as many datasets are represented as rational
(floating point) numbers. In order to overcome the challenges
related to the random initialization of the k-means algorithm,
we proposed 6 non-random initialization methods derived from
the input data distribution that ensure improved positioning
performance and reduce the iterative process. We evaluate the
proposed method on 25 RSS indoor positioning datasets in order
to obtain impartial and unbiased results. The numerical results
showed that EWOk compression achieves 2.3 fold radio map
CR with only 5% positioning error increase on average, with a
single iteration of the EWOk algorithm. In certain deployments,
implementing the proposed compression scheme boosts the
positioning performance in terms of 3D positioning error, as
well as the floor-hit. Sweeping over the parameters can further
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boost the positioning performance significantly while preserving
the valuable resources, as shown in Table VI. When combining
EWOk with PCA, it is possible to reduce the complexity of
K-NN and obtain many-fold higher CR with only a slight
increase in 3D positioning error. The implementation is scalable
(based on the dataset) to up to a 100-fold compression rate with
a higher positioning error trade-off.
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