Abstract:
In contrast to transistor-based semiconductor circuits, there is currently no widely accepted formalized circuit theory or design methodology for superconductor rapid sin...Show MoreMetadata
Abstract:
In contrast to transistor-based semiconductor circuits, there is currently no widely accepted formalized circuit theory or design methodology for superconductor rapid single flux quantum (RSFQ) logic circuits. Experienced designers intuitively consider flux loops, nodal phase, and branch currents when making design choices, but the lack of a formalized design process makes it difficult for inexperienced RSFQ circuit designers to construct a functioning logic cell without a reference. This results in new circuit designers, mostly recycling templates from published circuit designs without fully understanding why the circuits function as they do. Inexperienced RSFQ circuit designers often follow an iterative process where cell parameter values are adjusted, and the cell is run through electronic simulation engines until the desired functionality is reached. We propose the development of a formalized circuit design theory for RSFQ logic from first principles using phase-based circuit analysis. The circuit is designed using dc analysis to establish the dc operating point of the circuit. Phase-based analysis and simulation are then used to verify the dynamic circuit functionality. To demonstrate this method, we discuss examples for well-known RSFQ cells. We analyze the initial operating margins of these designs and discuss design accuracy and efficiency. Methods for current regulation to minimize current leakage between cells are discussed. We also present how this design methodology can be used to design new circuits such as an RSFQ XNOR cell. We investigate how an inverting (NOT) cell can be combined with other logic cells to minimize cell latency.
Published in: IEEE Transactions on Applied Superconductivity ( Volume: 32, Issue: 3, April 2022)