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Abstract— Clustering of gene expression data has been
proven to be very useful in various applications, i.e., iden-
tifying the natural structure inherent in gene expression,
understanding gene functions, mining relevant information
from noisy data, and understanding gene regulation. In all
these applications, genes, i.e., features, play a crucial role
in characterizing them into different groups. These fea-
tures may be relevant, irrelevant, or redundant, but they
have different contributions during the clustering process.
This paper presents a novel approach by considering the
effect of features during the clustering process. In the
proposed method, the fuzzy c-means the objective function
is modified using a weighted Euclidean distance between
the features with a monotonically decreasing function. The
monotonically decreasing function helps control the fea-
tures’ contribution during the clustering process to partition
the data into more relevant clusters. The proposed approach
is validated, and performance is presented in various clus-
tering performance measures on the different standard
datasets.These clusteringperformance measures have also
been compared with multiple state-of-the-art methods.

Index Terms— K -medoids, K -means, fuzzy c-means,
alternate optimization, gene expression, features, cluster
validation.

I. INTRODUCTION

CLUSTERING is an unsupervised learning method used
to organize the unlabelled data sample into groups with

respect to each data sample’s underlying properties based on
some similarity measures [1]–[4]. The data samples are unla-
belled in the real application and have a different distribution.
It is challenging to categorize them into meaningful clusters.
Various clustering algorithms have been developed in the liter-
ature by considering these challenges. Hierarchical clustering
(HC) organizes data into a hierarchical structure according
to the proximity matrix, and a binary tree generally depicts
results, or dendrogram [5]. The most successful application of
HC is in the area of neuroimaging and bioinformatics [6].
In model-based clustering, data points in different clusters
were generated by different probability distributions [7], and
the number of clusters of a given dataset is identified by
estimating the parameters using maximum likelihood (ML)
or expectation-maximization (EM) [8]. The major flaw with
these algorithms is that they have a slow convergence rate and
are sensitive to the initial parameters [9].
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Partition-based clustering is well known for its simplicity
and efficiency in large-scale clustering datasets, in which the
dataset is divided into several subsets. K-medoids [10] and
K-means (KM) [11] are one of the efficient partition-based
algorithms that solve well-known clustering problem. The
K-medoids are the most appropriate data point within a cluster,
which have two main advantages: first, it has no limitations on
the type of attributes; second, the medoids are chosen by pre-
dominant data points within a cluster and, therefore, it is less
sensitive to the outliers. However, KM is the centroid-based
method that works only for the numerical attributes and can be
affected by a single outlier [12]. Ruspini [13], and Bezdek [14]
have presented the fuzzy versions of KM algorithms, where
each data point can belong to more than one cluster with a
distinct membership degree. The fuzzy version of algorithms
are widely used in real applications, where data generated
from the system are uncertain, imprecise, and vague, and
difficult to handle with KM and K-medoids because providing
a hard partition of the data, whereas the fuzzy clustering-based
method provides a soft partition of the data [15]–[19]. The
major problem with these algorithms remains the same, i.e.,
all features are treated equally important during the clustering
process and easily affected by the outliers, and difficult to find
a meaningful cluster in the dataset.

In the literature, various feature weight clustering algo-
rithms have been studied. Huang et al. [20] have presented
a weighted KM (WKM) algorithm in which variable weights
are multiplied with the dissimilarity measure. These variable
weights are updated iteratively, and unimportant variables
are eliminated by choosing variables with smaller weights.
Jing et al. [21] modified the WKM by adding the entropy term
in the objective function. The entropy term helps minimize the
within-cluster dispersion and maximize the negative entropy
on the current data partition in each iteration. In [22], authors
have presented sparse KM by putting the L1 constraint on the
feature weights. The L1 constraint helps to make some feature
weight become zero. To improve the learning performance of
the FCM, Wang et al. [23] have presented the weighted FCM
(WFCM), in which variable weights are multiplied with the
dissimilarity measure similar to the KM. The variable weights
in WFCM are learned through the gradient descent technique
by following the approach presented in [24]. In [25], the
authors have presented two different feature-weighted FCM
algorithms. The first approach has added the L2 constraint
on the feature weight; however, in the second approach, they
have added the discriminant exponent on the feature weights.
In [26], a new approach has been presented, which automat-
ically computes individual feature weight and simultaneously
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reduces the dataset’s irrelevant features. Although these vari-
ants of feature-weighted clustering perform well, they are
unable to find the optimal number of clusters with consistent
performance in the data.

Clustering becomes a crucial tool for gene expression data
analysis, which helps to unveil new cancer subtypes or to iden-
tify groups of genes that respond similarly to a specific experi-
mental condition [27]. Several clustering algorithms have been
studied for the gene expression dataset in the literature. In [28],
Sherlock has analyzed the various clustering approaches for
large-scale gene expression data and discussed the advantages
and drawbacks of the algorithms. Smet, et al. [29] have pre-
sented an adaptive quality-based clustering of gene expression
profiles to determine the actual number of clusters. In [30],
authors have applied the fuzzy c-means clustering method
to investigate trends in patient conditions, which doctors can
use for disease diagnosis. Kannan, et al. [31] have proposed
an effective fuzzy c-means by incorporating the membership
function of fuzzy c-means for cancer subtypes in the gene
expression cancer database. Herwig, et al. [32] have presented
a sequential k-means algorithm with additional refinements
that can handle high-throughput data in the order of hundreds
of thousands of data items measured on hundreds of variables.
In [33], a kernel-based clustering method for gene selec-
tion with gene expression data has been discussed in which
weights are iteratively learned at the time of optimizing the
clustering objective function. Handhayani and Hiryanto [34]
have presented intelligent kernel k-means for clustering gene
expression data without prior knowledge of clusters.

The variable weighting of features in gene expression
data clustering helps identify the meaningful clusters with
improved performance. It also overcomes the problem of an
equal weighting of features in KM, K-medoids, and FCM
based algorithms. The cluster-dependent features have two
main advantages: First, they guide the clustering process to
partition the data into more meaningful clusters. Second, they
can be used in the subsequent steps of a learning system
to improve their learning behavior. One more advantage of
feature-dependent clustering is that the weighted feature sim-
ulates more dimensions to identify meaningful clusters when
data is sparse and contains several outliers.

The rest of the paper is organized as follows: Section II
presents the robust FCM with feature discrimination. Experi-
mentation and comparisons with state-of-the-art methods are
discussed in Section III. Finally, Section IV concludes the
complete paper.

The major contributions are briefly summarized as follows:
(a) Features of data play a crucial role in characterizing

them into different groups. The effect of these features is
incorporated in cluster identification by simultaneously
weighting them in an unsupervised manner. As shown
in (1), the objective function of FCM is modified by the
monotonically decreasing function, which controls the
weights of the features during the clustering process.

(b) The weighted feature helps to eliminate the problem of
trivial solutions during the clustering process since each
feature in the clusters is multiplied by different weights
based on the dispersion of the feature in the cluster.

(c) The weighted feature helps to simulate more dimensions
for identifying meaningful clusters when data is sparse
and contains more outliers.

II. PROPOSED METHODOLOGY: ROBUST FCM WITH

FEATURE DISCRIMINATION

The features in the data might be relevant or irrelevant, but
they have a different contribution to the clustering process.
Considering the effect of different features’ contributions
during the clustering process provides the best clustering
performance with the optimal number of clusters in data.
In this section, the fuzzy c-means objective function is mod-
ified using weighted Euclidean distance between the features
with a monotonically decreasing function, which controls the
contribution of the features during the clustering process. The
monotonically decreasing function also overcome the trivial
solutions during the clustering process since the feature weight
is always finite. The proposed approach described below are
as follows:

Let us consider a data matrix x = [x1, x2, . . . , xn] ∈ R p×n ,
p and n are the number of features and number of samples
respectively. Here, xi = [xi1, xi2, . . . , xip ]′ ∈ R p is the
i th sample in the data matrix. To group the data matrix
x into c clusters, the following objective function can be
minimized

F(U, V , W ) =
c∑

i=1

n∑
j=1

μm
i j

p∑
k=1

wikd2
i j k

+
c∑

i=1

ηi

p∑
k=1

(wik log wik − wik) (1)

subject to

c∑
i=1

μi j = 1, 0 ≤ μi j ≤ 1, 1 ≤ j ≤ n

and
p∑

k=1

wik = 1, 0 ≤ wik ≤ 1, 1 ≤ i ≤ c (2)

where, di jk = (x jk − vik)
2, is the dissimilarity measure

between j th sample and i th cluster, xik is the value of kth

feature of j th sample, vik is the value of kth feature of i th

cluster, U = [μi j ] is an c × n, fuzzy partition matrix, μi j is
the membership degree value of the i th cluster of j th sample,
m is any real number greater than 1, V = [vik ] is an c × p,
matrix containing the cluster centers, W = [wik ] is an c × p,
weight matrix, wik is the weight value of kth feature to i th

cluster, ηi is the input parameter used to control the feature
weight.

The objective function, as proposed in (1), is a constrained
nonlinear optimization problem whose solutions are unknown.
The main objective is to minimize F with respect to U , V , and
W using alternating optimization methods. In the alternating
optimization, we first fix U = Û and W = Ŵ and minimize
F with respect to V . Then we fix U = Û and V = V̂ and
minimize F with respect to W . Afterward, fix V = V̂ and
W = Ŵ and minimize F with respect to U .
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TABLE I
PERFORMANCE MEASURE IN TERMS OF AR, RI, AND NMI (IN %)

First for the fixed U and W the objective F(U, V , W ) is
minimized with respect to V as

∂ F(U, V , W )

∂vik
= −2

n∑
j=1

μm
i j wik(x jk − vik ) = 0 (3)

From (3) the cluster center can be obtained using

vik = wik
∑n

j=1 μm
i j x jk

wik
∑n

j=1 μm
i j

(4)

There are two cases arises depending on the value of wik .
Case 1: If wik = 0, the kth feature is completely irrelevant

relative to the i th cluster. Hence, for any value of vik , the
values of this feature will not contribute to the overall weighted
distance computation. Therefore, in this case, any random
value can be chosen for vik .

Case 2: If wik �= 0 , the kth feature has some relevance to
the i th cluster, then the (4) is written as

vik =
∑n

j=1 μm
i j x jk∑n

j=1 μm
i j

(5)

Then for given V = V̂ , the constraint optimization problem
in (1) is changed into unconstrained minimization problem
using Lagrangian multiplier technique as follows:

F̂(U, W, α, δ)

=
c∑

i=1

n∑
j=1

μm
i j

p∑
k=1

wik d2
i j k

+
c∑

i=1

ηi

( p∑
k=1

(wik log wik − wik )

)

−
n∑

j=1

α j

(
c∑

i=1

μi j − 1

)
−

c∑
i=1

δi

( p∑
k=1

wik − 1

)
(6)

where, α = [α1, α2, . . . , αn ] and δ = [δ1, δ2, . . . , δk] are the
vectors containing the Lagrangian multipliers. If the variables
(Û , Ŵ , α̂, δ̂) are the optimal values of F̂(U, W, α, δ), then the
gradient with respect to these variable are vanishes.

∂ F̂(U, W, α, δ)

∂μ̂i j
= mμm−1

i j

p∑
k=1

wikd2
i j k − α j = 0

1 ≤ j ≤ n, 1 ≤ i ≤ c (7)

∂ F̂(U, W, α, δ)

∂ŵik
=

n∑
j=1

μm
i j d2

i j k + ηi log wik − δi = 0

1 ≤ i ≤ c, 1 ≤ k ≤ p (8)

∂ F̂(U, W, α, δ)

∂α̂ j
=

c∑
i=1

μi j − 1 = 0 (9)

and,

∂ F̂(U, W, α, δ)

∂δ̂i
=

p∑
k=1

wik − 1 = 0 (10)

the (7) and (8) can be simplified as

μi j =
(

α j

m
∑p

k=1 wikd2
i j k

) 1
m−1

(11)

wik = exp

(− ∑n
j=1 μi j d2

i j k

ηi

)
exp

(
δi

ηi

)
(12)

By substituting (11) in (9) we have

c∑
i=1

μi j =
c∑

i=1

α j

m
∑p

k=1 wikd2
i j k

= 1 (13)
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Similarly, (12) in (10)

p∑
k=1

wik =
p∑

k=1

exp

(− ∑n
j=1 μi j d2

i j k

ηi

)
exp

(
δi

ηi

)
= 1

= exp

(
δi

ηi

) p∑
k=1

exp

(− ∑n
j=1 μi j d2

i j k

ηi

)
= 1

exp

(
δi

ηi

)
= 1

p∑
k=1

exp

(−∑n
j=1μi j d2

i jk
ηi

) (14)

By simplifying (13) and (11) we obtain the fuzzy partition,
i.e., j th sample to the i th cluster as

μi j = 1
c∑

r=1

(
d̃2

i j /
˜d2
r j

) 1
m−1

(15)

Similarly, from (14) and (12) we obtain the feature weight of
kth to i th cluster as

wik =
exp

(−Dik
ηi

)
∑p

q=1 exp
(−Diq

ηi

) (16)

where, d̃2
i j = ∑p

k=1 wik d2
i j k is the weighted Euclidean dis-

tance,
∑c

r=1 d̃2
r j is the sum of weighted Euclidean distance in

all cluster, Dik = ∑n
j=1 μm

i j d2
i j k is the measure of dispersion

of the i th cluster with kth feature, and
∑p

q=1 exp
(
− Diq

ηi

)
is

the measure of total dispersion of i th cluster with all features
in the data.

The choice of parameter ηi in (16) is the essential to the per-
formance of the proposed approach since they reflect the
importance of the second relative to the first term in (1). The
control parameter ηi is used to control the feature weights,
since, ηi is positive, and makes the weight wik as given in (16)
is inversely proportional to total dispersion of i th cluster to all
features in data. The small of this term will make large wik ,
i.e., kth features in i th cluster are more important. If ηi in (16)
is too large, the second term will dominate, and all features
in cluster i will be relevant and assigned equal weights of 1

p .
The parameters ηi in (16) is computed by (17) in iteration, t,
as follows

ηi = K

∑n
j=1(μ

m
i j )

t−1 ∑p
k=1(wik)

t−1(d2
i j k)

t−1∑p
k=1(w

t−1
ik − wt−1

ik log wt−1
ik )

(17)

The parameter K is a constant, and the superscript (t − 1)
denote their values in iteration (t −1). The proposed approach
is briefly summarized in Algorithm 1.

III. EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the performance of robust FCM with
feature discrimination on binary and multi-class gene expres-
sion datasets. The proposed approach is also investigated on
other biological datasets, as shown in Table II. The proposed
approach and state-of-the-art methods are validated on the
same platform, and detailed experimentation are explained in
the following subsections:

Algorithm 1 Robust FCM With Simultaneous Feature
Discrimination
1: Give the number of cluster c, initial iteration number t = 0,

randomly initialize cluster center V (0), randomly initialize feature
weight W (0), and initialize η0 randomly

2: Repeat
3: Update the feature weight matrix W using (16)
4: Update the partition matrix U using (15)
5: Update the cluster center matrix V using (5)
6: Update the parameter ηi using (17)
7: t = t + 1
8: Until The objective function obtains its local minimum value or

centers stabilize

TABLE II
DATASET DESCRIPTIONS

A. Performance Measure and Cluster Validation

The performance of the proposed approach is analysed
in terms of various clustering performance measures such
as accuracy rate (AR), rand index (RI) [41], Fuzzy rand
index [42] and normalized mutual information (NMI) [43].
These performance measures are mathematically written as
follows:

AR = 1

n

c∑
j=1

n(c j ) (18)

RI = f1 + f2

f1 + f2 + f3 + f4
(19)

N M I = I (X : Y )

[H (X) + H (Y )]/2
(20)

where, n(c j ) is the number of data points correctly retrieved
in cluster j , n is the total number of data points. The large
value of AR represents better clustering performance. The RI
index as defined in (19) is used to measure the similarity
between the two clustering partitions. Let c is the number
of true clusters, and c∗ is the number of clusters obtained
through the clustering algorithm. For a pair of points (xi , x j ),
f1 is the number of pairs of points that are the same in
clusters c and c∗, f2 is the number of pairs of points that
are same in cluster c and different in cluster c∗, f3 is the
number of pairs of points that are different in cluster c, and
same in cluster c∗, and f4 is the number of pairs of points that
are different in clusters c, and c∗. However, NMI is used to
measure the information of a sample to contribute to making
the correct classification decision, and its values always lie
in between 0 and 1. As shown in Table I the performance
of the proposed approach is better in the term of AR, RI,
and NMI except for the colon and lung cancer dataset where
NMI is small in comparison to state-of-the-art methods. Based
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Fig. 1. Comparisons of AR, RI and NMI with EWKM, AFKM, SCAD1 and SCAD2 on the IRIS dataset under different parameter values.

Fig. 2. Comparisons of AR, RI and NMI with EWKM, AFKM, SCAD1 and SCAD2 on the Ovarian cancer dataset under different parameter values.

on these clustering performance measures, we can assure that
the proposed clustering process with feature discrimination
provides the better partition of dataset either of datasets that
are high-dimensional or sparse.

The above clustering performance measures are supervised,
i.e., the number of cluster c is known. However, it is generally
unknown in clustering. Therefore, to show the effectiveness
we have used different cluster validity indices, i.e., Partition
Coefficient (PC) [44], Xie and Beni’s (XB) Index [45], Classi-
fication Entropy (CE) [46], and Dunn’s Index (DI) [47]. These
validity indices are mathematically written as follows:

PC = 1

n

c∑
j=1

n∑
i=1

μ2
i j (21)

C E = − 1

n

c∑
j=1

n∑
i=1

μi j log μi j (22)

X B =
∑c

j=1
∑n

i=1 μ2
i j ||x j − vi ||2

n mini j ||x j − vi ||2 (23)

DI = min
i∈c

{
min j ∈ c, i �= j

{ minx∈ci ,y∈c j d(x,y)

maxi∈c{maxx,y∈c d(x, y)}
}

(24)

The value of PC always lies in between [1/c, 1] if PC
is closer to 1 represents the best partition, whereas closer
to 1/c, the partition becomes fuzzier. The CE is used to
measure the fuzziness of the cluster partition, smaller the
values of CE represents the optimal cluster. In XB, the
numerator defines the compactness of the fuzzy partition, and
denominator denotes the strength between clusters, smaller
the values of XB move towards the optimal cluster. However,
DI is used to measure the compactness in the well-separated
clusters. The large value of DI represents better clustering.

The cluster validity index, i.e., PC, CE, XB, and DI, are com-
puted and compared with state-of-the-art methods, as given
in Table III. The cluster validity measure shows that the
proposed approach can provide the optimal clustering result
with improved clustering performance in terms of AR, RI, FRI
and NMI.

B. Effect of Parameter Variation on Clustering
Performance

In this subsection, we have investigated the effect of
parameter variation on the performance of the proposed
approach, along with state-of-the-art. The proposed approach
is validated on small, high dimension and sparse datasets
and compared with seven different state-of-the-art methods,
i.e., K-means (KM) [11], entropy weighted K-means
(EWKM) [21], Agglomerative fuzzy K-means (AFKM) [35],
fuzzy c-means (FCM) [15], simultaneous clustering and
attribute discrimination (SCAD1) [25], and SCAD2 [25] and
a feature-reduction FCM (FRFCM) [26]. The KM algorithm
gives equal importance to all features because it cannot
discriminate between relevant and irrelevant features. This
problem is eliminated by the EWKM, where different feature
weight is assigned during the clustering. But the weight values
are dependent on the initial cluster center, and if it changes, the
algorithm will lead to different performances and be unable to
converge. In the AFKM, the entropy help to find the optimal
cluster, but the problem remains the same, i.e., all the features
have equal importance during the clustering. FCM does the
soft partition of the data. Still, it treats all features equally
during the clustering process. In the SCAD, each feature
has a different feature weight; however, the data partition is
not consistent. In the proposed approach, the monotonically
decreasing function controls the weights of the features
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TABLE III
PERFORMANCE MEASURE IN TERMS OF PC, CE, XB AND DI

Fig. 3. Comparison of partition coefficient with FCM AFKM, SCAD1 and SCAD2 on ALLAML, lymphoma and lung dataset under different parameter.

TABLE IV
COMPUTATIONAL COMPLEXITY OF THE METHODS

during the clustering and helps find the optimal number of the
partition. The weight and fuzzy partition control parameters
of the EWKM and AFKM are heuristics; for SCAD, weight
control parameters are updated automatically in each iteration,
but the fuzzy partition is not consistent. However, in FRFCM,
the weight control parameters discard the unimportant features
but are unable to preserve the high-dimension datasets’ actual
cluster. In the proposed approach, the weight control
parameter is updated automatically in each iteration, and an
optimal partition is obtained due to the relevant feature weight

assignment during the clustering process. The computational
complexity of the proposed approach is also computed and
compared with state-of-the-art methods, as shown in Table IV.
In the proposed approach, the hyperparameter m ∈ (1, 3]
and variable K ∈ [1, 10] are varied to find the best partition
of the data. As shown in figure 1 and 2, for the IRIS and
ovarian cancer dataset, AR, RI, and NMI values are plotted by
varying the values of K for the fixed hyperparameter. For the
IRIS and ovarian cancer dataset, as shown in figure 1 and 2,
the AR, RI, and NMI are plotted for five different values K
at m = 2. In the case of SCAD2, the weight exponent (q)
is varied from q ∈ [2, 10], however in the case of SCAD1,
the variable K ∈ [10, 100] and m = 2 for both the cases.
Whereas, for the EWKM and AFKM, the variable is varied
from K ∈ [10, 100] and for the FRFCM, the variables
are varied from K ∈ [1, 10] with m = 2. Figure 1 and 2
showed that the performance of the proposed approach is
better and stable in comparison to state-of-the-art methods.
In figure 3 partition coefficient are also plotted for ALLAML,
lymphoma, and lung dataset under different parameter values,
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which shows that the proposed approach even able to provide
the optimal cluster in the dataset.

IV. CONCLUSION

This paper has presented a novel clustering algorithm for
clustering high-dimensional data with improved performance.
In this approach, the objective function of FCM is changed by
adding the monotonically decreasing function, which controls
the weights of the features during the clustering process and
helps in identifying the better clustering structure of the data.
The major advantage of the proposed approach is that the clus-
tering performance is consistent and insensitive to the initial
cluster center due to different feature weights assigned to each
cluster in the clustering process. The clustering performance is
compared with various state-of-the-art methods, which shows
that the proposed approach is a new clustering algorithm to
partition the data with improved performance. In the future, the
correlation between the features can be considered to minimize
the effect of redundant features, and the proposed approach is
extended for the mixed attributes.
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