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Abstract—Electromagnetic (EM) body models based on the
scalar diffraction theory allow for predicting the impact of subject
motions on the radio propagation channel without requiring a
time-consuming full-wave approach. On the other hand, they are
less effective in complex environments characterized by significant
multipath effects. Recently, emerging radio sensing applications
have proposed the adoption of smart antennas with nonisotropic
radiation characteristics to improve coverage. This letter investi-
gates the impact of antenna radiation patterns in passive radio
sensing applications. Adaptations of diffraction-based EM models
are proposed to account for antenna nonuniform angular filtering.
Next, we quantify experimentally the impact of diffraction and
multipath disturbance components on radio sensing accuracy in
environments with smart antennas.

Index Terms—Antenna radiation pattern, device-free radio
sensing, electromagnetic (EM) body model, passive radio sensing,
scalar diffraction.

I. INTRODUCTION

PASSIVE or device-free radio sensing is an opportunistic
technique that employs stray ambient signals from radio

frequency (RF) devices to detect, locate, and track people that
do not carry any electronic device [1], [2]. The effect of the
presence of body obstacles on the received RF signals is a well-
known topic in the wireless communications community [3], [4],
[5]. However, only recently, radio sensing techniques have been
proposed to provide sensing capabilities, while performing radio
communication according to the Communication while Sensing
paradigm [2].

Quantitative evaluation [6], [7], [8], [9], [11], [12] of per-
turbations due to the presence or movements of people (i.e., the
targets) has paved the way to the exploitation of electromagnetic
(EM) models for passive radio sensing. In fact, the body-induced
perturbations that impair the radio channel, can be acquired,
measured, and processed using model-based methods to esti-
mate location [13], and tracking target information [9], [10], or
to assess location accuracy during network predeployment [14].

However, a general EM model for the prediction of body-
induced effects on propagation is still under scrutiny [15], or
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too complex to be of practical use for real-time sensing scenar-
ios [7], [16]. Simpler human-body shadowing models have been
recently proposed for device-free localization (DFL) based on
scalar diffraction theory [11], [12].

Other semi-empirical models [17], [18], [19] have also been
proposed for DFL applications [20], [21], [22], [23]. However,
these models require lengthy calibration preprocessing steps and
will not be considered here (see [2] and [13] for references).

II. LETTER CONTRIBUTIONS

Considering the interest in novel wireless local area network
(WLAN) sensing systems [24], [25], [26], [27] and tools [28],
with devices leveraging antennas with nonuniform [29], [30],
[31], and/or reconfigurable [32] radiation characteristics, it is
deemed necessary to develop effective EM models [10], [19]
that meet these emerging needs. Most of the previous tools were
based on diffraction methods [9], [12], [16] and targeted devices
equipped with omnidirectional antennas, with the exception
of [33] that focused on human blockage at 73 GHz with the body
represented as a semi-infinite rectangular shape and the paraxial
approximation [11] being used. The key ideas discussed in this
letter are as follows: 1) the proposal of a simple human-body
shadowing model, which also includes the antenna directivity
characteristics; 2) the application of the proposed model in
passive radio sensing and validation of its predictive potential;
and 3) the evaluation of the impact of antenna radiation patterns
by exploiting real on-field measurements in an indoor reflective
environment. The rest of this letter is organized as follows.
Section III presents an EM body model that includes the direc-
tional radiation pattern hypothesis while Section IV analyzes the
body-induced effects in scenarios with mixed antenna systems
(i.e., both directional and omnidirectional). Section V vali-
dates the proposed body model in real-field scenarios. Finally,
Section VI concludes this letter.

III. EM BODY MODELS

In this work, the statistical body model proposed in [11] for
isotropic antennas is extended to take into account directional
antennas with an assigned radiation pattern. We consider a single
body, but the extension to multibody scenarios can be inferred
according to [12] and [34]. We also assume that the body is
in the Fraunhofer’s regions of the antennas of the transmitter
(TX) and receiver (RX): the regions start ≈25 cm away from
the directional and ≈15 cm from the omnidirectional antennas
of the experimental setup shown in Section IV.

As shown in Fig. 1, the 3-D shape of the human body is
modeled as a 2-D rectangular absorbing sheet S [11] of height
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Fig. 1. EM model geometry: 2-D obstacle and antennas.

H and traversal size W , and has nominal position coordi-
nates (x, y), w.r.t. the TX position, namely, the projection of
its barycenter on the horizontal plane. The scalar diffraction
theory [35], [36] quantifies the impact of this obstruction. First,
a distribution of Huygens’ sources of elementary area dS is
assumed to be located on the absorbing sheet. Then, the electric
field E = E0 −

∫
S dE at the RX is obtained by subtracting the

contribution of the Huygens’ sources
∫
S dE from the electric

field E0 of the free-space scenario (i.e., with no target in the link
area).

Using the received electric fieldE0 under free-space condition
as reference, for both isotropic antennas, we get [11]

E

E0
= 1− j

d

λ

∫
S

1

r1 r2
exp

{
−j

2π

λ
(r1 + r2 − d)

}
dξ2 dξ3

(1)
where d is the link length, λ = c/f is the wavelength, while f
is the frequency and c is the speed of light. Notice that each
elementary source dS = dξ2 dξ3 has distance r1 and r2 from
the TX and RX, respectively.

The received power P is defined at the generic frequency f ,
omitted here for clarity, as

P =

{
P0 + w0 free-space only
P0 −AS(x, y) + wT with target S (2)

where AS(x, y) = −10 log10 |E /E0|2 is the extra-attenuation
due to the presence of S at coordinates (x, y). The free-space
power P0 is a constant that depends only on the link geom-
etry and on the propagation coefficients: It is assumed to be
known, or measured. The log-normal multipath fading and the
other disturbances are modeled as the Gaussian noise terms
w0 ∼ N (0, σ2

0 ), with variance σ2
0 , andwT ∼ N (μT , σ2

T ), with
mean μT = ΔhT and variance σ2

T = σ2
0 +Δσ2

T , respectively.
ΔhT and Δσ2

T ≥ 0 are the residual stochastic fading terms that
depend on the specific scenario, as in [11].

For a generic nonisotropic antenna, (1) must be modified
to take into account the antenna radiation pattern G(θ, ϕ) =
G0 f(θ, ϕ), where G0 is the gain and f(θ, ϕ) is the normalized
radiation pattern, while θ andϕ are the polar coordinates, usually
referred to the antenna phase center. First, we consider an
isotropic RX antenna and a directional TX one that is pointed
in the line-of-sight (LOS) direction, with normalized radiation
pattern ft(θt, ϕt) and polar coordinates θt = θt(r1, r2) and
ϕt = ϕt(r1, r2) w.r.t. the TX antenna phase center. The field
ratio E/E0 in (1) becomes

E

E0
= 1− j

d

λ

∫
S

1

r1 r2

√
ft (θt, ϕt) ·

Fig. 2. 75 marked positions (crosses) on a 15 × 5 grid with spacing 0.25 m
along and 0.30 m across the link. Target is located at position 6 (drawing not to
scale). Corresponding measurement scenario is on the left.

TABLE I
SA SETTINGS AND DIRECTIONAL ANTENNA SPECS

· exp
{
−j

2π

λ
(r1 + r2 − d)

}
dξ2 dξ3. (3)

If the receiving antenna is also directional and pointed toward
the transmitter in the LOS direction, the received signal can be
calculated, with good approximation, by weighting the contri-
butions from the elementary Huygens’ sources with the square
root of the receiving antenna radiation pattern. If V and V0 are
the complex voltages at the RX antenna connector in the actual
scenario and in free space, respectively, we get

V

V0
= 1− j

d

λ

∫
S

1

r1 r2

√
ft (θt, ϕt) fr (θr, ϕr) ·

· exp
{
−j

2π

λ
(r1 + r2 − d)

}
dξ2 dξ3 (4)

where θr = θr(r1, r2) and ϕr = ϕr(r1, r2) are the polar coor-
dinates w.r.t. the receiving antenna phase center. Equation (4) is
derived from (3) by noting that V and V0 are linearly dependent
on E and E0, respectively, through the effective antenna length.
In this link configuration, the extra-attenuation for target in (x, y)
is now given by AS(x, y) = −10 log10 |V /V0|2.

IV. BODY-INDUCED EFFECTS WITH MIXED ANTENNAS

The measurement sessions took place in a hall with size
6.15 m × 14.45 m and floor-ceiling height equal to 3.35 m.
As shown in Fig. 2, TX and RX nodes are spaced d = 4.00 m
apart, while the LOS is horizontally placed at h = 0.99 m from
the floor. Most surfaces are highly reflective, which cause poor
DFL performances with omnidirectional antennas [11]. The goal
is to verify the predictive capacity of the model in such complex
conditions. The received power P is measured using a real-time
spectrum analyzer (SA) [37] with a built-in tracking generator.
The SA tracks Nf = 401 frequency points equally spaced with
Δf = 1.25 MHz and settings as in Table I.

In what follows, three scenarios are analyzed, featuring: 1)
the omni-omni, where both TX and RX antennas are omnidi-
rectional; 2) the omni-dir, where only the TX is equipped with
a directional antenna; and 3) the dir-dir, where both antennas
are directional. Directional antennas operate at frequency band
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Fig. 3. Top: Maps of the measured attenuation (in dB) for each of the 75 points
of the (a) omni-omni, (b) omni-dir, and (c) dir-dir scenarios. Bottom: Measured

A
(m)
S (dashed) versus predicted A

(p)
S (solid) average attenuations for a target

traversing orthogonal to the LOS at 0.25 m (orange) and 1 m (violet) away from
the TX. Model (1) with square markers and (4) with cross markers.

2.4 −2.5 GHz: other specs [38] are summarized in Table I. Om-
nidirectional antennas are vertical monopoles with 2 dBi gain.
To compare the measurements against the model predictions,
we modeled the body as an absorbing rectangular 2-D sheet
with height H = 2.0 m and traversal size W = 0.55 m (see
Fig. 1). The maximum transversal size (i.e., minor axis) of the
first Fresnel’s ellipsoid is about 0.70 m, while the beam width
(at −3 dB) of each directional antenna is about 2 m at the same
point (d1=d2=d/2).

The free-space received power P0(fk) is obtained for each
frequency of the set {fk}Nf

k=1. The received power P (fk, �) is
then measured with the target located in each of the � = 1, . . ., 75
marked positions of the grid points of Fig. 2. Each position �
has coordinates (x�, y�) with spacing 0.25 m along and 0.3 m
across the LOS. The measured attenuation, due to the target
in the �th position, is evaluated for each fk as A

(m)
S,k (�) =

−10 log10[P (fk, �) /P0(fk)] and then averaged to obtain the
mean attenuation A

(m)
S (�) = 1/Nf

∑Nf

k=1 A
(m)
S,k (�).

The color-coded maps in Fig. 3(a)–(c) show the attenuation
values for each subject position. For the omni-omni case of
Fig. 3(a), the maximum value of attenuation is ≈4 dB. The
body effect is thus negligible, except for positions very close
to the antennas, due to a substantial amount of energy that
reaches the RX antenna via multipath, even if the first Fresnel’s
ellipsoid is blocked. On the contrary, in the dir-dir scenario of
Fig. 3(c), the maximum attenuation reaches ≈16 dB, and the

body presence near the LOS is clearly discernible. In fact, by
using well-pointed directional antennas, the multipath impact
is strongly reduced, thanks to the angular filtering properties of
the radiation patterns f(θ, ϕ). This scenario is thus closer to the
ideal free-space environment with no disturbances. The omni-dir
scenario of Fig. 3(b) shows an intermediate behavior for some
noticeable effects caused by multipath disturbances not filtered
by the RX antenna. The maximum attenuation reaches ≈10 dB
near the TX.

Measurements and predictions for the omni (1) and dir
(4) setups are compared in Fig. 3 (bottom). The predictions
are obtained by averaging A

(p)
S (�) = 1/Np

∑Np

k=1 AS(x� +
�xk, y� +�yk) over the attenuations AS(·, ·) corresponding to
Np small body movements around the marked positions �. The
goal is to let the models account for body position uncertainties
as well as small, involuntary movements typically observed
in human sensing [11], [12]. We set �xk,�yk ∼ U−�

2 ,�2
as

uniformly distributed in the interval � = 6 cm, and Np = 150.

The measured A
(m)
S (�) (dashed lines) and the predicted A

(p)
S (�)

(solid lines) average attenuations are compared w.r.t. 5 marked
positions along two orthogonal cuts taken 0.25 m (orange lines)
and 1 m (violet lines) from the TX antenna, respectively, with
marks � = 1÷ 5 and � = 16÷ 20 (see Fig. 2). The vertical bars
include 60% of the measured values that cover the antenna
operating band of 2.4−2.5 GHz (Nf = 81). Accordingly, EM
predictions are obtained for fk in the same 2.4−2.5 GHz band
but use the field ratio (1) for omnidirectional antennas (square
markers) and (4) for directional ones (cross markers). Shaded
areas include 60% of the attenuation samples used to obtain
the average terms A

(p)
S (�). Overall, the measurements reveal

large fluctuations of the attenuations when the target is near the
LOS path, while the dir-dir setup is close (on average) to the
directional antenna predictions. In general, there is a negligible
difference between omni and dir models when the target is far
from the TX (x� > 1 m) since the extra-attenuation is mainly
due to the blockage of the first Fresnel’s ellipsoid. Instead,
a more marked difference is observed when the target moves
close to the TX (x� = 0.25 m) since the antenna beamwidth
is now comparable with the Fresnel’s area. The omni model
overestimates the attenuation obtained from the omni-omni setup
due to the presence of multipath, as explained before.

V. BODY DETECTION AND MODEL VALIDATION

We discuss here the problem of passive body localization in
the environment previously analyzed. The detection problem fo-
cuses on the choice between the hypothesesF0 andF1 that corre-
spond to the target outside or inside the Fresnel’s ellipsoid of the
link, respectively. According to Fig. 2, we split the 75 inspected
positions into two groups: namely, the |L1| = L1 = 25 positions
(� ∈ L1, blue crosses) that fall inside the Fresnel’s ellipsoid,
and the |L0| = L0 = 38 positions (� ∈ L0, red crosses) that fall
outside. At time t, the decision whether the target is inside or
outside the Fresnel’s ellipsoid is based on the extra-attenuation
AS = P0 − P (t) that is observed w.r.t. the free-space power P0

(in dBm). Omitting time t for clarity, the log-likelihood ratio
(LLR)

Γ(AS) = log

[
Pr (AS |F1)

Pr (AS |F0)

]
(5)
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Fig. 4. ROC plots considering the probabilities related to the EM model, and
to the measurements from the omni-omni, omni-dir, and dir-dir cases. The trivial
detector is shown, too.

TABLE II
LIKELIHOOD SEPARATION AND KL DIVERGENCE

is used to discriminate (via thresholding on Γ) between
both hypotheses. Probabilities Pr(AS |F0) ∼ N (μF0

, σ2
F0
) and

Pr(AS |F1) ∼ N (μF1
, σ2

F1
) are log-normal distributed. The pa-

rameters μF0
and μF1

model the average attenuations terms,
while σF0

= σ0 and σF1
= σ0 +ΔσT are the deviations. As-

suming no prior information about the subject location, it is also
Pr(F0) = Pr(F1) = 1/2. Using the log-normal model (2), (5)
can be rewritten as

Γ(AS) =
1

2

(
AS − μF0

σF0

)2

− 1

2

(
AS − μF1

σF1

)2

−log

(
σF1

σF0

)
. (6)

The LLR parameters are obtained from the predictions A(p)
S (�)

of Section III, namely, μFi
≈ μ

(p)
Fi

= 1/Li

∑
�∈L1

A
(p)
S (�) and

σFi
≈ σ

(p)
Fi

=

√
1/Li

∑
�∈Li

[
A

(p)
S (�)− μ

(p)
Fi

]2
, for hypothe-

ses F0 and F1. The fading effects [11], i.e., ΔhT = 0 are
also neglected to highlight the diffraction terms only. For com-
parison, the LLR parameters are also obtained from measure-
ments, μFi

≈ μ
(m)
Fi

and σFi
≈ σ

(m)
Fi

, by replacing A
(p)
S (�) with

A
(m)
S (�).
In Fig. 4, we analyze the receiver operating characteristic

(ROC) figures [39], using the LLR as in (6), for all scenarios.
The ROC associated with the dir-dir scenario is the one with
the best performance, being closer to the EM model predictions.
The trivial detector implements a random choice.

Considering that ROC performances depend on the LLR
decision regions, i.e., the separation of the log-likelihood (LL)
functions [39], in Fig. 5, we compare the LLs Pr(AS |F1) and
Pr(AS |F0) for omni-omni (top) and dir-dir scenarios (bottom)
obtained from experimental data (μ(m)

Fi
, σ

(m)
Fi

) and predictions

(μ
(p)
Fi

, σ
(p)
Fi

) using synthetic data, respectively. In Table II we also

Fig. 5. From top to bottom: Estimated Pr(AS |F0) and Pr(AS |F1) from the
experimental data and the synthetic (EM) model for the omni-omni (top) and
the dir-dir scenarios (bottom). Histograms from experimental data are shown,
too.

report the average LL separationμF0
− μF1

and the correspond-
ing Kullback-Leibler (KL) divergence [40] using measured and
predicted parameters. The decision regions for the dir-dir sce-
nario are well separated (about μ(m)

F0
− μ

(m)
F1

= 11.9 dB) and

this is confirmed by the dir model (4) as μ(p)
F0

− μ
(p)
F1

= 9.6 dB.
Similarly, a KL divergence of 2.44 is predicted against the mea-
sured one of 2.6. The decision regions for the omni-omni setup
are almost overlapped, with an average separation of 1.8 dB and
negligible KL divergence due to the multipath effects and the
absence of any angular filtering. Such effects are not captured
by the omni model, which performs poorly.

VI. CONCLUSION

This letter proposes a human-body model that accounts for
antennas with nonisotropic radiation characteristics and evalu-
ates the impact of the radiation pattern for passive radio sensing.
Diffraction and multipath components, that contribute to radio
sensing accuracy, are evaluated experimentally in an indoor
environment with mixed antenna configurations.

The angular filtering properties of directional antennas miti-
gate the multipath effects and make the propagation scenario
closer to the results predicted by the diffraction-based EM
model. Considering the problem of classifying target proximity,
the model effectively predicts the separation of the decision
regions, observed with directional antennas, for target inside or
outside the Fresnel’s ellipsoid. On the contrary, using omnidirec-
tional antennas, the multipath effects dominate over diffraction
and the model fails to predict such separation. Future work
will adapt the proposed model to wireless LAN sensing devices
leveraging antennas with software reconfigurable radiation char-
acteristics.
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