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Abstract—Adiabatic quantum-flux-parametron (AQFP) logic is
a superconductor logic family whose energy efficiency approaches
theoretical limits. Because AQFP logic gates depend on a polyphase
excitation current to perform their computation, gate fanins must
arrive at the appropriate excitation phase. Such a technology
constraint has conventionally been treated by inserting buffers to
balance shorter paths. However, path-balancing buffers account
for a large portion of the circuit area, limiting the scalability of
AQFP circuits. In this article, we examine the necessity of AQFP
design constraints and propose a more relaxed set of constraints,
which still guarantees the correct operation of AQFP sequential
circuits. In particular, we propose to consider phase alignment
instead of path balancing. Experimental results show that adopting
the relaxed constraints reduces 73% of buffers on average, and up
to 90% in some particularly-imbalanced benchmarks.

Index Terms—Adiabatic quantum-flux-parametron (AQFP),
buffer insertion, sequential logic circuit, superconductor
electronics.

I. INTRODUCTION

ADIABATIC quantum-flux-parametron (AQFP) logic is an
emerging superconductor digital logic technology receiv-

ing increased interest. By operating in the adiabatic mode,
its energy efficiency is reaching theoretical limits [1]. Being
a promising and attractive alternative to CMOS-based digital
families for high-performance computing, design automation
algorithms specialized for AQFP circuits are also being rapidly
developed in recent years. As switching energy dissipation in
AQFP is related to the number of Josephson junctions (JJs),
reducing the JJ count of AQFP circuits has been the primary
optimization goal along with reducing circuit latency. This,
in turn, also helps to reduce the overall circuit area as AQFP
primitives have a large footprint due to their output transformer.
Surprisingly, research has found that a large portion of JJs in
AQFP benchmark circuits is dedicated to buffering cells to fulfill
technology constraints.
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The AQFP technology imposes some special constraints un-
common to classical CMOS technologies. First, because every
gate in an AQFP circuit is clocked, all input signals for any given
logic gate have to arrive before the clock. To ensure this, shorter
data paths need to be delayed with clocked buffers. Moreover, the
output signal of AQFP logic gates cannot be directly branched
to feed into multiple fanouts. Instead, splitters are placed at
the output of multifanout gates to amplify the output current,
which are also clocked. The AQFP splitter cell is based on
the buffer cell and has the same cost of 2 JJs [2]. Thus, buffer
insertion and splitter insertion are often considered together as
an optimization problem [3], [4], [5], [6]. In previous works,
the buffer and splitter insertion problem has been formulated as
follows: All paths should be balanced to the same length (path
balancing), and all gates, including primary inputs (PIs), with
multiple fanouts must be branched (fanout branching).

While the path-balancing and fanout-branching constraints
are absolutely required for the correct operation of an AQFP
combinational1 circuit without memory devices, in the context
of a sequential computing model where combinational inputs
and outputs are connected to registers, these constraints may be
too conservative. According to the architectural clocking scheme
currently used in AQFP sequential circuits, registers generally
hold their values throughout the architectural clock cycle and
their outputs can be taken by the next-stage combinational circuit
multiple times. In other words, the same computation is repeated
in waves in an AQFP combinational circuit. With a careful
analysis, we argue that it is not always necessary to balance
all paths to equal length. Instead, aligning the gate-level clock
phases is enough.

In this work, we provide an overview of AQFP sequential
circuit design and discuss how architectural clocking and register
design affect the technology constraints. We argue that the com-
monly adopted constraint formulation is sometimes too conser-
vative and propose relaxations to the constraints. Consequently,
we also investigate how the relaxation of constraints affect
the number of buffers needed, and discuss possible tradeoffs
when the constraints are relaxed. Our following contributions
are three-fold.

1) We re-examine the formulation of AQFP technology con-
straints and propose possible relaxations on these con-
straints: phase alignment instead of path balancing, and

1Although AQFP gates are clocked, we use the terms combinational and
sequential here in a similar sense as in CMOS digital circuits, considering the
(architectural) clock connected to registers.
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the flexibilities on combinational inputs’ splitting capacity
and phases. We also discuss a potential issue with clock
skew and the tradeoff of adopting relaxed constraints.

2) We implement and open source the first buffer-insertion
framework, which considers detailed and realistic con-
straints and possible relaxations. The framework is param-
eterized for easy customization of constraint specification.

3) We investigate the influence of technology constraints on
JJ count. Using the relaxed constraints, an average of 73%
of buffers can be saved. This observation can help scale
up AQFP circuits, which were bottle-necked by too many
buffers before.

II. ADIABATIC QUANTUM-FLUX-PARAMETRON

In AQFP digital circuits, logic “0” and “1” are represented by
different current directions of the same magnitude, instead of low
and high voltages as in CMOS. The basic circuit components in
AQFP logic are the buffer cell and the branch cell. A majority-3
(MAJ3) logic gate can be constructed by combining three buffer
cells with a reverted branch cell (i.e., a 3-to-1 merger). Other
preliminary logic gates, such as the AND2 and OR2 gates, can
be built from the MAJ3 gate with a constant input (constant 0 for
AND2 and constant 1 for OR2) made of an asymmetric buffer
cell. Input negation of logic gates is realized using a negative
mutual inductance and is of no extra cost [7]. The commonly
used cost metric for AQFP circuits is the JJ count. A buffer costs
2 JJs, a branch cell is of zero JJ-cost, and a logic gate based on
MAJ3 costs 6 JJs [7].

A. Gate-Level Clocking Schemes

Logic gates, buffers, and splitters in AQFP are periodically
activated and reset by alternating excitation current [1]. A gate
takes its inputs, computes, and provides its output with the
presence of the excitation current. In the absence of the excitation
current, an AQFP gate produces no output current (i.e., neither
logic “0” nor logic “1”). Thus, two cascaded gates must be fed
with consecutive clocking phases, where the capturing gate is
activated later than, but overlapping with, the activation of the
launching gate, such that the information can be propagated
along the circuit. We call the capturing gate a fanout of the
launching gate, and the launching gate a fanin of the capturing
gate.

Various clocking schemes have been proposed. 3-phase clock-
ing was used in earlier works [1], [7], [8], where three excitation
currents with a phase shift of 120◦ to each other are fed into
different levels of gates. A few years later, 4-phase clocking
was proposed [9] and has remained the most commonly used
clocking scheme until now. In 4-phase clocking, the phase shift
decreases to 90◦, the number of alternating current sources
decreases to 2, and the number of clocking phases in each clock
cycle increases to 4, allowing for slightly lower latencies by
enabling a logical depth of 4 gates instead of 3 per cycle. In both
3- and 4-phase clocking, logic gates in each level are assigned to
one of the three or four phases and phase synchronization must
be ensured: Any fanin of a gate g must be at the previous phase
of g.

Fig. 1. Circuit schematic of an AQFP D-latch.

TABLE I
TRUTH TABLE OF D-LATCH AND NDRO

Another clocking scheme is delay-line clocking [10], where
a single alternating excitation current is used and transmission
lines are inserted between levels to delay the clock. Delay-line
clocking not only allows for even lower latency but also enables
the phase-skipping operation [11], [12], reducing the number of
path-balancing buffers.

In this article, we use pclk to denote the number of phases in
a (gate-level) clock cycle. Typically, pclk = 3 or 4.

B. Memory Devices and Architectural Clocking

To implement sequential circuits using a similar finite-state-
machine model as CMOS digital systems, AQFP memory de-
vices are needed. At least two possible designs have been pro-
posed in the literature: 1) D-latch and 2) QFPL-based NDRO.

A simplified AQFP feedback delay latch (D-latch) is depicted
in Fig. 1, where the 4-phase clocking scheme is used. A D-
latch takes an Enable signal E and a Data signal D as inputs.
Its operation is illustrated by the truth table shown in Table I.
When E = 0, the majority gate has input values (0, 1, Qn), thus
keeping the same internal state Qn+1 = Qn; when E = 1, the
majority gate has input values (D,D,Qn); thus, the internal
state is overwritten by the new data D [13].

A quantum-flux-parametron latch (QFPL) is a special AQFP
gate that can hold its state when the excitation current is low.
The internal state of a QFPL is updated only when its two
inputs A and B present the same value; otherwise, it keeps
the previous state. Combining a QFPL and some logic gates,
a nondestructive-read-out (NDRO) can be made, as shown in
Fig. 2. An NDRO also takes an Enable signal E and a Data
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Fig. 2. Circuit schematic of a QFPL-based NDRO.

signal D as inputs and has the same truth table as in Table I.
When E = 0, we have A = 0 and B = 1; thus, the QFPL holds
its previous state; when E = 1, then A = B = D and the new
data is written into the QFPL [14].

For a D-latch, an update to the state, caused by a new value
at the input D enabled with E = 1, is propagated through the
circuit and changes the output Qn+1 4 phases later. In contrast,
an update to the state of an NDRO is available at the output 3
phases later.

In a classical sequential circuit model, the data D inputs of
registers come from the outputs of the previous-stage combi-
national circuit, the outputs Q of registers are connected to the
inputs of the next-stage combinational circuit, and the enable E
input of registers comes from an architectural clock (in contrast
to the gate-level clock discussed in Section II-A). In the CMOS
paradigm, the enabling signal of registers is the rising edge or
falling edge of a periodic clock signal. In contrast, in AQFP, the
enabling signal E is kept at 0 most of the time and becomes 1
once every k gate-level clock cycle, where the value k depends
on the length of the critical combinational path. In this article,
we denote the number of phases in an architectural clock cycle
by parch = k · pclk.

III. AQFP DESIGN CONSTRAINTS

A. Terminology

This work mainly focuses on the network-level abstraction
of an AQFP circuit. A logic network is a directed acyclic graph
(DAG) defined by a pair (V,E) of a set V of nodes and a set
E of directed edges. The node set V = I ∪O ∪G is disjointly
composed of a set I of PIs, a set O of primary outputs (POs),
and a set G of (logic) gates chosen from an AQFP technology
library (e.g., composed of AND2, OR2, and MAJ3 with optional
input negation). Each PI has in-degree 0 and unbounded out-
degree, whereas each PO has in-degree 1 and out-degree 0. The
out-degree of each gate is unbounded and the in-degree is a
fixed number depending on the type of the gate. This abstraction
models the combinational part of digital circuits. In practice,
PIs of a logic network are often provided by the register outputs

of the previous sequential stage and POs are connected to the
register inputs of the next stage.

After synthesizing and optimizing a logic network using
some logic synthesis algorithms, buffers and splitters need to be
inserted to fulfill technology constraints, producing a buffered
network. A buffered network N ′ = (V ′, E ′) is a DAG extended
from a logic network N = (V,E). In particular, the node set
V ′ = V ∪B is supplemented with a set B of buffers. A buffer
node models an AQFP buffer cell (when having out-degree 1)
or an AQFP splitter cell (when having out-degree larger than 1)
and always has in-degree 1.

When not specified, a network may be a logic network or
a buffered network. In addition, a schedule can be defined for
a network. A schedule of a network N = (V,E) is a function
l : V → Z≥0 that assigns a nonnegative integer l(n) to each
node n ∈ V , called the level of n. The depth of a network N
with a PO set O and associated with a schedule l is defined as
d(N) = maxo∈O l(o).

We define the following properties for a buffered network
N ′ = (V ′ = I ∪O ∪G ∪B,E ′) and its associated schedule l
related to the AQFP technology constraints, subject to some
parameters: The splitting capacities si = 1, sg = 1, and sb ≥ 1
of PIs, gates, and buffers, respectively, are the maximum number
of fanouts each type of nodes may have. The clocking scheme
pclk is the number of phases in a gate-level clock cycle. Φro is
the set of phase differences a register may produce its output
relative to its input phase.

1) Path balancing: N ′ is path-balanced if

∀ni, no ∈ V ′ : (ni, no) ∈ E ′ ⇒ l(ni) = l(no)− 1 (1)

∀i ∈ I : l(i) = 0, and (2)

∀o ∈ O : l(o) = d(N ′). (3)

2) Phase alignment: N ′ is phase-aligned if

∀ni, no ∈ V ′ : (ni, no) ∈ E ′

⇒ l(ni)mod pclk = (l(no)− 1)mod pclk

∧ l(no) > l(ni) (4)

∀i ∈ I : ∃φi ∈ Φro

l(i)mod pclk = φi mod pclk ∧ l(i) ≥ φi, and (5)

∀o ∈ O : l(o)mod pclk = 0. (6)

3) Fanout branching: N ′ is properly-branched if every PI
has an out-degree no larger than si, every gate has an
out-degree no larger than sg , and every buffer has an out-
degree no larger than sb.

In the following, we discuss which subset of these properties
shall be required as AQFP technology constraints and the values
of the parameters involved.

B. Phase Alignment Instead of Path Balancing

Existing works on AQFP sequential architectural design [14],
[15], logic synthesis [2], [16], [17], [18], [19], [20], and buffer
insertion-optimization [3], [4], [5], [6] conventionally adopt a
more conservative set of constraints: path balancing and fanout
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branching. Notice that fulfilling path balancing, with an ad-
ditional constraint that d(N ′)mod pclk = 0, implies fulfilling
phase alignment with Φro = {0}. While this ensures correct
and robust operation of the AQFP circuit even with fast clock
frequencies, enforcing these constraints often leads to bulky
circuits with more than half—sometimes up to 90%—area
taken by buffers. In this section, we argue that in the context
of synthesizing combinational logic between register stages,
assuring phase alignment, instead of the stronger path-balancing
constraint, is enough.

In [14], Saito et al. proposed that when registers in several
sequential stages share the same enable signal, which arrives
once per parch phases matching the depth of the deepest stage,
shallower stages do not need to be balanced to the same length as
the deepest stage. The main reason is that memory devices output
their value every pclk phase and do not change their internal state
for the entire architectural clock cycle until the enable signal
arrives. Thus, although shallower stages finish their computation
earlier than when the registers are enabled to take the next
values again, the same computation is repeated every (gate-level)
clock cycle, and the same computational results are produced
repeatedly until the registers are enabled again to accept them.

With a similar reasoning, we extend the argument further
and propose that the path-balancing constraint can be relaxed
to phase alignment, formally stated as follows.

Proposition 1: In an AQFP sequential circuit, let d be the
longest path length between any two register stages, φro be the
phase difference between the register output Qn+1 and inputs
D,E. Suppose that the register enables signal E is 1 for one
phase in every parch = k · pclk phase, where parch ≥ φro + d, then
fulfilling the phase-alignment constraint (4)–(6), in addition
to fanout branching, is enough to ensure correct sequential
operation of the circuit.

Proof: Without loss of generality, consider the computation
propagated from one register stage I , through a combinational
circuit N , to the next register stage O, in one architectural clock
cycle. Suppose that E = 1 at time t = 0 and at time t = parch

(the unit of time is the number of phases) and that E = 0 all the
other time. Let the (multi-input, multioutput) Boolean function
computed byN be fN and let the values presented at the outputs
of registers I at time t = φro be �x, we will prove that the values
presented at the inputs of registersO at time t = parch are exactly
fN (�x).

First, observe that the same �x is produced at I every pclk phase
until (excluding) t = parch + φro, i.e., at

t = φro, φro + pclk, φro + 2 · pclk, . . . , φro + (k − 1) · pclk. (7)

Comparing Section III-B against (5), we conclude that for
all combinational inputs i, its value is ready at time t = l(i)
corresponding to its assigned level, as well as every pclk phase
afterward.

Next, consider a gate n with two fanins2 ni1 and ni2 and
suppose that the values of ni1 and ni2 are ready at times
corresponding to their assigned level, as well as every pclk phase

2We consider two fanins in the analysis for convenience, but the argument
can be extended to any number of fanins.

Fig. 3. Circuit schematic of an improved D-latch design.

after these times, i.e., t = l(ni1) + j · pclk and t = l(ni2) + j ·
pclk, respectively, where j ∈ Z≥0. By (4), we know that at time
t = l(n)− 1, both fanins of n provide their correct values; thus,
n computes its correct value at time t = l(n). Moreover, as ni1

and ni2 produce the same values every pclk phase, the same
correct computation also repeats every pclk phase since t = l(n).
Notice that this argument does not require l(ni1) and l(ni2 to
be equal. By induction, we conclude that all gates compute
and produce the correct value since time corresponding to their
assigned levels and every pclk phase afterward.

Finally, by definition of d(N), we know that all combinational
outputs o are ready since time t = l(o) ≤ d(N) ≤ φro + d; thus,
at time t = parch ≥ φro + d, correct values fN (�x) are presented
at the inputs of registers O. Equation (6) ensures that register
inputs are placed at the correct phase. �

Notice that in this analysis, the requirements for the archi-
tectural clock period parch = k · pclk and parch ≥ Φro + d must
hold regardless of adopting path-balancing or phase-alignment
constraints. In other words, the proposed relaxation does not
affect architectural clock frequency or latency.

C. PI Capacity and Phases

Based on the conventional D-latch as shown in Fig. 1, which
adopts the 4-phase clocking scheme, we modify the design in
Fig. 3 to show the possibility for memory devices to have an
output capacity larger than 1 and to have their output signal
available at multiple phases. In Fig. 3, buffers are replaced by
splitters to drive up to sb − 1 fanouts at various phases, not only
phase 4. Adopting such D-latches as registers in a sequential
circuit, PIs of the combinational network now have a splitting
capacity si = sb − 1 (where sb is usually 3 or 4) instead of 1.

With the modified D-latch design in Fig. 3, instead of
Φro = {4} when adopting D-latches in Fig. 1, we may use
Φro = {3, 4, 5} for a more relaxed phase-alignment requirement
because register outputs can be provided at various phases in the
feedback loop in D-latch.
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D. Consideration of Clock Skews

The analysis above assumes an ideal clock with zero clock
skew. However, in real circuits, clock skews may arise when
the clock signal travels along many logic levels. In other words,
the activated time of a gate receiving a phase-1 clock closer to
the clock source may be earlier than another gate receiving also
a phase-1 clock but farther away from the clock source. The
difference in the clock timing is called clock skew. One typical
superconductor electronics process used to manufacture AQFP
circuits is the National Institute of Advanced Industrial Science
and Technology (AIST) 10 kAcm−2 Nb four-layer high-speed
standard process (HSTP). In this process, microstriplines with
a ground layer are used to deliver the ac power-clock signals to
the AQFPs. A first-order approximation of the transport delay
of a 5-µm-long microstripline in this process is approximately
6.20 psmm−1 [2]. This results in a nonzero clock skew that
accumulates along the meandering power-clock network of the
AQFPs [15]. With the existence of a nonzero clock skew, there is
an upper limit on how many phases can be skipped without any
buffer in between, in addition to the phase alignment constraint.

For large AQFP circuit designs such as a microprocessor,
a meandering power-clock network may span across an entire
chip, which is typically in the range of 5 × 5 mm to 10 × 10
mm in present-day superconductor fabrication processes. The
accumulated skew at this scale is significant enough to produce
timing errors at gigahertz range operating frequencies. In this
case, it is important to physically constrain the clock skew
by using microwave power dividers [15] or microwave H-tree
networks [21] to reduce the physical size of the local mean-
dering microstripline power-clock networks and, thus, reduce
the accumulated clock skew. Timing characterization of AQFP
cells indicates that for 5-GHz sinusoidal clocks, data can still be
successfully captured with a clock skew of up to 30 ps between
the launching and capturing AQFP [2], [22], [23]. This provides a
nominal baseline target for how the power-clock network should
be designed, and it also provides an upper limit on how much
phase-skipping can be tolerated.

IV. BUFFER/SPLITTER INSERTION AND OPTIMIZATION

Research on the problem of buffer and splitter insertion and
optimization for AQFP circuits has gained more interest in recent
years. While it is possible to consider buffer and splitter cost
early in logic synthesis, together with logic restructuring [18],
[19], to simplify and focus on the problem and to provide fairer
comparisons, many works consider only the problem of inserting
the least buffers and splitters into a logic network, without
logic restructuring, to fulfill the technology constraints (the
buffer insertion problem). Starting as a postprocessing step with
relatively lightweight optimization [2], [16], the buffer insertion
problem has been identified as a scheduling problem in [4]. As
finding the optimal schedule in terms of buffer count is likely
an NP-hard problem due to the interplay between buffers and
splitters, various heuristics have been proposed and improve-
ments were made rapidly [3], [4], [5], [6]. All of these works
assume the more conservative constraints, i.e., path balancing
and fanout branching.

In this section, we first briefly introduce the buffer insertion
algorithms this work is based on and, then, present an adapted
framework considering the relaxed constraints, i.e., phase align-
ment and fanout branching, as discussed in Section III.

A. Related Works

1) Irredundant Local Insertion: In [4], a local insertion al-
gorithm is proposed, which constructs the minimal buffer tree
at the fanout of a gate g, given the level assignment of its fanout
gates FO(g). The algorithm runs in linear time and is optimal
subject to a given schedule.

2) Depth-Optimal Scheduling: [5] proposes to leverage the
local insertion algorithm to determine the latest possible level for
the root gate g, and to run this algorithm in an as-late-as-possible
(ALAP) fashion, i.e., for each gate in a reversed topological
order from POs to PIs. It is formally proved that this yields a
depth-optimal scheduling. Intuitively, buffered networks with
smaller depths likely also have fewer buffers.

3) Buffer Optimization by Chunked Movement: The optimal-
ity guarantee given by the local insertion algorithm is subject
to a given schedule. In other words, it is possible to optimize
a schedule for a smaller buffer count. Thus, given an initial
schedule, the chunked movement algorithm proposed in [4] finds
chunks of gates and buffers, which are tightly connected and try
to move them altogether to reduce the number of buffers.

B. Adapted Framework Considering Relaxed Constraints

We integrated the three algorithms mentioned in Section IV-A
in a buffer insertion framework. The implementation is available
in the open-source logic synthesis library mockturtle3 [24].

The overall buffer insertion flow combines the state-of-the-art
algorithms. First, an initial schedule is obtained using the depth-
optimal scheduling, and the minimum number of buffers needed
for this schedule is counted using the irredundant local insertion
algorithm. Then, the schedule is optimized for a smaller buffer
count using the chunked movement algorithm, until no more
improvement can be made.

To experiment on different formulations of the technology
constraints, we adapted the algorithms to support customizable
parameters involved in the constraints. These parameters include
the following.

1) Buffer’s splitting capacity sb: The maximum out-degree
of buffers. This is the same as in previous works.

2) PI’s splitting capacity si: The maximum out-degree of PIs.
si was fixed to 1 in previous works. However, as discussed
in Section III-C, it is possible to have si = sb − 1. Thus,
we make this an integer parameter to be specified by the
user.

3) A flag to switch between path balancing (1)–(3) and
phase alignment (4)–(6): If phase alignment is adopted,
modifications in the algorithms are made. First, levels of
PIs and POs are not fixed anymore in both scheduling
and chunked movement. Also, the chunked movement
algorithm is modified to include PIs and POs in chunks

3Available: https://github.com/lsils/mockturtle

https://github.com/lsils/mockturtle
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Fig. 4. Running example of how technology constraints affect the number of buffers in a small circuit. All subfigures show the optimal insertion subject to the
specified constraints. (a) Path-balanced, si = 1 (16 buffers). (b) Path-balanced, si = 2 (13 buffers). (c) Imbalanced PIs and POs (9 buffers). (d) Remove buffer
chains (5 buffers).

and try to move them. Special care is given to ensure that
PIs and POs are always assigned to a legal phase with
respect to pclk and Φro. Finally, chains of single-fanout
buffers of a length being a multiple of pclk are removed in
a postprocessing step.

4) Number of phases in a gate-level clock cycle pclk: When
adopting path balancing, as in previous works, this param-
eter is not relevant. However, when relaxing path balanc-
ing to phase alignment, pclk is involved in the constraints.

5) Possible phase differences between register input and
output Φro: Set of phases PIs are allowed to be scheduled
(5). In previous works, PIs can only be scheduled at level
0 (2).

6) If clock skew is of concern, as discussed in Section III-D,
then in any unbalanced path, a user-specified maximum
phase-skip is ensured.

By default, our framework considers phase-alignment con-
straints and uses parameters sb = 3, si = 2, pclk = 4,Φro =
{3, 4, 5}. This setting is expected to be the most realistic and
result in the smallest size of buffered networks.

V. IMPACT OF TECHNOLOGY CONSTRAINTS ON JJ COUNT

In this section, we demonstrate the impact of the proposed
relaxation on technology constraints on the number of buffers
and, thus, on the JJ count of an AQFP circuit. First, a small
example circuit is presented, for which the optimum can be
easily derived. Then, experimental results comparing different
constraint formulations are listed.

A. Motivational Example

We use a 1-b full adder circuit as an example. In Fig. 4, PIs are
at the bottom and POs on top; ellipse nodes are MAJ gates whose
constant inputs are neglected for simplicity (i.e., AND gates or

OR gates) and negated fanins are dashed; and square blue and
red nodes are buffers and splitters, respectively.

The buffered network when adopting conventional constraints
(path balancing and fanout branching, si = 1) is shown in
Fig. 4(a), which is the optimal insertion with 16 buffers already
shown in state-of-the-art works [4]. If si is increased to 2 as
discussed in Section III-C, splitters at the first level are no longer
needed, decreasing the network depth by 1 and reducing the
number of buffers to 13, as shown in Fig. 4(b).

Moreover, as discussed in Section III-B, when enforcing the
phase alignment constraint instead of path balancing, the number
of buffers further reduces to 5, which is less than a third of the
initial buffered network. This adjustment is done in two steps
as described in Section IV-B. First, relaxing the constraints on
PIs and POs (5), (6) instead of (2), (3) results in Fig. 4(c) with 9
buffers. Then, removing buffer chains [(4) instead of (1)] saves
four more buffers.

B. Experimental Results on Constraint Relaxation

Table II shows the experimental results on the commonly used
benchmark suite consisting of ISCAS benchmarks and some
arithmetic circuits.4 Five sets of constraints are presented and
compared. To have a fair comparison, all of them use sb = 3
and pclk = 4 and the buffered networks are obtained using our
adapted buffer insertion framework described in Section IV-B.
Columns “#Bufs.” list the number of buffers in the (optimized)
buffered networks, columns “#JJs” list the JJ count of the
buffered networks (obtained by #JJs = 6 · #Gates + 2 · #Buf.),
columns “ΔB” and “ΔJJ” list the reduction on buffer count and
JJ count, respectively, and column “MPS” list the maximum
phase skip.

4Available: https://github.com/lsils/SCE-benchmarks

https://github.com/lsils/SCE-benchmarks
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TABLE II
EXPERIMENTAL RESULTS COMPARING DIFFERENT CONSTRAINTS

Column “Baseline” is the most conservative constraint used
in related works [2], [3], [4], [5], [6], [16], i.e., path balancing
and fanout branching, plus an additional but realistic constraint
that the network depth must be a multiple of pclk = 4.5 Column
“A” uses the improved D-latch design discussed in Section III-C
but still adopts path balancing. In contrast, column “B” still
uses the classical register design, but does not balance PIs and
POs. Column “A+B” combines both improvements. Finally,
column “Best” further removes buffer chains in “A+B,” shifting
from path balancing to phase alignment and achieving the best
constraint relaxation proposed in this article.

We observe from this experiment that considering phase align-
ment instead of path balancing reduces about 70% of buffers in
AQFP circuits, among which about 40% are balancing PIs and
POs, and the other 30% are chains of buffers within the network.

C. Experimental Results Using Larger Benchmarks

Table III shows the results of a similar experiment on the
EPFL benchmark suite [25], which consists of up to 100×
larger benchmarks than in the previous section. For the sake of
simplicity, only the settings corresponding to columns “Base-
line” and “Best” in Table II are shown. The number of buffers
(“#Buf.”) and the buffer-to-gate ratio (“RB-G,” the number of
buffers divided by the number of gates) are listed for the two
settings, as well as the reduction percentage of buffer count after
relaxation (“ΔB”).

It can be observed that many benchmarks have a high buffer-
to-gate ratio when adopting the conventional conservative con-
straints, especially the arithmetic circuits (upper half). This is
likely due to the imbalanced nature of these circuits. By relaxing

5Many related works do not impose this constraint, although it is necessary.
Enforcing this constraint adds about 1.7% buffers on this benchmark suite.

TABLE III
EXPERIMENTAL RESULTS ON EPFL BENCHMARKS

the path-balancing constraint to phase alignment, a large portion
of path-balancing buffers are eliminated, drastically reducing
the number of buffers and making the buffer-to-gate ratio more
reasonable. Take the adder benchmark as an example, with
merely 384 gates in the original network, state-of-the-art buffer
insertion algorithms adopting conservative constraints need to
insert around 50k buffers to balance every path, 130× of the
number of gates. Most JJs in the circuit and energy dissipa-
tion are wasted on these buffers. The resulting bulky buffered
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network also makes the following physical design and fabrica-
tion steps difficult. However, simply by relaxing the constraints
to phase alignment, only about 1.9k buffers are actually needed,
reducing the buffer count by 96%.

VI. DISCUSSIONS

A. Tradeoff Between Throughput and Maximum Phase Skip

A disadvantage of replacing path balancing with phase align-
ment is that the possibility of wave-pipelining is disabled.
Wave-pipelining, or multithreaded gate-level pipelining, is a
technique to increase throughput by propagating more than
one computation in one (architectural) clock cycle, which has
been researched for classical CMOS-based digital systems [26]
as well as emerging technologies [27], [28]. One important
requirement for a wave-pipelined system is path balancing,
thus making AQFP circuits a natural candidate to adopt this
technique, although related research has not been proposed yet.

If an AQFP circuit is fully path-balanced, up to k = parch/pclk

waves may be propagated between two register stages at the
same time, increasing its throughput by k×. When phase align-
ment is adopted instead to reduce JJ count, a tradeoff between
throughput and buffer count (thus energy and area) arises. In such
case, the number of waves allowed is bounded by the maximum
phase skip, or inversely, given a desired throughput, the maxi-
mum allowed phase skip must be ensured, which can be achieved
with our framework. Related work for the single-flux quantum
(SFQ) technology family has been proposed [28], which uses
ILP for scheduling and buffer insertion under similar constraints.
However, for AQFP, because splitters are also clocked, this
formulation cannot guarantee optimality and is also less scalable
than our approach. Future AQFP circuit designers may choose
path-balanced, wave-pipelined circuits for smaller components
requiring higher throughput, and phase-aligned, nonpipelined
circuits for larger parts consuming more energy.

B. N -Phase Clocking

Another buffer reduction method leveraging an n-phase
clocking scheme has recently been proposed [11]. The basic
idea is to multiply the number of phases in one (gate-level)
clock cycle by an integer r, such that any chain of r buffers can
be reduced to 1. The n-phase clocking technique is also very
effective in reducing the number of buffers in AQFP circuits
but it does not diminish the value of this work. Instead of
comparing against n-phase clocking, we argue that these are
two independent techniques that may work in collaboration
to achieve the best results. Using our constraint formulation
terminologies, n-phase clocking can be seen as using fractions
instead of integers as the range of the schedule, i.e., a gate
may be assigned to levels 1/r, 2/r, . . . , etc. n-phase clocking
relaxes the path-balancing constraint by changing the clocking
scheme, whereas we develop our argument from analysis of the
sequential circuit model. Thus, these two relaxations affect the
constraints independently and future work remains to formally
consider them together. Also, as both techniques have their own
drawbacks, engineers may choose between the two depending
on the application requirements.

C. Physical Design and Postphysical-Design Legalization

In this article, we propose to relax path-balancing constraints
to phase alignment, which will have an impact on physical design
because current tools generally expect a path-balanced netlist as
their input. Although adapting a physical design tool accordingly
to generate realistic layouts is beyond the scope of this article,
Fig. 4 serves as a good visualization of how a real layout would
appear. Moreover, to truly exploit the possible area reduction due
to the lower buffer count, the placement algorithm needs to be
adapted to allow circuit folding. That is, instead of placing logic
gates scheduled at the same level in the same physical row and
having as many rows as logic levels, some gates could be placed
in different rows with empty slots because of phase skipping.
However, this would affect wire lengths and clock synthesis,
with additional physical and timing constraints to be carefully
considered.

The real clock skew between two gates in an AQFP circuit
does not only depend on the number of phases in between but
also on the microstripline length of the power-clock network
between them [15]. Moreover, interconnect delay of data signals
and longer wire lengths must also be considered to ensure the
correct operation of an AQFP circuit. If the physical distance
between the launching and capturing gates is too long (>0.7
mm for buffer-to-buffer connections), we may need to insert
repeaters or use current boosters. However, these values are only
available after physical design and are hard to predict during
the buffer insertion stage. Thus, an estimation must be used in
buffer insertion. More careful analysis and legalization, which
may result in extra buffers being inserted, have to be done during
or after physical design. Such overhead may occur in any AQFP
synthesis flow regardless of adopting the proposals of this work
or not but having a higher phase skip may cause the circuit being
more prone to these issues, especially when operating in high
frequency.

Assuming a layout realized similar to Fig. 4(d), we expect the
power-clock margins to remain unchanged. However, we expect
timing margins to reduce because larger phase skipping will
likely incur more skew beyond the ideal timing of the capturing
clocking phase. Thus, timing-aware placement [29] is important
to make sure the circuit still meets sufficient timing margins.

D. Limitations and Future Directions

In this work, we experiment how assumptions on technology
constraints impact the AQFP circuit cost using a postlogic-
synthesis buffer insertion framework. Technology-aware logic
synthesis is not considered because these algorithms need to
be adapted to consider the relaxed constraints. Also, the buffer
insertion and optimization algorithms in our framework do not
guarantee optimum solutions because the AQFP buffer inser-
tion problem is likely NP-hard due to the interplay between
buffers and clocked splitters, and a scalable and globally optimal
algorithm does not exist yet [4]. Nevertheless, this research
is dedicated to explore different possibilities in formulating
the technology constraints and to demonstrate their impact. In
fact, it divides future research on the AQFP buffer insertion
problem into two independent directions: On the one hand,
considering path balancing makes the problem computationally
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easier and maintains the possibility of wave-pipelining. Thus,
existing algorithms are still valuable and are worth further
improving, and wave-pipelining can be explored. On the other
hand, considering phase alignment largely reduces JJ count, as
shown in Section V-B, but its optimization problem becomes
harder because of the increased flexibility. Thus, a second line
of research is opened to better solve this newly-defined compu-
tational problem.
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