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Abstract— We have proposed a new tumor sensitization
and targeting (TST) framework, named in vivo computation,
in our previous investigations. The problem of TST for an
early and microscopic tumor is interpreted from the com-
putational perspective with nanorobots being the “natural”
computing agents, the high-risk tissue being the search
space, the tumor targeted being the global optimal solution,
and the tumor-triggered biological gradient field (BGF)
providing the aided knowledge for fitness evaluation of
nanorobots. This natural computation process can be seen
as on-the-fly path planning for nanorobot swarms with
an unknown target position, which is different from the
traditional path planning methods. Our previous works
are focusing on the TST for a solitary lesion, where we
proposed the weak priority evolution strategy (WP-ES) to
adapt to the actuating mode of the homogeneous magnetic
field used in the state-of-the-art nanorobotic platforms, and
some in vitro validations were performed. In this paper,
we focus on the problem of TST for multifocal tumors,
which can be seen as a multimodal optimization problem
for the “natural” computation. To overcome this issue,
we propose a sequential targeting strategy (Se-TS) to
complete TST for the multiple lesions with the assistance of
nanorobot swarms, which are maneuvered by the external
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actuating and tracking devices according to the WP-ES.
The Se-TS is used to modify the BGF landscape after a
tumor is detected by a nanorobot swarm with the gathered
BGF information around the detected tumor. Next, another
nanorobot swarm will be employed to find the second
tumor according to the modified BGF landscape without
being misguided to the previous one. In this way, all
the tumor lesions will be detected one by one. In other
words, the paths of nanorobots to find the targets can be
generated successively with the sequential modification of
the BGF landscape. To demonstrate the effectiveness of
the proposed Se-TS, we perform comprehensive simulation
studies by enhancing the WP-ES based swarm intelligence
algorithms using this strategy considering the realistic
in-body constraints. The performance is compared against
that of the “brute-force” search, which corresponds to
the traditional systemic tumor targeting, and also against
that of the standard swarm intelligence algorithms from
the algorithmic perspective. Furthermore, some in vitro
experiments are performed by using Janus microparticles
as magnetic nanorobots, a two-dimensional microchannel
network as the human vasculature, and a magnetic
nanorobotic control system as the external actuating and
tracking system. Results from the in silico simulations and
in vitro experiments verify the effectiveness of the proposed
Se-TS for two representative BGF landscapes.

Index Terms— Natural computation, nanorobots, swarm
intelligence, tumor sensitization and targeting, magnetic
field control.

I. INTRODUCTION

TUMOR sensitization and targeting (TST) for early and
microscopic tumors remains a big challenge with the

constraint of the low resolution of existing medical imaging
techniques [1]–[3]. With the development of nanotechnology
in the past decades, TST has been provided with many
breakthrough solutions. For example, nanoparticles with
unique physicochemical properties (i.e., size, shape and
surface chemistry) have the ability to detect and kill tumor
cells in vitro and in vivo [4], [5]. The delivery methods of
nanoparticles are relying on the organic systemic circulation,
which leads to a low delivery ratio of no more than 0.7% as the
nanoparticles face both physical and biological barriers once
they are injected into the body [6]. Essentially, TST can be
seen as a blind path planning problem for drug-loaded vehicles
where the target (tumor) position is not known a priori, and
various methods for direct manipulation to increase targeting
efficiency have been considered [7].

Nanorobotics is a rapidly developing technology by
creating robots of nanoscale size with the capabilities
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Fig. 1. Nanorobots-assisted natural computation for tumor sensitization
and targeting.

of actuating, sensing, information processing, etc., which
has the potential to revolutionize current diagnostic and
therapeutic techniques in biomedicine [8]–[10]. For example,
nanorobots with embedded chemical biosensors can be used
to perform detection of tumor in hard-to-reach tissues and
human body cavities, which is not possible using current
surgical technologies [11]–[14]. Therefore, early detection and
localization of solid tumors (e.g., sarcomas, carcinomas, and
lymphomas) that may exist in most organs and tissues of the
body are considered in this paper.

A. Tumor Sensitization and Targeting as in Vivo
Computation

Though the existing research works have shown some
positive results of targeted tumor detection and drug delivery,
the methodology cannot be applied to an early microscopic
tumor, whose location cannot be obtained beforehand due to
the resolution limit of the state-of-the-art medical imaging
techniques [15]. In other words, the traditional path planning
methods cannot be used as they are mainly focusing on the
motion control of nanorobots for the detection of a known
target point or with a known desirable trajectory [16]–[18].
To address this issue, we have proposed nanorobots-assisted
natural computation in our previous investigations, aiming at
rendering the TST for early and microscopic tumors into a
natural computational process with the consideration of the
realistic constraints [19]–[21]. In this way, the process of TST
can be interpreted as on-the-fly path planning for nanorobots
with unknown tumor positions.

As shown in Fig. 1, externally manipulated nanorobots are
utilized as “natural” computing agents in the traditional opti-
mization setting; the tumors targeted are seen as the multiple
optimal solutions to be found; the high-risk tissue (the tissue
region with likely presence of tumors) is seen as the search
space; the tumors-triggered biological gradient fields (BGFs)

provide the aided knowledge for fitness evaluation of the
nanorobots. The process of nanorobots-assisted TST is similar
to the process of solving an optimization problem. Nanorobots
are maneuvered by an external actuating device, such as a coil
that generates a rotating magnetic field to steer the magnetic
nanorobots in fluid, according to the guidance information
provided by the swarm intelligence algorithm [22]. Traditional
imaging devices can be used as external tracking systems
to locate the nanorobots [23]. Meanwhile, the measurable
characteristics of nanorobots are obtained during the tracking
period, which is used for estimation of the BGF providing the
fitness of natural computing agents. It should be noted that the
concept of BGF is derived from the biological characteristics
of high-risk tissues. For example, the typical skeletonized
images of various classes of vascular networks demonstrate
that healthy capillaries exhibit almost uniformly distributed
grid patterns while the tumor vessels have a profound sort of
tortuosity with the density increasing around the tumor [24].
Thus, the measurable characteristics of nanorobots such as
trajectories and magnetic changes induced can be used as a
BGF for the probe of the host environment with the external
tracking system [20].

However, this kind of “natural” computation has some
peculiar properties, which distinguish it from traditional
optimization and should be taken into account in the process
of TST. Firstly, the BGF landscape compensation error should
be considered as the nanorobots fabricated with natural
materials could cause physical, chemical, and biological
interactions with the tissue microenvironment [25], [26].
Secondly, the landscape quantization error caused by the
discrete human microvascular network is a basic characteristic
of natural computation [27]. Thirdly, the fitness evaluation
of computing agents is dependent on the estimation of the
BGF landscape by analyzing the measurable characteristics of
nanorobots, which is different from the fitness evaluation in
traditional optimization without any requirement for on-the-fly
estimation [20]. Next, the nanorobots are controlled by the
external actuating system with a uniform magnetic field, which
means that the other nanorobots will be influenced when one is
actuated towards its intended direction [28], [29]. Furthermore,
constrained by the control accuracy and imaging resolution
of the external devices, the steering and positioning errors in
each iteration should be considered [30]. Also, the biochemical
reaction between nanorobots and the host environment may
lead to their dysfunction, which could result in the finite
lifespan of computing agents [31], [32]. Finally, the speeds of
nanorobots actuated by an external actuation system are always
finite, which is different from the computing agents moving
instantaneously in the context of traditional optimization [22].

B. Review of Previous Works

In the process of TST, each computing agent has three
operation modes: intended actuating (IA), imaging and
tracking (IT), and unintended actuating (UA) with the external
devices operating in the time-multiplexed manner [20]. IA/UA
is used to actuate the nanorobots by the external actuating
system while IT aims at exploiting the BGF estimated from
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the nanorobot characteristics measured by an external tracking
system. To realize the optimal control of nanorobots in the
IA/UA mode with the homogeneous magnetic field generated
by the state-of-the-art actuating device, we have proposed a
novel evolution strategy, namely the weak priority evolution
strategy (WP-ES), which has been used to find an optimal
movement direction of nanorobots in each iteration of the
swarm intelligence algorithm [29].

Furthermore, to validate the effectiveness of the proposed
algorithm for a solitary lesion, we have performed some
simulations and in vitro experiments in [33]. The Janus
particles, which can be controlled via a rotating magnetic
field, were employed as computing agents in the experiment.
A two-dimensional microchannel network fabricated through
photolithography was used to represent the vascular network
model. Two representative unimodal objective functions were
used as the exemplar tumor-triggered BGFs. The experimental
results demonstrated the advantages of the proposed targeting
strategy on the tumor targeting performance.

C. Contributions of the Current Work

In this article, we focus on the scenario of multifocal
tumors, which originate from a unique cellular clone and grow
multifocally in a single organ (liver, kidney, thyroid, etc.) [34].
As the targeting strategies proposed in our previous works can
only be used in the unifocal case to find an global optimal
solution, which does not apply to the multifocal tumors, a new
targeting strategy should be proposed. A nanorobot swarm is
actuated by a uniform magnetic field to find a tumor focus in
an algorithmic cycle, which makes it impossible to complete
the TST for multifocal tumors with one nanorobot swarm.

Along this line of thought, we propose a sequential targeting
strategy (Se-TS) for multifocal TST, which means a series
of nanorobot swarms are employed sequentially in the search
space to target the tumors one by one. Specifically, after a
tumor is detected by a nanorobot swarm, the BGF landscape of
the search space will be modified according to the information
gathered during the first TST period. Then, another nanorobot
swarm will be employed to detect the second tumor according
to the modified landscape. Following this way, all the tumors
in the search space should be detected one by one after
a pre-specified running time. The optimal paths to reach
all the targets can be obtained with all the tumor lesions
being detected. Furthermore, the BGFs around all the tumors
could be inferred one by one according to the information
gathered during the IT periods. This is different from the
process of multimodal optimization in traditional optimization
context, where the landscapes of multimodal functions cannot
be obtained in the searching process. Thus, the Se-TS proposed
for multifocal TST is different from the sequential niching
method, which is a simple, fast algorithm to identify multiple
solutions in a classical multimodal optimization setting.

D. Organization of the Paper

The paper is organized as follows. In Section II, we provide
the fundamentals of nanorobots-assisted natural computation
for multifocal TST. We then propose the generic Se-TS

strategy in Section III and apply it to natural computation
algorithms in Section IV. In Section V, we present the
nanorobotic experimental platform. In Section VI, we provide
in silico simulation examples and in vitro experiments
to demonstrate the effectiveness of the proposed targeting
strategy for multifocal TST. Finally, some concluding remarks
are drawn in Section VII.

II. FUNDAMENTALS OF NATURAL COMPUTATION FOR

MULTIFOCAL TUMOR SENSITIZATION

AND TARGETING

A. Problem Formulation

In the TST process, an external actuating device maneuvers
nanorobot swarms to find the tumor lesions according to a
specific natural computational algorithm. The tracking system
is used to locate the nanorobot swarms and estimate the BGFs
according to the measurable characteristics of nanorobots,
which are used for the fitness evaluation for the computing
agents [19], [29]. In this way, the nanorobots update their
locations step by step until the maximum search time is
reached.

Based on the analysis above, the optimization problem can
be expressed as follows (the minimization operation is used
for simplicity and without loss of generality):

x∗ = arg min
x

U (x; A) , (1)

where U is an apparent objective function representing BGF,
which is measured by computing agent A; x ∈ S is a bivector
representing the possible location of any agent with S being the
search space; x∗ represents the locations of the global optimal
solutions that remain unchanged regardless of any variation
caused by the agents to the BGF landscape.

Furthermore, the apparent objective function contains the
true objective function UT (x) independent of the presence or
absence of agent A, the disturbance caused by the agent A to
the search space S, and the correction factor accounting for
this disturbance as described in [29]. Thus, with the correction
factor attempting to counteract the disturbance to minimize its
influence on the true BGF landscape, the apparent objective
function is as follows:

U (x; A) = UT (x) + ε (x; A) , (2)

where ε (x; A) is a random compensation error.

B. Tumor Vascular Network

The nanorobots are controlled by an external actuating
device to search for the tumor area in the human microvascular
network after they are injected into the high-risk tissue [20].
Thus, the vasculature in the high-risk tissue is the search
space S.

The survival and growth of the tumor cells require oxygen
and nutrients provided by blood vessels, without which the
tumor cannot grow beyond a critical size or metastasize
to another organ [35]. In return, the growth of tumor will
induce changes to the morphology of capillaries and the
characteristics of tumor vascular network will reflect the
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Fig. 2. The microvascular network in the high-risk tissue with the tumor
vascular network simulated by invasion percolation algorithm.

changing state of the pathological tissue [36]. Angiogenesis
(the formation of new blood vessels) occurs in tumors that
have reached 1 to 2 mm in diameter when tumor vessels
develop by sprouting or intussusception from pre-existing
vessels. As the tumor grows, the vasculature within the
core of the tumor will undergo dramatic regression and
the center of the tumor will be bereft of vessels gradually.
It has been demonstrated that the angiogenesis, vessel
cooption (the integration of existing blood vessels into the
tumor vasculature), and vessel regression remodel the healthy
vascular network into a tumor-specific vasculature, which is
bereft of vessels in the center and displays robust angiogenesis
around the tumor periphery [35], [37]–[39].

Invasion percolation is an algorithm that models the
expansion of a network throughout a medium with ran-
domly distributed heterogeneities in strength, which could
properly model the growth procedure of a tumor vascular
network [36], [40]. As shown in Fig. 2, three tumor vascular
networks in the high-risk tissue are simulated by the invasion
percolation algorithm [20], where the black dotted circles with
a diameter of 1 mm represent the tumor regions synthesized
by the invasion percolation algorithm. The tumor vasculatures
are regressed by 40%; the tumor peripheries, where the
angiogenesis occurs are represented by the square with a
side length of 1.4 mm; the intercapillary distances of healthy
tissue and tumor peripheries are set to be 100 μm and
50 μm, respectively, and the search space S is set to be
10 mm ×10 mm.

C. Representative BGF Landscapes

To evaluate the fitness of nanorobots which are natural
computing agents during the targeting process, we introduce
the concept of BGF, which is derived from the biological
characteristics of high-risk tissue regions [29], [33]. For
example, the healthy capillaries exhibit almost uniformly
distributed grid patterns while the tumor vessels have a
profound sort of tortuosity with the density increasing around
the lesions; the locations of nanorobots can be estimated
through contrast-enhanced medical imaging according to the
magnetic response induced by a polarizing magnetic field
[41], [42]. Thus, the measurable characteristics of nanorobots
(e.g., trajectories, magnetic changes induced) can be used as

Fig. 3. Illustration of the representative BGF landscapes: (a) Landscape
1 and (b) its contour plot; (c) Landscape 2 and (d) its contour plot.

BGFs for the probe of the host environment with the external
monitoring system [20]. Nevertheless, as the research is in its
initial stage, there is no widely-accepted, quantitative model on
the BGF in the existing literature other than some qualitative
observations made from the experimental data.

For illustration purpose, two representative objective
functions shown in Fig. 3 are considered in the current
work as they could describe the BGFs around the tumors
with or without random fluctuations. They are in general
agreement with the qualitative observations made in the
existing literature and provide some useful insight into the
effectiveness of the proposed targeting strategy with varying
levels of difficulty depending on the pattern of the gradient.
Their arithmetic expressions are shown in (3)-(10). Landscape
1 represents the scenario that BGFs change smoothly around
the tumors, while landscape 2 represents more complex
BGFs with some fluctuations around the tumors. The circular
regions with a radius of 0.5 mm in the center of each BGF
represent the tumors targeted. It should be noted that the
concept of BGF is different from that of the test function in
traditional optimization as the latter represents the integrated
characteristic of a problem while the former only represents
a biological trait of the high-risk tissue. In this respect,
the natural computation is fundamentally different from the
traditional optimization framework.

1) Landscape 1:

UT (x, y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

√
x2 + (y + 2.25)2 ≤ 0.5 and (x,y) ∈ S

0,

√
(x+2.2)2+(y−0.8)2 ≤ 0.5 and (x,y) ∈ S

0,

√
(x − 1)2 − (y − 2.5)2 ≤ 0.5 and (x,y) ∈ S

1−14/9π (UT1 (x, y)+UT2 (x, y)+UT3 (x, y)) ,

Otherwise,

(3)
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where,

UT1 (x, y) = exp
((

−x2 − (y + 2.25)2
)

/4.5
)

, (4)

UT2 (x, y) = exp
((

− (x + 2.2)2 − (y − 0.8)2
)

/4.5
)

, (5)

UT3 (x, y) = exp
((

− (x − 1)2 − (y − 2.5)2
)

/4.5
)

. (6)

2) Landscape 2:

UT(x, y)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

√
x2 + (y + 2.25)2 ≤ 0.5 and (x,y) ∈ S

0,

√
(x+2.2)2+(y−0.8)2 ≤0.5 and (x,y) ∈ S

0,

√
(x − 1)2 − (y − 2.5)2 ≤ 0.5 and (x,y) ∈ S

1−14/9π (UT4 (x, y)+UT5 (x, y)+UT6 (x, y)) ,

Otherwise,

(7)

where,

UT4 (x, y)

= exp
((

−x2 − (y + 2.25)2
)

/4.5
)

+ 4.5π

× 10−4 (cos 2πx − cos (2π (y + 2.25)) + 17) , (8)

UT5 (x, y)

= exp
((

− (x + 2.2)2 − (y − 0.8)2
)

/4.5
)

+ 4.5π

× 10−4 (cos 2π (x + 2.2) − cos (2π (y − 0.8)) + 17) ,

(9)

UT6 (x, y)

= exp
((

− (x − 1)2 − (y − 2.5)2
)

/4.5
)

+ 4.5π

× 10−4 (cos 2π (x − 1) − cos (2π (y − 2.5)) + 17) .

(10)

III. TARGETING PROCESS FOR MULTIFOCAL TUMORS

A. Operation Modes

The search process of nanorobots contains the IT and
IA/UA modes, which are implemented with the external
tracking and actuating systems in the simple time-multiplexed
manner [20], [29]. As the state-of-the-art nanorobotic control
technology can only generate a uniform field to maneuver
all nanorobots simultaneously, each nanorobot cannot be
controlled independently (even in a sequential manner) without
affecting others’ movement. Thus, any nanorobot working in
the IA mode means that the rest would work in the UA
mode. As such, IA/UA corresponds to the same duration as
shown in Fig. 4(a). Each nanorobot takes turn to operate in
the IT and IA/UA modes. For example, agent A1 works in
the IT mode from time tIT,1 to tIA,1, under the action of the
tracking system. During the IT period, A1 drifts along with
the bloodstream, whose flow direction is assumed to be from
bottom left to top right in the search space. Thus, A1 has the
same probability to either move up or to the right at each
intersection in the vascular network. The location of A1 is
estimated with an error ��x1, whose horizontal and vertical
components are assumed to be independently and identically

Fig. 4. Operation modes of a nanorobot in the taxicab vascular network:
(a) the time sequence of operation modes, (b) the process of IT mode,
and (c) the process of IA/UA mode.

distributed Gaussian with variance σ 2
�x and zero mean for

simplicity as shown in Fig. 4(b).
From time tIA,1 to tIT,2, A1 operates in the IA/UA

mode as shown in Fig. 4(c). During this period, A1 is
propelled by the actuating device along the direction ϕ

(
tIA,1

)
derived from the swarm intelligence algorithm with an angle
deviation �ϕ

(
tIA,1

)
, which is a random variable summarizing

all steering imperfections and is assumed to be normally
distributed with variance σ 2

�ϕ and zero mean. �e1
(
tIA,1

)
is the position “quantization” error due to the discrete
lattice pattern of the vasculature. Furthermore, ‖ �d1

(
tIA,1

) +
�e1

(
tIA,1

) ‖1 = ‖�d1
(
tIA,1

) ‖1 holds in the vascular network of
taxicab geometry.

B. Sequential Targeting Strategy

In traditional mathematical optimization, the sequential
niching method is a technique to efficiently locate multiple
optimal solutions in multimodal problems [43]. It means that
once a potential solution is identified by a specific optimization
algorithm, the objective function’s fitness landscape will be
modified by a derating function at the identified position and
the algorithm will be restarted to search for the second solution
without converging to the previous one. Iteratively repeating
this process a sufficient number of times, as shown in (11),
will locate all the global optimal solutions, where Mn(x, y) is
the nth modified fitness function, sn is the nth best individual
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Fig. 5. Transformation results of the BGF landscape: (a) and (b) are
the first transformation results, (c) and (d) are the second transformation
results.

found, and G (x, y, sn) is a single-peak derating function [44].

Mn+1 (x, y) = Mn (x, y) ∗ G (x, y, sn) . (11)

Inspired by the sequential niching technique, we propose a
sequential targeting strategy (Se-TS) for TST. Specifically,
the Se-TS contains the following procedures: (1) A swarm
of nanorobots are maneuvered by the external actuating and
tracking devices according to the WP-ES to find a tumor after
they are injected into the high-risk tissue [29]. (2) After the
first tumor is detected by the first nanorobot swarm, the BGF
landscape is modified according to (12), where UR1 (x, y)
is the repair function derived from the estimated local BGF
landscape around the tumor detected, and δ1 (x, y) is a random
repair error. After applying the transformation of (12), the new
form of the BGF landscape is shown in Fig. 5(a) and (b). Then,
the second nanorobot swarm is injected into the high-risk
tissue and the search process in (1) is repeated, which will lead
to the second tumor being detected. (3) Following this way,
the third tumor can be detected by the third nanorobot swarm
injected with the BGF landscape being modified according
to (13), where UR2 (x, y) is the repair function derived from
the estimated local BGF landscape around the second tumor
detected, and δ2 (x, y) is a random repair error. The second
transformation results of the BGF landscape are shown in
Fig. 5(c) and (d).

U ′
T (x, y) = UT (x, y) + UR1 (x, y) + δ1 (x, y) , (12)

U ′′
T (x, y) = U ′

T (x, y) + UR2 (x, y) + δ2 (x, y) . (13)

Different from the traditional sequential niching technique,
the repair functions (i.e., UR1 (x, y) and UR2 (x, y)) used
in the Se-TS are derived according to the local BGF
landscapes inferred during the IT periods, which means that
the fitness evaluation for the computing agents in TST should

be more precise compared to the traditional optimization.
Furthermore, the nanorobot swarms are injected sequentially
into the high-risk tissue to search for the tumor lesions with
different initial times, and this is different from the traditional
mathematical optimization with only one population deployed
in the search space for the whole optimization procedure.

IV. SEQUENTIAL TARGETING STRATEGY BASED

NATURAL COMPUTATIONAL ALGORITHMS

In this section, we introduce the Se-TS into the natural
computational algorithms to explore the effect of the proposed
targeting strategy for multifocal TST.

A. Se-TS for Gravitational Search Algorithm

The Gravitational search algorithm (GSA) is a stochastic
optimization method inspired by the Newtonian gravity and
the laws of motion. The computing agents are viewed as
objects, whose virtual masses represent their fitness. In the
optimization process, the objects tend to attract each other by
their virtual gravitational forces. The global movement of all
the objects would cause the update of their locations, which
corresponds to the candidate solutions of an optimization
problem [45].

Considering a system consisting of N agents whose
locations are denoted by {�x1, �x2, · · · , �xN }, the virtual masses
are calculated according to the following equations.⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mi (t) = f i ti (t) − worst (t)

best (t) − worst (t)

Mi (t) = mi (t)
N∑

j=1
m j (t)

, (14)

where {
best (t) = maxi∈1,2,··· ,N f i ti (t)

worst (t) = mini∈1,2,··· ,N f i ti (t),
(15)

with f i ti (t) being the fitness of agent �xi , whose virtual mass
is denoted by mi (t). The virtual gravitational force acting on
agent �xi from agent �x j is defined as:

�Fij = G(t)
Mi (t) × M j (t)

Rij (t) + ε

(�x j (t) − �xi (t)
)
, (16)

with

G(t) = G0 × e−αt/T , (17)

where Rij (t) is the Euclidean distance between �xi and �x j ,
ε is a small constant, G(t) denotes a gravitational constant
reducing with time, G0 is set to be 10, α is set to be 5, and
T is the maximum iteration number. To obtain a stochastic
characteristic, the joint force acting on �xi is defined as:

�Fi (t) =
N∑

j=1, j �=i

rand j �Fij (t) , (18)

with rand j being a random number in the interval [0, 1]. Then
the acceleration of agent �xi at time t is calculated by:

�ai (t) = �Fi (t)

Mi (t)
. (19)
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Agent �xi updates according to the following equations.{
�vi (t + 1) = randi · �vi (t) + �ai (t)

�xi (t + 1) = �xi (t) + �vi (t + 1) .
(20)

For natural computation, the initial velocities of nanorobots
are assumed to be 0 when they are injected into the high-risk
tissue as the inertia velocities of nanorobots could be ignored
in the bloodstream, which is non-Newtonian liquid. The
location update of the computing agents is composed of the
IT and IA/UA modes for each iteration as follows.

IT mode:

�xi (t + 1) = �xi (t) + T1 · �vb (t + 1) , (21)

IA/UA mode:{
�vi (t + 1) = d0 · e−κ·tIA,k/T · �a j (t) /‖�a j (t)‖2

�xi (t + 1) = �xi (t) + �vi (t + 1) + �vb (t + 1) ,
(22)

where �vb (t + 1) is the blood flow velocity at time (t + 1),
�a j (t) is the acceleration of the selected agent A j ( j =
1, 2, · · · , N) by WP-ES at time t , T1 is the IT duration, d0 is
the initial step size, and κ is a small constant.

With the proposed Se-TS introduced into the natural
computational algorithm, the pseudo code of the algorithm
for multifocal TST is shown in Algorithm 1.

Algorithm 1 Pseudo Code of the GSA Based Multifocal TST
Algorithm
1: while the maximum operation time is not reached do
2: Generate a new agent swarm in the injection region;
3: Evaluate the fitness and lifespan of each agent;
4: while the operation time for a tumor targeting is not

reached do
5: Calculate G (t) , best (t) ,worst (t) and M (t).
6: Select the “weakest agent” in the swarm.
7: Update according to (21) and (22).
8: Evaluate the fitness and lifespan of each agent.
9: if any agent reach its lifespan then

10: exclude the specific agent from the swarm
11: end if
12: if any agent reach the tumor region then
13: stop its update
14: end if
15: end while
16: Modify the BGF landscape with a specific repair

function.
17: end while

B. Se-TS for Particle Swarm Optimization Algorithm

Without loss of generality, we also revisit the particle swarm
optimization (PSO), where the optimization process is similar
to the behavior of bird flocks and fish schools. The candidate
solutions to an optimization problem are assumed as particles
that can flow through the search space to achieve the best

optimization performance after some iterations. The traditional
PSO equations are as follows:⎧⎪⎨

⎪⎩
�vi (t + 1) = �vi (t) + c1r1 ( �pi − �xi (t))

+ c2r2 (�g − �xi (t))

�xi (t + 1) = �xi (t) + �vi (t + 1) ,

(23)

where �pi (i = 1, 2, · · · , N) denotes the “personal best”
particle, and �g is the “global best” of all the particles. c1
and c2 are “cognitive coefficient” and “social coefficient”,
which are used to modulate the magnitude of the steps taken
by the particles in the two different directions in the range
0 ≤ c1, c2 ≤ 4. r1 and r2 are two diagonal matrices of random
numbers generated from a uniform distribution [0, 1]. With the
WP-ES being introduced into the PSO, the evolution equations
of agents are shown as follows.

IT mode:

�xi (t + 1) = �xi (t) + T1 · �vb (t + 1) , (24)

IA/UA mode:⎧⎪⎨
⎪⎩

�vi (t + 1)= �vi (t) + c1r1 ( �pi − �xi (t)) + c2r2 (�g − �xi (t))
�v ′

i (t + 1)=d0 · e−κ·tIA,k/T · �v j (t + 1) /‖�v j (t + 1) ‖2

�xi (t + 1)= �xi (t) + �v ′
i (t + 1) + �vb (t + 1) ,

(25)

where �v j (t + 1) /‖�v j (t + 1) ‖2 denotes the moving direction
of the particle selected by WP-ES, and the other parameters
have the same meanings as those of (22).

The pseudo code of the PSO based natural computational
algorithm is shown in Algorithm 2.

Algorithm 2 Pseudo Code of the PSO Based Multifocal TST
Algorithm
1: while the maximum operation time is not reached do
2: Generate a new agent swarm in the injection region;
3: Evaluate the fitness and lifespan of each agent;
4: while the operation time for a tumor targeting is not

reached do
5: Find the “personal best” ( �pi ) and “global best” (�g).
6: Select the “weakest particle” in the swarm.
7: Update according to (24) and (25).
8: Evaluate the fitness and lifespan of each agent.
9: if any agent reach its lifespan then

10: exclude the specific agent from the swarm
11: end if
12: if any agent reach the tumor region then
13: stop its update
14: end if
15: end while
16: Modify the BGF landscape with a specific repair

function.
17: end while

V. EXPERIMENTAL SETUP

In order to model the vascular network in the high-risk
tissue, we fabricate a two-dimensional microchannel network.
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Fig. 6. (a) Schematic diagram of the microfabrication procedure; (b) The
vascular network model fabricated.

Fig. 6(a) shows the microfabrication procedure of the
microchannel network through photolithography. The silicon
substrate covered with a 60 μm layer of SU-8 2050 is
exposed under UV lights with a chrome (Cr) mask [33], [46].
The sample of microchannel network developed is shown
in Fig. 6(b). Furthermore, to model the heterogeneity of the
vessels in the peritumoral areas, the corresponding areas in
the microchannel network are set to be denser compared to
the other areas.

For the nanorobots used in the experiment, the Janus
particles representing the latest effort toward the development
of fast, efficient, and controllable fuel-free microdevices were
employed [47]. Janus particles were fabricated by half-coating
polystyrene (PS) particles 10 μm in diameter with a 100 nm
thick layer of nickel (Ni) by electron beam evaporation
(Fig. 7(a)). The surface morphology of there Ni-PS particles
was confirmed with scanning electron microscopy (SEM)
(Fig. 7(b)). Note that although the Janus particles are actually
microscale, they are used to represent nanorobots; this is due
to the fact that Janus nanoparticles are very difficult to image
using our current experimental platform. For translational
motion control of the nanorobots, we applied rotating magnetic
fields generated by a 3D Helmholtz coil system. The xy
motion of the nanorobot was controlled by manipulating the
strength (mT), orientation (rad), and frequency (Hz) of the
rotating magnetic field. The generated magnetic field can be
expressed as

�B =
⎡
⎣ Br sin θ cos ωt

Br cos θ cos ωt
Br sin ωt

⎤
⎦ , (26)

where Br , θ , ω, and t represent the rotating magnetic field,
direction of motion, rotational frequency of the field, and time,
respectively (Fig. 7(c)).

The nanorobotic control system consists of three pairs of
electromagnetic coils arranged in a Helmholtz configuration,
three programmable power supplies (Kepco BOP 20-5M),
a National Instruments data acquisition (NI DAQ) controller
(PCI-6259 and BNC-2110), a microscope, a camera, and a
host computer (Fig. 8) [33]. The coil system is powered by the
power supplies controlled via the DAQ device. The magnetic
field generated by per coil pair is around 1.5 mT with a
current of 0.45 A. The motion of nanorobots was recorded

Fig. 7. Schematics of nanorobotic fabrication and control. (a) Illustration
of a Janus particle; (b) SEM image of the Janus particles; (c) Schematic
of magnetic control.

Fig. 8. Experimental platform for in vivo computation.

using a CMOS camera (BFS-U3-13Y3M-C) at 25 frames
per second with a field of view of 614.4 × 491.5 μm under
a 10× objective lens and a resolution of 0.48 μm/pixel.
The nanorobots were tracked by real-time image processing
with a LabVIEW program developed for the magnetic field
controlling.

VI. PERFORMANCE ANALYSIS

We use several numerical examples to elaborate on the TST
performance of the proposed Se-TS for multifocal tumors,
which is compared to the brute-force search and the standard
swarm intelligence algorithms for the two representative BGF
landscapes described in Section II-C.

A. In Silico Simulation Results

In the simulation, 12 agents with lifespans obeying an
exponential distribution (i.e., τ (A) ∼ Exp

(
5 × 10−4

)
) are

employed. The search space S generated by using the
inversion-percolation-based model described in Section II-B
is −5 mm ≤ x, y ≤ 5 mm. The nanorobots are uniformly
deployed in the initial region x, y ∈ [−5,−4] when they are
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Fig. 9. TST results for landscape 1 by the brute-force search. (a) Average
fitness of the agents input during the search time, (b) final locations of
the agents input in the search space after one run, and the trajectory of
the agent swarm center.

injected into the search space. The speeds of nanorobots and
blood flow are set to be 30 μm/s. The direction of blood flow
is assumed to be from bottom left to top right of the search
space. The duration of IT mode (i.e., T1) is set to be 10 s. The
maximum operation time for the whole search process and the
operation time for a tumor targeting are set to be 1500 s and
500 s, respectively. The number of simulation runs is 1000.
During the search time, any agent reaching the tumors will
stop moving; any agent reaching its lifespan (i.e., the agent
dysfunction happens) will be excluded from the swarm with
other agents continuing their movement until the operation
time is reached. The two representative BGF landscapes
are applied to synthesize different levels of multifocal TST
difficulty. Three performance metrics Pd , η, and χ are used
to represent the ratio of the number of successfully targeted
tumors to the total number of simulations, the efficiency of
targeting (i.e., the ratio of the amount of agents completing
intended tumor targeting to the amount of agents deployed),
and the false alarm rate (i.e., the ratio of the amount of agents
completing unintended tumor targeting to the amount of agents
deployed). η and Pd are used to evaluate the performance of
natural computational algorithms compared to the brute-force
search from the tumor targeting perspective and the standard
swarm intelligence algorithms without any in vivo constraints
from the algorithmic perspective, while χ is a particular metric
for multifocal TST.

Fig. 9 shows the multifocal TST results of the brute-force
search for landscape 1, where the agents detect the tumor
in the search space S according to the driving of the blood
flow without any aided knowledge from the BGF landscape.
The average fitness of agents reaches the two maxima at
nearly 300 s and 500 s in this scenario as shown in Fig. 9(a).
Fig. 9(b) shows the final locations of the agents in the search
space at the search time of 500 s, where we can see only
3 of the 12 agents employed detect the tumor with the rest
passing by the tumor regions. To provide better illustration,
we present the trajectory of the agent swarm center, from
which we can observe that most of the agents miss the
tumors with the trajectory passing by the tumors. Furthermore,
to provide a quantitative benchmarking scenario, we carried
out the simulation for 1000 runs and present the histogram
of the results in Fig. 10. It can be seen that the targeting

Fig. 10. Histograms of the TST results for the three tumor lesions by
using the brute-force search.

Fig. 11. TST results for landscape 1 by algorithm 1 during the first
operation time. (a) Average fitness of the first swarm of agents input, (b)
final locations of the agents in the search space, and the trajectory of the
first swarm center.

efficiencies for three tumor lesions are 7.3%, 1.5% and 18.5%,
and the three targeting ratios are Pd = 45.1%, Pd = 11.7%
and Pd = 74.2%.

To demonstrate the effectiveness of the Se-TS, we carry out
the experiment by using three nanorobot swarms to detect the
three tumor lesions respectively. The three swarms are injected
at 0 s, 500 s, and 1000 s, respectively. Fig. 11(a), Fig. 12 (a)
and Fig. 13(a) show the typical curves of the swarms’ average
fitness over the operation time for landscape 1 by using
algorithm 1 in Section IV-A. It shows that the average fitness
of the agents reaches the three maxima at around 200 s, 750 s
and 1400 s, respectively. Fig. 11(b), Fig. 12(b) and Fig. 13(b)
show that most of the agents can detect the three tumor lesions
with the trajectories of the swarm centers passing through the
tumor regions respectively.

Fig. 14(a) and (b) show the histograms of the multifocal
TST results for landscape 1 by using algorithm 1, where η =
41.7%, Pd = 82.4%, χ = 10.6% for tumor I; η = 50.7%,
Pd = 98.4%, χ = 16.9% for tumor II; and η = 38.1%, Pd =
82.8%, χ = 12.4% for tumor III. Fig. 15(a) and (b) show the
histograms of the multifocal TST results for landscape 2 by
using algorithm 1, where η = 38.5%, Pd = 86.9%, χ = 5.5%
for tumor I; η = 26.4%, Pd = 81.3%, χ = 18.5% for tumor II;
and η = 26%, Pd = 69.9%, χ = 11.8% for tumor III.
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Fig. 12. TST results for landscape 1 by algorithm 1 during the second
operation time. (a) Average fitness of the second swarm of agents input,
(b) final locations of the agents, and the trajectories of the two swarm
centers.

Fig. 13. TST results for landscape 1 by algorithm 1 during the third
operation time. (a) Average fitness of the third swarm of agents input,
(b) final locations of the agents, and the trajectories of the three swarm
centers.

Fig. 14. Histograms of the multifocal TST results for landscape 1 by
algorithm 1. (a) Quantity of agents targeting the tumor intended, (b)
quantity of agents targeting the tumors unintended.

Furthermore, the multifocal TST results by using
algorithm 2 in Section IV-B are similar with that achieved by
algorithm 1 shown above. Thus, it is obvious that the Se-TS
based natural computational algorithm performs better than
the brute-force search from the tumor targeting perspective.

Fig. 16 shows the traditional optimization results for
landscape 1 by the sequential niching method based standard
GSA. It can be seen that the average fitness of agents reaches
the maxima at around the 20th, 40th and 60th iterations, and
almost all the agents locate the tumor regions at last. Fig. 17
shows the histograms of the agents locating the tumor regions
for landscape 1 and landscape 2.

Fig. 15. Histograms of the multifocal TST results for landscape 2 by
algorithm 1. (a) Quantity of agents targeting the tumor intended, (b)
quantity of agents targeting the tumors unintended.

Fig. 16. Multimodal optimization results for landscape 1 by the sequential
niching method based standard GSA. (a) Average fitness of the agent
swarms input sequentially, (b) final locations of the agents.

Fig. 17. Histograms of the multimodal optimization results by the
sequential niching method based standard GSA. (a) The optimization
results for landscape 1, (b) the optimization results for landscape 2.

Thus, we can see that the Se-TS based natural computational
algorithms have better multifocal TST performances than the
brute-force search, and there is a fundamental distinction
between the natural computational algorithms and the standard
swarm intelligence algorithms.

B. In Vitro Experimental Results

For the in vitro experiment, a group of three Janus particles
is used as a nanorobot swarm to detect the tumor regions
(i.e., the circular areas with a diameter of 60 μm in the
microchannels). The speeds of nanorobots are set to be 5 μm/s.
The initial swarm center is at the bottom left corner of the
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Fig. 18. In vitro experimental results for the natural computation.

microchannel network. Fig. 18(a)∼(f) show the trajectories of
the swarm centers for landscapes 1 and 2 by using the Se-TS
based algorithm. It can be seen that the nanorobot swarms
can find the three targets respectively with the operation
time elapsing (Supplementary Videos 1-6). As the benchmark
scenario, Fig. 18(g) shows the brute-force search result, where
we can observe that the nanorobot swarm fails to find the
target with the trajectory bypassing the circle regions targeted
(Supplementary Video 7).

VII. CONCLUSION

We proposed the Se-TS for multifocal TST. By introducing
the strategy into the natural computational algorithms, we have
carried out the in silico simulations and in vitro experiments
for two representative BGF landscapes. The statistical results
and in vitro validations demonstrate the effectiveness of the
proposed strategy.

Future work may include extension of the framework to
multi-objective problems and it should be validated by real
experiments to justify further its clinical relevance.
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