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Abstract—The errors in the memristive crossbar arrays due to
device variations will impact the overall accuracy of neural net-
works or in-memory systems developed. For ensuring reliable use
of memristive crossbar arrays, variability compensation techniques
are essential to be part of the neural network design. In this paper,
we present an input regulated variability compensation technique
for memristive crossbar arrays. In the proposed method, the input
image is split into non-overlapping blocks to be processed individ-
ually by small sized neural network blocks, which is referred to as
imageSplit architecture. The memristive crossbar based Artificial
Neural Network (ANN) blocks are used for building the proposed
imageSplit. Circuit level analysis and integration is carried out
to validate the proposed architecture. We test this approach on
different datasets using various deep neural network architec-
tures. The paper considers various device variations including
ROFF /RON variations and aging using imageSplit. Along with
hardware compensation techniques, algorithmic modifications like
pruning and dropouts are also considered for analysis. The results
show that splitting the input and independently training the smaller
neural networks performs better in terms of output probabilistic
values even with the presence of the significant amount of hardware
variability.

Index Terms—Image splitting, artificial neural network, memri-
stive crossbar, variability compensation, intel image, CIFAR-10.

I. INTRODUCTION

CROSSBAR memristive arrangement is a popular approach
for emulating the Multiply and Accumulate (MAC) oper-

ations. The growing applications of memristive crossbar arrays
includes modeling neural networks, analog/digital computing,
and in-memory computing. Errors in memristive crossbar arrays
due to device variations, device agings [1] and noise affect the
overall accuracy of the system. To ensure the reliable use of
memristive crossbar arrays, variability compensation techniques
must be incorporated to reduce the performance variation for a
specific application. This paper proposes a memristive crossbar
variability compensation technique using ImageSplit.
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The neural network performance and the overall architecture
design of MAC implementation depend on the limitations of
the weight resolution [2]. Apart this resolution limitation, this
memristor is sensitive to various factors such as cycle-to-cycle
changes, process variations, and device-to-device variability
which leads to conductance variability. The reliability of the
crossbar architecture depends on the endurance and ageing of
the device [2]. Crossbar computation stability and robustness are
increased by adding redundancy to the nodes of the crossbars [3].
The redundancy in the memristor crossbar is introduced by
combining memristors and is important for applications with
accurate computing [3]. These types of nodes are called super-
resolution nodes; they can create stable conductance levels per
crossbar node for accurate analog computing in large numbers.

The crossbar arrangement of memristive systems is a popular
and effective method for matrix multiplication in the feild of
neuromorphic computing. Input values are fed through row lines,
and output current values are obtained from the bit or column
lines. Each intersection point in a crossbar represents the synap-
tic junctions which can be physically identified as conductance
values. Any change in the conductance value can change the
entire column current value, and hence, the accumulated current
error. Each crossbar column line represents the output values of
each node from the neural network layer. The relative current
error from a crossbar reflects the error in the neural network
layer computation. While multiple crossbars are connected to
create a complete neural network, these accumulated current
errors influence the output layer current value. Hence the ac-
curacy decreases. The hardware variability associated with this
conductance drift for memristive crossbars that drive electron
movement when an external force is applied. Changes in the
material stack owing to non uniform manufacturing processs
can alter the read-write cycles. Another key element used for
selective write and read operations is the selector device asso-
ciated with the memristor unit. Hence, the most popular node
structures are 1T1M, 2T1M where T represents the CMOS based
switching device and M represents the memristor unit. The
Leakage currents and parasitic effects associated with the node
structure can change the read-write value. Along with crossbar
variability, non-idealities from the peripheral circuit also affect
the current error. Appropriate input control and readout circuits
eliminates the relative current error.

Changing the device material properties, circuit, and ar-
chitectural level modifications are the main key solutions
that come under variability compensation techniques. Adding
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TABLE I
COMPARISON WITH EXISTING APPROACHES, ANN=ARTIFICIAL NEURAL NETWORK, CNN=CONVOLUTIONAL NEURAL NETWORK

different modulation layers such as an ultra-thin ALD-TiN buffer
layer [9], threading dislocation technology [10], and optimizing
redox reactions at the metal-oxide interface, can control the
dynamics of the switching parameters. In circuit-level com-
pensation techniques, various architectures have been tested to
reduce the error in circuitry along with different programming
strategies. Another compensation technique is use architectural
modifications to reduce the current drop and control switch-
ing behavior. Cell structures using multiple memristors can
be combined into a single node, and pseudo crossbar arrays
and peripheral circuit compensation are novel architectures.
Cascading the resistance at the device level can result in differ-
ent equivalent resistance combinations, thereby increasing the
available conductance levels for better mapping. For example
the parallel and series combination [2] of memristors in a single
node can improve the robustness. However, multiple memristor
cell structures increase area overhead [11], [12]. In another
approach, learning algorithms can be modified to accommodate
variability compensation using pruning and dropouts in trained
neural networks.

A comparison of the proposed technique with existing ap-
proaches for compensating hardware variability is shown in
Table I. Here architectural modification of crossbar array for
reducing the variability is listed. This include crossbar as well
as node arrangement for neuromemristve systems. Parallel [4]
crossbar structure explains the idea of dynamic crossbar node
arrangement where number of memristor in a crossbar node
varies. Super-resolution [2] approach introduced a solution for
limited conductance states or resolution. Multiple rows are tied
to a single input to create a crossbar node. These limited resolu-
tion problem was addressed by a bridge [5] node configuration
where each single node is represented as a 2T5M structure.
Large sized arrays are limited by sneak path issues. Hence
Tiled architecture [6] or splited crossbar structure reduces the
leaky current issues. A dummy column [7] of crossbar can be
used to replace aged one for these leaky current issues. Along
with node arrangement of crossbar 3 dimensional [8] crossbar
arrangement also experimented in the literature to reduce the
computational energy. Only a few architectural modifications
analysed the performance under variability constraints. Neural
Network architectures are highly sparse and eliminating those
sparse values can helps to minimise the computational power.
For any circuit component variability increases with increase in

number of modules. Reducing those number of computational
module using pruning or dropout method can decrease the
variability in general. Here in this work splitting the architecture
along with hardware pruning reduced the hardware complexity
without reducing the performance.

The concept of imageSplit is introduced in [13] as a neural
network tiling solution to reduce the computational complexity
of deep neural network. In [13], the input image in the dataset is
split into smaller units and each units are processed using small
sized neural networks. This paper extends the use of the Im-
ageSplit as a variability compensation technique in memristive
crossbar arrays. This paper presents the complete hardware ar-
chitecture of imageSplit using Artificial Neural Network (ANN).
An integration block for combining the output from individual
neural networks is designed and evaluated. We consider dif-
ferent device variations including ROFF /RON variations and
aging using imageSplit. Along with hardware compensation
techniques, algorithmic modifications like pruning and dropouts
are also considered for analysis. The results show that imageSplit
can reduce the effect of variability by processing the data on
smaller neural networks. Splitting the input and independently
training the smaller neural networks performs better in terms
of output probabilistic values even with the presence of the
significant amount of hardware variability.

The paper is organized in into 5 sections. Section II dis-
cusses the ImageSplit Implementation using Memristive cross-
bar arrays. The compensation techniques using ImageSplit is
presented in Section III, Section IV presents the Results and
Discussion and the concluding remarks in Section V.

II. IMAGESPLIT IMPLEMENTATION USING MEMRISTIVE

CROSSBAR ARRAYS

For the ImageSplit technique, the input image is split into
smaller units and can be visualized as multiple sub-datasets of
spatially separated block images [13]. Each split images was
processed using an independent neural network model of having
smaller sizes. An integration block is used to combine each
model output to obtain the classify of the image [13].

Fig. 1 shows the complete architecture implementation of
ImageSplit using an ANN. The memristive crossbar implemen-
tation of the nosplit case is shown in Fig. 1(a). Consider an
image dataset X = {x1, x2. . .xP } with each image xp, ∀p =
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Fig. 1. ANN implementation of ImageSplit Methodology (a) ANN implementation of no split case, (b) ImageSlit: 4 split case Processing, (c) ANN Implementation
of 4 split case (d) Integration block for 4 Imagesplit case and (e) Circuit implementation of Current-to-Voltage converter (IVC). SM: Softmax Activation function,
RU: Relu Activation Function, NN: Neural Network.

{1, 2, 3. . .P} of size A×B. For the nosplit case, A×B and
M1 are the sizes of input and output neurons respectively with
M hidden layers, Fig. 1(a). Now, we consider splitting the input
image xp into L sub-parts. In the image-splitting case, each
image was split into sub-units of size A1×B1. Fig. 1(b) shows
the imageSplit for L = 4, that is, the original image is divided
into four multiple non-overlapping blocks. These blocks can be
of various sizes, Fig. 2 shows the blocks with same sizes. The
splitting generatesL separate datasets from X, for four splits, we
have four smaller datasets, X1 dataset containing the upper-left
half, X2 containing the upper-right half, X3 containing the
lower-left half and X4 containing the lower-right half. These
subsets of separate datasets from imageSplit were processed

separately using smaller neural network architectures. Fig. 1(c)
shows the ANN implementation for the 4 split case. Each dataset
was processed using smaller neural networks NN1, NN2, NN3
and NN4. These smaller individual networks process data in
parallel and classify them. The neural architecture uses a softmax
activation function for the output layer and all the other layers
use the ReLU activation function. The circuit implementation
of the activation functions is presented in Fig. 2.

For a dataset withM2 number of classes, each network hasM2

outputs, that is, from NN1 the outputs are {y1,1, x1,2. . .y1,M2}
and similarly from NN2, NN3 and NN4. These four outputs from
the individual networks may be the same or different. These
outputs are fed into an integration block for the final output.
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Fig. 2. Circuit Implementation of Activation functions. (a) Circuit implemen-
tation of ReLU [14], (b) Circuit implementation of Softmax [15], (c) Circuit
implementation of Division block [15] and (d) Circuit implementation of EXP
block [15].

The circuit implementation of integration block is illustrated
in Fig. 1(d). The memristor integration block was a memristor
crossbar structure of size L×M2. The cells in the first column
takes the output of Class 1 from NN1, NN2, NN3 and NN4.
Second column for Class 2 and so on. Thus the crossbar output
{y1, x2. . .yM2} gives the integrated probabilities of NN1, NN2,
NN3 and NN4. The final output yj is obtained across the load
resistance RL. The yj can be computed as

yj =
ΣL

i=1(yi,j/Ri)
1

RL
+ΣL

i=1(1/Ri)
(1)

where Ri is the memristor resistance. From (1), the class with
the maximum yj value is detected as the final prediction, that
is, the class most often detected by smaller networks is chosen
as the final prediction.

III. COMPENSATION TECHNIQUE USING IMAGESPLIT

Improving device material characteristics and modifying both
the circuit and architectural level [16] neural structures are
widely used approaches for reducing the impact of hardware
variability challenges. Along with hardware compensation tech-
niques, algorithm-level modifications, such as like pruning
and dropouts can significantly reduce aging-related issues by
omitting unwanted weight values. Using this approach both
hardware-level and algorithmic-level compensation were car-
ried out.

A. Modular Arrangement

Recent architectural modifications include modular structure
arrangements, a series-parallel [2] combination of memristive
nodes [17], and a bridge super-resolution approach. However
the multiple memristor cell structure increases the area over-
head. These approaches help improve the single node resolution
whereas the scalar or modular arrangement of crossbar structures
are reduces the area power-related [11], [12] crossbar challenges.
Splitting a large neural network can produce a relative readout

error; however, splitting the input and independently training
smaller neural networks performs better in terms of output
probabilistic values.

B. Aging Challenges

Owing to the repeated supply of voltage during the program-
ming stage of the memristor, the filament inside the material
stack undergoes aging [18] thereby changing the effective con-
ductance range available for mapping. Along with quantization
errors, this change in the conductance range leads to an inap-
propriate mapping of the weight values [19]. The change in the
desired conductance value from the actual programmed value
can be classified into the following categories;

Case 1:

GON +AGON and GOFF +AGOFF (2)

Case 2:

GON +AGON and GOFF −AGOFF (3)

Case 3:

GON −AGON and GOFF +AGOFF (4)

Case 4:

GON −AGON and GOFF −AGOFF (5)

GON and GOFF are the maximum and minimum conduc-
tance values, respectively. The conductance variability ratio is
denoted by “A”. Ideally, the peak values affect the conductance
variability more than other conductance states. However, the
other conductance states also diminished when the variability
exceededs the threshold level. In the case of failure type 2(case 2)
there is no conductance loss due to aging. Hence, these studies
considered only three different types of failures. A change in
the conductance causes a relative current error which in turn
reduces the performance degradation of the proceeding layers.
These cumulative current errors were directly proportional to
the parameter size. The Independent training and validation of
the neural networks showed a degradation in the current errors.
In addition pruning and dropout reduce the parameter count
without affecting performance accuracy.

C. Pruning and Dropout

Pruning and dropouts are two popular methods for removing
weight values in a neural network. Dropout removes random
nodes whereas pruning eliminates weight values that have lower
magnitude values. The level of pruning [20] or dropout was
determined by measuring the algorithm performance with hard-
ware variability. A highly pruned network can be easily affected
by hardware variability. Analyzing hardware variability with
sparse updates can minimize the area, power and computational
complexity.

IV. RESULTS AND DISCUSSION

The circuit implementation of the ANN architecture using
the proposed imageSplit method was evaluated. The ANN was
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Fig. 3. Performance plot of 4 ImageSplit (a) Output of Neural Network1 NN1, NN2, NN3, NN4 (b) Combining block: Comparison between software and Circuit
simulated output in SPICE.

trained using Intel Image Classification and CIFAR-10 data-sets.
Python coding was performed for the training of the neural
network architectures, and the trained weights were mapped
to the memristors crossbar arrays. The memristor model con-
sidered is Knowm Multi-Stable Switch (MSS) with WOx de-
vice parameters. The trained weights are mapped according to
RON = 1KΩ and ROFF = 100KΩ. The 1T1M memristor cell
are implemented using 22 nm high-k PTM models [21].

The proposed variability compensation using the imagesplit
methodology was analyzed using both hardware and software
level parameters. Two ANN architectures were used for the per-
formance comparison of different splitting counts. Upto 16 level
split counts were carried out for the analysis. The Single-layer
Artificial Neural Network(SANN) architecture consists of two
sequential layers with node size of m, l where m denotes the
image size and l denotes the output class size. For example, in a
split count of 2, the image is partitioned into two halves with 16
× 32 pixels for the CIFAR10 dataset. Hence the input layer will
has a node size equal to 16 * 32. Similarly, when we increase
the split count from 2 to 16, each partition is separately taken
out and fed into a separate SANN structure. For the multi-layer
artificial neural network (MANN), additional 2 hidden layers
were added for training. Node size of 100 and 50 were used.
The weight values from the trained models were mapped to the
appropriate conductance value range. The level of quantization
determines the mapping accuracy and a performance analysis
for different quantization levels is carried out.

Each neural network was trained separately using the split
images. For example, for a split count of 4, four neural net-
works were trained with an image size of 16 × 16. 4 different
trained weight values are mapped onto conductance values and
calculated softmax probabilistic values from the outer layer.
An integration block accumulates the corresponding probability
values from each network. The final decision can be made by
taking the maximum probability value from the accumulated
values. Fig. 3 shows the performance plots of the four ImageSplit
images. Fig. 3(a) represents the output of Neural Network1
(NN1), NN2, NN3, NN4, and (d) shows the performance of
the integration block: comparison between software and circuit
simulated output in SPICE.

A. Pruning and Dropout

Pruning minimizes the sparsity. Both the SANN and MANN
architectures were pruned for different percentage values from
0.05. Table II shows the performance accuracy for both the
SANN and MANN with the CIFAR-10 and Intel image classifi-
cation datasets. When we moved from two split counts to eight,
the performance accuracy increased. Compared with eight, split-
ting count 16 shows a reduction in accuracy. Table III shows
the performance accuracy after dropout for both the SANN and
MANN with CIFAR-10 and Intel image classification datasets.
The network was trained with different dropout percentages
and the performance accuracy for different split counts was
calculated.

B. Aging Analysis

Table IV shows the output layer Relative Current Error(RCE)
values. The erformance analysis under different variability con-
ditions for the SANN with the CIFAR10 dataset is shown in this
table. Two variability percentage values were considered 5 and
10. Split counts with 2, 4, 16, and 32 levels and trained weights
with different quantization levels for mapping were used for
analyze the impact of variability. The quantization levels range
from 2 to 16. In the case of failure type 2(case 2) there is con-
ductance loss due to aging. Both upper and lower conductance
values moved in the upper and lower directions, respectively.
This reduced the current error. The current error also increases
with an increase in the variability percentage. In the case of
number of split, the variability or current error decreased with an
increase in the number of splits. Large crossbar layers have more
hardware variability, and hence, more relative current errors. The
splited crossbar architecture reduces hardware complexity and
reduced current error values.

C. Area and Power

The area and power requirements of the imagesplit neural
architecture trained for the CIFAR10 dataset are presented in
Table V. The table provides different split cases for the SANN
architecture. The split cases are bench marked with the no
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TABLE II
PERFORMANCE ACCURACY FOR 2 DIFFERENT DATASETS AND 2 ANN ARCHITECTURES FOR PRUNING

TABLE III
PERFORMANCE ACCURACY FOR 2 DIFFERENT DATASETS AND 2 ANN ARCHITECTURES FOR DROPOUT

TABLE IV
RCE DEPICTING EFFECT OF RON AND ROFF VARIABILITY ON SANN WITH CIFAR10 DATASET

TABLE V
POWER CONSUMPTION AND AREA COMPARISON

splitting case. The amplifier circuits were designed with a three
stage amplifier circuit using a 22 nm CMOS node [15]. The
results in Table V shows that there is considerable reduction in
area and power requirements with image splitting. The output
node size is the same for the no split case and 2 and similarly
4 & 8; hence, the same amplifier power is used for these cases
in the SANN. The effect of reduction in area and power is more

prominent for the MANN neural network architecture than for
the SANN, as shown in Table V. Clearly too many splits need
not necessarily increase accuracy. There should be a trade-off
between the area, power and accuracy when choosing the proper
split.

V. CONCLUSION

In this paper, we presented an imagesplit technique for com-
pensating variability-related challenges in neuro-memristive
crossbar systems. Along with hardware compensation tech-
niques, algorithm-level modifications such as pruning and
dropouts significantly reduce aging-related issues. The perfor-
mance of the split structure varies from two split counts to the
eight number of splits. Later, a 16-number split counted shows
the degradation of performance considering both single-layer
and multi-layered ANN architectures. Pruning and dropout re-
duce the complexity by reducing the number of parameters
required for computation. This, in turn helps reduce cumulative
aging issues in a structure. Splitting the input and independently
training smaller neural networks performs better in terms of
output probabilistic values, even in the presence of a significant
amount of hardware variability. Memristor crossbar arrays are
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difficult to scale in hardware owing to the presence of a large
amount of variability. The use of multiple tiled small crossbar
units is more feasible for hardware [8] applications. Imagesplit
is one of the solutions to keep the crossbar size small and
for simple architectural design. Imagesplit is one of the solu-
tions to keep the crossbar size small and for simple hardware
implementation.
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