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Spiking Neural P Systems With Enzymes
Xiang Tian , Xiyu Liu , Qianqian Ren, and Yuzhen Zhao

Abstract— The neurotransmitter is a chemical substance1

that transmits information between neurons. Its metabolic2

process includes four links: synthesis, storage, release and3

inactivation. As one of the important chemical components4

of neurotransmitters, acetylcholine is synthesized under5

the catalysis of acetylcholine coenzyme A and choline6

acetylase. Inspired by the biological fact that enzymes exist7

in neurons and that enzymes are involved in neurotrans-8

mitter synthesis, we propose spiking neural P systems9

with enzymes (SNPE). Different from the previous spiking10

neural P systems and their variants, each neuron of SNPE11

contains two classes of objects, and each spiking rule12

has the participation of enzymes. In addition, the number13

of spikes and enzymes in a neuron can also serve as a14

consumption condition for controlling whether a reaction15

(rule execution)occurs. When the number of enzymes meets16

the requirements of a specific biochemical reaction, the17

number of occurrences of the reaction can also be con-18

trolled. As number generation and acceptance devices, the19

proposed SNPE systems are proved to be Turing universal.20

In addition, 61 neurons are used to construct an SNPE21

system that realizes function computation,which proves the22

Turing universality in this mode. Finally, we also explore23

using a uniform SNPE model to solve the subset sum24

problem and compare it with the standard SN P and its25

several variants.26

Index Terms— Membrane computing, spiking neural27

P systems, biocomputing, enzymes, subset sum,28

NP-complete.29

I. INTRODUCTION30

MEMBRANE computing is a cell-level biological31

abstraction between DNA molecules and neural net-32

works. It reflects the biochemical mechanism of information33

transmission, cooperative transport and possible structural evo-34

lution in living cells or between cells. The concept and system35
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theory of membrane computing was first proposed by Păun [1]. 36

Therefore, the membrane system is also referred to as the P 37

system [2] for short. The membrane computing models have 38

attracted a large number of scholars to conduct extensive and 39

in-depth research due to their outstanding characteristics such 40

as distribution, parallelism and non-determinism. According 41

to different topological structures and biological principles, 42

generally speaking, P systems mainly involve three types 43

in topology [3]: cell-like P systems (hierarchical topological 44

features), tissue-like P systems (network-like topological fea- 45

tures), and neural-like P systems (topological features appear 46

as directed graphs). 47

In the nervous system of living organisms, nerve cells 48

(neurons) exchange information by transmitting spikes through 49

synapses. Inspired by this biological fact, spiking neural 50

P systems (SN P) were first proposed [4] with their con- 51

cise expression and efficient structures. Since then, further 52

inspired by various biological facts such as the biochemical 53

reactions and functional structure of the biological nervous 54

system, various variants based on the original SN P sys- 55

tems framework are constantly being developed. SN P has 56

become the most promising membrane computing model. 57

Considering the excitatory and inhibitory effects of astro- 58

cytes on synapses, Păun [5] and Pan et al. [6] studied the 59

SN P systems with astrocytes. On this basis, Aman and 60

Ciobanu [7] further studied the SN P systems with astrocytes 61

that can produce calcium ions. Pan and Păun [8] abstracted 62

the concept of anti-pulse from the biological phenomenon of 63

inhibitory pulse, and proposed the SN P systems with anti- 64

spikes. By introducing white hole rules, SN P systems with 65

white hole neurons [9] were constructively proposed. The 66

SN P systems with polarizations were fully discussed and 67

studied [10], [11]. Peng et al. [12], Huang et al. [13], and 68

Lv et al. [3] discussed the SN P systems with multiple chan- 69

nels rules. Cavaliere et al. [14] proposed the SN P systems 70

with non-synchronous (i.e., asynchronous) rules for the first 71

time and proved its equivalence with Turing machines. Based 72

on this, Pan et al. [15] further proposed a new working mode 73

called limited asynchronous SN P systems. Peng et al. [16] 74

studied fuzzy reasoning SN P and applied it in the field 75

of fault diagnosis. In terms of the execution of rules, the 76

existing mainstream modes are divided into the following three 77

categories: sequential mode [4], exhaustive mode [17], [18], 78

and flat maximal parallel mode [19], [20]. Wu et al. [21] 79

first introduced the flat maximally parallel mode into the 80

SN P systems. 81

Zeng et al. [22] first introduced the concept and idea of 82

threshold to SN P systems. Inspired by the phenomenon 83

of synchronized oscillations of neurons in cat’s visual cor- 84
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tex, Peng et al. [23] further conceived the dynamic threshold85

neural P systems (DTN P). Subsequently, Huang et al. [24]86

discussed the computing power of the DTN P used to generate87

string languages. Considering that there may be multiple88

synapses between biological neurons to realize connections,89

Wang et al. [25] and Pan et al. [26] introduced the idea90

of weighting to the synaptic connections between neurons.91

Inspired by the biological characteristics of neuroplasticity,92

Cabarle et al. [27] defined the generation and deletion of93

synapses between neurons as a kind of structural plasticity.94

Cruz et al. [28] further explored homogeneous SN P with95

structural plasticity, where each neuron has the same set of96

rules. Similarly, Wang et al. [29] designed self-organizing SN97

P systems to realize the dynamic connection of synapses98

between neurons in the computing process. Based on the99

neural model of the mammalian visual cortex, a novel cou-100

pled neural P system was proposed [30], in which each101

coupled neuron is composed of a receptive field, a modu-102

lation module, and an output module. Inspired by numer-103

ical P systems, Wu et al. [31] proposed numerical SN P104

systems. Peng et al. [32] cleverly introduced the non-linear105

activation function commonly used in deep neural networks106

as a non-linear spiking rule, and extended the spike count107

unit from integer level to real number level. Considering108

the biological facts of inhibitory synapses, Peng et al. [33]109

introduced inhibitory rules. Neary [34] and Zhang et al. [35]110

studied small universal SN P systems using extension rules.111

In addition, a large number of scholars have carried out112

research and discussion on the combination of the above-113

mentioned variants. For example, Ren et al. [36] combined114

weighting ideas with anti-spikes. Wu et al. [37] merged polar-115

ization and asynchronous rules. Song et al. [38] discussed116

the Turing universality of asynchronous rules with multiple117

channels. Yang et al. [39] combined anti-spikes and structural118

plasticity and proposed extended SN P systems. Pan et al. [40]119

incorporated the cell-like structure into SN P systems, and120

also further introduced request rules, which allow the skin121

membrane to obtain pulse information from the outside.122

Song et al. [41] explored integrating anti-spikes into the asyn-123

chronous SN P systems. SN P systems also showed some124

groundbreaking results in application. SN P systems with125

fuzzy reasoning [16] were successfully applied in the field126

of fault diagnosis. SN P systems with learning functions were127

proposed and successfully used to solve the problem of letter128

recognition [42]. SN P systems were also well applied in129

decoder design [43], classification tasks [44], and workflow130

modeling [45].131

Neurotransmitters are chemicals that help signals pass from132

one neuron to another. It combines with specific receptors on133

the postsynaptic cell membrane to affect the membrane poten-134

tial of postsynaptic neurons or cause the physiological effects135

of effector cells to complete synaptic information transmission.136

The metabolic process of neurotransmitter includes four links:137

synthesis, storage, release and inactivation. As one of the138

important chemical components of neurotransmitters, acetyl-139

choline is synthesized under the catalysis of acetylcholine140

coenzyme A and choline acetylase, and then transferred to141

vesicles for storage. When the nerve impulse reaches the 142

nerve terminal, the vesicle membrane and the presynaptic 143

membrane fuse to release acetylcholine into the synaptic cleft. 144

At the same time, acetylcholine is hydrolyzed into choline and 145

acetic acid by cholinesterase (ChE) in the nerve endings and 146

inactivated. Part of the choline is once again taken up by the 147

cholinergic nerve endings and participates in the synthesis of 148

new acetylcholine. 149

This work is inspired by the above biological principles, 150

and proposes new spiking neural P systems with enzymes 151

(SNPE). Compared with the standard SN P and its variants, 152

SNPE has made improvements in terms of objects, rules, 153

and system operation. As a function computing device, the 154

proposed SNPE is compared with 6 SN P variants published in 155

the past 3 years (2019∼2021). In addition, we also explore the 156

computational power of SNPE systems to uniformly solve the 157

subset sum problem attributed to NP-complete. The detailed 158

inspiration, motivation, innovations and contributions of this 159

work will be given in the next section. 160

The logical structure of this work is arranged below. 161

Section II describes the relevant basic knowledge. Motiva- 162

tions, the formal definition of the SNPE system and an 163

example are presented in Section III. Section IV gives two 164

proofs of Turing universality of SNPE systems as number 165

generation and acceptance devices, respectively. The SNPE 166

system as a functional computing device and its computing 167

power are shown in Section V. Section VI demonstrates the 168

computational power of the SNPE system to uniformly solve 169

the subset sum problem attributed to NP-complete. A summary 170

and outlook are in Section VII. 171

II. PRELIMINARY KNOWLEDGE 172

In this section, we briefly review some necessary knowledge 173

about formal languages and automata theory. At the same time, 174

the commonly used notations and their meanings throughout 175

this work are given. 176

Suppose that V is an alphabet, a set with non-emptiness 177

and finiteness. A finite sequence of elements (also called 178

characters) in alphabet V formed one after another in a certain 179

order is called a string. The empty string λ does not contain 180

any characters. The meaning of V ∗ is similar to the Kleene 181

closure, and V + is similar to the positive closure. The union 182

of V + and λ is equivalent to V ∗. For a detailed introduction 183

to formal languages, readers can also refer to [2] and [46]. 184

The formal definition of a register machine is denoted by 185

the tuple M = (m, H, l0, lh , I ), where, m denotes the number 186

of registers. H represents a set of instruction labels. l0 and 187

lh mean the starting label and the halting label, respectively. 188

I is the set of all possible instructions. Every label in H 189

corresponds to an instruction in I one-to-one. The instructions 190

in I are divided into three types, that is, the addition instruction 191

li : (ADD(r), l j , lk), the subtraction instruction li : (SUB(r), 192

l j , lk) and the termination instruction lh : H ALT . For a further 193

detailed description of register machine, please refer to [47]. 194

The computing power of a new computing model is usually 195

verified by realizing the simulation of the register machine. 196
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It is usually considered to verify separately from the per-197

spective of the two modes. One is the generation mode,198

and the working principle of this mode is as follows. Ini-199

tially, the stored value in each register is empty. The calcula-200

tion of the system starts at l0 and ends at lh . At this time,201

the value stored in register 1 is the number computed (or202

generated) by M . Use Ngen(M) to represent the set of numbers203

generated by the register machine M in this mode.204

The other is acceptance mode which is different from205

the generation mode in two main points. On the one hand,206

in this mode, a certain register needs to be designated as an207

input unit initially, and the storage value of the remaining208

registers is empty. On the other hand, the addition instruction209

in the acceptance mode is deterministic, abbreviated as li :210

(ADD(r), l j ). Use Nacc(M) to represent the set of numbers211

that can be accepted by the register machine in this mode.212

III. MOTIVATIONS AND THE PROPOSED SNPE SYSTEMS213

The research motivation and innovative mechanism of the214

proposed SN P systems with enzymes (SNPE) are inspired215

by the following biological principles. (i) The firing of infor-216

mation in neurons requires the participation of enzymes.217

(ii) Enzymes are only present in the current neuron, and do218

not pass and communicate between neurons as information.219

(iii) Usually, enzymes consumed by participating in the reac-220

tion can be synthesized automatically to ensure the sustain-221

ability of subsequent reactions in that neuron. Based on the222

inspiration of the above biological principles, the innovations223

and contributions of this work can be listed below.224

i. The concept of the enzyme is introduced into the SN P225

system for the first time. The proposed SNPE systems226

will contain double objects, i.e., spike and enzyme,227

where the enzyme is only present in the current neuron.228

ii. The number of enzymes and spikes together constitute229

the consumption condition of the rules, which not only230

determines which rule can be executed, but also deter-231

mines the number of times a rule can be executed in232

parallel.233

iii. As a function computing device, comparisons with sev-234

eral SN P variants proposed in the last 3 years are made.235

The comparison results show that the number of neurons236

used by the SNPE model and the maximum number of237

rules used in each neuron are both the smallest.238

iv. Finally, we also explore using a uniform SNPE model239

to solve the subset sum problem and compare it with240

the standard SN P and its latest several variants. The241

enzyme, as a controller of whether the rules are executed242

sustainably, is more flexible and prominent here. That243

is, when the enzymes are not renewable, the execution244

of the rules is no longer sustainable. The comparison245

results show that the proposed SNPE model has a more246

compact structure and lower model complexity.247

A. Definition248

The definition of the proposed SNPE is as follows.249

� = (O, σ1, σ2, . . . , σm , syn, in, out) (1)250

where: 251

1) O = {a, e} defines the alphabet over double objects 252

where a stands for spikes (pulses) and e stands for 253

enzymes. 254

2) σ1, σ2, . . . , σm represent m neurons. σi = (ai , ei , Ri ), 255

1 ≤ i ≤ m, where 256

a. ai and ei are the original number of spikes and 257

enzymes contained in σi , respectively. 258

b. Ri means a finite set of rules. Rules involved 259

include spiking rules and forgetting rules. The 260

former is an extended spiking rule written as 261

E/(au, ev ) → (a p, eq);d , where E denotes a 262

regular expression based on the alphabet {a}, d rep- 263

resents the time delay required to emit spikes when 264

the rule fires. The forgetting rules do not require 265

the participation of enzymes and have the form 266

as → λ, s ≥ 1. 267

3) syn ⊆ {1, 2, · · · , m} × {1, 2, · · · , m} represents the set 268

of synapses. For ∀(i, j) ∈ syn, 1 ≤ i , j ≤ m, i 
= j . 269

4) in, out ∈ {1, 2, · · · , m} correspond to the input and 270

output neurons of the system, respectively. 271

The SNPE systems consist of three important components, 272

namely, system objects, executing rules, and system structure. 273

It can be seen from the above definition that an enzyme as 274

a new object participates in all spiking rules. Since enzymes 275

only exist inside nerve cells, they do not follow the informa- 276

tion (spikes) to transmit between neurons. Furthermore, the 277

enzymes involved in biochemical reactions (rules) can then be 278

automatically synthesized in nerve cells for supplementation. 279

In other words, in SNPE systems, a spiking rule can produce 280

spikes and enzymes but only spikes are transmitted to external 281

neurons while the enzymes still remain in the same neuron. 282

Suppose ui (t) is used to represent the number of spikes 283

in σi at step t , and vi (t) is used to represent the number of 284

enzymes in σi at step (time) t . At the next moment (t + 1) 285

after applying the rule E/(au, ev ) → (a p, eq); d , the number 286

of spikes and the number of enzymes in σi can be calculated 287

by (2) and (3), 288

ui (t + 1) =
{

ui (t) − u + n, If the rules fire

ui (t) + n, Other cases
(2) 289

vi (t + 1) =
{

vi (t) − v + q, If the rules fire

vi (t), Other cases
(3) 290

The n in equation (2) represents the number of spikes that 291

σi receives from its predecessor. u and v represent the number 292

of spikes and enzymes needed to enforce the rule, respectively. 293

p is the number of spikes generated by this rule, which are 294

sent to the successor neurons along synaptic connections. q is 295

the number of enzymes generated by this rule, which are 296

only present in the current neuron to ensure the continued 297

availability of the rule. d means the time delay between the 298

use of the rule and the emission of spikes produced by that 299

rule. For example, assuming rule (au, ev ) → (a p, eq); d in σi 300

is enabled at step t , then the p spikes generated will leave σi 301

at step t + d . From step t until step t + d − 1, σi is closed 302

and is in the refractory period. That is, during these d steps, 303
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σi can neither receive any spikes nor fire again. When d is304

not specified, its value is 0 by default.305

The SNPE system can realize the parallel execution mode of306

a single rule in one neuron, which is similar to the exhaustive307

mode [18]. That is to say, if a neuron contains exactly an308

integer multiple (such as n) of the number of spikes and309

enzymes required by a rule, then this rule will be executed310

n times in parallel. For example, suppose there are 4 spikes311

(a) and 2 enzymes (e) in neuron σi , denoted as [a4, e2]. Then,312

rule (a2, e) → (a, e) can be run twice in parallel at the same313

time. This rule will consume 4 spikes and 2 enzymes, then314

emit 2 produced spikes while also regenerating 2 enzymes.315

In this work, we define the regular expression E of the316

rule as the trigger condition of this rule. For a rule to be317

enabled, it must ensure that both its trigger condition and318

its consumption condition are true, where the consumption319

condition means that there are enough spikes and enzymes320

in the neuron for the rule to consume. For example, if rule321

E/(au, ev ) → (a p, eq) in neuron σi can be enabled at step t ,322

then the consumption condition of the rule must be true,323

meaning that the value of a Boolean expression of the form324

(ui (t) ≥ u) ∧ (vi (t) ≥ v) must be 1. For convenience, we say325

that a rule satisfies its firing condition if it satisfies both its326

trigger condition and its consumption condition.327

When multiple rules satisfy their firing conditions, the328

SNPE system follows the maximum spike-consumption strat-329

egy (mentioned in [30]). That is, when multiple rules are330

available, the one that consumes the largest number of spikes331

is selected for execution. For instance, if u1 > u2, then332

rule E1/(au1, ev1) → (a p1, eq1) will be activated while rule333

E2/(au2, ev2) → (a p2, eq2) will not be executed. In addition,334

the non-deterministic selection and execution of rules is also335

supported.336

B. An Illustrative Example337

This subsection introduces and explains the operating mech-338

anism of the SNPE system through an illustrative example339

shown in Fig. 1. The demonstration case includes four neu-340

rons. The initial number of enzymes contained in each neuron341

is 2. Initially, only neuron 1 contains 2 spikes. Neuron 4 with342

an arrow pointing to the outside is marked as the output of343

the system. When the environment receives a spike sent by344

neuron 4, it can be regarded as the system output 1; otherwise,345

it outputs 0. When the computation of the system is terminated,346

the binary sequence (or spike train) sent by neuron 4 is347

the computational result. For the convenience of demonstra-348

tion, the rules in this example temporarily omit the delay349

feature.350

Let the rule in neuron 1 becomes active at time t . The351

number of spikes and enzymes contained in neuron 1 (written352

as σ1) is exactly twice the number of spikes and enzymes353

required for the execution of the rule (a2)+/(a, e) → (a, e).354

Therefore, this rule in σ1 will be executed twice in parallel355

simultaneously, and neuron 2 and 3 (denoted as σ2, and σ3,356

respectively) each receive 2 spikes. During this period, the357

enzymes consumed in the reaction are automatically synthe-358

sized in the neurons and restored to their original quantities.359

Fig. 1. An illustrative example of SNPE system.

After σ2 receives two spikes, the situation is similar to σ1 360

in the initial state. At t + 1, σ2 fires 2 spikes to σ3 and σ4 361

respectively. After receiving the two spikes sent by σ1, because 362

the trigger condition is not met, no rule in σ3 is activated. After 363

neuron 4 (written as σ4) receives the two spikes sent by σ2, 364

it satisfies the firing condition and sends out one spike for the 365

first time at t + 2. Until another 2 spikes are obtained from 366

σ2, the four rules in σ3 meet the trigger conditions. However, 367

considering the maximum spike- consumption strategy, rule 368

a3(a)∗/ (a3, e2) → (a2, e2) cannot be enabled. Also, because 369

σ3 initially contains only two enzymes, rule a2(a2)+/ (a4, 370

e3) → (a2, e2) does not satisfy its consumption condition and 371

therefore cannot be activated. The remaining rules a2(a2)+/ 372

(a4, e2) → (a2, e2) and a2(a2)+/ (a4, e2) → (a3, e3) will be 373

executed non-deterministically, which will cause the system to 374

have different output results. Specifically, the following two 375

scenarios will lead to completely different computations. 376

1) Assuming that rule a2(a2)+/(a4, e2) → (a2, e2) is 377

activated at t +2, σ3 will fire 2 spikes to σ4. σ4 will run 378

rule (a2)+/(a2, e) → (a, e) at t + 3 and send out one 379

spike outside again. At this time, the system terminates 380

the computation, and the final result of the output binary 381

sequence is “0011”. 382

2) Assuming that rule a2(a2)+/(a4, e2) → (a3, e3) is 383

activated at t + 2, σ3 will fire 3 spikes to σ4. σ4 will 384

execute the forgetting rule a3 → λ at t + 3. The 385

3 spikes received directly disappear and no spikes are 386

launched outside. At this time, the system terminates the 387

computation, and the final result of the output binary 388

sequence is “0010”. 389

IV. TURING UNIVERSALITY OF SNPE SYSTEMS 390

As mentioned earlier, the simulation of the register machine 391

is usually divided into two modes, that is, the generation mode 392

and the acceptance mode. Each register r in M has a one- 393

to-one correspondence with a neuron σr in SNPE systems. 394

The number n stored in the register r corresponds to 2n 395

spikes in the neuron σr . That is, there are twice as many 396

spikes in the neuron σr as the value stored in the register r . 397

Similarly, each instruction l ∈ H corresponds to a neuron 398

σl in SNPE systems one-to-one. In addition, there are some 399

auxiliary neurons, denoted as σbi . In the following, the Turing 400
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universality of SNPE systems in these two modes is explored401

and proved. It should be noted that in the completeness proof402

of the following two modes, two spikes are introduced as the403

starting mechanism for all involved modules.404

A. SNPE Systems as Number Generation Devices405

In this work, the OUTPUT module in the generation mode406

takes the actual number of spikes emitted to the outside as407

the computational result. Under this assumption, the number408

of spikes emitted by the OUTPUT module to the outside will409

be exactly equal to the value stored in the register. Further,410

the family of Ngen(�1) generated by the SNPE systems with411

the total number of neurons (m) involved and the maximum412

number of rules (n) contained in each neuron is denoted as413

Ngen SN P En
m .414

Theorem 1: Ngen SN P E2∗ = NRE415

Proof: Since Ngen SN P E2∗ ⊆ N RE is obviously true (or,416

is achieved through Church-Turing thesis [4], [6]), to prove the417

above-mentioned equivalence relationship, we will only prove418

that N RE ⊆ Ngen SN P E2∗ is also true below.419

In the generating mode, an SNPE system �1 consists of420

3 modules, ADD, SUB, and OUTPUT. When the neuron σlh421

is activated, it means that the computation of the system is422

terminated. The OUTPUT module contains a neuron σout that423

can send spikes to the outside. Specifically, if the number424

stored in the register is n, then OUTPUT will cumulatively425

emit n spikes to the outside when the computation of the426

system �1 terminates.427

ADD Module (see Fig. 2).428

This module is used to simulate an addition instruction.429

The non-deterministic ADD module consists of 6 neurons,430

where σli is the trigger neuron of the addition instruction,431

σr is the register of the ADD instruction, σb1 and σb2 are432

auxiliary neurons, σlk and σl j represent jump instructions lk433

and l j respectively. Initially, only two spikes are introduced434

into the σli , and the remaining neurons do not contain any435

spikes. The amount of enzyme has been marked in individual436

neurons. Suppose that the neuron σli obtains 2 spikes at t ,437

which denotes the addition instruction is activated. At this438

time, the number of spikes and enzymes contained in σli439

are two units respectively. This not only satisfies the firing440

condition of the rule (a2)+/(a, e) → (a, e); 0, but also makes441

the rule be executed twice in parallel simultaneously. The442

activated neuron σli simultaneously fires two spikes to σr , σb1 ,443

and σb2 . The neuron σr after receiving two spikes marks that444

the register r has completed the addition operation.445

At step t + 1, both σb1 and σb2 contain 2 spikes, but only446

the rules in the neuron σb1 satisfy the firing condition. Since447

the two rules both satisfy the maximum spikes consumption448

strategy, only one rule in σb1 will be executed non- determin-449

istically. As a result, the following two scenarios will appear.450

a. Suppose that at t + 1, rule (a2)+/(a, e) → (a, e); 0 is451

activated. σb1 will consume two spikes, and the gener-452

ated two spikes will be transmitted to σb2 and σlk simul-453

taneously. The enzymes involved in the reaction are454

adjusted and changed according to equation (3). When455

σlk gets 2 spikes, it marks the start of the execution of456

Fig. 2. Module ADD.

TABLE I
THE COMPUTATIONAL PROCESS UNDER SCENARIO A

TABLE II
THE COMPUTATIONAL PROCESS UNDER SCENARIO B

the instruction lk . At t +2, 4 spikes will be accumulated 457

in σb2 , but these 4 spikes will be immediately forgotten 458

by the internal forgetting rule a4 → λ. In this scenario, 459

σl j will not receive any spikes, which means that the l j 460

instruction will not be activated and executed. Table I 461

shows the computational process in the above scenario. 462

The numbers in square brackets represent the number 463

of spikes and enzymes at the corresponding step in the 464

neuron, respectively. 465

b. Suppose that at t + 1, the rule (a2)+/(a2, e) → (a, e); 466

0 is activated. σb1 will fire a spike to σb2 and σlk simulta- 467

neously. Similarly, the spike received by neuron σlk will 468

be directly consumed by its internal rule a → λ. The 469

instruction lk cannot be executed. At t + 2, the neuron 470

σb2 has accumulated three spikes, which satisfies the 471

firing condition of rule a(a2)+/(a3, e2) → (a2, e2); 0. 472

At t+3, σl j obtains 2 spikes, which marks the instruction 473

l j will be executed. The specific computational process 474

under this scenario is presented in Table II. 475
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Fig. 3. Module SUB.

In summary, the addition instruction has been activated since476

σli received 2 spikes. Next, σr receives 2 spikes, which is477

equivalent to completing the operation of adding one to the478

existing value in r . Subsequently, by the non- deterministic479

execution of the two rules in the neuron σb1 , the simulation480

of the non-deterministic transfer of the two instructions lk and481

l j is realized.482

SUB Module (see Fig. 3).483

This module is developed to implement a subtraction484

instruction. The SUB module consists of 6 neurons, where485

σli is the trigger neuron of the subtraction instruction, σr cor-486

responds to the register r of the SUB instruction, σb1 and σb2487

are auxiliary neurons, σlk and σl j represent jump instructions488

lk and l j respectively. Initially, only two spikes are introduced489

into the σli , and the remaining neurons do not contain any490

spikes. The amount of enzyme has been marked in individual491

neurons. The initial scenario is similar to the previous addition492

instruction, i.e., it is assumed that 2 spikes enter σli at t , which493

means that the subtraction instruction starts to be simulated.494

At this time, rule (a2)+/(a2, e) → (a, e); 0 meets the firing495

condition, consumes two spikes, and a newly generated spike496

is transmitted to σb1 , σb2 and σr respectively. At t + 1, σb1497

executes rule (a, e) → (a, e); 0 and fires 1 spike to σl j .498

However, the next computational process of the system will be499

discussed in the following two cases according to the actual500

stored value in the register.501

a. If the number existed in r is not empty (i.e., n > 0), that502

is, the number of spikes in σr is not less than 2. Then,503

at t + 1, the spikes contained in σr is at least 3. At this504

time, only the rule a(a2)+/(a3, e2) → (a, e2); 0 will be505

activated and fire one spike to σlk and σl j , respectively.506

At t + 2, σl j will contain exactly 2 spikes, which507

means that instruction l j will be activated and executed.508

In addition, because the rule in σb2 uses delay, σlk will509

receive one spike from σr and σb2 at t + 2 and t + 3510

respectively. That is, the two spikes that do not simul-511

taneously arrive at σlk will be forgotten separately. The512

specific evolution process of the SUB module in this513

scenario is presented in Table III.514

TABLE III
THE COMPUTATIONAL PROCESS OF THE SUB UNDER SCENARIO A

TABLE IV
THE COMPUTATIONAL PROCESS OF THE SUB UNDER SCENARIO B

b. If the number existed in the register r is empty 515

(i.e., n = 0), that is, the number of spikes contained 516

in σr is 0. At t + 1, σr has only one spike sent from σli . 517

At this time, only rule a/(a, e) → (a, e); 1 will be 518

activated and executed. Since the available rules in σr 519

and σb2 both have the same time delay, at t + 3, σlk will 520

receive one spike from σr and σb2 , respectively. This 521

causes σlk to be activated, meaning that the lk instruction 522

begins to be executed. Similar to the previous scenario, 523

the single spike received by σl j successively from σb1 524

and σr will be respectively forgotten. Table IV shows 525

the computational process of the configuration in each 526

neuron under this scenario. 527

In summary, since the neuron σli received 2 spikes, the 528

subtraction instruction became active. When the number of 529

spikes in σr is not empty, 2 spikes of them are consumed, 530

and σl j is further activated. Conversely, when the number of 531

spikes in σr is zero, σlk will be directly activated. The process 532

successfully simulates the subtraction instruction. 533

OUTPUT Module (see Fig. 4). 534

This module is designed to simulate the termination instruc- 535

tion lh , and yields the system’s computation results. Suppose 536

σlh gets 2 spikes at step t , marking the start of the termination 537

instruction to be simulated. Rule (a2, e) → (a, e); 0 is 538

executed, and 1 spike is fired to σ1. 539

Assuming that the value existed in register 1 is n, 540

correspondingly, the number of spikes in σ1 is 2n. Then, 541

after neuron σ1 obtains one spike at t + 1, the number of 542

spikes it contains will become odd. Rule a3(a2)+/(a2, e) → 543

(a, e); 0 in σ1 is activated and executed. It should be noted that 544

the regular expression for this rule requires that the number of 545

spikes contained in σ1 cannot be less than 5. This is to avoid 546

a conflict with the applicability of another rule. 547

From t + 1 to t + n − 1, 2(n − 1) spikes will be con- 548

sumed cumulatively. At t + n, only 3 spikes remain in σ1. 549

At this point, rule (a3, e2) → (a, e2); 0 is enabled, consuming 550

3 spikes and emitting one spike to σout . On the other hand, 551
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Fig. 4. Module OUTPUT.

TABLE V
EVOLUTION PROCESS OF OUTPUT MODULE

σout accumulatively receives n spikes transmitted by σ1 from552

t + 2 to t + n + 1, and transmits them to the outside in553

turn. Table V clearly shows the above evolution process. The554

first column represents the time step. The other three columns555

are the number of spikes and enzymes contained in the three556

neurons.557

Through the above analysis, it can be easily found that558

the generation mode can be successfully simulated by �1.559

Therefore, Theorem 1 is proved to be true. �560

B. SNPE Systems as Number Acceptance Devices561

Theorem 2: Nacc SN P E2∗ = NRE562

Proof: In this proof we build an SNPE system �2 to real-563

ize the acceptance mode. The proof process of the accepting564

mode is somewhat similar to that of the generation mode. The565

difference is that the system �2 in this mode is composed of566

INPUT, deterministic ADD, and SUB. Among them, the SUB567

module still uses the structure of Fig. 3. It should be noted568

that, considering all the rules in the INPUT module and the569

ADD module that need to be proved in this subsection do570

not involve delay, all the rules ignore delay for the sake of571

convenience. The specific reasoning is proved as follows.572

INPUT Module (see Fig. 5).573

The purpose of this module is to import binary sequence574

information from the outside. Initially, only two spikes are575

introduced into the σin , and the remaining neurons do not576

contain any spikes. Suppose σin gets 2 spikes at t , and the577

firing condition of rule (a2)+/(a, e) → (a, e) is satisfied and578

Fig. 5. Module INPUT.

activated. This rule is executed twice in parallel simultane- 579

ously, and 2 spikes are fired to σb1 , σb2 , and σb3 , respectively. 580

At t + 1, although σb1 obtains 2 spikes, it does not meet the 581

firing conditions of the rules contained in it. Therefore, its 582

internal rules cannot be enabled. Simultaneously, after the neu- 583

rons σb2 and σb3 receive two spikes, the rule (a2)+/(a, e) → 584

(a, e) within them is activated, and from this moment on, they 585

send two spikes to each other at the same time. At t + 2, σ1 586

gets and stores 2 spikes for the first time. At t +n, σin obtains 587

2 pulses from the outside again. At t + n + 1, the neurons 588

σb2 and σb3 will hold four spikes at the same time, which 589

meets the forgetting rule a4 → λ. The four spikes accumulated 590

in neurons σb2 and σb3 are all forgotten at this moment. 591

Therefore, at t+n+1, it is the last time that neuron σ1 gets two 592

spikes from σb2 . From t + 2 to t + n + 1, σ1 has accumulated 593

2n pulses. This simulates the value existed in register 1 is n, 594

and n also happens to be the time difference between the two 595

pulses. On the other side, at t +n +1, σb1 obtained two spikes 596

from σin for the second time. Therefore, the number of spikes 597

accumulated inside is four, rule a4/(a4, e3) → (a2, e3) is 598

activated, and 2 spikes are fired to σl0 . After σl0 gets 2 spikes, 599

it indicates that the initial instruction l0 will be simulated. 600

ADD Module (see Fig. 6). 601

This module realizes the simulation of deterministic addi- 602

tion instructions. Suppose that the neuron σli obtains 2 spikes 603

at step t . At this time, rule (a2)+/(a, e) → (a, e) fires 2 spikes 604

to σr and σl j respectively. After σr gets 2 spikes, it indicates 605

the existing storage value in the register r is increased by 1. 606

Simultaneously, σl j received 2 spikes, which corresponds to 607

the deterministic execution of the instruction l j . 608

Through the above deduction, it can be clearly found that 609

the computation in this mode can be successfully simulated 610

by �2. Hence, Theorem 2 is proved to be true. � 611

V. SNPE SYSTEMS AS FUNCTION 612

COMPUTING DEVICES 613

Based on the analysis and discussion in the previous section, 614

this section will explore the computing power of the SNPE 615

system as a function computing device. First consider a Turing 616
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Fig. 6. Module ADD.

Fig. 7. A universal register machine Mu.

computable function f : Nk → N , in which k parameters617

are stored in designated k registers. The computation of the618

system starts with l0 and ends with lh . For ∀x, y ∈ N , if there619

is a recursive function g that satisfies the equation ϕx(y) =620

Mu(g(x), y), it is said that Mu is universal.621

Korec [47] once proposed a universal register machine Mu622

for function computing (see Fig. 7). In order to avoid the623

possibility of the final computation result stored in register624

0 being affected by the SUB instruction, the following minor625

improvements are made to Mu . A new register 8 which is626

not affected by the SUB instruction is added to store the final627

computation result. The original instruction l18 is changed to628

l18 : (SU B(4), l0, l22). Expand the last lh to lh : H ALT ,629

l22 : (SU B(0), l23, lh), and l23 : (ADD(8), l22).630

Theorem 3: There exists a general SNPE system with631

61 neurons that implements a computable function.632

Proof: Mark the Mu after fine adjustment as M ′
u . This633

part will build an SNPE system �3 composed of 1 INPUT634

module, 1 OUTPUT module, 10 ADD modules, and 14 SUB635

modules to realize the simulation of M ′
u . As mentioned636

before, the INPUT module (see Fig. 8) is still used to read637

binary sequence information from the environment. The binary638

sequence that the system needs to recognize from the outside639

is 10g(x)10y1. The expected situation is that the values g(x)640

and y are stored in registers 1 and 2, respectively, and then641

the initial instruction l0 is started. It should be noted that,642

in the previous completeness proof of generation devices643

Fig. 8. Module INPUT of SNPE systems.

and acceptance devices, for the sake of formal unification, 644

we introduce two spikes as the starting mechanism for the 645

proof of all involved modules. However, the function com- 646

puting devices considered in this section need to redesign 647

the INPUT module according to its characteristics. Therefore, 648

slightly different from the input mechanism of the INPUT 649

module in acceptance mode, the INPUT module here uses 650

a single spike to correspond to 1 in the binary sequence. 651

In addition, the delay mechanism is not involved in this 652

module, so it is ignored. 653

The working mechanism of this module is stated as follows. 654

Initially, only σin gets the first one pulse from the outside. Its 655

internal rule (a, e) → (a, e) is triggered, and fires 1 spike to 656

each of the five subsequent auxiliary neurons simultaneously. 657

But only the rule a/(a, e) → (a, e) in σb1 and σb2 meets the 658

firing condition and is activated. At each step from this time 659

on, σb1 and σb2 will complement each other with one spike, 660

and both send a spike to σ1 simultaneously. Until σb1 and σb2 661

receive the second spike from σin , during this period, σ1 will 662

accumulatively obtain 2g(x) spikes. 663

When σin gets the second spike from the outside, (a, e) → 664

(a, e) is triggered again and simultaneously fires 1 spike to 665

each of the five auxiliary neurons. At this time, none of the 666

rules in the neurons σb1 , σb2 , and σb5 satisfy the firing condi- 667

tion, so none of them can be activated. However, two spikes 668

have been accumulated in neurons σb3 and σb4 , satisfying the 669

firing condition of (a2)+/(a, e) → (a, e). At each step from 670

this moment on, the neurons σb3 and σb4 will consume and 671

complement each other with one spike, and both send one 672

spike to σ2 simultaneously. It should be noted that during this 673

process, 2 spikes will always remain in σb3 and σb4 due to the 674

complementary mechanism. Until σb3 and σb4 receive the third 675

spike from σin , during this period, neuron σ2 will accumulate 676

2y spikes. 677
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Fig. 9. Compound instruction optimization scheme.

When σin gets the third spike from the outside and is678

activated, the neurons σb1 , σb2 , σb3 , and σb4 will accumulate679

to three spikes. However, 3 spikes of the above four neurons680

will be immediately forgotten by their internal forgetting681

rule a3 → λ. At this time, only the rule a(a2)+/(a3, e2) →682

(a2, e2) in σb5 is finally activated, consuming 3 spikes and683

sending 2 spikes to σl0 . This marks the successful end of684

obtaining data from the environment and the start of the685

system’s initial instruction l0 to be executed.686

It can be seen from Fig. 7 that all ADD modules that need687

to be simulated are deterministic. Therefore, the ADD module688

adopts the form of Fig. 6. Refer to Fig. 3 for the SUB module.689

Refer to Fig. 4 for the OUTPUT module. The statistics of690

neurons required by various instructions or modules in the691

SNPE system �3 to simulate the function computing are as692

follows.693

a) 9 registers correspond to 9 neurons;694

b) 25 instructions are associated with 25 neurons;695

c) 14 SUB instructions correspond to 2 × 14 neurons;696

d) An INPUT module contains 6 neurons;697

e) One OUTPUT module corresponds to one neuron;698

In summary, in the above simulation process, a total of699

69 neurons were used. However, after considering the possible700

merging of some modules and the necessary optimization701

design of their structure, the number of neurons used in the702

system will be much reduced. According to the compound703

instruction optimization scheme (see Fig. 9), the combination704

of instruction SUB and instruction ADD can be divided into705

three situations: SUB-ADD1, SUB-ADD2 and ADD-ADD.706

Among them, the general expression form of SU B− ADD1707

(see Fig. 10) type can be written as li : (SU B(rx ), l j , lk),708

l j : (ADD(ry), lg). The first six combinations shown in Fig. 9709

conforming to the SU B − ADD1 type have a common law,710

that is, when the value existed in the register r1 of the previous711

instruction is not empty, it will jump directly and execute712

the latter instruction. The situation with SU B − ADD2 (see713

Fig. 11) is just the opposite. It should be emphasized that the714

initial configuration of the merge modules SU B − ADD1 and715

SU B − ADD2 is exactly the same as that of the SUB module.716

Fig. 10. Module SUB − ADD1.

Fig. 11. Module SUB − ADD2.

We take Fig. 10 as an example to give the evolution process 717

of the SU B − ADD1 module. It should be emphasized that 718

this type of module has a common feature, that is, the first 719

output instruction of SU B is exactly the input instruction of 720

ADD. The initial scenario of this module is similar to the 721

SU B module shown in Fig. 3. The difference is that the rules 722

with 0 delay in σrx and σb1 will send one spike to σry and σlg 723

simultaneously when register rx of instruction li is not empty. 724

In other words, σry and σlg will receive two spikes simultane- 725

ously. For instruction l j , this is equivalent to simultaneously 726

completing the two operations of adding 1 to the stored value 727

of register ry and deterministically going to instruction lg . The 728

single spike sent from σrx and σb2 to σlk will be forgotten 729

successively in σlk due to the time interval. In addition, the 730

rules with 1 delay in σrx and σb2 will be fired simultaneously 731

when the value stored in register rx is empty. In this scenario, 732

σlk will receive 2 spikes simultaneously, which means that the 733

instruction lk starts to execute. Each of the 6 combinations 734

that can be classified as SU B − ADD1 saves one neuron. 735

The evolution process of the SUB-ADD1 module when the 736

register rx is not empty is shown in Table VI. Table VII shows 737
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TABLE VI
THE EVOLUTION PROCESS OF THE SUB-ADD1 MODULE WHEN THE

REGISTER rx IS NOT EMPTY

TABLE VII
THE EVOLUTION PROCESS OF THE SUB-ADD2 MODULE

WHEN THE REGISTER 3 IS EMPTY

Fig. 12. Module ADD − ADD.

TABLE VIII
COMPARISON OF DIFFERENT COMPUTING MODELS

the computational process of the SUB-ADD2 module when738

register 3 is empty.739

In addition, because the ADD instruction is deterministic,740

the instructions l17 and l21 can be combined in the form of an741

ADD−ADD (see Fig. 12) module. According to this merging742

optimization, the neuron corresponding to the instruction l21743

can be saved.744

The above three types contain a total of 8 combinations, and745

each combination can save one neuron. Therefore, 8 neurons746

will be removed due to redundancy. Table VIII shows the total747

number of neurons required and the maximum number of rules748

Fig. 13. Construction of the SNPE model for solving the subset sum
problem.

presented in each neuron when different computing models are 749

used as universal function computing devices. It can be seen 750

that our model (SNPE) can use a smaller number of neurons 751

and only two rules are involved in each neuron. In summary, 752

after combining and optimizing related modules, the total 753

number of neurons required can be reduced from 69 to 61. 754

Therefore, the statement of the Theorem 3 is obviously 755

true. � 756

VI. UNIFORM SOLUTION TO SUBSET SUM PROBLEM 757

A. The Subset Sum Problem 758

The subset sum problem is NP-complete and can be 759

described as follows. Given a set V of n positive integers and a 760

positive integer S, is there a subset B ⊆ V such that the sum of 761

all elements in B is exactly equal to S? Leporati et al. [52] and 762

Leporati et al. [53] have used standard SN P systems to solve 763

subset sum problem in a non-uniform and uniform manner, 764

respectively. Non-uniform way relies on specific instances to 765

design models, whereas a uniform way is problem-oriented 766

rather than concrete instances. In other words, solving the 767

subset sum problem in a uniform manner means that the design 768

of the system depends only on the size n of the problem, while 769

the specific elements of V and S need to be introduced into 770

the system. Obviously, the uniform way is more transparent 771

than the non-uniform way [53]. Therefore, this work explores 772

the use of SNPE systems to solve subset sum problem in a 773

uniform way. 774

B. Model Construction 775

The construction of the SNPE model to solve the subset sum 776

problem is shown in Fig. 13. We follow the design philosophy 777

of Leporati et al. [53] that if the problem is solved then the 778

computation of the system stops automatically, otherwise the 779
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computation of the system continues forever. The specific780

reasoning process is as follows.781

There are n + 1 input neurons in the model, denoted as782

in0, in1,…, inn , which are responsible for introducing 2S,783

2v1, 2v2, . . . , 2vn (where, V = {v1, v2, . . . , vn}) spikes into784

the system, respectively. Initially, only one spike exists in785

neurons σb0 , σb1, . . . , σbn , and the rest of the neurons do786

not contain any spikes. It should be noted that, according787

to the design requirements of the problem, we only involve788

different delay rules in σb0 , σb1, . . . , σbn . It is through the789

non-deterministic choice of these rules with different time790

delays that the non-deterministic choice of positive integers791

in V is achieved. Suppose that at step 1, neurons σb1 ,…, σbn792

begin to non-deterministically select one rule within them to793

execute. For example, assuming that σbi non-deterministically794

executes rule (a, e) → (a, e); 0 at step 1, then at step 2, σci795

will receive a single spike from σb0 and σbi simultaneously.796

This causes rule (a2, e) → (a, e) in σci to be activated. Next,797

the input neuron σini will receive one spike at step 3, which798

makes the number of spikes in it become odd (i.e., 2vi + 1).799

Note that the intrinsic number of enzymes in σini is 2,800

which allows its internal rule a(a2)/(a, e) → (a, e) to be801

executed at most twice simultaneously and sends 2 spikes to802

the accumulating neuron σacc and trigger neuron σT . However,803

the number of spikes remaining in σini is still odd, which804

causes its internal rules to be executed continuously for vi805

steps. In other words, from step 4 to step 4 + (vi − 1), the806

neuron σacc will continuously receive a total of 2vi spikes807

from σini . In this way, a positive integer vi in the set V is808

non-deterministically selected and imported into σacc in the809

form of 2vi spikes.810

On the other hand, at step 4, the trigger neuron σT receives811

not only an even number of spikes from σini , but also a single812

spike from σh2 . It should be emphasized that the larger the813

value of the non-deterministically chosen number vi , the more814

steps are required to transfer 2vi spikes from σini to σacc.815

Given this concern, the trigger neuron σT is therefore designed816

to determine whether all selected numbers have been sent to817

the σacc. The rule a2t+1 → λ in σT is available as long as the818

transfer of spikes from σini to σacc is not over. When σT no819

longer receives spikes from any σini (1 ≤ i ≤ n), it means that820

all non-deterministically chosen numbers have been stored in821

σacc. At this point, σT will only receive one spike from σh2 ,822

causing rule (a, e) → (a, λ) to be enabled. It is important to823

note that this rule consumes one enzyme and no new enzymes824

are produced to replenish. This means that rule (a, e) → (a, λ)825

will no longer be available from now on. That is, when the826

enzyme is not renewable, the execution of this rule is no longer827

sustainable. After σh2 and σh3 receive a spike from σT , the828

number of spikes in them is 2, causing the rules in them to829

stop executing.830

When σacc and σin0 receive one spike from σT , the number831

of spikes contained will become odd. Then the only rule within832

σacc and σin0 will be activated, sending one spike to σe0833

while consuming two of its own spikes. After σe0 receives two834

spikes, it immediately forgets them according to rule a2 → λ.835

The above process continues until one of the following three836

scenarios occurs. (i) The most optimistic scenario must be837

TABLE IX
MODEL COMPLEXITY COMPARISON

that σacc and σin0 contain exactly the same number of spikes. 838

In this case, after σe0 executes the forgetting rule for the last 839

time, the entire system will stop computing. This means that 840

the sum of all numbers of non-deterministic choices is exactly 841

equal to S, and the subset sum problem is solved. (ii) The 842

number of spikes stored in σacc is more than that stored in σin0 . 843

(iii) Conversely, more spikes are stored in σin0 than in σacc. 844

The latter two scenarios can be grouped into one category, that 845

is, σe0 will start to execute rule (a, e) → (a, λ) after executing 846

rule a2 → λ for the last time. As mentioned earlier, rule 847

(a, e) → (a, λ) consumes one enzyme without reproducing it, 848

which causes this rule will no longer be available from now 849

on. Subsequently, σg1 and σg2 will work forever. 850

As can be seen from Fig. 13, the uniform SNPE model 851

requires only 3n + 10 neurons. And at most 2
∑n

i=1 vi + 3 852

steps are required when the computation of this model is 853

stopped automatically, including the initial 2 steps, from σini 854

to σacc at most max
1≤i≤n

{vi } steps, from σacc (or σin0 ) to σe0 at 855

most
∑n

i=1 vi steps, and one step from σT to σacc (and σin0 ). 856

Considering that max
1≤i≤n

{vi } ≤ ∑n
i=1 vi must be true, we take 857∑n

i=1 vi as the upper bound of max
1≤i≤n

{vi }. Therefore, when the 858

calculation of the system is automatically terminated, at most 859

2
∑n

i=1 vi + 3 steps are required. 860

Finally, we compare with the standard SN P [53] and its 861

several state-of-the-art variants in terms of complexity (see 862

Table IX). It is evident from Table IX that the original SN P 863

has the largest number of neurons used and the number of steps 864

required to compute termination. Our SNPE is second only to 865

RSSN P [54] in terms of using the total number of neurons, but 866

outperforms the other three compared models. Whereas, the 867

proposed SNPE model outperforms all four compared models 868

in terms of the number of steps required. 869

VII. CONCLUSION 870

This work proposes new spiking neural P systems with 871

enzymes (SNPE). Compared with the standard SN P and its 872

variants, SNPE has made improvements in terms of objects, 873

rules, and system operation. While giving the formal definition 874

of the SNPE systems, it also gives the expression of the 875

change in the number of two kinds of objects in the neuron. 876

Turing computing ability of the proposed SNPE systems in 877

generation mode and acceptance mode is proved respectively. 878

The computing power of this system as a small universal 879

function computing device is demonstrated and compared 880
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with 7 SN P variants. Finally, the performance of the system in881

solving NP-complete problem is explored and compared with882

the standard SN P and its several state-of-the-art variants.883

It should be emphasized that the excellent performance884

(see Table VIII) of the proposed SNPE as a small universal885

function computing device is not independently and directly886

contributed by the “enzyme”, but the collaboration of multiple887

mechanisms including the “delay”. There are indeed some888

SN P variants that use a smaller total number of neurons889

than SNPE when simulating a function computing device. For890

example, SN P with request rules [57] uses only 47 neurons,891

yet the number of rules in its neurons is as high as 11, which892

is much higher than all the comparison models in Table VIII.893

In addition, it is precisely because of the reasonable control894

of the “enzyme” over the sustainability of rule execution that895

SNPE excels in solving the Subset Sum problem.896

Based on this work, a lot of follow-up work can be explored897

and carried out. On the one hand, it can be combined with898

existing SN P variants. These combinations may lead to the899

emergence of other systems with more computing power.900

On the other hand, considering the control and restriction901

effect of enzymes on nerve conduction, other variants of SNPE902

systems can be developed. Finally, we can jump out of the903

biological principle and consider making some new expansions904

toward the existing neural network in terms of the topology905

of SNPE.906
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