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Abstract— We consider quadrature spatial modulation (QSM)
schemes, which achieve high spectral efficiency (SE) via the
dispersion of a relatively small number P of M -ary modulated
symbols over a large number of combinations of nT transmit
antennas and T transmit instances. In particular, we design a
new space-time block code (STBC)-based scalable QSM scheme
combining high SE with maximum diversity and optimum coding
gains. Deriving a closed-form expression for the optimum SE,
we show that scaling the size T with nT not only is required to
achieve SE optimality, but also results in further gains in bit error
rate (BER) performance. Building on the latter optimal para-
meterization, a fully optimized scalable QSM (OS-QSM) trans-
mitter design is then obtained by introducing a new dispersion
matrix index selection algorithm that ensures even utilization of
spatial-temporal resources. Finally, a new greedy boxed iterative
shrinkage thresholding algorithm (GB-ISTA) QSM receiver is
proposed, which exploits the inherent sparsity of QSM signals
and while detecting spatially and digitally modulated bits in a
greedy fashion. The resulting low complexity of the new receiver,
which is linear on nT , enables the utilization of OS-QSM in
systems of previously prohibitive dimensions.

Index Terms— Quadrature spatial modulation, space-time cod-
ing, massive MIMO, optimality, scalablility, low-complexity.

I. INTRODUCTION

SPATIAL modulation (SM) [1]–[3] is a promising tech-
nique that can reduce the hardware complexity and costs

in massive multiple-input multiple-output (MIMO) wireless
communication systems without sacrificing BER and SE per-
formances. In particular, in spatial modulation (SM) schemes,
information bits are embedded not only in the selection of
transmit symbols (a.k.a. constellation dimension), but also in
the selection of transmit antennas utilized during transmission
(a.k.a. spatial dimension).

Thanks to this approach, the vast spatial resources associ-
ated with massive MIMO systems can be efficiently utilized
without requiring an equally large number of radio frequency
(RF) chain components. This efficient utilization of RF-chains
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makes SM schemes attractive for future wireless systems such
as beyond fifth generation (B5G), which will continue to make
extensive use of millimeter-wave (mmWave) bands, and sixth
generation (6G) networks [4], which are expected to also
incorporate Terahertz and visible light communications (VLC)
bands [5].

A major drawback of early SM schemes [1]–[3] is, however,
that only one antenna is selected per transmission, which
severely limits achievable SEs. In order to circumvent this
limitation, a generalized spatial modulation (GSM) scheme
was later developed [6], where combinations of multiple anten-
nas are selected at each transmission, leading to substantial
increase in SE. The notion was then developed into the QSM
scheme [7], in which the real and imaginary components
of the modulated symbols are allocated independently to
different antennas via dedicated spatial-temporal dispersion
matrices, resulting in a twofold increase in the encodable bits
in the spatial (antenna) dimension, in addition to superior
BER performance. This innovative QSM idea motivated fur-
ther research, inspiring multiple clever successors including
the Signed QSM [8] and the Extended Signed QSM [9],
which increased the SE by exploiting positive and negative
quadrature spaces; the Improved QSM [10] and the Fully
Improved QSM [11], which aimed to increase the SE in
a super-logarithmic proportion (previously logarithmic) with
the number of transmit antennas; and the Full duplex (FD)
QSM [12], which pioneered integration of QSM schemes to
full duplex (FD) systems.

Despite various improvements contributed by the aforemen-
tioned works, these early QSM schemes still maintained an
exclusive focus on increasing SE without a significant effort
to reduce BER. Recognizing this limitation, the idea of com-
bining SM/QSM with space-time codes (STCs) emerged [13],
leading to schemes such as space-time shift keying (STSK)
based on linear dispersion (LD) coding proposed in [14]–[16];
methods incorporating STBCs such as those in [17]–[20]; the
spatial modulation with cyclic structure (CSM) of [21] and
the Parallel QSM [22] scheme, where BERs are reduced by
operating with simultaneously grouped subsets of the available
transmit antennas.

The idea was also developed into QSM techniques with
progressively enhanced dispersion matrix designs, which
include the diversity-achieving quadrature spatial modulation
(DA-QSM) scheme first proposed in [23] and later improved
in [24] by the incorporation of Alamouti codes, and the more
recent enhanced diversity-achieving quadrature spatial modu-
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lation (EDA-QSM) method [25] in which dispersion matrices
are constructed using the full-diversity full-rate (FDFR) codes
with block-by-block sphere-decodability of [26].

It is important to emphasize that the aforementioned
schemes focus exclusively on the transmit signal design,
with the assumption of no channel state information (CSI)
knowledge at the transmitter. There is, of course, another line
of work on SM and QSM schemes in which transmit CSI is
assumed and exploited to improved BER performance via sig-
nal shaping [27]. Similarly, there are also recent contributions
in the design of QSM schemes suitable to the scenario of no
receiver CSI [28].

In this article we focus on the more common scenario in
which CSI is available only and perfectly at the receiver, for
which the EDA-QSM can be considered as the state-of-the-art
(SotA) spatial-temporal modulation scheme, as it was shown
to outperform the aforementioned spatial-temporal modulation
schemes both in BER and SE in the no transmit CSI case. But
despite its advantages over earlier methods, the EDA-QSM and
its predecessors still share two major shortcomings. The first
is that the dispersion matrices used in QSM schemes proposed
so far are based on 2× 2 STBCs, which limits the achievable
diversity and coding gains. With regards to that first limitation,
we will in fact show in this article that QSM designs based on
STBCs of a size T that do not scale with nT are fundamentally
sub-optimal in the SE sense.

The second shortcoming is that current QSM detection
schemes are based either on exhaustive maximum likelihood
(ML) or, at best, sphere-detectors. Here, it is worth noting that
it has actually been proved in [29, Th.2], contrary to previous
claims, that sphere decoding has an average complexity that
still grows exponentially with the number of jointly decoded
symbols. That result was corroborated by the findings of [30],
where a cubic closed-form expression for the expected com-
plexity of sphere detectors was derived, as well as of [31],
where it was shown that lattice-reduction does not improve
the tail exponent of the complexity distribution of sphere
detectors. With regards to that second limitation, we will show
in this article that in fact the complexity of ML- and sphere
detection (SD)-based QSM receivers are both geometric on
nT and T , with P as exponent, such that these techniques are
fundamentally non-scalable in the context of QSM systems.
In other words, a severe and two-folded scalability challenge
exists among current QSM schemes, namely, the absence of
scalable transmitter and receiver designs.

Motivated by this challenge, we seek in this article to
contribute a new QSM solution that is both, at the transmitter
side, scalable to arbitrary system sizes (i.e., with no limits
on nT , T and P ), and, at the receiver side, decodable in
polynomial time (i.e., practical for large nT and T , with
moderate P ). As a bonus, we also seek to furbish the proposed
QSM scheme with every possibility to optimize SE, diversity
and coding gains. To that end, we first introduce the optimal
full-diversity full-rate (FDFR) Golden STBC of [32] in the
design of the QSM dispersion matrices. The Golden code [32]
is known to optimal (i.e., FDFR with highest coding gain) over
Gaussian constellations, and which was shown in [33], [34] to

be constructible generally for arbitrary block sizes. To the best
of our knowledge, the resulting OS-QSM scheme is the first
method proposed so far which has this feature.

The new OS-QSM design is further enhanced with a new
algorithm to select the indices of the dispersion matrices
employed in the scheme, which ensures that all transmit
antennas are utilized as often and with the same likelihood over
the transmission of multiple blocks, thus ensuring optimally
diverse utilization of all spatial-temporal resources. We again
emphasize that such optimization is for the case of no transmit
CSI, unlike that in [27] where dynamic optimization is done
exploiting the available transmitter CSI to select the activated
antenna indices.

Finally, in order to ensure feasible decodability matching
the scalability of the transmitter design a new GB-ISTA QSM
detector is proposed, which leverages on sparse recovery
methods [35], [36]. Thanks to its sparse signal processing
approach, the proposed decoding scheme does not rely on
any restriction on the core code design, unlike preceding
sphere-detection methods which requires block-diagonal fast-
decodability. In addition, and most importantly, a major advan-
tage of the proposed GB-ISTA receiver is that it does not
require a search over the large codebook space, unlike the ML
and state codewords matched block-by-block sphere decoding
(SCMB-SD). In fact, the complexity order of the proposed
receiver is shown to be cubic on T , quadratic on P , and
linear on nT . All in all, the contributions of the article can
be summarized as follows:

• Coding Gain Optimality: In Subsection III-A, a trans-
mission scheme is formulated following the suggestion
given in [25] of substituting the Sezginer-Sari-Biglieri
(SSB)-based core dispersion matrix with the 2×2 Golden
code [32], which achieves optimal coding gain over
integer symbol constellations. This design is enabled
by the independence of the receiver later introduced in
Section IV, which does not require such block-by-block
orthogonality to function, as preceding methods did.

• Scalability of Transmitter: In Subsection III-B, the
above coding-gain optimal design is generalized via the
extension of the 2× 2 Golden code into its T ×T FDFR
STBC variation [33], [34], making the design applicable
to a wide range of parameters nT , T and P .

• Spectral Efficiency Optimality: In Subsection III-C,
a closed form expression for the optimum number of
encoded symbols P ∗ required for a QSM to achieve
SE optimality is given, which combined to the rate-
optimality condition of STBCs, highlights the importance
of systematic scalability of the STBC size T in the design
of SE-optimal QSM schemes.

• Resource Utilization Optimality: In Algorithm 1, a new
mechanism to select the optimal set of dispersion matrix
indices is offered, ensuring that all Q spatial-temporal
resources are equally utilized over time, for optimal
transmit diversity gain without transmitter CSI.

• Scalability of Receiver: In Section IV, a new low-
complexity greedy iterative shrinkage thresholding algo-
rithm (ISTA)-based demodulation algorithm for QSM
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schemes is proposed, which is feasible at large scales
due to its low complexity. This decoding scheme can
be applied to other STBC-QSM schemes with minor
modifications.

• Complexity of Receiver: In Subsection IV-C, a novel
complexity expression of the proposed receiver is derived
and shown to be cubic on T , quadratic on P , and linear
on nT , in contrast to the ML and SD receivers which are
geometric on T and nT , with P as exponent.

Notation: Complex matrices and vectors are denoted in
bold-face uppercase and lowercase letters, with their elements
denoted by indexed normal lowercase letters, as in X, x and
xi, respectively. The real and the imaginary parts of a complex
number x are respectively denoted by xR and xI , respectively,
and for the sake of future convenience we define for a com-
plex vector x = [x1, x2, · · · , xn]T the associated decoupled
vector x � [xR

1 , xI
1, · · · , xR

n , xI
n]T . The quadrature operator (̌·)

applied to a complex number x yields the quadrature-separated
form x̌, and will also be applied to m× n complex matrices
X, for which it yields the corresponding 2m× 2n matrix X̌
(see footnote1).

In turn, the complex conjugate, transpose, Hermitian, trace,
vectorization, and the diagonalization operators are denoted
by (·)∗, (·)T, (·)H, tr(·), vec(·), and diag(·), respectively,
while the n × n identity and the m × n-sized all-zero and
all-one matrices are respectively denoted by In, 0m×n, and
1m×n. The p-norm with p ≥ 0 is denoted by || · ||p, while
| · | denotes either element-wise absolute value operation (for
vectors) or cardinality (for sets), respectively, and the sets
of real, complex, and integer numbers are denoted by R,
C, and Z, respectively. Expectation is denoted as E[ · ], the
floor to the nearest power of 2 is represented by �·�2× , the
conversion operation of a left-most-significant binary vector
to the corresponding base-10 integer is denoted by [ · ](10).
The binomial coefficient is denoted by

(
Q
P

)
, and ⊗ denotes the

Kronecker product. The projection of a scalar v onto the set X
is denoted by PX (v), and the complex Gaussian distribution
with mean μ and variance σ2 is denoted by ∼ CN (μ, σ2).

II. PRELIMINARIES

A. System Model

Consider a point-to-point (P2P) MIMO communication
system in which a transmitter equipped with nT transmit
antennas exchanges information with a receiver equipped with
nR receive antennas employing SM. The received signal corre-
sponding to T consecutive time slots (transmission instances)
during which the channel is assumed to be constant can be
compactly written as

Y = HX + V ∈ C
nR×T , (1)

where Y ∈ CnR×T is the matrix collecting the signals
received at each antenna and time slot, H ∈ CnR×nT

is the flat-fading channel matrix with elements hi,j ∼
CN (0, 1), X ∈ CnT ×T is the space-time transmit signal, and

1To be clear, x̌ �
�
xR −xI

xI xR

�
and X̌ �

�
x̌1,1 ··· x̌1,n

...
. . .

...

x̌m,1 ··· x̌m,n

�
.

Fig. 1. Schematic diagram depicting the generic structure of a QSM
transmission scheme.

V ∈ CnR×T is the additive white Gaussian noise (AWGN)
with elements vi,j ∼ CN (0, N0), where N0 is the noise
variance.

It is assumed hereafter that the quasi-static Rayleigh fading
channel matrix H is known at the receiver but not at the
transmitter, and we remark that since the channel power per
matrix entry is unitary, the fundamental signal-to-noise ratio
(SNR) is given by ρ � 1

N0
E
[
tr(XHX)

]
. In turn, in accordance

with related QSM literature [7], [18]–[21], [23], [25] and as
illustrated in Fig. 1, the transmit signal matrix X is constructed
in a manner to convey the information of a bit sequence b,
both in the form of P digitally modulated signals, as well as
in the form of the dispersed allocations to different antennas
and time slots, as described by

X =
P∑

p=1

(sR
p AkR

p
+ sI

pBkI
p
), (2)

where sp = sR
p + jsI

p, with p = {1, · · · , P}, are transmit
symbols chosen from a complex constellation S of cardinality
|S| = M ; AkR

p
and BkI

p
are dispersion matrices belonging

to the sets A = {Aq}Qq=1 ∈ CnT×T and B = {Bq}Qq=1 ∈
CnT ×T , with Q � T ×nT ; and the indices kR

p and kI
p are the

p-th elements of the index vectors kR and kI , respectively,
which are selected from an optimized set of index vectors
K = {kn}Nn=1 ∈ NP , with N � �(QP)�2× .

With regards to (2), and again referring to Fig. 1, we clar-
ify that in QSM schemes the bit sequence b is subdivided
into three sequences: bS , of length BS � P log2 |S| =
P log2 M , which corresponds to the information encoded
in the symbols s = {s1, · · · , sP }, taken from S, and the
conjugate sequences bR and bI , both of length BK �
log2 |K| = log2 N , which correspond to the information
encoded in the selection of spatial-temporal resources accord-
ing to the dispersion matrix index vectors kR and kI from K,
respectively.

In view of the above, it can be said that the design of
a specific QSM scheme amounts essentially to the method
employed in the construction of each of the Q dispersion
matrices Aq and Bq in the sets A and B, and the selec-
tion of the set K containing the index vectors kR and kI

which inform the choices of dispersion matrices used in each
transmission.
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B. State of the Art Review

To exemplify how SotA QSM schemes can be cast into the
general framework described by (2), first consider the original
QSM scheme proposed in [7]. In this case, the dispersion
matrices reduce to dispersion vectors (i.e., T = 1 with
Q = nT ) which are given by

Aq = eq and Bq = jeq, (3)

where eq is the q-th column of IQ, and no specific design
criteria are given for the selection of the indices in the index
vectors kR and kI .

In turn, in the DA-QSM scheme of [23], two-column
dispersion matrices (i.e., T = 2 with Q = nT ) are employed
so as to exploit transmit diversity. In particular, in this scheme

Aq = Mq−1
nT

Ã and

Bq = jMq−1
nT

B̃, (4)

with Ã �
[ I2

0(nT−2)×2

]
and B̃ �

[ M2

0(nT−2)×2

]
, where Mn is

an n×n cyclic lower-shift matrix,2 such that its own (q−1)-th
power pre-multiplied to a given matrix results in a shift of the
bottom (q − 1) rows of the latter to the top.

From the above it is visible that the DA-QSM scheme
of [23] improves over the QSM scheme of [7] essentially by
adding diversity, i.e., by extending the transmission instances
from T = 1 to T = 2. However, the dispersion matrices
of the DA-QSM method are still real, just as those of the
QSM scheme of [7], implying that no additional multiplexing
capability is aggregated, and that the coding gain is not
optimized.

In contrast, the EDA-QSM method of [25] improves over
the latter on both aspects. In particular, in this scheme the
dispersion matrices are more elaborately designed as

Aq = A4(�−1)+i = e� ⊗Ci, (5a)

Bq = B4(�−1)+i = e� ⊗Di, (5b)

where e� is the �-th column of IL, with L � nT /2, the indices
i ∈ {1, · · · , 4} and � ∈ {1, · · · , L}, and the core matrices Ci

and Di are based on the SSB STBC of [26] described by

SSSB =
[
s1 + bs3 −s∗2 + jbs∗4
s2 + bs4 s∗1 − jbs∗3

]
=

4∑
i=1

sR
i Ci + sI

i Di, (6)

with b � (1−√
7)+j(1+

√
7)

4 , and

C1 � I2, C2 � Z,

C3 � bW, C4 � Z ·C3, (7a)

and

D1 � j M2 · Z, D2 � Z ·D1,

D3 � −bM2 ·W ·M2, D4 � Z ·D3, (7b)

where Z �
[
0 −1
1 0

]
and W �

[
1 0
0 −j

]
.

2To be clear, Mn is obtained by circularly shifting the bottom row of In

to the top, such that, e.g., M3 =

�
0 0 1
1 0 0
0 1 0

�
.

Thanks to the concise description above it becomes easy
to see that the fundamental distinction between the DA-QSM
and the EDA-QSM methods is that the dispersion matrices
of EDA-QSM are complex-valued, such that the orthogonality
between the real and imaginary dimensions are better exploited
in order to reap multiplexing and coding gains.

Two fair criticisms that can be made of the aforementioned
schemes – and in fact, to the best of our knowledge of all
existing SotA QSM methods proposed so far – are, however:
a) that the scheme does not scale systematically simultane-
ously over space and time, for arbitrary T > 2; and b) that
the coding gain achieved is not optimum. Mitigating these two
limitations are the first two objectives of our first contribution
described in the following section.

III. OPTIMIZED SCALABLE QUADRATURE SPATIAL

MODULATION (OS-QSM): MOTIVATION

AND TRANSMITTER DESIGN

A. Coding Gain Optimal Spatial-Temporal QSM (T = 2)

The main aim of this subsection is to introduce the notion
of coding-gain optimality to the SotA (T ≤ 2) QSM schemes.
To this end, let us begin by formulating an intermediate
design, which improves upon the SotA EDA-QSM scheme by
replacing the SSB code utilized in the latter with the coding
gain optimal 2× 2 Golden code [32], as conjectured3 in [25].

The Golden code compactly encodes four symbols
{s1, s2, s3, s4} into the matrix,

SG =
1√
5

[
α(s1 + s2θ) α(s3 + s4θ)
jᾱ(s3 + s4θ̄) ᾱ(s1 + s2θ̄)

]
, (8)

where θ and θ̄ denote the complementary Golden numbers
θ = (1 +

√
5)/2 and θ̄ = (1 −√5)/2, respectively, and α =

1+j(1−θ) and ᾱ = 1+j(1− θ̄) are the optimized coefficients
for the Gaussian integer constellation sets.

We highlight that the Golden code described in (8) is known
to have maximum achievable coding gain among all 2 × 2
FDFR STBCs under integer Gaussian constellations, hence
outperforming the SSB code utilized in the EDA-QSM.

The construction of QSM dispersion matrices based on the
Golden code follows from the decomposition of SG into the
auxiliary matrices Ci and Di, which are used to modulate
the real part sR

i and imaginary part sI
i of each i-th symbol

encoded, respectively, such that

SG =
1√
5

4∑
i=1

(sR
i Ci + sI

i Di), (9)

where

C1 �
[
α 0
0 ᾱ

]
, C2 � Θ ·C1,

C3 � J2,1 ·C1 ·M2, C4 � J2,1 ·C2 ·M2, (10a)

and

Di � jCi, (10b)

3In the concluding remarks of [25] it was conjectured, without any further
details or related development, that the EDA-QSM scheme proposed thereby
could be improved via the utilization of other STBCs. The contribution of
this subsection concretely realizes that suggestion, and is an intermediate step
to the more significant generalization for T > 2 that follows hereafter.
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with Θ �
[
θ 0
0 θ̄

]
and J2,1 �

[
1 0
0 j

]
. Note that post-multiplying

the circular lower-shift matrix Mn to a given matrix X results
in a columnwise left-circular shift of X.

In possession of the above auxiliary matrices, the Golden
dispersion matrices are then built using the Kronecker product
operations following a similar strategy of [24], [25], namely

Aq = A4(�−1)+i =

√
2
5

e� ⊗Ci (11a)

Bq = B4(�−1)+i =

√
2
5

e� ⊗Di. (11b)

Regarding the scaling factor in (11), the denominator 1√
5

is passed over from the coefficient of the Golden code as in
(8) and (9), while the numerator

√
2 is the result of power

scaling required to ensure that the transmit power constraint
E
[
tr(XHX)]

]
= PT is satisfied. To elaborate further, (2) and

(11) following E
[
tr(XHX)]

]
= PT imply that the dispersion

matrices must satisfy tr(AH
q Aq) = T and tr(BH

q Bq) = T ,
for all q ∈ {1, · · · , Q}, whereas from the construction of the
auxiliary matrices Ci and Di as per (10) it is evident that
tr(CH

i Ci) = 1 and tr(DH
i Di) = 1, such that a power scaling

of T = 2 onto Ci and Di, i.e., an amplitude scaling of
√

2
onto Ci and Di, is needed.

We may summarize the contribution of this subsection as
an extension of the EDA-QSM scheme via the substitution
of its core dispersion matrix with a Golden code-based alter-
native, alluded to in [25], that lends it coding gain optimal-
ity. Although it is trivial that this scheme, which we refer
to as the Golden code-based quadrature spatial modulation
(G-QSM), outperforms the original EDA-QSM, a direct simu-
lated comparison between the two is provided in Fig. 11, found
in Section III.

B. Scalable Coding Gain Optimal QSM Design (T ≥ 2)

Despite the coding gain optimality it introduces as a STBC-
based QSM scheme, the G-QSM design formulated in Sub-
section III-A still suffers from a limitation in the temporal
dimension T , i.e., the number of transmission instances,
which is limited to T = 2. In this subsection, we therefore
extend the notion of coding gain optimal QSM, generalized to
scaled temporal dimensions, i.e., T ≥ 2. Straightforwardly,
this restriction on T can be eliminated by designing the
QSM dispersion matrices based on the Perfect FDFR STBC
proposed in [33], [34]. Leaving details of the code construction
to [33], [34], a T ×T FDFR STBC encodes T 2 symbols such
that the average energy transmitted per antenna is normalized
to unity, an energy efficiency-shaping constraint is enforced,
and a SE-preserving lower bound on the coding gain (a.k.a,
non-vanishing determinant) is maximized. We highlight the
last property which is the coding gain optimality for a given T ,
hereafter considered always to be a divisor of nT .

Ultimately, for given T ∈ N+ the design is described by

SP =
T∑

t=1

diag(R · st) · JT,t−1 ·Nt−1
T , (12)

where st = [s1+(t−1)T , s2+(t−1)T , · · · , stT ]T, with t =
{1, · · · , T } are vectors each carrying T distinct transmit
symbols, R is a T×T optimum lattice generating matrix [33],
JT,n is a T × T matrix constructed by replacing the last
n diagonal entries of the identity matrix by the elementary
complex number j, and NT is a T × T cyclic upper-shift
matrix,4such that post-multiplying it to a given matrix X
results in a column-wise shift of X to the right.

Notice that the Perfect FDFR STBC of [33] fully generalizes
the 2×2 Golden code of [32]. To see that, suffice it to consider
the case T = 2 and with the corresponding lattice generating

matrix R � 1√
5

[
α αθ
ᾱ ᾱθ̄

]
, such that (12) yields

SP = diag
(

1√
5

[
α αθ

ᾱ ᾱθ̄

] [
s1

s2

])
· J2,0 ·N0

2

+ diag
(

1√
5

[
α αθ

ᾱ ᾱθ̄

] [
s3

s4

])
· J2,1 ·N1

2

=
1√
5

[
α(s1 + s2θ) α(s3 + s4θ)

jᾱ(s3 + s4θ̄) ᾱ(s1 + s2θ̄)

]
= SG. (13)

It follows that in order to be employ Perfect FDFR STBCs
in the design of QSM, suffice it to decompose the core code
structure of (12) in terms of corresponding auxiliary dispersion
matrices Ci and Di due to symmetry, namely

Ci = CT (w−1)+t = diag(R · et) · JT,w−1, ·Nw−1
T , (14a)

Di = jCi, (14b)

where the generalized indices i ∈ {1, · · · , T 2} are constructed
systematically on t ∈ {1, · · · , T } and w ∈ {1, · · · , T }, and
et is the t-th column of IT .

Following this, the full set of dispersion matrices A and B
can be built, i.e.,

Aq = AT 2(�−1)+i = γe� ⊗Ci, (15a)

Bq = BT 2(�−1)+i = γe� ⊗Di, (15b)

where again q ∈ {1, · · · , Q}, i ∈ {1, · · · , T 2} as from (14),
e� is the �-th column of IL, but � ∈ {1, · · · , L} with L =
nT /T , as well as a generalized scaling factor γ determined
depending on the specific STBC in order to adjust the powers
of the dispersion matrices such that tr(AH

q Aq) = T and
tr(BH

q Bq) = T .

C. Spectral Efficiency Optimality of QSM Schemes

We now turn to the spectral efficiency optimality of QSM
schemes and analyze the effects of the scalable parameters nT ,
T and P , deriving corresponding SE-optimal parametrization.

Recall the QSM transmit symbol X as per (2), which
conveys a total of B bits. With the fact that such transmission
requires T successive channel uses, the SE ζ of any QSM
scheme, in bits/s/Hz, is given by

ζ(P, T ; M, nT ) =
B

T
=

1
T

(
2
⌊
log2

(
Q
P

)⌋
+ P log2 M

)
, (16)

4Notice that JT,n generalizes J2,1 used in (10). In turn, oppositely to Mn,
Nn is obtained by circularly shifting the top row of In to the bottom. Some

examples are J2,0 �
�
1 0
0 1

�
,J3,2 �

�
�10 0

0 j 0

0 0 j

�
�, and N3 �

�
�0 1 0

0 0 1

1 0 0

�
�.
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Fig. 2. Spectral efficiency of OS-QSM scheme with T = 2, 4, and 8, for a given system with nT = 8 and M = 4.

where we recall that Q � TnT and adopt a notation meant to
emphasize that P and T are seen as fundamental QSM design
parameters, while M and nT are system constraints.

The presence of the binomial coefficient
(
Q
P

)
in (16) implies

that the SE function ζ(P, T ; M, nT ) is monotonically descend-
ing on T for a fixed P , and concave on P for a fixed T , as well
as on the ratio P/T . This is well illustrated in the plots offered
in Fig. 2, from which it can be seen that in a system with
nT = 8 and M = 4, the highest attainable SEs, denoted by
ζ∗, are achieved with P = 11, 21 and 42, for T = 2, 4 and 8,
respectively.

The increasing effect onto SE by growing T , for a given
system of nT transmit antennas, even under constant P/T ,
is also visible in Fig. 2.

Motivated by the discussion above, we seek analytical
expressions for the optimum ratio P/T that maximizes the
SE, given nT and M , which in turn can be used to determine
the relative SE reduction incurred in setting T < nT for
large-scale systems with nT → ∞. To this end, consider the
upper and lower-bounds on the binomial coefficient discovered
in [37], namely

e−1/8√
2πP

(
Q

Q−P

)Q+ 1
2·
(

Q−P
P

)P
<

(
Q

P

)

< 1√
2πP

(
Q

Q−P

)Q+ 1
2·
(

Q−P
P

)P
︸ ︷︷ ︸

�β(P ;Q)

, ∀ 1 ≤ P < Q,

(17)

where, for future convenience we implicitly defined the upper-
bounding function β(P ; Q).

Using (17) into (16) yields the bound

ζ(P, T ; M, nT ) <

�ζ+(P,T ;M,nT )︷ ︸︸ ︷
1
T

log2

(
β2(P ; Q) ·MP

)
, (18)

and taking the derivative of the latter expression with respect
to P yields

∂ζ+

∂P
=

1
T
· ∂

∂P

[
2 log2

(
1√
2πP

(
Q

Q−P

)Q+ 1
2
(

Q−P
P

)P)
+ P log2(M)

]

=
1

T ln(2)

[
2
(

ln
(

1−ε
ε

)
+ 1−2ε

2Q(ε−1)ε

)
+ ln(M)

]

=
1

T ln(2)

[
ln( (1−ε)2·M

ε2 ) +
(

1−2ε
Qε(ε−1)

)]
, (19)

where in the second line we relax the constraint that P ∈ N

and expressed more generally P = εQ, introducing the
positive quantity ε ≤ 1.

Equating the expression in (19) to zero yields the following
analytical implicit expression to determine the optimal number
of symbols P ∗ that maximizes the SE of a QSM system with
Q = TnT spatial-temporal resources and employing an M -ary
constellation

P ∗ = �ε Q�
∣∣∣ 2ε−1

(ε−1) ln
((

1−ε
ε

)2
M
) = εQ � P, (20)

where we emphasize that the quantity on the righthand side
of the expression is in fact sought after number of transmitted
symbols P .

Recalling that the desired P ∗ is also the largest possible,
(20) implies that

P ∗ =
⌊

max
(

2ε−1
(ε−1) ln( 1−ε

ε )2M

)⌋
, (21)

which in turn implies that the optimum ε is such that(
1−ε

ε

)2
M = 1, i.e., the solution of the quadratic polynomial

(M − 1)ε2 − 2Mε + M , which finally yields, simply

P ∗ =
⌊

M−√
M

M−1 Q
⌋

= �ε∗MTnT �, (22)

where we introduced the implicitly-defined optimum gradient
ε∗M � M−√

M
M−1 .
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Fig. 3. Effect of T and M on the optimum ratio P ∗/T between the number
of transmit symbols and epochs.

We emphasize that the elegant result offered in (22) is
general for any QSM scheme. From this result it is seen
that the optimum ratio P/T that maximizes the SE of the
QSM scheme is linear on the number of transmit antennas nT .
In other words, for any given M and nT , an SE-optimum QSM
must be such that P/T scales linearly with nT , as illustrated
and confirmed by the simulation results shown in Fig. 3.

Recall also that QSM dispersion matrices are constructed
with basis on STBCs characterized by T ×T square encoding
matrices. Consequently, it follows that if P must scale with
nT in order for the QSM to be SE-optimal, so must the size
T of the code, in order for the the underlying STBC itself
to retain SE-optimality. In other words, (22) also implies that
in order to achieve SE-optimality, a QSM scheme conveying
M -ary symbols must employ an underlying full-rate STBC
of a size that scales proportionally to the number of transmit
antennas nT .

We remark, however, that setting T = nT is not a scal-
able proposition, not only because it implies furbishing the
transmitter with an equal number of RF chains, which can
be prohibitively expensive, but also because it results in fully
dense signals, which in turn require also prohibitively complex
ML receivers. This observation motivates the comparisons
given in Fig. 4, which shows the fraction of the maximum
attainable spectral efficiencies ζ∗ occurring at P ∗, obtained
by QSM schemes employing STBCs of different sizes, as a
function of nT and for different M . It can be seen that QSM
schemes with T sufficiently large, but still significantly less
than nT , also asymptotically achieve near optimal SE as long
as nT is sufficiently large.

D. Optimal Set Selection of Dispersion Matrix Indices

On top of the coding-gain and SE optimization, and
the temporal scalability, there is another mechanism to
improve the performance of QSM schemes employing STBCs,
namely, to optimize the selection of the index vectors in

Fig. 4. Behavior of fractional peak spectral efficiency as a function of nT ,
for different sizes of T and M .

K = {kn}Nn=1 ∈ NP that determine which dispersion matrices
are assigned to the real and imaginary parts of each encoded
symbol. This is because each index vectors kn is, according
to (10) and (11), associated with different subsets of spatial-
temporal resources utilized by the QSM scheme in the trans-
mission of a given set of spatially encoded bits. To illustrate
the issue, define the set K∗ of all

(
Q
P

)
distinct index vectors for

a given pair (P, Q), and consider the corresponding example
compiled in Table I for the case P = 3, T = 2, and Q = 8
(nT = 4, with Q � TnT ).

Recall also that each dispersion matrix in the transmission
of sR

p or sI
p uses P given pairs of antennas and time slots,

as per (10) and (11), such that for the sake of conciseness
we hereafter refer to each pair of one antenna and one time
slot simply as a spatial temporal resource rq , defining also for
future convenience the set of all available and utilized spatial
temporal resources, denoted respectively by R∗ and R. Then,
if resources and dispersion matrix indices are represented by
a rectangular and a circular nodes, respectively, a bipartite
graph such as the one shown in Fig. 5 for the case in question
(i.e., P = 3, T = 2, and Q = TnT = 8) can be built,
in which an edge connecting a circular and a rectangular nodes
indicates that the corresponding resource is used by the given
dispersion matrix.

As illustrated by the graph, the inclusion of a given index
set kn from K∗ into the set K is associated with the use
of certain resources, occasionally with multiplicity, identified
by the graph edges intercepted by the enclosure encircling
the corresponding indices. We shall therefore use the notation
kn ⇒ rn to indicate that the index set kn implies the
utilization of the set of resources rn, and μkn

(rq) to denote
the multiplicity of the resource rq in the set kn.

For example, the use of the resources r1 = {2 ×
(1, 1), (1, 2), (2, 1), 2 × (2, 2)} results from having k1

= [1, 2, 3] in K, such that we may write concisely
k1 ⇒ r1, with μk1(1, 1) = μk1(2, 2) = 2. Similarly,
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TABLE I

SETS OF ALL POSSIBLE INDEX VECTORS K∗ AND RESOURCES R∗ (P = 3, nT = 4, T = 2)

Fig. 5. Bipartite graph representing the spatial-temporal resource usage associated with each index vector kn for a QSM system with P = 3, T = 2, and
Q = 8. The particular examples of k1, k37 and k54 are explicitly illustrated.

k37 = [3, 4, 5] ⇒ r37 = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1),
(4, 2)}, and k54 = [5, 6, 8] ⇒ r54 = {(3, 1), 2 × (3, 2), 2 ×
(4, 1), (4, 2)}, with μr37(3, 2) = μr37(4, 1) = 2.

It is evident from all the above that in order to avoid redun-
dancy and uneven utilization of spatial-temporal resources,
so as to optimize the performance of QSM schemes [38],
the sets of dispersion matrix indices K (with corresponding
resource set R) must satisfy the following conditions: a) no
two index vectors kn and km in the set can be equal
(i.e.,kn �= km, ∀n �= m); b) no two elements in each index
vector can be equal

(
i.e., [kn]i �= [kn]j , ∀kn and i �= j

)
;

c) the utilization of all resources available must be ensured(
i.e., μK(rq) > 0 ∀ rq ∈ R

)
; d) all resources are utilized

as often
(
i.e., μK(r1) = · · · = μK(rQ)

)
, and finally e) the

cardinality of the set must be a power of 2 in order to enable
the encoding of codewords

(
i.e., N = |K| = �(QP)�2×

)
.

As an example, Table I highlights the set of index vec-
tors K = {k1,· · ·, k3, k5,· · ·, k8, k10, k11, k19, · · ·, k23,
k26,· · ·, k28, k35, · · ·, k38, k41, k42, k47, k48, k50, · · ·, k56}.
The reader can verify that by this choice of K, all resources
in the associated set R have multiplicity 24. In contrast,
a naive truncation of the first 32 index vectors in Table I,
i.e., K = {k1, · · ·, k32} as suggested e.g. in [25], leads to an
uneven utilization pattern in which μK(1, 1) = μK(2, 2) = 32,
μK(1, 2) = μK(2, 1) = 28, μK(3, 1) = μK(4, 2) = 19 and
μK(3, 2) = μK(4, 1) = 17, which is obviously sub-optimum
as it leads to antennas 1 and 2 being used far more often than
antennas 3 and 4.

To see this effect clearly, we provide a visual representation
in Fig. 6a where the histogram exhibits the allocation pattern
of the spatial-temporal resources of the naively selected set,
as per the SotA method.
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Fig. 6. Comparison of the spatial-temporal resource allocation patterns for
the naive and proposed schemes.

The problem of selecting the optimum set K described
above and illustrated in Fig. 6b, relates to a classic problem in
combinatorics graph theory [39] known as the Vertex Cover
Problem. In the context hereby, however, the problem has the
additional difficulties that: a) the graph in question is bipartite,
b) coverage with equal multiplicity is required rather than just
full coverage, and c) nodes must be selected in subsets of
P at a time. Due to these peculiarities, the problem itself is,
to the best of our knowledge, original and cannot be solved by
known variations of the Vertex Cover algorithm. Fortunately,
the highly symmetric structure of the associated bipartite graph
can be exploited to design an efficient algorithm to solve the
selection problem at hand.

Algorithm 1 Greedy Construction of Optimal Set of Index
Vectors K
Internal Parameters: Number of resources Q = T ·nT and

set of all possible indices K∗.

Inputs: Number of symbols P , of transmit antennas nT and
dimension T of FDFR STBC.

Outputs: Optimized set of index vectorsK.

1: Choose a random seed n ∈ {1, · · · , (Q
P

)}
and start with

K = ∅;
2: while |K| �= �(Q

P

)�2× do
3: Insert kn into the set K of selected index vectors;
4: Sort all indices k ∈ {1, · · · , Q} in ascending order

of their multiplicities in K;
5: Set D = P and construct/clear the empty set

K̃ = ∅ of candidate index vectors;
6: while |K̃| = 0 do
7: Construct a list κ of candidate indices with the

D lowest multiplicities in K;
8: Construct the set K̃ of all

(
D
P

)
index vectors k̃m

with indices in κ;
9: Remove from K̃ all index vectors already in K;

10: if |K̃| = 0 then
11: Increment D by 1;
12: end if
13: end while
14: Select next n ∈ {1, · · · , (Q

P

)}
as the position of the

first index vector k̃m of K̃ in K∗;
15: end while

To that end, let us commit a slight abuse of notation and
define the multiplicity of a dispersion matrix index5 q in the
set K as μK(q). Then, by virtue of the symmetry of the graph
(see Fig. 5), a solution K in which μK(1) = · · · = μK(Q)
implies a solution R in which each of the spatial temporal
resources {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (4, 2)} have the
same multiplicity. Consequently, the problem can be solved
efficiently by the greedy selection of indices, as described
in Algorithm 1.

Notice that while the examples given above are for the
minimal case of T = 2 as in the G-QSM or the EDA-QSM,
it is obvious that the algorithm is also valid for any general T .

This holds because the key properties of the underlying
bipartite graph enabling the proposed algorithm, i.e., symmetry
and disjointedness, are still retained for dispersion matrices
for T > 2 constructed following (14) and (15).6 Following
this, the corresponding bipartite graph illustrated in Fig. 5 is

5Notice that there is no ambiguity with the definition of multiplicity of
resources because dispersion matrix indices are single numbers, while spatial
temporal resources are pairs.

6To see this, inspect (14), where each auxiliary matrix Ci and Di is a T×T
sparse matrix obtained from a cyclic rotation of a diagonal matrix containing
only T non-zero elements of R, and (15) whose kronecker products produces
the disjointedness in the associated dispersion matrices and the graph.
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merely expanded to a similar graph with T ·nT index (circular)
nodes and T · nT resource (rectangular) nodes, with each q
resource node connected to T index nodes and vice versa.
As a result, the greedy strategy described earlier remains valid,
as evidenced by the fact that Algorithm 1 applies to general T .

E. Optimized Scalable Quadrature Spatial Modulation

Finally, the contributions of the previous Subsections III-B
to III-D are combined, and proposed as the optimized scalable
QSM (OS-QSM) transmitter design, which is optimized under
SE, coding-gain, and resource allocation, while scalable in
both the spatial and temporal domain. For the convenience
of the reader, we summarize the structure of the proposed
OS-QSM transmitter design in Algorithm 2.

Algorithm 2 Proposed OS-QSM Signal Generation
Internal Parameters: Number of symbols P , transmit anten-

nas nT , time slots T and spatial-temporal resources Q =
T · nT ; and cardinalities M = |S|, and N = �(QP)�2× .

Global Quantities: Symbol constellation S, optimum lattice
generating matrix R, sets of dispersion matrices A =
{Aq}Qq=1 and B = {Bq}Qq=1 with Aq and Bq as in (15),
set of index vectors K obtained from Algorithm 1.

Input: Information bit sequence b = [bR, bI , bS ];
Outputs: Transmitted signal X.

1: Select vector kR as the ([bR](10) + 1)-th vector in K;
2: Select vector kI as the ([bI ](10) + 1)-th vector in K;
3: Assign the bits bS to P symbols {s1, · · · , sP } selected

from S, with sp = sR
p + jsI

p;
4: Construct X =

∑P
p=1(s

R
p AkR

p
+ sI

pBkI
p
) as per (2);

It should be mentioned that the aforementioned contribu-
tions may be integrated, jointly or separately, into other general
SM/QSM schemes and is not limited to our specific transmitter
design, subject to an appropriate modification. However such
modifications and applications are out of scope of this paper.

IV. PROPOSED RECEIVER DESIGN

A. Sparse Formulation of QSM Receivers

Together, Algorithms 1 and 2 introduced above demon-
strate that the design of OS-QSM transmitters is possible
and tractable. There is, however, no true scalability without
feasibility, such that in order to complete the task it is also
necessary to show that the proposed OS-QSM design is
effectively decodable at reasonable complexity.

To put the challenge into context, for given P , M , T and
nT , with Q = T ·nT , an ML receiver would have to go through
(�(QP)�2×)2 · MP combinations of symbols and selected
spatial-temporal resources in order to detect a sequence of
2 · �log2

(
Q
P

)� + P · log2 M bits. That means that even for
the minimal setting of T = 3, P = 3 and M = 4, a system
with nT = 6 transmit antennas would require the receiver
to go through (�(183 )�2×)2 · (4)2 =16,777,216 combinations in
order to decode the corresponding log2(16,777,216) = 24 bits.

In other words, ML decoding is highly impractical in QSM
systems, especially in the context of massive MIMO systems.

We emphasize that this challenge applies not only to the
OS-QSM scheme of Subsection III, but also to current SotA
QSM methods such as those in [23]–[25], as the example
given above is for T = 2, which is the size of the core codes
used in the latter. We furthermore stress that the utilization
of SD receivers is also not viable in scaled cases, because
the nature of tree search algorithms still requires excessive
computational complexity in large systems, as shown in
[29]–[31]. Finally, we also remark that since convenient
properties such as fast-decodability and block-diagonality are
known not to be retainable without sacrifice of optimality for
STBC of arbitrary size [33], [34], a scalable detector for QSM
schemes cannot rely on such features.

In light of the above, we introduce hereafter a new detection
method for QSM schemes which relies neither on tree-search,
nor on specific properties of STBCs, and which is completely
independent of the infeasible combinatorial factor �(QP)�2× .
In addition, given prior information on the encoding construc-
tion, the proposed decoder is valid to detect any QSM signal.

The core idea of our approach is to take full advantage of a
sparse representation of QSM signals over the entire channel
(i.e., for all spatial temporal resources available), assumed
known at the receiver. The proposed decoding method then
leverages the iterative shrinkage thresholding algorithm (ISTA)
to greedily extract symbol and dispersion index estimates,
resulting in significantly lower complexities compared to ML
and SD-based methods. To that end, first combine (1) and (2),
and consider the vectorized form of the QSM received signal

y � vec(Y) =

�ΦH︷ ︸︸ ︷
(IT ⊗H)(ΞAuR + ΞBuI) +

�v︷ ︸︸ ︷
vec(V)

= ΦH · (ΞAuR + ΞBuI) + v ∈ C
TnR×1,

(23)

where we implicitly defined the block-diagonal channel matrix
ΦH and vectorized noise v; the dispersion matrices in A and
B are also vectorized into aq � vec(Aq) and bq � vec(Bq)
and concatenated into ΞA � [a1, · · · , aQ] ∈ CQ×Q and
ΞB = [b1, · · · ,bQ] ∈ CQ×Q, respectively; and uR ∈ RQ×1

(respectively uI ∈ RQ×1) is set to zero everywhere, except
for its elements of indices kR ∈ K (respectively kI ∈ K),
which are set to {sR

1 , · · · , sR
P } (respectively {sI

1, · · · , sI
P }).

Equation (23) can be further simplified by defining the
combined and real-imaginary decoupled information and noise
vectors

u � [ uR
1 , uI

1, · · · , uR
Q, uI

Q ]T ∈ R
2Q×1, (24)

v � [vR
1 , vI

1 , · · · , vR
TnR

, vI
TnR

]T ∈ R
2Q×1, (25)

as well as the decoupled versions of aq and bq , namely

aq � [ aR
q1

, aI
q1

, · · · , aR
qQ

, aI
qQ

]T ∈ R
2Q×1, (26a)

bq � [ bR
q1

, bI
q1

, · · · , bR
qQ

, bI
qQ

]T ∈ R
2Q×1, (26b)

which in turn can be combined into a single dispersion matrix
ΨD ∈ R2Q×2Q, namely

ΨD � [ a1, b1, a2, b2, · · · , aQ, bQ ], (27)
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such that the vectorized model of (23) can be rewritten as

y = Φ̌H ΨD · u + v = ΦH · ΨD · u + v

= G · u + v ∈ R
2TnR×1, (28)

where Φ̌H is the quadrature-operated block diagonal chan-
nel matrix ΦH , which we implicitly relabeled ΦH , as with
the effective channel matrix G � ΦH · ΨD, for future
convenience.

To elaborate on (28) with an example, consider a system
with P = 3, T = 2 and nT = 4, and assume that
for a particular bit sequence b = [bR, bI , bS ], the selected
index vectors are given by kR = k10 = [1, 3, 7] and
kI = k47 = [4, 5, 7]. Then, the corresponding combined
information vector becomes u = [sR

1 , 0, 0, 0, sR
2 , 0, 0, sI

1,
0, sI

2, 0, 0, sR
3 , sI

3, 0, 0]T. Notice that while u carries in the
entries sR

p and sI
P the P log2 M bits corresponding to the bS

subsequence, the remaining 2 log2 N bits corresponding to the
subsequences bR and bI are encoded merely by positions of
non-zero elements in u, regardless of what the values of sR

p

and sI
P might be, which suggests that the detection of bS could

be done separately from that of bR and bI .
In principle, the latter feature could be utilized to design

an SD receiver for the OS-QSM method proposed above,
similarly to how block-separability was exploited in [25] to
do so for the EDA-QSM scheme. The problem with that
idea is, of course, the prohibitively large number of com-
binations how the 2P elements of the decoupled symbol
vector s = [sR

1 , sI
1, · · · , sR

P , sI
P ] can be placed among the 2Q

entries of u. In order to circumvent this challenge, we instead
seek to exploit the facts demonstrated in Subsection III-C,
namely, that: a) the optimum number P ∗ of symbols maxi-
mizing SE is a fraction of the total spatial-temporal resources
Q = T · nT , as per (20); and b) that in large-scale systems
with nT � 1, a significantly smaller block size T suffices
to asymptotically achieve SE optimality, as shown in Fig. 4.
Together, these facts imply that the sparsity of u becomes
increasingly more prominent in large-scale SE-optimal QSM
schemes, which favors sparse recovery algorithms [35], [36].
It is also evident from the inspection of (28) that the
matrices ΦH and ΨD can be respectively interpreted as
the sensing and dictionary matrices typical of compressive
sensing (CS) models [40], such that recent progress on
sparse [41], [42] and discrete-aware receivers [43] can be
leveraged.

Taking into account the focus on scalability, which at the
receiver side translates to controlling complexity, two suitable
candidate methods to be applied for OS-QSM demodulation
are the generalized approximate message-passing (GAMP)
algorithm [44]–[46], and the iterative shrinkage thresholding
algorithm (ISTA) [35], [36], both of which possess quadratic
complexity on the size 2TnT of the signal vector u. It is well-
known, however, that the GAMP algorithm relies on the par-
ticular structure of measurement matrix and the independence
of the received signal, which in the case of QSM cannot be
generally assumed, as a direct consequence of the utilization
of STBCs in the dispersion matrices. In the absence of the

required conditions, GAMP receivers yield poor performance,
characterized by error-floors at high SNRs7 [47], [48].

Motivated by this fact, we therefore choose to follow
a ISTA-based approach in the design of a low-complexity
demodulator for QSM systems, which is described in the
sequel. In particular, we introduce an algorithm to detect QSM
signals, which is based on a purpose-built variation of ISTA
that incorporates modifications both on the thresholding func-
tion and on the index vector estimation process, specifically
to QSM detection.

B. Greedy Boxed ISTA-Based QSM Decoder

Consider the standard ISTA recursion [35],

û(η+1) = Λ
(
û(η) +

1
α

GT
(
y −G û(η)); λ

2α

)
, (29)

where û(η) is the estimate of u at the η-th iteration,
α = maxeig(GTG) is the shrinkage step-size,8 λ is the
threshold factor, and Λ(s; τ) is the soft-thresholding function.

A first meaningful modification to such standard ISTA
recursions in (29) is to account for the fact that the symbols in
the real-valued projected constellation SR � PR(S) are finite,
such that in addition to the lower limit τ in the vicinity of the
origin used to enforce sparsity in the solution, an upper limit
max(SR) can be introduced into the thresholding function.

In other words, for the case at hand we replace ISTA’s stan-
dard soft-thresholding function Λ(s; τ) by a hard-thresholding
function leading to the “boxed” hard-thresholding function
Π(s; τ) illustrated in Fig. 7 and defined by

Π(s; τ) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

min(SR) s ≤ min(SR),
s min(SR) ≤ s ≤ −τ,

0 |s| ≤ τ,

s τ ≤ s ≤ max(SR),
max(SR) max(SR) ≤ s.

(30)

Incorporating this modification yields the boxed-hard ISTA
(BH-ISTA) receiver described by

û(η+1) = Π
(
û(η) +

1
α

GT
(
y −G û(η)); λ

2α

)
. (31)

Notice that the computational cost of repeatedly evaluating
(31) is dominated by the term Gû(η), therefore quadratic
on the number of non-zero entries (i.e., �0-norm) of û(η),
which reduces with the iterations η, as illustrated in Fig. 8.
In particular, Fig. 8a shows a comparison of the convergence
of |û(η)|0 as a function of η for various values of threshold
parameter τ , with û(η) obtained both from (29) and (31),
i.e., via conventional and BH-ISTA, respectively, which for
convenience will be hereafter denoted û

(η)
Π and û

(η)
Λ .

It can in fact be seen that as a result of boxing and hard-
thresholding, |û(0)

Π |0 < |û(0)
Λ |0, such that the expected order

of complexity associated with evaluating (29) is lower than

7A GAMP receiver for QSM systems was also developed, implemented and
used to confirm its shortcoming.

8The actual requirement is that α > maxeig(GTG), however, we will
assume the minimum step-size, which is sufficient.
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Fig. 7. Comparison of ISTA thresholding and BH-ISTA thresholding
functions Λ(s; τ) as per [35], and Π(s; τ), as per (30).

that of evaluating (31), which can be bounded both below and
above by the lower- and upper-limits

(O(4P 2) and O(4Q2)
)
.

More details will be given in Section IV-C. In turn, Fig. 8b
shows that the mean-squared error (MSE) obtained with the
proposed BH-ISTA approach is better than that obtained with
conventional ISTA, which illustrates the effectiveness of the
boxed and hard-thresholding modification here proposed for
the demodulation of QSM signals.

It is left for us to address, however, how the bits associated
with the choices of dispersion matrix indices {kR, kI} ∈ K
can be efficiently detected. To that end, another addition
is introduced to the ISTA-based detector, namely, a greedy
hard-detection procedure for each symbol recovered, with a
concomitant update of (31), which can be described as follows.

Let us consider that multiple runs of the BH-ISTA iterations
described by (31) are performed, such that prior to the m-th
run a modification is made to y, G and u, which can be
expressed by rewriting (31) as

û(η+1)
m = Π

(
û(η)

m +
1
α

GT
m

(
ym −Gm û(η)

m

)
;

λ

2α

)
, (32)

where we convene that for the fist run (m = 1) we set y1 = y,
G1 = G and û

(1)
1 = 02Q.

Let η∗ be the last iteration of the m-th run of the latter
estimator, with its corresponding outcome denoted by û(η∗)

m .
And finally, let s̃q̂m be the entry of û(η∗)

m with the largest
amplitude, whose position is denoted by q̂m, such that we
may write

s̃q̂m=
{
[û(η∗)

m ]q̂m

∣∣∣∣∣[û(η∗)
m ]q̂m

∣∣ >
∣∣[û(η∗)

m ]�
∣∣, ∀� ∈{1, · · · , 2Q}

}
,

(33)

Fig. 8. Convergence of û
(η)
Π and û

(η)
Λ , as per (29) and (31), respectively,

as a function of iterations η.

where [x]� denotes the �-th element of a generic
vector x.

We emphasize that in the greedy procedure summarized by
(33), two distinct pieces of information on the bit sequence
b are obtained, namely, a soft estimate s̃q̂m of one of the
modulated symbols {sR

p , sI
p} ∈ SR, and a hard estimate

q̂m of one of the indices contained in the selected index
sets {kR, kI} ∈ K. In possession of such information, the
following steps are then executed in order to produce the
modified quantities required to perform the next run of the
BH-ISTA recursion described by (32).

First, a hard-detected version of s̃m is obtained by projecting
in onto SR, that is

ŝq̂m = PSR(s̃q̂m). (34)
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Then, the remaining quantities are updated following

û
(1)
m+1 =

(
I2Q − diag(eq̂m)

)
û(η∗)

m , (35a)

ym+1 = ym −Gm · eq̂m ŝq̂m , (35b)

Gm+1 = Gm

(
I2Q − diag(eq̂m)

)
, (35c)

where I2Q is an identity matrix and eq̂m its q̂m-th column.
Recall that due to the quadrature-decomposed structure of

the sparse vector u, all odd index estimates q̂m correspond to
the real parts of modulated symbols, while even q̂m correspond
to the imaginary parts, respectively. It is therefore sensible
that, as (32) through (35) are evaluated iteratively, the obtained
index estimates {q̂1, q̂2, · · · , q̂m} be split and collected accord-
ingly into the subsequences

q̂R
m �

{
q̂m

∣∣mod(q̂m, 2) = 1, ∀m
}
, (36a)

q̂I
m �

{
q̂m

∣∣mod(q̂m, 2) = 0, ∀m
}
, (36b)

where mod(x, 2) denotes the modulo-2 operation onto x.
If there are no errors during the detection process, after

exactly m = 2P runs, the sequences {q̂R
m, q̂I

m} can be
perfectly mapped to {kR, kI}, in particular via

k̂
R

=
1
2
(q̂R

m + 1) and k̂
I

=
1
2
q̂I

m, (37)

such that procedure comes to a stop.
More generally, however, errors may occur, such that either

q̂R
m or q̂I

m, or both, contain incorrect indices even with
cardinality P . In such cases, the procedure continues until both
subsequences contains the first P -tuple of indices included in
the dispersion matrix index vector set K, at which point a
modification of the update equations is required, which can
be described as follows.

Let PK(q) denote the projection of a sequence q onto the
set K, such that either a sequence k ∈ K or the empty
set ∅ is returned by the projection, depending on whether
or not q contains within it a sequence from K. If multiple
valid k ∈ K exist in the combination of elements in q, the
viable elements with lower indices in q (not of the element
values themselves) take priority, such that the notion of greedy
selection is coherent. Then, (35a) can be expanded into

û
(1)
m+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
I2Q −

∑
q∈odd

diag(eq)
]
û(η∗)

m
upon confirmation of

k̂
R

from q̂R
m, or[

I2Q −
∑

q∈even
diag(eq)

]
û(η∗)

m
upon confirmation of

k̂
I

from q̂I
m, or[

I2Q − diag(eq̂m)
]
û(η∗)

m otherwise.
(38a)

In plain words, (38a) establishes that after the m-th run of
the BH-ISTA detector, the initial state of the estimate vector
û

(1)
m+1 for the next run is either:
a) updated by removing the latest estimate symbol, when

neither of q̂R
m and q̂I

m can be projected to K, which
happens either when the number of indices acquired are
insufficient (less than P ) to decide on valid estimates of
kR or kI , or when the number of indices are sufficient
(P or larger) but none contains valid combinations of
indices to any k ∈ K; or

b) updated by nulling all odd entries of q ∈ {1, 3, · · · ,
2Q−3, 2Q−1}, when a hard-decision of k̂

R
is confirmed

from the projection of q̂R onto K, which will only happen
once throughout the demodulation procedure; or

c) updated by nulling all even entries q ∈ {2, 4, · · · ,
2Q− 2, 2Q}, when a hard-decision of k̂

I

m is confirmed
from the projection of q̂I

m onto K, which also can happen
only once.

Obviously, the only other alternative to those above is when

both k̂
R

and k̂
I

have been acquired, and consequently also the
entire set of symbol estimates {ŝR

1 , ŝI
1, · · · , ŝR

P , ŝI
P } have been

obtained, in which case the procedure is terminated.
Similarly to the above, the updates of ym and Gm must also

be revised so as to account for the effect of hard-decisions
onto k̂

R
and k̂

I
, so as to cancel the effect of hard-decided

indices and symbols, and to nullify the channel corresponding
to confirmed indices, yielding respectively

ym+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y −G · ∑
q∈[2k̂

R−1,q̂I
m]

eq ŝq
upon confirmation of

k̂
R

from q̂R
m, or

y −G · ∑
q∈[q̂R

m,2k̂
I
]

eq ŝq
upon confirmation of

k̂
I

from q̂I
m, or

ym −Gm · eq̂m ŝq̂m otherwise,
(38b)

Gm+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Gm

[
I2Q −

∑
q∈odd

diag(eq)
]

upon confirmation of

k̂
R

from q̂R
m, or

Gm

[
I2Q −

∑
q∈even

diag(eq)
]

upon confirmation of

k̂
I

from q̂I
m, or

Gm

[
I2Q − diag(eq̂m)

]
otherwise.

(38c)
The procedure described by (32) through (34) and (36)

through (38) amount to a greedy – i.e., symbol-by-symbol
and index set-by-index set – modification of the GB-ISTA
detector introduced earlier, for which it is dubbed as the
greedy boxed iterative shrinkage thresholding algorithm for
QSM demodulation.

Notice that at the end of the process, estimates k̂
R

and k̂
I

of
the selected dispersion matrix index vectors, as well as hard-
decision estimates ŝ = [ŝR

1 , ŝI
1, · · · , ŝR

P , ŝI
P ] of the modulated

symbols are obtained, from which the corresponding encoded
bits b = [bR, bI , bS ] can be retrieved at a fraction of the com-
plexity of sphere detection or exhaustive maximum likelihood
searches. A diagram illustrating the proposed GB-ISTA QSM
receiver is offered in Fig. 9 and a summarized in the form of
pseudo-code in Algorithm 3.

C. Complexity Analysis: GB-ISTA versus SotA Receivers

Given that the focus of the OS-QSM operation is with
the scalability of the system, considered systems consist of
relatively large numbers of transmit antennas (i.e., nT ≥ 6)
and increasing numbers of transmission slots (i.e., T ≥ 2),
with the digitally-modulated transmit symbols P and the
cardinality of corresponding constellation M . To the best
of our knowledge, considerations and simulated results on
quadrature spatial-temporal modulation schemes with such
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Fig. 9. Schematic diagram depicting the structure of the proposed GB-ISTA
receiver for QSM demodulation.

Algorithm 3 Proposed GB-ISTA Receiver for QSM Schemes
Global Quantities: Real-valued projected symbol constella-

tion SR, set of index vectors K and threshold factor λ;

Inputs: Received signal y and effective channel matrix G.
Outputs: Estimated index and symbol vectors k̂

R
, k̂

I
and ŝ.

1: Set m = 1 and α = maxeig(GTG);
2: Initialize ym = y, Gm = G and û(1)

m = 02Q;
3: while PK(1

2 [q̂R
m + 1]) = ∅ or PK(1

2 q̂I
m) = ∅ do

4: Iterate BH-ISTA (32) until convergence for û(η∗)
m ;

5: Obtain symbol soft estimate s̃q̂m and index hard estimate
q̂m via (33);

6: Obtain hard symbol estimate ŝq̂m via (34);
7: Insert index estimate q̂m into q̂R

m or q̂I
m as per (36);

8: Construct û
(1)
m+1, ym+1 and Gm+1 via (38);

9: Increment m by 1;
10: end while
11: Output the estimate index vectors as k̂

R ← PK(1
2 [q̂R

m+1])

and k̂
I ← PK(1

2 q̂I
m), respectively,

and the estimate symbol vector ŝ as the intercalation of
{ŝ

2k̂
R−1
} and {ŝ

2k̂
I}.

increasing parameters have not appeared so far in the literature,
due to the prohibitive computational complexity of existing
ML-based receivers.

In light of the latter remark, let us start by assessing the
decoding complexity of scaled QSM systems, in particular
by deriving the complexity orders of the conventional ML
and SCMB-SD approaches, and of the proposed GB-ISTA
algorithm described in Section IV.

For any given nT , T and P , the brute-force ML
decoder requires a search among all possible

⌊(
TnT

P

)⌋
2×

antenna activation patterns, independently selected according
to {kR, kI} ∈ K to transmit the real and imaginary parts
of the P digitally modulated symbols in s ∈ SP , as well
as another search, for each possible activation pattern, of all
possible P -tuples of symbols selected from the constellation S
of cardinality M . Assuming, idealistically and for simplicity,
that each search consumes a single floating point operation
(flop), the ML search process alone yields a complexity order
lower-bounded by O(4�log2 (T nT

P )� ×MP
)
, in order to detect

2 · �log2

(
TnT

P

)�+ P · log2 M bits, which even for moderately
small P and M quickly become unfeasible. For example,
a search over 16,777,216 combinations is required to detect
the 24 bits of each transmit signal in a relatively small system
with nT = 6, T = 3, P = 3 and M = 4. Just doubling
the number of transmit antennas to nT = 12, with other
parameters unchanged, the complexity of the ML search space
already surges to 109 combinations, for a mild increase to
30 bits per transmission, while keeping nT = 6 and doubling
the number of transmit symbols to P = 6 requires a search
over more than 1012 combinations in order to detect only
40 bits.

Taking the most significant operations required to perform
each ML search into account,9 the order of complexity of the
ML receiver to decode each bit of QSM schemes becomes

O(
construction of ΦH · ΞA and ΦH · ΞB as in (23)︷ ︸︸ ︷

12T 3nT nR + (4TnR(2P + 1)− 1) · 4�log2 (TnT
P )� ·MP

)
> O(nR · P · T P+1 ·MP · nP−1

T

)
,

(39)

with the lower bound obtained by keeping only the higher-
order terms and neglecting coefficients.

The practical unfeasibility of ML-based detection of QSM
systems is clearly highlighted by (39), as it exposes the fact
that the number of transmit symbols P is a complexity order
exponent of all theoretically scalable quantities nT , T and M .
Next, let us show that this challenge cannot be satisfactorily
mitigated by the SD approach [30], [31]. To that end, consider
again idealistically and for simplicity, that SD can reduce the
search radius to a single symbol, such that the factor MP in
(39) can be neglected. In other words, we find that the order of
complexity associated to SD-based QSM receivers can, at best,
be reduced to

O(nR · P · T P+1 · nP−1
T

)
. (40)

From the latter it can be concluded that, in the context of
scalable QSM schemes, the only advantage of SD is to enable
scaling of the digital constellation cardinality M , which not
only impacts negatively on the corresponding BER, but also
is not the most significant factor in increasing the SE of the
system, since the total number of bits conveyed by a QSM
scheme is B = 2 · �log2

(
TnT

P

)�+ P · log2 M , such that even
for mildly large nT , T and P we have 2 · �log2

(
TnT

P

)� � P ·
log2 M . In summary, it can be concluded that sphere detection
is not particularly useful as an enabler of spectrally-efficient
scalable QSM, from a receiver perspective.

Finally, let us address the computation complexity of the
proposed GB-ISTA. For starters, observe from (32) through
(37) that the GB-ISTA receiver obtains the spatially encoded
bits bR and bI not from a search, but directly from the sparse-
recovery process, i.e., the value and locations of non-zero
elements of û. As a consequence of removing such combina-
torial search, the impact of the scalable parameters nT , T and
P onto GB-ISTA is significantly smaller, as demonstrated by
the following complexity analysis of the steps of Algorithm 3.

9We omit details due to page limitations and since the ML receiver is
well-known.
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Fig. 10. Effect of scalable parameters on the complexity of QSM receivers.

1) Algorithm 3 takes as input the effective matrix G
given in (28), whose construction requires evaluating
the product of the sparse block-diagonal matrix ΦH ∈
R2TnR×2TnT , which contains 2nT non-zero entries per
row, against the matrix ΨD ∈ R2TnT ×2TnT , which
has T non-zero entries per column, yielding a cost of
2T (2TnR)(2TnT ) = 8T 3nT nR flops, since typically
we have (in scaled QSM schemes) T � 2nT .

2) Next,10 the GB-ISTA receiver performs multiple runs
of evaluating (32), the first step to which is com-
puting û(η) + 1

αGT
(
y − Gû(η)). Naively counted,

that operation would cost (2TnT )(2TnR) + (2TnR) +
(2TnR)(2TnT ) + (2TnR) = 8T 2nT nR + 4TnR flops
to accomplish, but since the sparsity of û(η) quickly
reduces to the actual value 2P , as shown in Fig. 8a, the
complexity of that step is more precisely estimated at
8PTnR+4TnR = 4TnR(2P+1) flops. Then, including
2TnT flops required for the Boxed-Hard thresholding
function Π, and remembering η∗ iterations are necessary,
the total cost associated with each evaluation run of (32)
can be estimated at η∗(4TnR(2P + 1) + 2TnT ) flops.

3) After convergence of (32), the receiver obtains the
sparse estimate vector û(η∗)

m , from which the soft symbol
estimate s̃q̂m is extracted at negligible cost via maximum
value search [49], along with the estimate index q̂m

given by the position of s̃q̂m in û(η∗)
m , as expressed

in (33). With these quantities at hand, up to
√

M flops
are consumed to obtain the hard symbol estimate ŝq̂m as
per (34).

4) Considering that the cost of the element, interference
and column removals expressed by (38a) through (38c)
are negligible, the next significant cost of the receiver

10We ignore the cost of computing α as per line 1 of Algorithm 3, under
the argument that for large systems, the largest eigenvalues GTG converges
almost sure to a constant dependent only on the structure and energy of G.

is the validation of acquired indices. In particular, after
at least P runs, when a sufficient number of position
indices q̂m have been detected to construct any or both
of the index subsequences q̂R

m and/or q̂I
m, and map them

to corresponding estimate index vectors k̂
R

and/or k̂
I

as per (37), said estimates need be validated against the
optimal set of index vectors K. Assuming the cost of
such operation is of order O(1), this step contributes to
the total complexity of the GB-ISTA detector with an
additional cost of P flops.

5) Lastly, as described in line 11 of Algorithm 3, the
GB-ISTA outputs both the pair of estimate index vectors

k̂
R

and k̂
I
, as well as the digitally modulated symbol

vector estimate ŝ ∈ SP , which requires the intercalation
of the real and imaginary parts, at estimated cost of P
flops.

From the above, the total complexity order of the GB-ISTA
can be estimated at

O
( construction of G︷ ︸︸ ︷

8T 3nT nR + 2P︸︷︷︸
number of runs

( evaluation of (32)︷ ︸︸ ︷
η∗(4TnR(2P + 1)+2TnT )

+
√

M + 1
2︸ ︷︷ ︸

evaluation of (36) and validation of q̂I
m or q̂R

m

)
+

intercalation of {ŝ
2k̂R−1

} and {ŝ
2k̂I } into ŝ︷︸︸︷

P
)
. (41)

The per-bit complexity orders of the ML and the proposed
GB-ISTA decoders, obtained by dividing the expressions in
(39) and (41) by the number of bits per transmission B =
2�log2

(
TnT

P

)�+P log2 M , are compared in Fig. 10 for various
settings in terms of the scalable parameters nT , T and P .

V. PERFORMANCE ANALYSIS AND DISCUSSION

Empowered by the significant reduction in complexity
obtained by GB-ISTA over ML detection, as shown above,
we proceed to assess the BER performance of the proposed



9308 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 21, NO. 11, NOVEMBER 2022

Fig. 11. Effect of the proposed contributions on GB-ISTA-detected BER
performance in a given fixed system.

Fig. 12. Effect of temporal scalability on BER performance of GB-ISTA-
detected OS-QSM schemes.

OS-QSM scheme, decoded via the GB-ISTA. In general, our
simulated experiments aim to further demonstrate that the
proposed OS-QSM are feasible with relatively large numbers
of transmit antennas, and can achieve very low BER at very
low Eb/N0 with rather high spectral efficiencies, whilst using
relatively few spatial-temporal resources per transmission.

In Fig. 11, the clear advantageous effect of our contributions
from Subsection III is illustrated. Namely, notice progressively
from the SotA EDA-QSM scheme (circle), the aggregated
improvements via: a) the addition of coding gain optimality
(square), b) the addition of optimal resource allocation (dia-
mond), and c) the addition of temporal scalability (triangle).

Then in Fig. 12, the effect of temporal scalability in the
proposed OS-QSM is illustrated. The system in each subplot
is fixed on nT and P/T for a fair comparison, and hence

Fig. 13. Effect of scalability on BER performance of GB-ISTA-detected
OS-QSM schemes with fixed SE.

the different plots compare the improvement gained when
increasing T to a larger value available. Two significant
improvements may be observed, which are a) clear BER
performance gain, and b) SE gain.

Fig. 13 compares the BER performances of the proposed
method for various values of nT , T and P , with M adjusted
such that all curves corresponds to systems with the same
spectral efficiency. Another important fact that should be
highlighted from the figures, is that the results shown are
actually simulated, down to rather low BERs, using a usual
computer (i.e. no particularly powerful machine was required),
and for settings which are virtually impossible to simulate with
ML- or SD-based receivers. The latter point is strengthened by
the results of the right side of Fig. 13, which includes a curve
for a system with nT = 12, which serves to further highlight
the true feasibility of the proposed GB-ISTA receiver.

One criticism that could be raised about the results so far is,
however, that values of P adopted thereby are not the optimal
ones for the corresponding T and nT , as per (22). We once
again clarify that the parameterization used in Fig. 13 is such
that all systems have the same SE, so as to allow their direct
comparison under equivalent conditions, which is, incidentally
also the reason why all curves are plotted against Eb/N0 as
opposed to SNR. In any case, in order to dispel any doubts
about the ability of the proposed OS-QSM design and of the
corresponding GB-ISTA receiver to actually achieve feasible
and optimized spectral efficiency combined with low BERs,
we show in Fig. 14 additional results obtained by varying P
up to the optimal value given by (22). We remark that, due
to the floor operation in the expression of the achievable SE
given by 16, values of P adjacent to that given by (22) – i.e.,
P ∗ – may also be optimum, and result exactly the same SE.

For instance, with nT = 6, T = 2 and M = 4, as is the case
of Fig. 13, (22) yields P ∗ = 8, but the values P = {7, 8, 9}
all result in ζ = 16 in (16). Similarly, P = {10, 11, 12, 13}
all yield the largest SE of ζ = 17 with nT = 6, T = 3 and
M = 4 as is the case of Fig. 14.
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Fig. 14. Effect of scaling P on BER performance of GB-ISTA-detected
OS-QSM schemes.

Fig. 15. Comparison of proposed OS-QSM and SotA schemes with
variable nR.

With these remarks made, turning to the results obtained in
Fig. 14, it can be seen that only a very mild degradation of
BER is observed when up-scaling P , which is in fact smaller
in for larger T as shown in Fig. 14, which is a small and
fair price to pay for almost doubling spectral efficiency of the
system. We clarify that the slight BER degradation observed
when up-scaling the ratio P/T towards SE optimality is a
consequence of the corresponding reduction of sparsity in the
vectorized received signal, which tends to be less critical in
systems with higher diversity and coding gains, as a result of
up-scaling nT , T or both. That trend is in fact observable in
Fig. 14, as the gap between BER curves narrows as T = 2 is
increased to T = 3.

Lastly, Fig. 15 offers a comparison between the proposed
OS-QSM and SotA methods with nR = 4, 8 and 12.

Although the performance of all methods degrades signifi-
cantly for nT > nR, as a result of overloading, it can be seen
that the proposed scheme maintains a consistent and significant
BER advantage over the existing alternatives in all cases.

VI. CONCLUSION

We proposed new transmitter and receiver designs for QSM
schemes, focusing on their scalability in terms of the number
of transmit antennas nT , of transmission instances T and of
encoded M -ary symbols P , as well as on their performance
optimization in terms of SE, diversity and coding gains. The
contributions are motivated by the demonstrated fact that,
in order for SE optimality to be achieved, QSM schemes
must scale nT , T and P , which is not possible in SotA
methods such as those in [7], [23]–[25]. At the transmitter,
the proposed OS-QSM scheme differs from SotA alternatives
in that its dispersion matrices are designed based on the T ×T
FDFR STBCs of [33], [34], and in that dispersion matrix index
selection is performed via a new greedy algorithm, which
ensures that all spatial-temporal resources of the transmitter
are utilized evenly. In turn, at the receiver, the proposed art
contributes with a new ISTA-based receiver, which thanks to
its reliance on the sparse structure of QSM signaling, elimi-
nates the combinatorial nature of existing ML- or SD-based
approaches, further enabling the scaling of the system from a
feasibility perspective. In fact, a complexity analysis is offered,
which shows that the proposed GB-ISTA receiver enjoys a
complexity order that is cubic on T , quadratic on P , and
only linear on nT , in contrast to the ML and SD detectors
which have geometric complexities on T and nT , with P as
exponent, rendering them unfeasible in the scaled scenario.
Simulation results for set-ups of scales never before shown in
related literature, corroborate both the high performance and
feasibility of the proposed OS-QSM scheme and GB-ISTA
receiver.
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