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Spiking Neural P Systems With Enzymes

Xiang Tian™, Xiyu Liu

Abstract— The neurotransmitter is a chemical substance
that transmits information between neurons. Its metabolic
process includes four links: synthesis, storage, release and
inactivation. As one of the important chemical components
of neurotransmitters, acetylcholine is synthesized under
the catalysis of acetylcholine coenzyme A and choline
acetylase. Inspired by the biological fact that enzymes exist
in neurons and that enzymes are involved in neurotrans-
mitter synthesis, we propose spiking neural P systems
with enzymes (SNPE). Different from the previous spiking
neural P systems and their variants, each neuron of SNPE
contains two classes of objects, and each spiking rule
has the participation of enzymes. In addition, the number
of spikes and enzymes in a neuron can also serve as a
consumption condition for controlling whether a reaction
(rule execution) occurs. When the number of enzymes meets
the requirements of a specific biochemical reaction, the
number of occurrences of the reaction can also be con-
trolled. As number generation and acceptance devices, the
proposed SNPE systems are proved to be Turing universal.
In addition, 61 neurons are used to construct an SNPE
system that realizes function computation, which provesthe
Turing universality in this mode. Finally, we also explore
using a uniform SNPE model to solve the subset sum
problem and compare it with the standard SN P and its
several variants.

Index Terms—Membrane computing, spiking neural

P systems, biocomputing, enzymes, subset sum,
NP-complete.
|. INTRODUCTION
EMBRANE computing is a cell-level biological

abstraction between DNA molecules and neural net-
works. It reflects the biochemical mechanism of information
transmission, cooperative transport and possible structural evo-
lution in living cells or between cells. The concept and system
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theory of membrane computing was first proposed by Paun [1].
Therefore, the membrane system is also referred to as the P
system [2] for short. The membrane computing models have
attracted a large number of scholars to conduct extensive and
in-depth research due to their outstanding characteristics such
as distribution, parallelism and non-determinism. According
to different topological structures and biological principles,
generally speaking, P systems mainly involve three types
in topology [3]: cell-like P systems (hierarchical topological
features), tissue-like P systems (network-like topological fea-
tures), and neural-like P systems (topological features appear
as directed graphs).

In the nervous system of living organisms, nerve cells
(neurons) exchange information by transmitting spikes through
synapses. Inspired by this biological fact, spiking neural
P systems (SN P) were first proposed [4] with their con-
cise expression and efficient structures. Since then, further
inspired by various biological facts such as the biochemical
reactions and functional structure of the biological nervous
system, various variants based on the original SN P sys-
tems framework are constantly being developed. SN P has
become the most promising membrane computing model.
Considering the excitatory and inhibitory effects of astro-
cytes on synapses, Paun [5] and Pan er al. [6] studied the
SN P systems with astrocytes. On this basis, Aman and
Ciobanu [7] further studied the SN P systems with astrocytes
that can produce calcium ions. Pan and Paun [8] abstracted
the concept of anti-pulse from the biological phenomenon of
inhibitory pulse, and proposed the SN P systems with anti-
spikes. By introducing white hole rules, SN P systems with
white hole neurons [9] were constructively proposed. The
SN P systems with polarizations were fully discussed and
studied [10], [11]. Peng et al. [12], Huang et al. [13], and
Lv et al. [3] discussed the SN P systems with multiple chan-
nels rules. Cavaliere ef al. [14] proposed the SN P systems
with non-synchronous (i.e., asynchronous) rules for the first
time and proved its equivalence with Turing machines. Based
on this, Pan et al. [15] further proposed a new working mode
called limited asynchronous SN P systems. Peng et al. [16]
studied fuzzy reasoning SN P and applied it in the field
of fault diagnosis. In terms of the execution of rules, the
existing mainstream modes are divided into the following three
categories: sequential mode [4], exhaustive mode [17], [18],
and flat maximal parallel mode [19], [20]. Wu ef al. [21]
first introduced the flat maximally parallel mode into the
SN P systems.

Zeng et al. [22] first introduced the concept and idea of
threshold to SN P systems. Inspired by the phenomenon
of synchronized oscillations of neurons in cat’s visual cor-
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tex, Peng et al. [23] further conceived the dynamic threshold
neural P systems (DTN P). Subsequently, Huang et al. [24]
discussed the computing power of the DTN P used to generate
string languages. Considering that there may be multiple
synapses between biological neurons to realize connections,
Wang et al. [25] and Pan et al. [26] introduced the idea
of weighting to the synaptic connections between neurons.
Inspired by the biological characteristics of neuroplasticity,
Cabarle et al. [27] defined the generation and deletion of
synapses between neurons as a kind of structural plasticity.
Cruz et al. [28] further explored homogeneous SN P with
structural plasticity, where each neuron has the same set of
rules. Similarly, Wang et al. [29] designed self-organizing SN
P systems to realize the dynamic connection of synapses
between neurons in the computing process. Based on the
neural model of the mammalian visual cortex, a novel cou-
pled neural P system was proposed [30], in which each
coupled neuron is composed of a receptive field, a modu-
lation module, and an output module. Inspired by numer-
ical P systems, Wu ef al. [31] proposed numerical SN P
systems. Peng et al. [32] cleverly introduced the non-linear
activation function commonly used in deep neural networks
as a non-linear spiking rule, and extended the spike count
unit from integer level to real number level. Considering
the biological facts of inhibitory synapses, Peng ef al. [33]
introduced inhibitory rules. Neary [34] and Zhang et al. [35]
studied small universal SN P systems using extension rules.

In addition, a large number of scholars have carried out
research and discussion on the combination of the above-
mentioned variants. For example, Ren ef al. [36] combined
weighting ideas with anti-spikes. Wu et al. [37] merged polar-
ization and asynchronous rules. Song er al. [38] discussed
the Turing universality of asynchronous rules with multiple
channels. Yang et al. [39] combined anti-spikes and structural
plasticity and proposed extended SN P systems. Pan ef al. [40]
incorporated the cell-like structure into SN P systems, and
also further introduced request rules, which allow the skin
membrane to obtain pulse information from the outside.
Song et al. [41] explored integrating anti-spikes into the asyn-
chronous SN P systems. SN P systems also showed some
groundbreaking results in application. SN P systems with
fuzzy reasoning [16] were successfully applied in the field
of fault diagnosis. SN P systems with learning functions were
proposed and successfully used to solve the problem of letter
recognition [42]. SN P systems were also well applied in
decoder design [43], classification tasks [44], and workflow
modeling [45].

Neurotransmitters are chemicals that help signals pass from
one neuron to another. It combines with specific receptors on
the postsynaptic cell membrane to affect the membrane poten-
tial of postsynaptic neurons or cause the physiological effects
of effector cells to complete synaptic information transmission.
The metabolic process of neurotransmitter includes four links:
synthesis, storage, release and inactivation. As one of the
important chemical components of neurotransmitters, acetyl-
choline is synthesized under the catalysis of acetylcholine
coenzyme A and choline acetylase, and then transferred to

vesicles for storage. When the nerve impulse reaches the
nerve terminal, the vesicle membrane and the presynaptic
membrane fuse to release acetylcholine into the synaptic cleft.
At the same time, acetylcholine is hydrolyzed into choline and
acetic acid by cholinesterase (ChE) in the nerve endings and
inactivated. Part of the choline is once again taken up by the
cholinergic nerve endings and participates in the synthesis of
new acetylcholine.

This work is inspired by the above biological principles,
and proposes new spiking neural P systems with enzymes
(SNPE). Compared with the standard SN P and its variants,
SNPE has made improvements in terms of objects, rules,
and system operation. As a function computing device, the
proposed SNPE is compared with 6 SN P variants published in
the past 3 years (2019~2021). In addition, we also explore the
computational power of SNPE systems to uniformly solve the
subset sum problem attributed to NP-complete. The detailed
inspiration, motivation, innovations and contributions of this
work will be given in the next section.

The logical structure of this work is arranged below.
Section II describes the relevant basic knowledge. Motiva-
tions, the formal definition of the SNPE system and an
example are presented in Section III. Section IV gives two
proofs of Turing universality of SNPE systems as number
generation and acceptance devices, respectively. The SNPE
system as a functional computing device and its computing
power are shown in Section V. Section VI demonstrates the
computational power of the SNPE system to uniformly solve
the subset sum problem attributed to NP-complete. A summary
and outlook are in Section VII.

Il. PRELIMINARY KNOWLEDGE

In this section, we briefly review some necessary knowledge
about formal languages and automata theory. At the same time,
the commonly used notations and their meanings throughout
this work are given.

Suppose that V is an alphabet, a set with non-emptiness
and finiteness. A finite sequence of elements (also called
characters) in alphabet V formed one after another in a certain
order is called a string. The empty string 4 does not contain
any characters. The meaning of V* is similar to the Kleene
closure, and V7 is similar to the positive closure. The union
of VT and / is equivalent to V*. For a detailed introduction
to formal languages, readers can also refer to [2] and [46].

The formal definition of a register machine is denoted by
the tuple M = (m, H, ly, I, I), where, m denotes the number
of registers. H represents a set of instruction labels. Iy and
[, mean the starting label and the halting label, respectively.
I is the set of all possible instructions. Every label in H
corresponds to an instruction in / one-to-one. The instructions
in I are divided into three types, that is, the addition instruction
li : (ADD(r),l;, i), the subtraction instruction /;: (SUB(r),
1, lx) and the termination instruction [, : HALT . For a further
detailed description of register machine, please refer to [47].

The computing power of a new computing model is usually
verified by realizing the simulation of the register machine.
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It is usually considered to verify separately from the per-
spective of the two modes. One is the generation mode,
and the working principle of this mode is as follows. Ini-
tially, the stored value in each register is empty. The calcula-
tion of the system starts at /[y and ends at /. At this time,
the value stored in register 1 is the number computed (or
generated) by M. Use Ny, (M) to represent the set of numbers
generated by the register machine M in this mode.

The other is acceptance mode which is different from
the generation mode in two main points. On the one hand,
in this mode, a certain register needs to be designated as an
input unit initially, and the storage value of the remaining
registers is empty. On the other hand, the addition instruction
in the acceptance mode is deterministic, abbreviated as /; :
(ADD(r),l;). Use Nycc(M) to represent the set of numbers
that can be accepted by the register machine in this mode.

I1l. MOTIVATIONS AND THE PROPOSED SNPE SYSTEMS

The research motivation and innovative mechanism of the
proposed SN P systems with enzymes (SNPE) are inspired
by the following biological principles. (i) The firing of infor-
mation in neurons requires the participation of enzymes.
(i) Enzymes are only present in the current neuron, and do
not pass and communicate between neurons as information.
(iii) Usually, enzymes consumed by participating in the reac-
tion can be synthesized automatically to ensure the sustain-
ability of subsequent reactions in that neuron. Based on the
inspiration of the above biological principles, the innovations
and contributions of this work can be listed below.

i. The concept of the enzyme is introduced into the SN P
system for the first time. The proposed SNPE systems
will contain double objects, i.e., spike and enzyme,
where the enzyme is only present in the current neuron.

ii. The number of enzymes and spikes together constitute
the consumption condition of the rules, which not only
determines which rule can be executed, but also deter-
mines the number of times a rule can be executed in
parallel.

iii. As a function computing device, comparisons with sev-
eral SN P variants proposed in the last 3 years are made.
The comparison results show that the number of neurons
used by the SNPE model and the maximum number of
rules used in each neuron are both the smallest.

iv. Finally, we also explore using a uniform SNPE model
to solve the subset sum problem and compare it with
the standard SN P and its latest several variants. The
enzyme, as a controller of whether the rules are executed
sustainably, is more flexible and prominent here. That
is, when the enzymes are not renewable, the execution
of the rules is no longer sustainable. The comparison
results show that the proposed SNPE model has a more
compact structure and lower model complexity.

A. Definition
The definition of the proposed SNPE is as follows.

II1=(0,01,00,...,0m,Syn,in,out) (D

where:

1) O = {a,e} defines the alphabet over double objects
where a stands for spikes (pulses) and e stands for
enzymes.

2) o1,02,...,0, represent m neurons. o; = (a;, e, R;),
1 <i <m, where

a. a; and e; are the original number of spikes and
enzymes contained in o;, respectively.

b. R; means a finite set of rules. Rules involved
include spiking rules and forgetting rules. The
former is an extended spiking rule written as
E/(a",e’) — (aP, e?);d, where E denotes a
regular expression based on the alphabet {a}, d rep-
resents the time delay required to emit spikes when
the rule fires. The forgetting rules do not require
the participation of enzymes and have the form
a’ — A,s > 1.

3) syn C {1,2,--- ,m} x {1,2,---,m} represents the set
of synapses. For V(i, j) € syn, | <i, j <m, i # j.

4) in,out € {1,2,---,m} correspond to the input and
output neurons of the system, respectively.

The SNPE systems consist of three important components,
namely, system objects, executing rules, and system structure.
It can be seen from the above definition that an enzyme as
a new object participates in all spiking rules. Since enzymes
only exist inside nerve cells, they do not follow the informa-
tion (spikes) to transmit between neurons. Furthermore, the
enzymes involved in biochemical reactions (rules) can then be
automatically synthesized in nerve cells for supplementation.
In other words, in SNPE systems, a spiking rule can produce
spikes and enzymes but only spikes are transmitted to external
neurons while the enzymes still remain in the same neuron.

Suppose u;(t) is used to represent the number of spikes
in o; at step ¢, and v;(¢) is used to represent the number of
enzymes in o; at step (time) 7. At the next moment (¢ + 1)
after applying the rule E/(a", e’) — (a?, e?); d, the number
of spikes and the number of enzymes in o; can be calculated
by (2) and (3),

w4 1) = | 1O —uFn, I therules fire
ui(t) +n, Other cases

v;(t) —v + g, If the rules fire
v,-(t+1>=[ O -vta 3)

;i (1), Other cases

The n in equation (2) represents the number of spikes that
o; receives from its predecessor. u and v represent the number
of spikes and enzymes needed to enforce the rule, respectively.
p is the number of spikes generated by this rule, which are
sent to the successor neurons along synaptic connections. ¢ is
the number of enzymes generated by this rule, which are
only present in the current neuron to ensure the continued
availability of the rule. d means the time delay between the
use of the rule and the emission of spikes produced by that
rule. For example, assuming rule (a“, e’) — (a”,e?);d in o;
is enabled at step ¢, then the p spikes generated will leave o;
at step ¢ + d. From step ¢ until step t +d — 1, o; is closed
and is in the refractory period. That is, during these d steps,
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o; can neither receive any spikes nor fire again. When d is
not specified, its value is 0 by default.

The SNPE system can realize the parallel execution mode of
a single rule in one neuron, which is similar to the exhaustive
mode [18]. That is to say, if a neuron contains exactly an
integer multiple (such as n) of the number of spikes and
enzymes required by a rule, then this rule will be executed
n times in parallel. For example, suppose there are 4 spikes
(a) and 2 enzymes (e) in neuron o;, denoted as [a*, €2]. Then,
rule (a2, ¢) — (a, ) can be run twice in parallel at the same
time. This rule will consume 4 spikes and 2 enzymes, then
emit 2 produced spikes while also regenerating 2 enzymes.

In this work, we define the regular expression E of the
rule as the trigger condition of this rule. For a rule to be
enabled, it must ensure that both its trigger condition and
its consumption condition are true, where the consumption
condition means that there are enough spikes and enzymes
in the neuron for the rule to consume. For example, if rule
E/(a",e”) — (aP,e?) in neuron o; can be enabled at step ¢,
then the consumption condition of the rule must be true,
meaning that the value of a Boolean expression of the form
(ui(t) = u) A (v;(t) > v) must be 1. For convenience, we say
that a rule satisfies its firing condition if it satisfies both its
trigger condition and its consumption condition.

When multiple rules satisfy their firing conditions, the
SNPE system follows the maximum spike-consumption strat-
egy (mentioned in [30]). That is, when multiple rules are
available, the one that consumes the largest number of spikes
is selected for execution. For instance, if u; > up, then
rule E1/(a"!, e’') — (aP!, e9") will be activated while rule
E>/(a"?, e"?) — (aP2, e?2) will not be executed. In addition,
the non-deterministic selection and execution of rules is also
supported.

B. An lllustrative Example

This subsection introduces and explains the operating mech-
anism of the SNPE system through an illustrative example
shown in Fig. 1. The demonstration case includes four neu-
rons. The initial number of enzymes contained in each neuron
is 2. Initially, only neuron 1 contains 2 spikes. Neuron 4 with
an arrow pointing to the outside is marked as the output of
the system. When the environment receives a spike sent by
neuron 4, it can be regarded as the system output 1; otherwise,
it outputs 0. When the computation of the system is terminated,
the binary sequence (or spike train) sent by neuron 4 is
the computational result. For the convenience of demonstra-
tion, the rules in this example temporarily omit the delay
feature.

Let the rule in neuron 1 becomes active at time t. The
number of spikes and enzymes contained in neuron 1 (written
as o1) is exactly twice the number of spikes and enzymes
required for the execution of the rule (a®)*/(a,e) — (a,e).
Therefore, this rule in o1 will be executed twice in parallel
simultaneously, and neuron 2 and 3 (denoted as o3, and o3,
respectively) each receive 2 spikes. During this period, the
enzymes consumed in the reaction are automatically synthe-
sized in the neurons and restored to their original quantities.

[a®,¢’]

(@) /(a,e) > (a,e)

[4.€°]
(@) /(a,e) = (a,e)

Y

[4,€']
a*(a®) /(a*,e*) = (a*,e%) [4.€°]
a*(a®) /(a*,e) > (a*,e%) (@*)" /(a*,e) > (a,e)

a*(a®) /(a*,e*) = (a’,e)
a’(a) /(a’,e’)— (a*,e")

3

)

Fig. 1. An illustrative example of SNPE system.

After o, receives two spikes, the situation is similar to o
in the initial state. At ¢t 4+ 1, oo fires 2 spikes to o3 and o4
respectively. After receiving the two spikes sent by o1, because
the trigger condition is not met, no rule in o3 is activated. After
neuron 4 (written as o4) receives the two spikes sent by o7,
it satisfies the firing condition and sends out one spike for the
first time at ¢ 4+ 2. Until another 2 spikes are obtained from
02, the four rules in o3 meet the trigger conditions. However,
considering the maximum spike- consumption strategy, rule
a3(a)*/ (a3, ez) — (a2, 62) cannot be enabled. Also, because
o3 initially contains only two enzymes, rule a’(a®)*/ (a*,
e3) — (a?, €?) does not satisfy its consumption condition and
therefore cannot be activated. The remaining rules a*(a®)*/
(a*, %) — (a2, €?) and a*(@®) 1/ (a*, e?) — (a3, %) will be
executed non-deterministically, which will cause the system to
have different output results. Specifically, the following two
scenarios will lead to completely different computations.

1) Assuming that rule a(a®)*/(a*, ¢*) — (a% €?) is

activated at ¢ + 2, o3 will fire 2 spikes to o4. o4 will run
rule (a®)t/(a%,e) — (a,e) at r + 3 and send out one
spike outside again. At this time, the system terminates
the computation, and the final result of the output binary
sequence is “0011”.
Assuming that rule a?(a®)t/(a* e?) — (a°, %) is
activated at r + 2, o3 will fire 3 spikes to g4. o4 will
execute the forgetting rule a®> — 1 at r + 3. The
3 spikes received directly disappear and no spikes are
launched outside. At this time, the system terminates the
computation, and the final result of the output binary
sequence is “0010”.

2)

IV. TURING UNIVERSALITY OF SNPE SYSTEMS

As mentioned earlier, the simulation of the register machine
is usually divided into two modes, that is, the generation mode
and the acceptance mode. Each register » in M has a one-
to-one correspondence with a neuron o, in SNPE systems.
The number n stored in the register r corresponds to 2n
spikes in the neuron o,. That is, there are twice as many
spikes in the neuron o, as the value stored in the register r.
Similarly, each instruction / € H corresponds to a neuron
o7 in SNPE systems one-to-one. In addition, there are some
auxiliary neurons, denoted as oyp,. In the following, the Turing
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universality of SNPE systems in these two modes is explored
and proved. It should be noted that in the completeness proof
of the following two modes, two spikes are introduced as the
starting mechanism for all involved modules.

A. SNPE Systems as Number Generation Devices

In this work, the OUTPUT module in the generation mode
takes the actual number of spikes emitted to the outside as
the computational result. Under this assumption, the number
of spikes emitted by the OUTPUT module to the outside will
be exactly equal to the value stored in the register. Further,
the family of Ng.,(I11) generated by the SNPE systems with
the total number of neurons (m) involved and the maximum
number of rules (n) contained in each neuron is denoted as
NgenSNPE}, .

Theorem 1: Ngey SNPE? = NRE

Proof: Since Ngep SNPEf C NRE is obviously true (or,
is achieved through Church-Turing thesis [4], [6]), to prove the
above-mentioned equivalence relationship, we will only prove
that NRE C NgenSNPEi is also true below.

In the generating mode, an SNPE system II; consists of
3 modules, ADD, SUB, and OUTPUT. When the neuron oy,
is activated, it means that the computation of the system is
terminated. The OUTPUT module contains a neuron o,,; that
can send spikes to the outside. Specifically, if the number
stored in the register is n, then OUTPUT will cumulatively
emit n spikes to the outside when the computation of the
system II; terminates.

ADD Module (see Fig. 2).

This module is used to simulate an addition instruction.
The non-deterministic ADD module consists of 6 neurons,
where o, is the trigger neuron of the addition instruction,
o, is the register of the ADD instruction, o5, and op, are
auxiliary neurons, oy, and oy; represent jump instructions /k
and /; respectively. Initially, only two spikes are introduced
into the oy, and the remaining neurons do not contain any
spikes. The amount of enzyme has been marked in individual
neurons. Suppose that the neuron ¢;; obtains 2 spikes at ¢,
which denotes the addition instruction is activated. At this
time, the number of spikes and enzymes contained in oy,
are two units respectively. This not only satisfies the firing
condition of the rule (a®)*/(a, ) — (a, €); 0, but also makes
the rule be executed twice in parallel simultaneously. The
activated neuron oy; simultaneously fires two spikes to o, op,,
and op,. The neuron o, after receiving two spikes marks that
the register r has completed the addition operation.

At step t + 1, both o5, and o}, contain 2 spikes, but only
the rules in the neuron oy, satisfy the firing condition. Since
the two rules both satisfy the maximum spikes consumption
strategy, only one rule in g5, will be executed non- determin-
istically. As a result, the following two scenarios will appear.

a. Suppose that at t + 1, rule (a®)T/(a,e) — (a,e); 0 is

activated. o, will consume two spikes, and the gener-
ated two spikes will be transmitted to oy, and o, simul-
taneously. The enzymes involved in the reaction are
adjusted and changed according to equation (3). When
oy, gets 2 spikes, it marks the start of the execution of

b

579
[4,€’]
li (@) /(a,e) > (a,e);0 r
a—>A
[4,€] [4,€°]
(a®)" / (a,e) > (a,e);0 a(a®)" 1 (a’,e*) - (a*,e”);0 b2
(@) /(a*,e) = (a,e);0 a5
\i A
A l

Fig. 2. Module ADD.

TABLE |
THE COMPUTATIONAL PROCESS UNDER SCENARIO A

Step 0, o, Oy, Oy, o, g,
¢ [2,2] [2n,2] [0,2] [0,2] [0,2] [0,2]

t+1 [0,2] [2n+2,2] [2,2] [2,2] [0,2] [0,2]

2 [2,2] [2n+2,2] [0,2] [4,2] [2,2]! [0,2]

" indicates that the neuron is activated.

TABLE Il
THE COMPUTATIONAL PROCESS UNDER SCENARIO B

Step o, o, Oy Oy, o, o,

t [2,2] [2n,2] [0,2] [0,2] [0,2] [0,2]
t+1 [0,2] [2n+2,2] [2,2] [2,2] [0,2] [0,2]
+2 [0,2] [2n+2,2] [0,2] [3,2] [1,2] [0,2]
t+3 [0,2] [2n+2,2] [0,2] [0,2] [0,2] [2,2]!

" indicates that the neuron is activated.

the instruction ;. At 42, 4 spikes will be accumulated
in op,, but these 4 spikes will be immediately forgotten
by the internal forgetting rule a* — . In this scenario,
o1; will not receive any spikes, which means that the /;
instruction will not be activated and executed. Table I
shows the computational process in the above scenario.
The numbers in square brackets represent the number
of spikes and enzymes at the corresponding step in the
neuron, respectively.

Suppose that at 7 + 1, the rule (a®)*/(a?, ¢) — (a, €);
0 is activated. g, will fire a spike to g5, and g, simulta-
neously. Similarly, the spike received by neuron g, will
be directly consumed by its internal rule a — A. The
instruction /; cannot be executed. At ¢ + 2, the neuron
op, has accumulated three spikes, which satisfies the
firing condition of rule a(a®)*/(a?, e?) — (a2, €?);0.
Att+3, o1 i obtains 2 spikes, which marks the instruction
[; will be executed. The specific computational process
under this scenario is presented in Table II.
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i TABLE IlI
THE COMPUTATIONAL PROCESS OF THE SUB UNDER SCENARIO A
] [4,€]
i |(a®)"/(a* e) > (a,e);0 Step O, o, Oy, 0y, o, o),
a—>A t [2,2] [2n,2] [0,1] [0,1] [0,2] [0.2]
t+1 [0,2] [2n+1,2] [1,1] [1,17* [0,2] [0,2]
b ry b #+2  [0,2]  [2n-2,2] [O0,1] [LI]*  [L2] [2,2]
1 ' 2 2 “” indicates that the neuron uses the rule with delay in the
[4,e7] corresponding step. “I” indicates that the neuron is activated.
A
[4.e] [4.e]

a(a®)" /(a’,e’) > (a,e);0

(a,e) > (a,e);0 al(a,e) > (a,e);1

(a,e) > (a,e);1

Fig. 3. Module SUB.

In summary, the addition instruction has been activated since
oy, received 2 spikes. Next, o, receives 2 spikes, which is
equivalent to completing the operation of adding one to the
existing value in r. Subsequently, by the non- deterministic
execution of the two rules in the neuron op,, the simulation
of the non-deterministic transfer of the two instructions /; and
l; is realized.

SUB Module (see Fig. 3).

This module is developed to implement a subtraction
instruction. The SUB module consists of 6 neurons, where
oy; is the trigger neuron of the subtraction instruction, g, cor-
responds to the register r of the SUB instruction, g5, and gy,
are auxiliary neurons, oy, and oy, represent jump instructions
l; and [; respectively. Initially, only two spikes are introduced
into the oy, and the remaining neurons do not contain any
spikes. The amount of enzyme has been marked in individual
neurons. The initial scenario is similar to the previous addition
instruction, i.e., it is assumed that 2 spikes enter oy, at ¢, which
means that the subtraction instruction starts to be simulated.
At this time, rule (a®)*/(a?, ) — (a, €); 0 meets the firing
condition, consumes two spikes, and a newly generated spike
is transmitted to op,, op, and o, respectively. At t 4 1, oy,
executes rule (a,e) — (a,e);0 and fires 1 spike to o;.
However, the next computational process of the system will be
discussed in the following two cases according to the actual
stored value in the register.

a. If the number existed in r is not empty (i.e., n > 0), that
is, the number of spikes in o, is not less than 2. Then,
at t + 1, the spikes contained in o, is at least 3. At this
time, only the rule a(a®)t/(a?, €2) — (a, €?); 0 will be
activated and fire one spike to oj, and oy;, respectively.
At t + 2, o;; will contain exactly 2 spikes, which
means that instruction /; will be activated and executed.
In addition, because the rule in o3, uses delay, o, will
receive one spike from o, and o5, at t + 2 and ¢ + 3
respectively. That is, the two spikes that do not simul-
taneously arrive at g;, will be forgotten separately. The
specific evolution process of the SUB module in this
scenario is presented in Table III.

TABLE IV
THE COMPUTATIONAL PROCESS OF THE SUB UNDER SCENARIO B

Step g, o, Oy, Oy, o, g,
t [2,2]  [0,2] 0,11 [0.1] [0,2]  [0,2]
t+1 [0,2] [1,2]* [1,1] [1,17* [0,2] [0,2]
+2 [0,2] [1,2]* [0,1] [1,17* [0,2] [1,2]
t+3 [0,2] [0,2] [0,1] [0,1] [2,2]! [0,2]

“” indicates that the neuron uses the rule with delay in the
corresponding step. “I” indicates that the neuron is activated.

b. If the number existed in the register r is empty
(i.e., n = 0), that is, the number of spikes contained
in o, is 0. At t 41, o, has only one spike sent from o;;.
At this time, only rule a/(a,e) — (a,e); 1 will be
activated and executed. Since the available rules in o,
and o, both have the same time delay, at t + 3, gy, will
receive one spike from o, and op,, respectively. This
causes oy, to be activated, meaning that the /; instruction
begins to be executed. Similar to the previous scenario,
the single spike received by o;; successively from oy,
and o, will be respectively forgotten. Table IV shows
the computational process of the configuration in each
neuron under this scenario.

In summary, since the neuron o;, received 2 spikes, the
subtraction instruction became active. When the number of
spikes in o, is not empty, 2 spikes of them are consumed,
and ol; is further activated. Conversely, when the number of
spikes in o, is zero, o;, will be directly activated. The process
successfully simulates the subtraction instruction.

OUTPUT Module (see Fig. 4).

This module is designed to simulate the termination instruc-
tion [, and yields the system’s computation results. Suppose
oy, gets 2 spikes at step ¢, marking the start of the termination
instruction to be simulated. Rule (a%,¢) — (a,e);0 is
executed, and 1 spike is fired to o;.

Assuming that the value existed in register 1 is n,
correspondingly, the number of spikes in o1 is 2n. Then,
after neuron o1 obtains one spike at ¢ 4+ 1, the number of
spikes it contains will become odd. Rule a3(a?)*/(a?, ) —
(a, e); 0in gy is activated and executed. It should be noted that
the regular expression for this rule requires that the number of
spikes contained in o cannot be less than 5. This is to avoid
a conflict with the applicability of another rule.

From t +1 to t +n — 1, 2(n — 1) spikes will be con-
sumed cumulatively. At ¢ 4+ n, only 3 spikes remain in oy.
At this point, rule (a3, e*) — (a, €?); 0 is enabled, consuming
3 spikes and emitting one spike to g,,;. On the other hand,
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a’(a@®)" /(a*,e) = (a,e);0 |1
(@,e*) —> (a,e);0

Y

[4,€]

(a,e) > (a,e);0| O

Fig. 4. Module OUTPUT.

TABLE V
EvoLuTION PROCESS OF OUTPUT MODULE

Step o, o, Oour
t [2,2] [2n,2] [0,1]
t+1 [0,2] [2n+1,2] [0,1]
t+2 [0,2] [2n-1,2] L1
t+3 [0,2] [2rn-3,2] [L17!
t+n [0,2] [3,2] L1y
t+n+1  [0,2] [0,2] L1y

“I” indicates that the neuron is activated.

oour accumulatively receives n spikes transmitted by o1 from
t+2tot+n+ 1, and transmits them to the outside in
turn. Table V clearly shows the above evolution process. The
first column represents the time step. The other three columns
are the number of spikes and enzymes contained in the three
neurons.

Through the above analysis, it can be easily found that
the generation mode can be successfully simulated by II;.
Therefore, Theorem 1 is proved to be true. O

B. SNPE Systems as Number Acceptance Devices

Theorem 2: NaCCSNPEf = NRE

Proof: In this proof we build an SNPE system Il to real-
ize the acceptance mode. The proof process of the accepting
mode is somewhat similar to that of the generation mode. The
difference is that the system Il in this mode is composed of
INPUT, deterministic ADD, and SUB. Among them, the SUB
module still uses the structure of Fig. 3. It should be noted
that, considering all the rules in the INPUT module and the
ADD module that need to be proved in this subsection do
not involve delay, all the rules ignore delay for the sake of
convenience. The specific reasoning is proved as follows.

INPUT Module (see Fig. 5).

The purpose of this module is to import binary sequence
information from the outside. Initially, only two spikes are
introduced into the oj,, and the remaining neurons do not
contain any spikes. Suppose o, gets 2 spikes at ¢, and the
firing condition of rule (a®)*/(a, ¢) — (a, e) is satisfied and

in J b,

[4,e°] [4,€e°]

(@) /(a,e) > (a,e) (@) /(a,e) > (a,e)
a2 at—

7y

bl v vy b
[4,e'] [4,€°]

&/ (d".e) > (a*.¢") (@) /(a,e) > (a,e)
at—> 1

Fig. 5. Module INPUT.

activated. This rule is executed twice in parallel simultane-
ously, and 2 spikes are fired to oy, , 0,, and op,, respectively.
At t 4 1, although o, obtains 2 spikes, it does not meet the
firing conditions of the rules contained in it. Therefore, its
internal rules cannot be enabled. Simultaneously, after the neu-
rons oy, and oy, receive two spikes, the rule @t /(a,e) —>
(a, e) within them is activated, and from this moment on, they
send two spikes to each other at the same time. At ¢ + 2, o
gets and stores 2 spikes for the first time. At ¢ +n, g;, obtains
2 pulses from the outside again. At r + n + 1, the neurons
op, and op, will hold four spikes at the same time, which
meets the forgetting rule a* — 1. The four spikes accumulated
in neurons op, and op, are all forgotten at this moment.
Therefore, at t+n+1, it is the last time that neuron o gets two
spikes from op,. From ¢ 42 to t +n + 1, o1 has accumulated
2n pulses. This simulates the value existed in register 1 is n,
and n also happens to be the time difference between the two
pulses. On the other side, at t +n 41, op, obtained two spikes
from o;;, for the second time. Therefore, the number of spikes
accumulated inside is four, rule a*/(a*, e’) — (a2, €%) is
activated, and 2 spikes are fired to gy,. After g, gets 2 spikes,
it indicates that the initial instruction /y will be simulated.

ADD Module (see Fig. 6).

This module realizes the simulation of deterministic addi-
tion instructions. Suppose that the neuron ¢;, obtains 2 spikes
at step 7. At this time, rule (a®)*/(a, ¢) — (a, e) fires 2 spikes
to o, and oy; respectively. After o, gets 2 spikes, it indicates
the existing storage value in the register r is increased by 1.
Simultaneously, o;; received 2 spikes, which corresponds to
the deterministic execution of the instruction /;.

Through the above deduction, it can be clearly found that
the computation in this mode can be successfully simulated
by II,. Hence, Theorem 2 is proved to be true. d

V. SNPE SYSTEMS AS FUNCTION
COMPUTING DEVICES

Based on the analysis and discussion in the previous section,
this section will explore the computing power of the SNPE
system as a function computing device. First consider a Turing
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L
[4,€°]
(@*)" /(a,e) > (a,e)

a—>A

A 4

)

Fig. 6. Module ADD.

L, :(SUB(Q),1,,1,), 1, :(ADD(7),1,),

L, :(ADD(6),1,), L, :(SUB(5),1,,1,),
L, :(SUB(6),1,.1,), L, :(ADD(5),1),

Ly :(SUB(T),L,,1,), l,:(4DD(),1,),

I, : (SUB(6),1,,1,), ly:(ADD(6),1,),

l]() :(SUB(4)’Z()J]1): lll I(SUB(S),112,113),
Ly :(SUB(S),1yl5), 151 (SUB(2),15,1,5),
Ly :(SUB(S),Li,115), L5 :(SUB(3), g, 1),
L, :(ADD(4),1,), li; :(ADD(2),1,,),
L :(SUB(4),05,1,),  1,:(SUB(0),1,,14),
L,y : (ADD(0),1,), L, :(ADD(3),1,),

L, HALT

Fig. 7. A universal register machine M,,.

computable function f : N¥* — N, in which k parameters
are stored in designated k registers. The computation of the
system starts with /o and ends with [;,. For Vx, y € N, if there
is a recursive function g that satisfies the equation ¢,(y) =
M, (g(x), y), it is said that M, is universal.

Korec [47] once proposed a universal register machine M,
for function computing (see Fig. 7). In order to avoid the
possibility of the final computation result stored in register
0 being affected by the SUB instruction, the following minor
improvements are made to M,. A new register 8 which is
not affected by the SUB instruction is added to store the final
computation result. The original instruction /g is changed to
lig : (SUB(4),ly,12). Expand the last [, to I, : HALT,
[ : (SUB(0), I23,13), and o3 : (ADD(8), [22).

Theorem 3: There exists a general SNPE system with
61 neurons that implements a computable function.

Proof: Mark the M, after fine adjustment as M. This
part will build an SNPE system II3 composed of 1 INPUT
module, 1 OUTPUT module, 10 ADD modules, and 14 SUB
modules to realize the simulation of M. As mentioned
before, the INPUT module (see Fig. 8) is still used to read
binary sequence information from the environment. The binary
sequence that the system needs to recognize from the outside
is 106107 1. The expected situation is that the values g(x)
and y are stored in registers 1 and 2, respectively, and then
the initial instruction [y is started. It should be noted that,
in the previous completeness proof of generation devices

2
b, b,
[A,€e] [A,€e]
@) /(a,e) > (a,e)| |(@>)'/(a,e) = (a,e)
a2 )
b, I
in [A,e] [4,€°]
(a,e) > (a,e) /(@)= (a*,é
b
[4 [4,€]
al(a,e) > (a,e)_Ja/(a,e) > (a,e)| b,
a—>A y '\ a2
1

Fig. 8. Module INPUT of SNPE systems.

and acceptance devices, for the sake of formal unification,
we introduce two spikes as the starting mechanism for the
proof of all involved modules. However, the function com-
puting devices considered in this section need to redesign
the INPUT module according to its characteristics. Therefore,
slightly different from the input mechanism of the INPUT
module in acceptance mode, the INPUT module here uses
a single spike to correspond to 1 in the binary sequence.
In addition, the delay mechanism is not involved in this
module, so it is ignored.

The working mechanism of this module is stated as follows.
Initially, only oy, gets the first one pulse from the outside. Its
internal rule (a, ¢) — (a, e) is triggered, and fires 1 spike to
each of the five subsequent auxiliary neurons simultaneously.
But only the rule a/(a, e) — (a,e) in o, and o, meets the
firing condition and is activated. At each step from this time
on, oy, and ogp, will complement each other with one spike,
and both send a spike to o1 simultaneously. Until o}, and o,
receive the second spike from g;,, during this period, o1 will
accumulatively obtain 2g(x) spikes.

When ¢, gets the second spike from the outside, (a, ¢) —
(a, e) is triggered again and simultaneously fires 1 spike to
each of the five auxiliary neurons. At this time, none of the
rules in the neurons oy,, 0p,, and oy satisfy the firing condi-
tion, so none of them can be activated. However, two spikes
have been accumulated in neurons o5, and oy,, satisfying the
firing condition of (a®)*/(a, ¢) — (a, €). At each step from
this moment on, the neurons o, and g, will consume and
complement each other with one spike, and both send one
spike to o> simultaneously. It should be noted that during this
process, 2 spikes will always remain in oy, and o, due to the
complementary mechanism. Until o5, and oy, receive the third
spike from o;,, during this period, neuron o, will accumulate
2y spikes.
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:(SUB(1),1,,1,);

) l,:(ADD(7),1,)
L, (SUB(6),1,1,);

I.:(ADD(5),1,)

1,:(ADD(1),1,)

I, : (ADD(6),1,,)
1. :(ADD(4),1,,)
1, : (ADD(8),1,,)

:(SUB(7),1,,1,);
:(SUB(6),1,,1,);
.- (SUB(5),1,1,,);
» 1 (SUB(0),1,3,1,);

6

l
l
SUB-ADD-1X j
/
/

8

~

SUB-ADD-2{_: (SUB(3),lis,L); Ly : (ADD(0), ;)

ADD-ADD { I, :(ADD(Q),L,,); L, :(ADD(3),1,y)

Fig. 9. Compound instruction optimization scheme.

When o;, gets the third spike from the outside and is
activated, the neurons oy, 0p,, 0p;, and op, will accumulate
to three spikes. However, 3 spikes of the above four neurons
will be immediately forgotten by their internal forgetting
rule a3 — A. At this time, only the rule a(a®)*/(a?, €?) —
(@?, ¢?) in ops 1s finally activated, consuming 3 spikes and
sending 2 spikes to oy,. This marks the successful end of
obtaining data from the environment and the start of the
system’s initial instruction /o to be executed.

It can be seen from Fig. 7 that all ADD modules that need
to be simulated are deterministic. Therefore, the ADD module
adopts the form of Fig. 6. Refer to Fig. 3 for the SUB module.
Refer to Fig. 4 for the OUTPUT module. The statistics of
neurons required by various instructions or modules in the
SNPE system I13 to simulate the function computing are as
follows.

a) 9 registers correspond to 9 neurons;

b) 25 instructions are associated with 25 neurons;

c) 14 SUB instructions correspond to 2 x 14 neurons;

d) An INPUT module contains 6 neurons;

e) One OUTPUT module corresponds to one neuron;

In summary, in the above simulation process, a total of
69 neurons were used. However, after considering the possible
merging of some modules and the necessary optimization
design of their structure, the number of neurons used in the
system will be much reduced. According to the compound
instruction optimization scheme (see Fig. 9), the combination
of instruction SUB and instruction ADD can be divided into
three situations: SUB-ADD |, SUB-ADD, and ADD-ADD.

Among them, the general expression form of SUB—ADD;
(see Fig. 10) type can be written as I; : (SUB(ry),!;, k),
lj : (ADD(ry), l,). The first six combinations shown in Fig. 9
conforming to the SUB — ADD; type have a common law,
that is, when the value existed in the register r; of the previous
instruction is not empty, it will jump directly and execute
the latter instruction. The situation with SUB — ADD; (see
Fig. 11) is just the opposite. It should be emphasized that the
initial configuration of the merge modules SUB — AD D and
SUB — ADD:; is exactly the same as that of the SUB module.

a—>2

}’x \ 4 b2

[4.¢] [A,e]
a(a®)"/(d’,e*) = (a,e*);0 (a,e) > (a,e);1

al(a,e) > (a,e);l

Fig. 10. Module SUB — ADD; .

!

[4,€’]
Ls| @) 1(a%,e)— (a,0);0
a—>A
bl :)E}'" 2] b2
[Ae] N [A,e]

a(@®)" 1(a’,e”) = (a,€);0
a/(a,e) > (a,e);l

(a,e) > (a,e);0 (a,e) > (a,e);l

Fig. 11. Module SUB — ADD».

We take Fig. 10 as an example to give the evolution process
of the SUB — ADD; module. It should be emphasized that
this type of module has a common feature, that is, the first
output instruction of SU B is exactly the input instruction of
ADD. The initial scenario of this module is similar to the
SU B module shown in Fig. 3. The difference is that the rules
with 0 delay in o,, and o5, will send one spike to Or, and al,
simultaneously when register r, of instruction /; is not empty.
In other words, or, and oy, will receive two spikes simultane-
ously. For instruction /;, this is equivalent to simultaneously
completing the two operations of adding 1 to the stored value
of register r, and deterministically going to instruction /,. The
single spike sent from o, and oy, to o will be forgotten
successively in ¢;, due to the time interval. In addition, the
rules with 1 delay in o, and o, will be fired simultaneously
when the value stored in register ry is empty. In this scenario,
oy, will receive 2 spikes simultaneously, which means that the
instruction [ starts to execute. Each of the 6 combinations
that can be classified as SUB — ADD; saves one neuron.
The evolution process of the SUB-ADD; module when the
register 7, is not empty is shown in Table VI. Table VII shows
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TABLE VI
THE EVOLUTION PROCESS OF THE SUB-ADD{ MODULE WHEN THE
REGISTER rx IS NOT EMPTY

Step O, I e} T, O, b O, by (e} " O, I, O, [
t [2,2] [2n,2] [0,1] [0,1] [0,2] [0,2] [0,2]

t+1 [0,2] [2n+1,2] [1,1] [1,1]* [0,2] [0,2] [0,2]

2 [0,2] [2n-2,2] [0,1] [1,1]* [2,2]! [2,2]! [1,2]

ok

indicates that the neuron uses the rule with delay in the
corresponding step. “I” indicates that the neuron is activated.

TABLE VII
THE EVOLUTION PROCESS OF THE SUB-ADD> MODULE
WHEN THE REGISTER 3 IS EMPTY

Step Oy, o5 Oy, Oy, % Ol O
t [2,2] [0,2] [0,1] [0,1] [0,2] [0,2] [0,2]
+1 [0,2] [1,2]* L] [L1*  [02] 0,21  [0.2]
#2 [0,2] [1,2]* (01 [LI*  [0,2] [L2] [0,2]
#3 0 [0,2] [0,2] [0,1] 01  [22]' [L2]  [22]

Gk

indicates that the neuron uses the rule with delay in the
corresponding step. “!” indicates that the neuron is activated.

L
[4,¢]
(@) /(a,e) = (a,e)

a—>A

3
Ly

Fig. 12. Module ADD — ADD.

TABLE VIII
COMPARISON OF DIFFERENT COMPUTING MODELS

Model name #neurons Maximum #rules
SNPE 61 2
DTNP23 109 3
NSNPB2 117 3
DeP[*8] 115 2
SNP-IRB3! 100 3
IR-SSNP] 89 3
DSNPBY 81 4
SNPAB! 75 3

the computational process of the SUB-ADD; module when
register 3 is empty.

In addition, because the ADD instruction is deterministic,
the instructions /17 and /> can be combined in the form of an
ADD—ADD (see Fig. 12) module. According to this merging
optimization, the neuron corresponding to the instruction /51
can be saved.

The above three types contain a total of 8 combinations, and
each combination can save one neuron. Therefore, 8 neurons
will be removed due to redundancy. Table VIII shows the total
number of neurons required and the maximum number of rules

[a,e] [a,e] [a,ne‘]
(a,e) = (a,e);0| (a,e) > (a,e);0)
By (a;¢€) > (a,e);1 (a,€) > (a,e);1 (a;€) > (a,e);1
el )
(3,9 > (@,0);0) 1 l l 1

b, b, b,
(a,e) = (a,e);0)
[ [4,€] ] { [4,€] ] [4,€]
hy cf(a’,e) > (a,e) cf(a’,e) > (ae) ¢|@,e) > (a,e)
'_[/1, 2] a->A a->A a->A

o

(a,e) > (a,e) in, /2"1 n 2v, i 2v,
4] 4.€] [4.€']
h a(a®)" / (a,e) > (a,e)) \a(a®)' /(a,e) > (a,e), a(a®)"/(a,e) > (a,e)
el
(a,e) > (a,e) acc ing 2‘S/
) [2,e] el [4e] )
3 2w _y 2+ /(2 D WACH
(a eg —’f(a e) (a?e)—»(a,l) (a’)" /(a ’\e)%(a,e (@) /(a,e) > (a.e)
, , 7

[4.€]

[4,e]
(a,€) > (a,e€)
=
R n
[4.e]
% g\ (a,e) > (a,e)

Fig. 13. Construction of the SNPE model for solving the subset sum
problem.

presented in each neuron when different computing models are
used as universal function computing devices. It can be seen
that our model (SNPE) can use a smaller number of neurons
and only two rules are involved in each neuron. In summary,
after combining and optimizing related modules, the total
number of neurons required can be reduced from 69 to 61.
Therefore, the statement of the Theorem 3 is obviously
true. O

V1. UNIFORM SOLUTION TO SUBSET SUM PROBLEM
A. The Subset Sum Problem

The subset sum problem is NP-complete and can be
described as follows. Given a set V of n positive integers and a
positive integer S, is there a subset B € V such that the sum of
all elements in B is exactly equal to S? Leporati et al. [52] and
Leporati et al. [53] have used standard SN P systems to solve
subset sum problem in a non-uniform and uniform manner,
respectively. Non-uniform way relies on specific instances to
design models, whereas a uniform way is problem-oriented
rather than concrete instances. In other words, solving the
subset sum problem in a uniform manner means that the design
of the system depends only on the size n of the problem, while
the specific elements of V and S need to be introduced into
the system. Obviously, the uniform way is more transparent
than the non-uniform way [53]. Therefore, this work explores
the use of SNPE systems to solve subset sum problem in a
uniform way.

B. Model Construction

The construction of the SNPE model to solve the subset sum
problem is shown in Fig. 13. We follow the design philosophy
of Leporati ef al. [53] that if the problem is solved then the
computation of the system stops automatically, otherwise the
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computation of the system continues forever. The specific
reasoning process is as follows.

There are n + 1 input neurons in the model, denoted as
ing, int,..., in,, which are responsible for introducing 25,
201, 202, ...,2v, (where, V = {v1,02,...,0,}) spikes into
the system, respectively. Initially, only one spike exists in
Neurons opy, Op;,...,0p,, and the rest of the neurons do
not contain any spikes. It should be noted that, according
to the design requirements of the problem, we only involve
different delay rules in op,, 0p,,...,0p,. It is through the
non-deterministic choice of these rules with different time
delays that the non-deterministic choice of positive integers
in V is achieved. Suppose that at step 1, neurons oyp,,..., op,
begin to non-deterministically select one rule within them to
execute. For example, assuming that g5, non-deterministically
executes rule (a, e) — (a,e); 0 at step 1, then at step 2, o,
will receive a single spike from oy, and oj, simultaneously.
This causes rule (a2, ¢) — (a, e) in g, to be activated. Next,
the input neuron o;,, will receive one spike at step 3, which
makes the number of spikes in it become odd (i.e., 2v; + 1).
Note that the intrinsic number of enzymes in o, is 2,
which allows its internal rule a(a?)/(a,e) — (a,e) to be
executed at most twice simultaneously and sends 2 spikes to
the accumulating neuron o, and trigger neuron or. However,
the number of spikes remaining in o;,, is still odd, which
causes its internal rules to be executed continuously for v;
steps. In other words, from step 4 to step 4 + (v; — 1), the
neuron o, Will continuously receive a total of 2v; spikes
from o0;,,. In this way, a positive integer v; in the set V is
non-deterministically selected and imported into o,.. in the
form of 2v; spikes.

On the other hand, at step 4, the trigger neuron o receives
not only an even number of spikes from ¢;,,, but also a single
spike from oy,. It should be emphasized that the larger the
value of the non-deterministically chosen number v;, the more
steps are required to transfer 2v; spikes from o, to Og4cc.
Given this concern, the trigger neuron o7 is therefore designed
to determine whether all selected numbers have been sent to
the yce. The rule a® ! — 1 in o7 is available as long as the
transfer of spikes from g;,; to o4cc is not over. When o7 no
longer receives spikes from any o;,; (1 <i < n), it means that
all non-deterministically chosen numbers have been stored in
Oacc- At this point, o7 will only receive one spike from op,,
causing rule (a, ¢) — (a, A) to be enabled. It is important to
note that this rule consumes one enzyme and no new enzymes
are produced to replenish. This means that rule (a, ¢) — (a, 1)
will no longer be available from now on. That is, when the
enzyme is not renewable, the execution of this rule is no longer
sustainable. After oy, and oy, receive a spike from o7, the
number of spikes in them is 2, causing the rules in them to
stop executing.

When o4 and o;,, receive one spike from o7, the number
of spikes contained will become odd. Then the only rule within
Oacc and oy, will be activated, sending one spike to o,
while consuming two of its own spikes. After o,, receives two
spikes, it immediately forgets them according to rule a?> — .
The above process continues until one of the following three
scenarios occurs. (i) The most optimistic scenario must be

TABLE IX
MoODEL COMPLEXITY COMPARISON

Model neurons steps
SN Pi3 Sn+13 3D v, +6
time-free NP1 Sp+2 33" v +2
SNPSPL¢) 4n+9 237 v,+6
RSSN Pt 2n411 237" v, +5
SNPE 3n+10 237" vi+3

that 4¢c and oy, contain exactly the same number of spikes.
In this case, after o,, executes the forgetting rule for the last
time, the entire system will stop computing. This means that
the sum of all numbers of non-deterministic choices is exactly
equal to S, and the subset sum problem is solved. (ii) The
number of spikes stored in o, is more than that stored in g, .
(iii) Conversely, more spikes are stored in oj,, than in ogcc.
The latter two scenarios can be grouped into one category, that
is, 0., Will start to execute rule (a, e) — (a, 1) after executing
rule a2 — 1 for the last time. As mentioned earlier, rule
(a, e) — (a, 1) consumes one enzyme without reproducing it,
which causes this rule will no longer be available from now
on. Subsequently, og, and 6,4, will work forever.

As can be seen from Fig. 13, the uniform SNPE model
requires only 3n + 10 neurons. And at most 2> 7, v; + 3
steps are required when the computation of this model is
stopped automatically, including the initial 2 steps, from o,
to 04cc at most 1r£1;1<x {vi} steps, from o4cc (Or 0ip,) tO 0O at

I=n

most Z:Z: 1 Vi steps,_ and one step from o7 to g4cc (and ojp,).
Considering that 1max {v;} < Zl'-’zl v; must be true, we take
<i<n

Z?zl v; as the upper bound of 1m‘ax {v;}. Therefore, when the
<i<n

calculation of the system is automatically terminated, at most
237" vi + 3 steps are required.

Finally, we compare with the standard SN P [53] and its
several state-of-the-art variants in terms of complexity (see
Table IX). It is evident from Table IX that the original SN P
has the largest number of neurons used and the number of steps
required to compute termination. Our SNPE is second only to
RSSN P [54] in terms of using the total number of neurons, but
outperforms the other three compared models. Whereas, the
proposed SNPE model outperforms all four compared models
in terms of the number of steps required.

VIl. CONCLUSION

This work proposes new spiking neural P systems with
enzymes (SNPE). Compared with the standard SN P and its
variants, SNPE has made improvements in terms of objects,
rules, and system operation. While giving the formal definition
of the SNPE systems, it also gives the expression of the
change in the number of two kinds of objects in the neuron.
Turing computing ability of the proposed SNPE systems in
generation mode and acceptance mode is proved respectively.
The computing power of this system as a small universal
function computing device is demonstrated and compared
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with 7 SN P variants. Finally, the performance of the system in
solving NP-complete problem is explored and compared with
the standard SN P and its several state-of-the-art variants.

It should be emphasized that the excellent performance
(see Table VIII) of the proposed SNPE as a small universal
function computing device is not independently and directly
contributed by the “enzyme”, but the collaboration of multiple
mechanisms including the “delay”. There are indeed some
SN P variants that use a smaller total number of neurons
than SNPE when simulating a function computing device. For
example, SN P with request rules [57] uses only 47 neurons,
yet the number of rules in its neurons is as high as 11, which
is much higher than all the comparison models in Table VIII.
In addition, it is precisely because of the reasonable control
of the “enzyme” over the sustainability of rule execution that
SNPE excels in solving the Subset Sum problem.

Based on this work, a lot of follow-up work can be explored
and carried out. On the one hand, it can be combined with
existing SN P variants. These combinations may lead to the
emergence of other systems with more computing power.
On the other hand, considering the control and restriction
effect of enzymes on nerve conduction, other variants of SNPE
systems can be developed. Finally, we can jump out of the
biological principle and consider making some new expansions
toward the existing neural network in terms of the topology
of SNPE.
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