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Idealizing Ion Channel Recordings by a Jump
Segmentation Multiresolution Filter

Thomas Hotz , Ole M. Schütte, Hannes Sieling, Tatjana Polupanow, Ulf Diederichsen, Claudia Steinem, and
Axel Munk

Abstract—Based on a combination of jump segmentation and
statistical multiresolution analysis for dependent data, a new
approach called J-SMURF to idealize ion channel recordings
has been developed. It is model-free in the sense that no a-priori
assumptions about the channel’s characteristics have to be made;
it thus complements existing methods which assume a model for
the channel’s dynamics, like hidden Markov models. The method
accounts for the effect of an analog filter being applied before
the data analysis, which results in colored noise, by adapting
existing muliresolution statistics to this situation. J-SMURF’s
ability to denoise the signal without missing events even when the
signal-to-noise ratio is low is demonstrated on simulations as well
as on ion current traces obtained from gramicidin A channels
reconstituted into solvent-free planar membranes. When ana-
lyzing a newly synthesized acylated system of a fatty acid modified
gramicidin channel, we are able to give statistical evidence for
unknown gating characteristics such as subgating.

Index Terms—Event detection, gramicidin derivative, planar
patch clamp, reconstruction, statistical multiresolution criterion,
subconductance.

I. INTRODUCTION

T HE investigation of ion channel functionalities is of
particular importance as they play major roles in cellular

processes like signal transduction, energy conversion, and
transporting [1]. Being involved in many human diseases such
as epilepsy, cardiac arrythmias, and others, they are major
targets of pharmaceutical drugs [2], [3]. The channel’s behavior
with respect to ion conductivity and dynamic properties is best
monitored on a single channel level, but tedious data analysis
is required to gain statistically profound information about
channel characteristics and the effect of external stimuli on the
channel [4]. Automatic, software based analysis, especially
of unknown ion channels, is hampered by a wide dynamic
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range of channel kinetics with channel opening times from
milliseconds up to tens of seconds, rendering this a statistical
multiresolution problem. Furthermore the electric conductivity
of different ion channels can span several orders of magnitude
from picosiemens to tens of nanosiemens [4].
Here, we focus on the problem of idealization, as it is called in

this field, of ion channel current traces, i.e., on the reconstruction
or estimation of the channel’s conductivity over time without
noise; one may also call that denoising or signal detection. This
is an important step in the analysis of an ion channel’s traces
as many of its characteristics can be decuced from idealized
traces: number of states, open and closed times, transition rates
between states [5], or the Nernst potential [6].
Many idealization methods are based on specific models for

the channel’s behavior [7], e.g., that there is a Markov chain of
states, each with its associated conductance.While model-based
approaches often have the advantage that they immediately give
rise to estimates of the channel’s dynamical parameters, they
have the drawback that they require a model for the dynamics to
be specified in advance, i.e., they assume prior knowledge about
the channel’s behavior, the results often depending crucially on
themodel being assumed. This is in particular problematic if one
wants to investigate whether the model is appropriate for that
channel, e.g., when one doubts the channel behaving according
to a Markovian model [8]–[10].
In contrast, methods which only make minimal assumptions

about the signal and its dynamics are often labelled “model
free”; in statistics, these are called nonparametric methods.
They are clearly more appropriate when little is known in
advance about the channel as they allow for an unprejudiced
analysis of the data. The aim of this research was to develop
such an idealization technique which is applicable in the gen-
eral situation where nothing is known about a channel.
Currently, to the best of our knowledge there are two popular

types of model-free approaches for idealizing ion channel
recordings: amplitude thresholding [11], [12] defines a channel
to be open if its conductance exceeds a certain, predetermined
threshold, otherwise it is assumed to be closed; generalizations
to several states or multiple channels are straight-forward. The
applicability of this method is adversely affected by a low
signal-to-noise ratio (SNR), thus often requiring the data to be
filtered with some digital low-pass filter before applying the
amplitude threshold.
The slope thresholding approach focuses on the detection of

jumps: first, local estimates of the slope, e.g., differences be-
tween consecutive observations, are computed; if one exceeds
a certain threshold in absolute value, a jump has been detected
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[13], [14]. Again, one often applies a low-pass filter beforehand
to reduce the noise. Here, the threshold depends on the noise
level and does not have to be chosen by the analyst; in partic-
ular, no assumption on the number of conductance levels is re-
quired. Another advantage over amplitude thresholding is that
slope thresholding is more robust against baseline drifts.
However, both amplitude and slope thresholding usually re-

quire low-pass filtering. While additional filtering with a pre-
specified filter removes noise, thus alleviating the problem of
detecting spurious jumps caused by a low SNR, it also affects
the true signal by smoothing it out, which in turn may lead to
events being missed and the localization precision of jumps de-
teriorating [11], [12], [15]. Albeit there may be a theoretical op-
timum for the filter length for detecting events of a given length,
i.e., at a fixed scale, this length is not known a priori, nor do
events share the same length. In fact, if the channel’s open and
closed states form a simple Markov chain as in the simplest,
realistic model then the event lengths will be exponentially dis-
tributed, i.e., event lengths ranging over about three orders of
magnitude will occur, and short events will be smoothed out
while long events get smoothed less than possible if the filter is
adapted to the average event length. Therefore, we propose to
use a multiresolution approach which automatically will adapt
to the right scale, i.e., event length, in order to smooth as much
as possible depending on the event’s length, without loosing de-
tails for short events. This combines a statistical multiresolu-
tion analysis (SMRA) with the specific structure of ion channel
recordings, namely that they essentially are piecewise-constant
block signals, observed after an analog low-filter has been ap-
plied which results in additive colored noise. The signal is de-
termined by the time points at which jumps occur, and by the
conductance in between. The SMRA introduced below has been
adapted to this situation and will allow to segment the signal
at the jump points as it detects with high probability if a jump
has been missed. The method which is thereby obtained will
thus be called “Jump-Segmentation by MUltiResolution Filter
(J-SMURF)”.
Before we describe J-SMURF in detail, we state which cri-

teria we would like a model-free idealization method to fulfill,
cf. [14]: first of all, the method should not require any a-priori
information, in particular no model for the channel’s dynamics,
or any assumptions about its conductance or the event lengths,
thus being universally applicable and hence maximizing objec-
tivity by requiring no subjective choices to be made by the an-
alyst; secondly, while the idealization should be perfect in the
absence of noise, the amount of spurious jumps should be con-
trollable statistically.
The latter requirement asks us to take multiple testing into

account, i.e., the problem caused by simultaneously looking for
jumps in the signal at many locations. If the error of detecting
any false-positive, i.e., any spurious jump, is required to be
small, this will force threshold values to increase, thereby gen-
erally also increasing the number of missed events. Clearly, this
issue aggravates the problems described above, calling for an
approach that takes all information available from the data into
account.
To validate J-SMURF we used simulated data as well as cur-

rent traces of gramicidin A (gA) and a novel gA derivative.
Gramicidin A is a small peptide capable of forming ion chan-

nels by a diffusion regulated interleaflet dimerization [16], [17].
Its channel characteristics have been extensively studied with
respect to its ion selectivity, dynamic behavior, and the mechan-
ical properties of the surrounding membrane [18]–[23]. Due
to its simple structure and small size, gA derivatives with al-
tered channel properties are readily available from chemical
synthesis, making it a suitable system to benchmark the ideal-
ization approach presented in this work [24].
The results of J-SMURF were compared to results obtained

using a slope thresholding method. In particular, we chose the
TRANSIT algorithm [14] for the comparison as it has also been
specifically developed for the purpose of model-free idealiza-
tion of ion channel recordings, in particular in case of multiple
conductance levels, possibly caused by subconductance states.
However, we expect other slope thresholding approaches to
exhibit a qualitatively similar behavior. For comparisons with
other methods, our implementation of the algorithms described
below is available from http://stochastik.math.uni-goet-
tingen.de/smuce.

II. THEORY

A. Statistical Multiresolution Analysis

In order to more clearly expose the main ideas, we will for
the moment ignore that a low-pass filter has been applied prior
to digitization. Considering the simpler model where the data

, observed at times are given as the true
signal plus Gaussian white noise , i.e., we assume:

(1)

where the are independently distributed Gaussian random
variables with mean 0 and variance ; for the time being, we
assume to be known. The crucial assumption that we make
is that the true signal is a piecewise constant function; i.e., we
assume that the unknown mean of the measured conductance
always is constant for some time, then it may jump to a dif-
ferent conductance level at which it remains constant again for
a while, and so on. In particular, we assume that the change be-
tween conductance levels happens faster than the rate at which
we sample, a realistic assumption for many channels [11].
In order to reconstruct the signal , in a first step we re-

quire a statistical multiresolution constraint (SMC) to be ful-
filled, cf. e.g. [25]–[29], which will be adapted to the problem
of a low pass filter later on in Section II-C. So, assume we
were given some candidate, piecewise constant reconstruction
and we had to decide whether this is a valid reconstruc-

tion of the true (unknown) in (1). The idea of the SMC is
to check on a statistically sound basis whether the residuals

indeed behave like white noise on all levels of reso-
lution, i.e., scales, simultaneously, as we would expect them to
if indeed was equal to . For this, consider for each interval

, the statistic:

(2)

Each of these statistics has mean 0 and variance 1 under the
hypothesis that . However, if there will be some
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interval on which they differ, say for
, such that will have mean:

(3)

similarly, in case , such that
on these intervals while if the reconstruction is

perfect. As we want to simultaneously test for deviations from
the hypothesis on all intervals , we consider the maximum
over all , i.e., we construct the multiresolution statistic ,
cf. again [25]–[29],

(4)

expecting to be small if and large otherwise.
Indeed, under the hypothesis that , the distribution of

does not depend on , so we can a priori
determine its quantile such that the probability of is
less than some prespecified significance level , say %.
Put the other way around, a solution is feasible if ,
i.e., if it satisfies the SMC at level . In practice, will be deter-
mined by simulation. We then reject a proposed reconstruction
if its multiresolution statistic is larger than . Thereby,

we will be able to detect if has less jumps than the true , at
least if the cumulated difference between and in (3) is large
enough on some interval.

B. Jump Segmentation

Of course, one cannot detect whether contains too many
jumps with this approach. In fact, if is allowed to have
jumps it can interpolate the data perfectly, , resulting
in . Therefore, following ideas of [29] and [30], we
determine the simplest reconstruction in the class of piecewise
constant functions, i.e., one with the minimal number of jumps,
fulfilling the multiresolution criterion . Here, may
be any piecewise constant function with a finite though arbitrary
number of jumps, with no restriction on the blocks’ levels. Thus,
denoting by the set of piecewise constant functions with at
most jumps, , we first determine the minimal number
of jumps necessary to fulfill the criterion, i.e., is the minimal
for which there is some such that . This
will in general not be unique, so we choose the one which

fits the data best in the least-squares sense, i.e., the one which
maximizes the likelihood of the data. The estimator is thus
given by:

(5)

By construction of , the probability of overestimating the
number of jumps is bounded by . It can be shown that, when
tends to zero, the multiresolution constraints tighten such that

tends to , while converges to the true number
of jumps; hence, the estimator will reconstruct perfectly if no
noise is present. In [29] extensive theory for a scale-calibrated
version of (5) has been developed. There, scale-calibration
has been used, in order to prevent domination of small scales

[26]. As we will argue in the following subsection small scale
domination will be automatically excluded due to the low pass
filtering of the ion channel recordings and hence scale-calibra-
tion on small scales becomes dispensible. On the one hand this
simplifies the theory, on the other hand the low pass filtering
will complicate the computation of in (5), see Section II-C.
In summary, see [29]:

Under mild assumptions the estimated number of jumps
converges to the true number of jumps in probability if the
sampling interval goes to zero while the measurement time
remains fixed [29, Theorem 2.3]. Furthermore, vanishing
signals can be reconstructed at the optimal detection rate
[29, Theorem 2.7], and all jump locations are recovered si-
multaneously with an error which is (asymptotically) pro-
portional to the sampling interval’s length [29, Theorem
2.8].

More precisely, non-asymptotic exponential deviation bounds
were proved from which these asymptotic statements follow.
Minimizing the number of jumps in the regression context

has also been advocated by [31] and [32], with the notable dif-
ference, however, that a global penalty enforces the solution to
be parsimonious which is quite different from the local MRC
in (4).

C. Accounting for the Effect of an Analog Low-Pass Filter

We will now discuss how the general approach described
above can be adapted to the situation where an analog low-pass
filter has been applied prior to digitization, at the same time en-
suring that it can efficiently be computed. For the former, we as-
sume that the analog filter’s kernel , i.e., its impulse response
function, has compact support, i.e., it is zero outside a finite in-
terval of length . Moreover, assume that the signal has been
uniformly sampled at rate , such that . Then, if
the noise was white and Gaussian before filtering, which is a re-
alistic assumption for ion channel recordings, the observations
fulfill:

(6)

with denoting the convolution
of with , cf. (1). Here the noise is still Gaussian with mean
zero, but it is correlated, i.e., colored, noise now; its standard de-
viation after filtering will be denoted by . We observe that we
at least know to be independent of if . Simi-
larly, if is piecewise constant for some time will
be piecewise constant at least on an interval of length ;
shorter events will be difficult to reconstruct. We thus restrict
ourselves to only considering those intervals in (4) at which is
piecewise constant for at least length , then checking whether
the observed signal appears to be constant on the interval short-
ened by , as would be. To simplify notation, we assume
that for all while . We then
substitute (4) by

(7)
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where denotes the set of intervals for which is con-
stant on , and hence is constant on . Pro-
ceeding as in (5) before, we finally obtain the jump segmenta-
tion multiresolution filter (J-SMURF),

(8)

With this adaptation, the distribution of under the hy-
pothesis still depends on . However, it can be bounded
by the distribution of which does not depend on any-
more:
Theorem 1: Assume model (6) with filter function and

let denote the multiresolution statistic in (7) underlying
J-SMURF (8). Then the distribution of under the hy-
pothesis can be bounded by that of under the
hypothesis , i.e.,

(9)

for all .
Proof: For any , one considers the maximum over coeffi-

cients of the form

(10)

If contains jumps, contains fewer intervals than , so
that the maximum will be smaller, i.e., almost
surely, which implies the assertion.
This means in particular that the probability of detecting more

jumps than present in can still be controlled to be at most , if
is chosen such that . Therefore, all jumps
detected by J-SMURF are statistically significant at error level
.
Note that the reconstruction will still be perfect if no noise is

present. In contrast to the situation with white noise above, the
coefficients in (10) behave differently for short intervals. In-
deed, if the filter is smooth, as in practice, then the noise con-
verges to a smooth random process when the sampling rate goes
to infinity while the measurement time remains fixed. There-
fore, penalization of short intervals as in [26], [29] is unneces-
sary, as the maximum over the coefficients, , will already stay
(stochastically) bounded without any correction terms. How-
ever, this also means that the amount of information within a
fixed measurement time is also limited, so one cannot expect
the noise to be removed perfectly. Precise mathematical state-
ments about J-SMURF’s ability to resolve signals are techni-
cally involved and beyond the scope of this paper. Nonetheless,
by simulating , we can control the error of detecting spu-
rious jumps so that the reconstructed jumps will be statistically
significant, cf. Theorem 1. In the simulations and experimental
data examples below, we will demonstrate J-SMURF’s preci-
sion in practice.

D. Computational Issues

The choice of allows to efficiently compute the
J-SMURF estimator by dynamic programming which can be
shown to have a maximum complexity of order ,

see also [30], [33], and [29]. Moreover, following the argu-
ments in [29, Sec. 3] it can be shown that the computation
time depends on the final solution and decreases significantly
as the final solution includes more jumps. In particular, for ion
channel recordings with a large channel activity the computa-
tion of J-SMURF will be significantly faster.

E. Estimating the Variance and Final Idealization

Finally, we need to address the problem of estimating . A
robust estimator for it is given by dividing the median of the ab-
solute differences denoting the smallest integer
larger than , by times the upper quartile of the stan-
dard normal distribution [25]. In fact, is a mean-zero
Gaussian random variable with variance , hence the pro-
posed estimator is consistent for a fixed, finite number of jumps
in if ; for finite it slightly overestimates , leading
to a somewhat conservative multiresolution criterion. Other es-
timates for in this situation can be found in [34] and the ref-
erences given there.
One might view J-SMURF as being like a filter which filters

more, if events are longer but without losing detail, in particular
not smoothing over the jumps. As a matter of fact, we found it
to be so sensitive that it even picks up small movements of the
baseline which cannot be avoided in the experiment. However,
this is only aminor issue which can be dealt with easily; a simple
remedy for it is e.g., to define amplitude thresholds based on
the J-SMURF estimator in order to obtain the final idealization.
This approach worked well for the examples discussed below
but may be replaced by a more sophisticated, fully automatic
method if required.

III. METHODS

A. Simulations

Adapting the methodology proposed in [14] to the experi-
mental data’s parameters, simulations were carried out by first
generating a continuous time Markov chain with the corre-
sponding rates for 60 s, or a constant signal in the noise-only
case; the signal was tenfold oversampled at 100 kHz, Gaussian
white noise was added, and a digital four-pole Bessel low-pass
filter at 1 kHz cutoff-frequency applied; finally the signal was
subsampled at 10 kHz, resulting in 600,000 data points for each
simulation.

B. Experimentals

Gramicidin A was purchased from Sigma-Aldrich (Schnell-
dorf, Germany) and used without further purification.
The gA derivative was synthesized by solid phase peptide

synthesis. The amino acid sequence was derived from gA sub-
stituting D-Leu and D-Leu by D-Ser(decanoyl), respectively
[35]. The oligomer was purified by reverse phase high-perfor-
mance liquid chromatography and characterized by high reso-
lution mass spectrometry. Giant-unilamellar vesicles (GUVs)
(1,2-diphytanoyl-sn-glycero-3-phosphocholine/cholesterol,
9:1) containing peptide (nominal lipid to peptide ratio of
10000:1 up to 1000:1) were produced by the electroformation
method [36]. Electrical recordings of solvent-free lipid bilayers
in buffer (1 M KCl, 10 mM HEPES, pH 7.4, 20 C) were per-
formed using the Port-a-Patch (Nanion Technologies GmbH,
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Fig. 1. (A) Simulated trace (grey background) of length 60 s, based on a two-state Markov chain with 1 Hz transition rates (solid red line) with noise added to
give a SNR of 3 after filtering. (B) TRANSIT (dashed purple line) and J-SMURF (solid blue line) reconstructions. (C) Histogram of difference between number
of detected and number of simulated jumps based on 100 simulated traces for TRANSIT. (D) Similar histogram for J-SMURF.

Munich, Germany). Briefly an electrically insulating membrane
was generated by spreading a peptide containing GUV onto
an aperture of a borosilicate glass chip. A DC potential
between and 100 mV was applied. After observation of
current transitions, data was recorded at a sampling rate of 10
kHz using a 1 kHz four-pole Bessel low-pass filter.
For synthetic and experimental details see Appendix A.

C. Analysis

For each trace, we first determined the noise’s standard de-
viation using the robust estimator described above; these esti-
mates were used as input both for J-SMURF and for TRANSIT
[14]. For the experimental data, single electronic spikes were
automatically detected and removed if necessary. No baseline
correction was applied.
The SMRA was restricted to intervals of dyadic length for

increased computational efficiency. The significance level was
set to 5%; the corresponding 95 % quantiles were obtained by
simulating 4,000 traces of pure, filtered noise for 60 s, leading to
a critical value of 11.53. Where shorter traces are shown, these
have been cut out of 60 s traces after the analysis; in particular,
the critical values were not adapted a posteriori to the shorter
time lengths.
Amplitude threshold was used for final idealization after de-

termining the J-SMURF estimator for traces of experimental
data in order to cope with small baseline drifts. These thresholds
were chosen by the analyst based on the J-SMURF estimator.

The TRANSIT algorithm was reimplemented using only cen-
tral differences, no forward differences, since all traces had been
low-pass filtered.
The analyses were performed using the statistics software

R [37], all algorithms having been implemented in a custom
package called “stepR”, available from http://stochastik.math.
uni-goettingen.de/smuce; implementation details may be found
in [29].

IV. RESULTS

We validated J-SMURF on simulated as well as experimental
data sets. While simulations enabled us to explore the potential
of the multiresolution approach, analyses of experimental data
sets showed its practical usability to idealize ion channel record-
ings. Gramicidin A provides an ideal test case for our approach,
as it combines well-defined characteristics with a challengingly
low conductivity [24]. As a proof of J-SMURF’s general appli-
cability we analyzed a novel fatty acid modified gA derivative
to investigate the alteration of the channel’s characteristics by
changes in the amino acid sequence and lipid-peptide interac-
tions [38].

A. Simulations

We simulated three scenarios using realistic parameters: first
pure noise, then a two-state system with slow dynamics, finally
one with fast dynamics; the two states corresponding to the sim-
ulated channel being open or closed. Each trace was simulated
to be 60 s long; 100 traces were generated per simulation.
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Fig. 2. (A) First 3 s of a simulated trace (grey background) of length 60 s, based on a two-state Markov chain with 20 Hz transition rates (solid red line) with
noise added to give a SNR of 3 after filtering; J-SMURF reconstruction overlaid (solid blue line). (B) Histogram (blue) of length of events (log-scale) detected by
J-SMURF based on the entire 60 s trace, and corresponding theoretical distribution (solid red line).

Fig. 3. (A) First 3 s of a simulated trace (grey background) of length 60 s, based on a two-state Markov chain with 20 Hz transition rates (solid red line) with noise
added to give a SNR of 3 after filtering; TRANSIT reconstruction overlaid (dashed purple line). (B) Histogram (purple) of length of events (log-scale) detected by
TRANSIT based on the entire 60 s trace, and corresponding theoretical distribution (solid red line).

1) Noise Only: First, we simply considered a constant signal
with filtered noise added, hence no jumps should be detected.
For the 100 simulated traces, TRANSIT detected between 34
and 104 jumps in a trace (61 on average). For the same traces,
J-SMURF detected at most 1 jump per trace, which happened
in 6 out of 100 traces. This is what was to be expected: for long
time series, TRANSIT adds spurious jumps while J-SMURF
obeys the global significance level of 5%, meaning that on av-
erage in only 5% of the traces a jump may erroneously get de-
tected.
2) Slow Dynamics: Mimicking slow-dynamics ion channels,

we simulated a two-state system with transition rates of 1 Hz,
leading to an expected number of 60 jumps within the simu-
lated 60 s time interval; the SNR was 3, i.e., the difference be-
tween the conductance levels was 3 while the filtered noise’s
standard deviation was set to 1. A simulated trace is shown
in Fig. 1(A), with reconstructions by TRANSIT and J-SMURF
shown in Fig. 1(B).
At this low SNR, TRANSIT no longer works reliably: in 100

simulated traces, it detected between 51 less and 15 jumps more
than the true signal contained, see Fig. 1(C). Note that this shows
that changing the threshold in either direction will not lead to
reliable results: increasing the threshold will lead to even more
spurious jumps being detected while decreasing it will result

in even more being missed. In contrast, J-SMURF detected be-
tween 4 jumps too few and 1 jump too many, detecting the cor-
rect number of jumps in 63 traces, see Fig. 1(D).
3) Fast Dynamics: To explore the resolution limit of

J-SMURF, we also simulated another two-state system but
now with 20 Hz transition rates, see Fig. 2(A) for a sample
trace. In 100 simulated traces, J-SMURF detected between
300 and 210 jumps less than truly simulated, 253 on average;
this is to be compared with the
expected events per trace. Fig. 2(B) visualizes the difference
between the lengths of the events detected by J-SMURF and
the theoretical distribution of event lengths. As expected, it
is mostly the relatively short events (shorter than 20 ms) that
are missed; however, the true rate can still be read off from
the mode at around 50 ms. Note that this transition rate is
fast in comparison to the simulated experimental conditions,
namely the low SNR of 3 after applying a 1 kHz low-pass
filter. Indeed, one may rescale time, e.g., by a factor of 20: if
a 20 kHz filter was sufficient to obtain this SNR, about 1 ms
long events could still be detected.
Fig. 3 shows the corresponding results of TRANSIT for these

simulations. For the 100 simulated traces, TRANSIT detected
between 982 and 1196 less jumps than actually were in the
signal; the expected number of jumps was 1200.
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Fig. 4. (A) Time trace of conductance for gA, mV, 28 s (grey background), with J-SMURF reconstruction (blue solid line) and idealization (green
dashed line). (B) Point histogram of raw data. (C) Point histogram after applying J-SMURF. (D) Point histogram after idealization. Thresholds for idealization
shown as dotted brown lines.

B. Experimental Data

1) Gramicidin A: Fig. 4(A) shows a characteristic conduc-
tance trace of gA with a typical SNR. Clearly, different conduc-
tance levels can be distinguished which are characteristic for
the opening and closing of multiple channels. While J-SMURF
reconstructed all visually recognizable events, it also included
a certain amount of spurious jumps due to a drift in the base-
line and background noise. Therefore, based on the J-SMURF
estimator, Fig. 4(A), and the corresponding point histogram,
Fig. 4(C), thresholds were determined by the analyst for a final
idealization, Fig. 4(A), (D).
For some traces, fast gating of the channel could be observed,

see Figs. 5 and 6. This phenomenon of gA channels is rarely
observed and was previously attributed to the extent of the hy-
drophobic mismatch between the conducting dimer and the sur-
rounding membrane, and variations in channel geometries at the
bilayer/channel interface [39], [40]. The short conductance tran-
sitions are clearly too fast to be detected at all times given, as the
rise time of the analog low-pass filter used is in the range of the
event length, resulting in the conductance not to fully reach the
corresponding level again. Nonetheless, many of the fast events
could be detected while removing most of the noise where the
signal remained constant. The additional fast gating results in
a change of the evident channel dynamics. The short closing
events and the diffusion triggered disassembly of a conducting
channel are superimposed. Fortunately, both dynamics can be
distinguished as shown in Fig. 6. Plotting conductance versus
length of events shows many fast closing events while opening
times are much longer, see Fig. 6(C).

2) Acylated gA Derivative: The analysis of a novel fatty gA
derivative gives rise to the possibility to check for J-SMURF’s
capability to idealize recordings of an ion channel with largely
unknown properties. The chemical structure of the derivative
used is shown in Fig. 7(B). Attachment of fatty acids to the
gA structure could largely influence the channels interaction
with the surrounding lipids resulting in changes in channel
dynamics and conductivity [41]–[44]. To achieve a fatty acid
modification without disturbing the C-terminal ethanolamide
moiety, the amino acid sequence was slightly modified. Fatty
acid modifications are also known to influence the dynamic
behavior of gA.
The C10 acylated gA shows typical opening and closing

of the channel (Fig. 8). However, not obvious from the raw
data, see Fig. 8(A)–(B), the derivative exhibits subgating,
resulting in conductance transitions between two or three
distinct sublevels while one, respectively two, channels are
open, see Fig. 8(C). This is not visible from the raw data’s point
histogram in Fig. 8(B) due to the very low SNR associated
with the subgating, showing the power of J-SMURF to detect
an unexpected behavior in a conductance trace without any
external input of the operator.

V. DISCUSSION

J-SMURF clearly meets the criteria of an idealization method
which we asked for: it is fully automatic, requiring input of the
analyst only for the final idealization after the noise has been
removed, and only in order to remove small artefacts caused
by a baseline drift or similar effects on the background. It is
universally applicable to data with low or high SNR, slow as
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Fig. 5. (A) Time trace of conductance for gA, mV, 21 s (grey background), with J-SMURF reconstruction (blue solid line) and idealization (green
dashed line). (B) Point histogram of raw data. (C) Point histogram after applying J-SMURF. (D) Point histogram after idealization. Thresholds for idealization
shown as dotted brown lines.

Fig. 6. (A) Time trace of conductance for gA, mV, 60 s (grey background), with J-SMURF reconstruction (blue solid line) and idealization (green
dashed line). (B) Event histogram of idealization. (C) Idealization events’ currents vs length (log-scale) shown as points, background obtained by smoothing.
Thresholds for idealization shown as dotted brown lines.
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Fig. 7. (A) Chemical structure of [Val ]gA corresponding to the amino acid sequence HCO-NH-L-Val -Gly -L-Ala -D-Leu -L-Ala -D-Val -L-Val -D-Val -
L-Trp -D-Leu -L-Trp -D-Leu -L-Trp -D-Leu -L-Trp -CO-NHCH CH OH (B) Correspoding structure of the gA derivative with D-Leu and D-Leu
substituted by D-Ser(decanoyl).

Fig. 8. (A) Time trace of conductance for the acylated gA derivative, mV, 21 s (grey background), with J-SMURF reconstruction (blue solid line) and
idealization (green dashed line). (B) Point histogram of raw data. (C) Event histogram after applying J-SMURF. (D) Event histogram after idealization. Thresholds
for idealization shown as dotted brown lines.

well as fast dynamics; only if the events are very short in re-
lation to the SNR and the analog low-pass filter that has been
applied, J-SMURF is no longer able to detect them with statis-

tical significance. Meanwhile, J-SMURF accounts for multiple
testing, thus controlling the probability of erroneously detecting
a jump.
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In comparison, thresholding approaches like TRANSIT,
when combined with an advance low-pass filter, inherently
have a certain event length for which they are optimized, not
making use of longer events if available. Although their filter
may be adapted to some specific dynamics, this is difficult to
achieve over the wider range of event lengths occurring, while
at the same time requiring prior knowledge.
This was possible by adapting statistical multiresolution

analyses for the situation where an analog filter has been ap-
plied before the analysis, rendering the noise colored. Hence,
for J-SMURF, the only parameter that needs to be chosen is
the significance level which we took to be 5%, leading to
the quantile being 11.53. However, we empirically found the
J-SMURF estimator to give qualitatively similar results when
was changed between 1% and 10%, say, with the corresponding
quantiles between 12.17 and 11.19.
After idealization, one may already have a better under-

standing of the channel’s behavior which one can then model
appropriately in order to obtain parameter estimates, the latter
being often based on the idealized data [5]. This typically has
the advantage of being computationally more efficient: once the
noise has been removed the parameters can be determined faster
and more reliably e.g., by fitting a Markov model instead of a
hidden Markov model, cf. [45]. While we have not discussed
this issue here, it should be clear that such methods require
reliable input data; in other words, the better the idealization,
the better the parameter estimates obtained from it; analyzing
the extent of this effect will be the goal of future research.
Indeed, there are still open questions to be addressed: if one

wants to use the reconstruction obtained with J-SMURF for es-
timating the channel’s dynamical parameters, e.g., employing a
Markov model [5], one would need to correct for the very short
events being missed, cf. [11], [12], [15]. Note that missing short
events not only leads to an underestimation of their number but
also to an overestimation of the events’ lengths, cf. Fig. 2(B).
However, we found that this apparently has little effect on the
estimated conductances of longer durations, as only few, very
short events are missed, cf. Fig. 2.
Algorithmically, J-SMURF is clearly more complex than a

thresholding approach, resulting in computation times of sev-
eral minutes on a standard desktop computer for the datasets
considered here, see [29] for a discussion of its computational
complexity. Improving J-SMURF’s computational efficiency is
therefore still an issue which we hope to address in the future.
Summarizing, the proposed combined jump segmentation

and statistical multiresolution filter (J-SMURF) uses all avail-
able information, automatically adapting to the length of events,
thus leading to an objective, universally applicable method for
denoising and idealizing single ion channel recordings, where
the detected events can be interpreted as being statistically
significant.

APPENDIX A
FURTHER EXPERIMENTAL DETAILS

A. Gramicidin a Derivative Synthesis and Characterization

The synthesis of the gA derivative was performed via
solid phase peptide synthesis (SPPS) using a peptide synthe-
sizer (Microwave Peptide Synthesizer, CEM, Kamp-Lintfort,

Germany, Applied Biosystems). A non-natural amino acid
N-Fmoc-D-Ser(decanoyl)-OH was incorporated into the pep-
tide sequence of gA by substituting the amino acids D-Leu
and D-Leu . The C-terminal ethanolamide moiety of gA
was introduced using a glycinol 2-chlorotrityl-resin. The
building block N-Fmoc-D-Ser(decanoyl)-OH was synthesized
by coupling N-Fmoc-D-Ser-OH with decanoyl chloride in TFA
(trifluoracetic acid) [35]. Biomimetic N-terminal formylation
was carried out on resin by using pentafluorophenyl formate in
DCM [46]. Subsequently, the gA derivative was cleaved from
the resin, the crude product was precipitated with cold diethyl
ether (5 mL), purified by reverse phase high-performance
liquid chromatography (HPLC) and characterized by high
resolution mass spectrometry (HR-MS). Concentration of stock
solutions of the freeze-dried peptide in 2,2,2-trifluoroethanol
(TFE) were determined by UV-spectroscopy (Trp absorption at

nm) [47].
Analytic Details:

HPLC (ReproSil100 ODS A C18,
% % 9:1), min,

HR-MS H N O calcd.:
1069.51123, found: 1069.51132.

B. GUV Formation

To allow solvent-free recordings, gA and its derivative were
introduced to the membrane during liposome formation. Giant
unilamellar vesicles (GUVs) containing peptide were produced
by the electroformation method [36]. A lipid solution of 1,2-
diphytanoyl-sn-glycero-3-phosphocholine and cholesterol in a
molar ratio of 9:1 (7.5 L, mM in CHCl ) was deposited
on an indium tin oxide (ITO) coated cover slip and allowed to
dry. Peptide solution was subsequently added to obtain a nom-
inal lipid to peptide ratio of 10000:1 up to 1000:1. Residual
solvent was removed under reduced pressure. Two ITO cover
slips were electrically connected and the sealed chamber was
filled with sorbitol solution (1 M) to rehydrate the film. GUV
formation was carried out by applying a sinusoidal AC poten-
tial (3 V peak to peak, frequency of 5 Hz, 2 h, 20 C) using a
voltage generator (33210A, Agilent Technologies, Böblingen,
Germany) and was checked by optical microscopy.

C. Electrical Recordings

Electrical recordings were performed using the Port-a-Patch
(Nanion Technologies GmbH, Munich, Germany). 6 L of
buffer solution (1 M KCl, 10 mM HEPES, pH 7.4, 20 C) were
added to both sides of a borosilicate glass chip containing
an aperture. A suspension of the peptide containing GUVs
(2–6 L) was added and spreading of a GUV was induced by
appyling negative pressure (15–40 mbar). Successful formation
of the solvent-free membrane was indicated by a resistance
larger than 1 G . The chip was rinsed (3 25 L) with buffer
and additional buffer was added (50 L). A DC potential
between and 100 mV was applied. After observation of
current transitions, data was recorded at a sampling rate of 10
kHz using an Axopatch 200B amplifier (Axon Instruments,
Union City, CA). The signal was filtered with a four-pole
Bessel low-pass filter of 1 kHz and digitized using an A/D
converter (Digidata 1322, Axon Instruments). No further data
modification was performed.
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