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3-D Finite Element Monte Carlo Simulations of
Scaled Si SOI FinFET With Different Cross Sections
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Abstract—Nanoscaled Si SOI FinFETs with gate lengths of 12.8
and 10.7 nm are simulated using 3-D finite element Monte Carlo
(MC) simulations with 2-D Schrödinger-based quantum correc-
tions. These nonplanar transistors are studied for two cross sec-
tions: rectangular-like and triangular-like, and for two channel ori-
entations: 〈100〉 and 〈110〉. The 10.7-nm gate length rectangular-
like FinFET is also simulated using the 3-D nonequilibrium Green’s
functions (NEGF) technique and the results are compared with MC
simulations. The 12.8 and 10.7 nm gate length rectangular-like
FinFETs give larger drive currents per perimeter by about 33–
37% than the triangular-like shaped but are outperformed by the
triangular-like ones when normalised by channel area. The devices
with a 〈100〉 channel orientation deliver a larger drive current by
about 11% more than their counterparts with a 〈110〉 channel
when scaled to 12.8 nm and to 10.7 nm gate lengths. ID − VG

characteristics obtained from the 3-D NEGF simulations show a
remarkable agreement with the MC results at low drain bias. At a
high drain bias, the NEGF overestimates the on-current from about
VG − VT = 0.3 V because the NEGF simulations do not include
the scattering with interface roughness and ionized impurities.

Index Terms—Cross-section shapes, FinFET, Monte Carlo sim-
ulations, nonequilibrium Green’s functions (NEGF) simulations.

I. INTRODUCTION

NONPLANAR multigate transistors like FinFETs [1] are
the leading solutions for the sub-22 nm digital technology

[2]. Further scaling of FinFETs requires a realistic assessment of
device performance, which is strongly affected by the exact de-
vice geometry and architecture [3]. However, the 3-D geometry
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Fig. 1. Schematic of the 12.8/10.7 nm gate length. (a) Rectangular and
(b) triangular shape n-channel SOI Si FinFET. Dimensions and parameters
are summarized in Table I.

of all nonplanar transistors brings new challenges for physically
based device modeling like ensemble Monte Carlo (MC)[4],
since these nanoscale devices exhibit unique shapes created by
fabrication processes [5]. These irregular geometries can be ac-
curately described by the 3-D finite element (FE) method.

In this study, we report on the device performance of
nanoscale n-channel Si SOI FinFETs scaled to gate lengths
of 12.8 and 10.7 nm following the ITRS [6]. The investi-
gation includes 1) two different shapes of the scaled transis-
tors: rectangular-like [see Fig. 1(a)] and triangular-like [7] [see
Fig. 1(b)] with rounded corners [8], and 2) two different channel
orientations: 〈100〉 and 〈110〉. The devices are simulated using
a novel 3-D FE MC toolbox with quantum corrections based
on 2-D FE solutions of the Schrödinger equation [9] capable of
an accurate prediction of the 3-D transistor performance. These
simulations are accompanied with 3-D nonequilibrium Green’s
functions (NEGF) simulations [10], [11] which include dissipa-
tive processes (phonon scattering). The dissipative NEGF simu-
lations are carried out for the rectangular cross section 10.7-nm
gate length FinFET in order to study the effect of source-to-drain
tunneling on its subthreshold characteristics and the on-set of
on-current.

II. MONTE CARLO SIMULATIONS WITH SCHRÖDINGER

EQUATION-BASED QUANTUM CORRECTIONS

The performance of nanoscale n-channel FinFETs is pre-
dicted using an in-house-developed 3-D FE self-consistent en-
semble MC simulation toolbox described in details elsewhere
[8], [9]. However, we briefly summarize core features of the
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Fig. 2. Isosurface of the electron density from the 3-D MC at VG − VT =
0.7 V, VD = 0.7 V and 2-D slices for the Schrödinger solver across the channel
in the 10.7-nm gate length rectangular shape FinFET.

toolbox, especially those which are different to other 3-D MC
simulation codes and relevant to the investigated devices. The
simulation process starts with a solution of the 3-D self-
consistent drift-diffusion (DD) transport model. The motivation
for the initial DD presimulation is twofold: 1) accurate simu-
lation of deep subthreshold and 2) obtaining an initial solution
for the MC to speed up the simulation process. The FE MC
simulation process then continues with transport process (free
flights and scatterings), Poisson equation solution, and quan-
tum corrections performed at every time step. The 3-D FE MC
toolbox with FE density gradient (DG)-based quantum correc-
tions [8] demonstrated an excellent agreement with experimen-
tal ID − VG characteristics for the 25-nm gate length SOI Fin-
FET [12], justifying its accuracy. The drawback of the DG is that
it requires a calibration which can be impossible for complex
transistor geometries. However, a new 3-D FE MC toolbox with
Schrödinger-based quantum corrections [9] has no need for any
parameter calibration [13]. A 3-D FE mesh of the device under
investigation contains predefined 2-D planes perpendicular to
the transport direction x, where the cross section is constrained
to conform with a 2-D triangular mesh, as illustrated in Fig. 2.
Those are used to extract a 2-D electrostatic potential, V (y, z),
from the 3-D electrostatic potential V (r) where r ≡ r(x,y, z).
The 2-D potential is then used to solve a 2-D time-independent
Schrödinger equation

− �
2

2
∇⊥ ·

[
(m∗)−1 · ∇⊥ψ(y, z)

]

+ U(y, z)ψ(y, z) = Eψ(y, z) (1)

where E is the energy, (m∗)−1 is the inverse effective mass
tensor, the subscript ⊥ refers to the transverse coordinates y and
z, ψ(y, z) is the wave function penetrating into the surrounding
oxide, and U(y, z) = −[qV (y, z) + χ(y, z)] is the potential en-
ergy with χ(y, z) being the electron affinity. The 2-D quantum
density nq , calculated from the eigenstates and energies of (1),
is then interpolated onto the 3-D simulation domain to obtain
the quantum correction potential as [9], [13]

Vqc(r) = (kB T/q) log [nq(r)/nien(r)] − V (r) + φn (r) (2)

TABLE I
DEVICE DIMENSIONS AND PARAMETERS: PHYSICAL GATE LENGTH (Lg ),
FINFET HEIGHT AND WIDTH, EQUIVALENT OXIDE THICKNESS (EOT),

STANDARD DEVIATION FOR GAUSSIAN n-DOPING IN SOURCE/DRAIN (σx ),
CIRCUMFERENCE/PERIMETER OF THE SI n-CHANNEL UNDER THE GATE, AND

AREA OF THE SI n-CHANNEL

Technology [nm] Rectangular Triangular
16 11 16 11

Lg [nm] 12.8 10.7 12.8 10.7
Height [nm] 18 15 21.21 17.67
Width [nm] 7 5.8 7 5.8
EOT [nm] 0.67 0.62 0.67 0.62
σx [nm] 4.13 3.45 4.13 3.45
Perimeter [nm] 43 35.8 43 35.8
Area [nm2 ] 126 87 74 51

Fig. 3. Cross sections of doping profiles along the transport x-direction for
the 12.8 and 10.7 nm gate length FinFETs.

where nien(r) is the effective intrinsic carrier concentration and
φn (r) is the quasi-Fermi potential for electrons. The particles
are moved in the quantum-corrected potential according to [13]

dk/dt = (q/�)∇ [V (r) + Vqc(r)] . (3)

Fig. 2 shows the isosurface of the density for the 10.7-nm de-
vice at VG − VT = 0.7 V and drain bias of 0.7 V. For the 2-
D-Schrödinger solver, the rectangular-shaped devices had 21
slices distributed with more slices at the gate and the triangu-
lar shaped devices had 25 slices evenly distributed along the
transport direction.

The MC engine in the 3-D FE simulation toolbox uses a non-
parabolic anisotropic model [14], all Si-related electron scat-
tering mechanisms are included: scattering with acoustic and
nonpolar optical phonons (intravalley and intervalley) [4], [15],
ionised impurity scattering using the third body exclusion by
Ridley [16], [17], and interface roughness (IR) scattering using
Ando’s model [18]. More details on the 3-D FE MC device
simulation tool can be found in [8], [9], [19].

The SOI FinFETs are scaled to gate lengths of 12.8 and 10.7
nm following the ITRS [6]. Table I lists the dimensions of the
scaled FinFETs with both rectangular-like and triangular-like
cross sections. Finally, Fig. 3 shows the Gaussian-like doping
profile cut-lines along the transport direction of the two scaled
transistors which were adapted from the 25-nm gate length Si
SOI FinFET [8].

Source-to-drain tunneling might deteriorate subthreshold
characteristics of multigate transistors with a gate length around
10 nm [20]. Therefore, we have employed a 3-D NEGF
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Fig. 4. Subthreshold ID − VG characteristics for both shapes of the 12.8-nm
gate length FinFETs. The inset magnifies the slope in a deep subthreshold region
(3-D DD).

Fig. 5. Subthreshold ID − VG characteristics for both shapes of the 10.7-nm
gate length FinFETs. The inset magnifies the slope in a deep subthreshold region
(3-D DD).

simulation toolbox [11] to investigate the I–V characteristics
of the shortest gate length transistor, a 10.7-nm gate length
FinFET, and compare them with the results from the MC sim-
ulations. This 3-D finite volume quantum transport simulator
implements the mode-space approach of the NEGF formalism
[21], [22] including dissipative energy processes like all rele-
vant electron–phonon interactions. The 3-D nonlinear Poisson
equation is solved self-consistently with the equations of the
NEGF model as described in details elsewhere [11].

III. SCALED SI SOI FINFETS

The subthreshold regions of the two scaled FinFETs are
initially investigated using a 3-D FE DD transport approach
without quantum corrections. The initial DD simulations are
employed to investigate electrostatic integrity of the nonpla-
nar transistors because the ensemble MC is too noisy in the
subthreshold region to accurately calculate very small currents.
The FE DD simulations can predict well the subthreshold slopes
(SS) of devices with various cross-section shapes but cannot take
into account a channel orientation as well as any source-to-drain
tunneling which will be investigated with a quantum transport
technique, the NEGF method.

Figs. 4 and 5 show ID − VG characteristics on logarithmic
scale at low (0.05 V) and high (0.7 V) drain biases comparing
rectangular-like and triangular-like cross sections for the 12.8
and the 10.7 nm gate length devices, respectively, obtained from

TABLE II
THRESHOLD VOLTAGE (VT ) AND SUBTHRESHOLD SLOPE (SS) FOR DRAIN

BIASES OF 0.05 V (LOW) AND 0.7 V (HIGH) FROM THE DD {FROM THE

NEGF}, DIBL FROM DD AND FROM MC, AND DRIVE CURRENTS

(I 〈chan n e l or ien ta t ion 〉
M C ) FOR TRIANGULAR AND RECTANGULAR FINFETS

Technology [nm] Rectangular Triangular
16 11 16 11

VT [V] 0.2 0.2 {0.26} 0.2 0.2
SSL O W [mV/dec] 71 70 {72} 66 66
SSH I G H [mV/dec] 72 71 {78} 67 66
DIBL [mV/V] 58 56 {77} 34 34

DIBL〈1 0 0 〉
M C [mV/V] 66 65 61 60

DIBL〈1 1 0 〉
M C [mV/V] 71 65 64 64

I〈1 0 0 〉
M C [μA/μm] 1853 1930 1393 1436

I〈1 1 0 〉
M C [μA/μm] 1660 1749 1243 1290

Fig. 6. ID − VG characteristics at VD = 50 mV with a gate length of
12.8 nm for the triangular (TRI) and rectangular (REC) shape FinFETs with
〈100〉 and 〈110〉 channel orientations (3-D MC).

these DD simulations. The inset in both figures magnifies the
deep subthreshold region. The SS values are listed in Table II.
The SS values for the rectangular-like devices are about 70–
72 mV/dec and, for the triangular-like ones, the SS is nearly
ideal, ∼66 mV/dec, for both gate lengths. The better SS in the
triangular-like transistors is due to the accumulation of carriers
at the top of the device channel where the gate has a better control
over the charge. Note that the differences between high and low
drain bias for both cross sections are negligible. In addition,
Table II compares the threshold voltage, the DIBL from 3-D
DD, 3-D NEGF [11] and 3-D FE ensemble MC simulations and
lists the drive currents from the 3-D MC for scaled triangular
and rectangular devices with two channel orientations.

The 3-D FE MC with 2-D Schrödinger-based quantum cor-
rections was employed to obtain the current in the operational
region. Figs. 6 and 7 show the ID − VG characteristics on log-
arithmic and linear scales at a low drain bias of 0.05 V for
the 12.8 and 10.7 nm gate lengths, respectively. The figures
also compare the different cross sections with 〈100〉 and 〈110〉
channel orientations. The drain current is normalized to the gate
perimeter (see Table I). Note that the value of a very small
current obtained from monitoring in MC simulations at VG =
0 V becomes visibly affected by statistical errors inherent to the
MC technique [23]. In the case of 〈100〉 channel orientation, the
drain current is always larger compared to the 〈110〉 orientation
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Fig. 7. ID − VG characteristics at VD = 50 mV with a gate length of 10.7 nm
for the triangular (TRI) and rectangular (REC) shape FinFETs with 〈100〉 and
〈110〉 channel orientations (3-D MC).

Fig. 8. ID − VG characteristics at VD = 0.7 V with gate length 12.8 nm
for the triangular (TRI) and rectangular (REC) shape FinFETs with 〈100〉 and
〈110〉 channel orientations (3-D MC).

for both gate lengths and cross sections as expected due to a
higher mobility of electrons in the 〈100〉 crystallographic ori-
entation. At a gate voltage overdrive of 0.7 V, the drain current
is ∼ 14% larger in the 〈100〉 channel device than in that with
the 〈110〉 channel orientation. The scaling from a gate length
of 12.8 to 10.7 nm will increase the drive current about 3% for
the rectangular and 1% for the triangular cross sections. The
12.8 and the 10.7 nm gate length rectangular-like devices with
both channel orientations have 61% and 65% more drain current
than the triangular-like cross-section devices with the respective
gate lengths. The subthreshold region simulations using the 3-D
FE MC with quantum corrections also suggest that the differ-
ent quantum confinement could lead to a deterioration of the
subthreshold slope with the scaling of the transistors.

The ID − VG characteristics at a high drain bias of 0.7 V for
the 12.8 and 10.7 nm gate length devices are shown in Figs. 8
and 9, respectively, again for both orientations and both cross
sections. The difference between the drain current for 〈100〉
and 〈110〉 channel orientations are slightly reduced (10%) com-
pared to the difference at the low drain bias. The difference
for the drive currents between the 12.8 and 10.7 nm device
is increased to 5% and 2% for the rectangular and triangular
cross-sections, respectively, when compared to low drain bias.
The rectangular-like cross-section devices have a 33–37% more
current (normalized per perimeter) than the triangular-like ones
for both scaled gate lengths of 12.8 and 10.7 nm despite the

Fig. 9. ID − VG characteristics at VD = 0.7 V with gate length 10.7 nm
for the triangular (TRI) and rectangular (REC) shape FinFETs with 〈100〉 and
〈110〉 channel orientations (3-D MC).

Fig. 10. Average electron velocity along the 〈100〉 channel at VG − VT =
0.7 V, VD = 0.7 V for the 12.8-nm gate length rectangular-like and triangular-
like FinFETs (3-D MC). The zero is set in the middle of the gate.

Fig. 11. Average electron velocity along the 〈100〉 channel at VG − VT =
0.7 V, VD = 0.7 V for the 10.7-nm gate length rectangular-like and triangular-
like FinFETs (3-D MC). The zero is again set in the middle of the gate.

devices having the same perimeter. The larger drain current is
due to a larger area of the rectangular-like cross-section chan-
nels compared to the triangular-like cross-sections which can be
understood from Figs. 12 and 13 showing current normalised
per area and discussed later.

Figs. 10 and 11 compare the average electron velocity along
the 〈100〉 channel of the 12.8 and 10.7 nm gate length Fin-
FETs, respectively. The electron velocity in the triangular-like
cross-section transistor, in the region controlled by the gate (the
effective channel), is consistently lower due to an enhanced IR
and phonon scattering (despite a better confinement indicated by
a higher velocity in the source/drain regions) when compared to
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Fig. 12. ID − VG at VD = 0.7 V using a normalised-to-area current for the
triangular-like and rectangular-like 12.8-nm FinFETs with 〈100〉 and 〈110〉
channel orientations.

Fig. 13. ID − VG at VD = 0.7 V using a normalised-to-area current for the
triangular-like and rectangular-like 10.7-nm FinFETs with 〈100〉 and 〈110〉
channel orientations.

the rectangular-like cross-section device. The enhanced IR and
phonon scattering redistribute mainly the electron momentum
in the transport direction resulting in the decline of the velocity
at the beginning of the gate. The velocity starts to increase again
as electrons are accelerated by a large electric fringing field at
the end of the gate and, finally, declines at the heavily doped
drain due to a strong ionised impurity scattering.

Figs. 12 and 13 show the ID − VG characteristics normal-
ized for the cross-section area (see Table I). When the drain
current is normalised by the area of the cross section, the non-
planar triangular-like cross-section transistor delivers a larger
on-current than the rectangular-like one. This opposite trend,
when compared to the current normalisation per perimeter, oc-
curs because the area difference of the two cross sections is
larger than the effects of the decline in average electron velocity
and the increase in electron sheet density. The average elec-
tron density along the channel is larger for the triangular-shaped
devices (see Figs. 14 and 15), so that the sheet density does
not increase proportionally to the change in cross-section area.
The rectangular-like transistor has 1.7 times larger area than the
triangular-like one for both gate lengths and gives up to a 24%
and 27% larger on-current for the 12.8 and the 10.7 nm gate
lengths, respectively, for both channel orientations at high drain
bias. Finally, the 10.7 nm gate length devices have, in general, a
27% and 23% more drain current than the 12.8-nm gate length
for the rectangular-like and triangular-like ones, respectively,
justifying the scaling.

Fig. 14. Electron density cross section in the middle of the gate of the
(a) rectangular-like and (b) triangular-like, 〈100〉 channel, 12.8-nm FinFET
at VG − VT = 0.7 V, VD = 0.7 V (3-D MC).

Fig. 15. Electron density cross section in the middle of the gate of the
(a) rectangular-like and (b) triangular-like, 〈100〉 channel, 10.7-nm FinFET
at VG − VT = 0.7 V, VD = 0.7 V (3-D MC).

Fig. 16. Electron density cross section in the middle of the gate in 10.7-nm
gate length, the rectangular FinFET at VG − VT = 0.7 V, VD = 0.7 V (3-D
NEGF).

Figs. 14 and 15 show the average electron density cross sec-
tions in the middle of the gate (x = 0 nm) for both cross sections
of the 12.8 and 10.7 nm devices with the 〈100〉 channel, respec-
tively, at VG − VT = 0.7 V and VD = 0.7 V. Note here that the
scale for the different shapes and devices are different in order
to show the contrast between high and low areas of density. In
the rectangular device, the electron density is distributed mostly
at the top and bottom [see Figs. 14(a) and 15(a)] as also con-
firmed by the density distribution from the NEGF simulations
in Fig. 16. A more scattered average density is observed from
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Fig. 17. ID –(VG − VT ) at VD = 0.7 V and VD = 50 mV for the 10.7-nm
gate length rectangular-like FinFETs with a 〈100〉 channel orientation compar-
ing the MC and NEGF simulations. The MC simulations are shown without the
IR (MC w/o IR) and with IR (MC with IR). Error bar included for the 3-D MC.

the 3-D MC because it is a particle-based simulation while the
results from the 3-D NEGF are smoother since it is a wave-
type quantum transport simulation technique. The density in
the triangular-like device [see Figs. 14(a) and 15(b)] is larger
and is distributed toward the narrow top explaining a larger on-
current in Figs. 12 and 13. For the rectangular-like devices [see
Figs. 14(a) and 15(a)], the density is slightly larger at the top
due to the effect of the gate. Also, note that the thickness of the
dielectric at the top of the triangular-like cross-section devices
are smaller which helps to maintain a higher electron density
there.

Finally, Fig. 17 compares the ID –(VG− VT ) characteristics
at 0.05 and 0.7 V drain biases normalized per cross-section
perimeter, on both logarithmic and linear scales, obtained from
the 3-D NEGF and 3-D MC simulations for the 10.7-nm gate
length FinFET with a channel orientation of 〈100〉. The figure
also contains error bars showing a statistical error from MC
simulations in the deep subthreshold region. The error is rela-
tively large at a gate bias of −0.2 V because of a very small
current in the subthreshold region, but reduces dramatically at
larger gate biases when the drain current increases at and above
threshold. Note the 60 mV shift in the VT between the MC and
the NEGF simulations. The shift is because the MC simulation
uses an approximation of the density of states (DoS), which is
3-D with nonparabolic dispersion law and a shift in the con-
duction band energy given by the quantum corrections, whereas
the NEGF simulation has a 1-D-like DoS using a parabolic
dispersion approximation which is self-consistently calculated
including the effects of the scattering in the broadening of the
energy levels [10]. The agreement between the two types of sim-
ulations is remarkably close in the subthreshold region. At the
drain current on-set (just above the threshold), the agreement
between the currents is still exceptionally good. For the high
drain bias at VG − VT = 0.3 V the NEGF results start to over-
estimate the MC. The higher current in the NEGF is caused by
the fact that these quantum transport simulations do not include
the IR or ionized impurity scatterings [10]. The relevance of
the surface roughness scattering on realistic I–V characteristics
of 10-nm gate length FinFETs using the NEGF formalism has
also been pointed out in [24]. The difference in the SS between

MC and NEGF simulations is negligible and can be explained
by a very small effect of the source-to-drain tunneling that is
expected in devices with gate lengths of around 10 nm [25],
[26]. Note the difference in the DIBL between the results from
the NEGF and the MC in Table II where the NEGF predicts a
larger DIBL by about 10 mV/V because it models accurately
multisubband transport processes. Part of these multisubband
processes could be taken into account with the multisubband
ensemble MC technique [26], [27], but for a substantial price
of computational burden when applied to the studied 12.8 and
10.7 nm gate length transistors. When scaled further to transis-
tors with sub-10-nm gate lengths and sub-5-nm cross sections,
the multisubband MC might achieve a better agreement with
the NEGF technique. However, the agreement will be always
limited because the source-to-drain tunneling starts to play a
role in the total current not only in the subthreshold but also in
the on-current region [20]. Furthermore, as the cross section is
reduced, the difference in 1-D-like DoS between the multisub-
band MC, using a Fermi golden rule-based scattering, and the
NEGF, using self-energies, will increase.

IV. CONCLUSION

We have successfully simulated rectangular-like and
triangular-like shaped cross-section FinFETs scaled to gate
lengths of 12.8 and 10.7 nm using a 3-D FE MC with quantum
corrections based on solutions of the 2-D Schrödinger equa-
tion. The ID − VG characteristics normalized to the perimeter
showed that at low drain bias the on-current is higher for the
rectangular shaped device by 61% and 65% for the 12.8 and
10.7 nm devices, respectively. For high drain bias, these dif-
ferences are reduced to a 33 − 37% higher on-current of the
rectangular shaped FinFETs for both gate lengths. However,
using normalization to the cross-sectional area shows that the
triangle has higher on-current by 23–27% for both devices at
high drain bias since the rectangular cross sections are 1.7 times
larger than the triangular cross sections and the increase in sheet
density and electron velocity is not enough to compensate this
difference. The density for the rectangle spreads out more evenly
while in case of the triangle it concentrates at the top due to the
thinner silicon body and oxide thickness and therefore better
control from the gate.

The NEGF simulations of the rectangular-shaped 10.7-nm
gate FinFET show a very small deterioration of the SS with
respect to classical DD simulations at VD = 0.05 V and slightly
larger SS for VD = 0.7 V, indicating an increasing source-drain
tunneling for higher drain bias. DD simulations show a bet-
ter SS for the triangular cross-section FinFET and a negligible
degradation with the scaling from 12.8 to 10.7 nm gate lengths.
Finally, MC simulations show that during the scaling there is
an increase of the perimeter-normalized drive current up to 5%
when the devices are scaled from 12.8 to 10.7 nm. While the
scaled SOI FinFETs deliver a small increase in the performance
when assessed by the perimeter-normalized drive current, the
performance increases by about 25% when the drive currents
are evaluated using the normalization by the area of channel
cross section.



NAGY et al.: 3-D FINITE ELEMENT MONTE CARLO SIMULATIONS OF SCALED SI SOI FINFET WITH DIFFERENT CROSS SECTIONS 99

REFERENCES

[1] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski,
E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J.
King, J. Bokor, and C. Hu, “Sub 50-nm FinFET: PMOS,” in Proc. Int.
Electron Devices Meeting Tech. Dig., 1999, pp. 67–70.

[2] T. B. Hook, “Fully depleted devices for designers: FDSOI and FinFETs,”
in Proc. IEEE Custom Integr. Circuits Conf., 2012, pp. 1–7.

[3] J. P. Colinge, FinFETs and Other Multi-Gate Transistors. New York, NY,
USA: Springer, 2008.

[4] K. Tomizawa, Numerical Simulation of Submicron Semiconductor De-
vices. Norwood, MA, USA: Artech House, 1993.

[5] A. Ghetti, G. Carnevale, and D. Rideau, “Coupled mechanical and
3-D monte carlo simulation of silicon nanowire MOSFETs,” IEEE Trans.
Nanotechnol., vol. 6, no. 6, pp. 659–666, Nov. 2007.

[6] International Technology Roadmap for Semiconductors. (2012). [Online].
Available: http://www.itrs.net/Links/2012ITRS/Home2012.htm

[7] C. Auth, C. Allen, A. Blattner, D. Bergstrom, M. Brazier, M. Bost,
M. Buehler, V. Chikarmane, T. Ghani, T. Glassman, R. Grover, W. Han,
D. Hanken, M. Hattendorf, P. Hentges, R. Heussner, J. Hicks, D. Ingerly,
P. Jain, S. Jaloviar, R. James, D. Jones, J. Jopling, S. Joshi, C. Kenyon,
H. Liu, R. McFadden, B. Mcintyre, J. Neirynck, C. Parker, L. Pipes,
I. Post, S. Pradhan, M. Prince, S. Ramey, T. Reynolds, J. Roesler, J. Sand-
ford, J. Seiple, P. Smith, C. Thomas, D. Towner, T. Troeger, C. Weber,
P. Yashar, K. Zawadzki, and K. Mistry, “A 22 nm high performance and
low-power CMOS technology featuring fully-depleted tri-gate transistors,
self-aligned contacts and high density MIM capacitors,” in Proc. Symp.
VLSI Technol., 2012, pp. 131–132.

[8] M. Aldegunde, A. J. Garcı́a-Loureiro, and K. Kalna, “3D finite element
monte carlo simulations of multi-gate nanoscale transistors,” IEEE Trans.
Electron Devices, vol. 60, no. 5, pp. 1561–1567, May 2013.

[9] J. Lindberg, M. Aldegunde, D. Nagy, W. G. Dettmer, K. Kalna, A. J.
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