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Abstract— Grant-free access is considered as a key enabler for
massive machine-type communications (mMTC) as it promotes
energy-efficiency and small signalling overhead. Due to the spo-
radic user activity in mMTC, joint user identification and channel
estimation (JUICE) is a main challenge. This paper addresses
the JUICE in single-cell mMTC with single-antenna users and a
multi-antenna base station (BS) under spatially correlated fading
channels. In particular, by leveraging the sporadic user activity,
we solve the JUICE in a multi measurement vector compressed
sensing (CS) framework under two different cases, with and
without the knowledge of prior channel distribution informa-
tion (CDI) at the BS. First, for the case without prior information,
we formulate the JUICE as an iterative reweighted £z 1-norm
minimization problem. Second, when the CDI is known to the
BS, we exploit the available information and formulate the
JUICE from a Bayesian estimation perspective as a maximum
a posteriori probability (MAP) estimation problem. For both
JUICE formulations, we derive efficient iterative solutions based
on the alternating direction method of multipliers (ADMM). The
numerical experiments show that the proposed solutions achieve
higher channel estimation quality and activity detection accuracy
with shorter pilot sequences compared to existing algorithms.

Index  Terms—Massive  machine-type communications
(mMTC), spatially correlated channels, sparse recovery,
maximum a posteriori probability (MAP) estimation, alternating
direction method of multipliers (ADMM).

I. INTRODUCTION

ASSIVE machine-type communications (mMTC) aim

to provide wireless connectivity to billions of low-cost
energy-constrained internet of things (IoT) devices [1]. mMTC
promote three main features. First, sporadic transmissions,
i.e., only an unknown subset of the IoT devices are active
at a given transmission instant. Second, short-packet com-
munications dominated by the uplink traffic. Third, energy-
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efficient communication protocols to ensure a long lifespan for
the IoT devices, here referred to as user equipments (UEs).
As the base station (BS) aims to serve a massive number
of energy-constrained devices, channel access management
is considered as one of the main challenges in mMTC [2].
The conventional channel access protocols, where each UE is
assigned a dedicated transmission resource block, are ineffi-
cient because many resource blocks are frequently wasted as
being pre-assigned to inactive UEs. Subsequently, alternative
schemes have been proposed to provide more efficient channel
access protocols. In particular, grant-free multiple-access has
been identified as a key enabler for mMTC [3].

In the conventional grant-based channel access protocols,
the active UEs first request an access to the channel, and
then, the BS allocates a dedicated transmission block to each
active UE in a multi-step handover process [2]. Differently,
in grant-free access, the UEs transmit data as per their needs
without going through the grant-based access protocols. The
main advantage of grant-free access compared to conventional
random access is the reduced signalling overhead and the
improved energy-efficiency of the UEs. However, a paramount
challenge in grant-free access is to identify the set of active
UEs and to estimate their channel state information for
coherent data detection. We refer to this problem as joint user
identification and channel estimation (JUICE).

The sparse user activity pattern induced by the sporadic
transmissions in mMTC motivates the formulation of the
JUICE as a compressed sensing (CS) [4]-[6] problem. Further-
more, as the BS antennas sense the same sparse user activity,
the JUICE problem extends to the multiple measurement
vector (MMV) CS framework. Sparse support and signal
recovery from an MMV setup has been studied extensively
in the literature. In a nutshell, the proposed MMV sparse
recovery algorithms can be categorized into the following
classes: 1) greedy algorithms such as simultaneous orthogonal
matching pursuit (SOMP) [7], 2) mixed norm optimization
approaches [8] (and the references therein), 3) iterative meth-
ods such as approximate message passing (AMP) [9], and
4) sparse Bayesian learning (SBL) [10].

In sparse support and signal recovery algorithms, the prior
knowledge on the distributions and the structure of the sig-
nals has a profound effect on the recovery performance.
For instance, when the signal distribution is known, algo-
rithms like SBL have shown superior performance com-
pared to mixed-norm minimization [11]. However, if the
signal distribution is unknown and signal statistics are not
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available, algorithms based on mixed-norm minimization such
as {5 1-norm minimization present a good choice, since they
are invariant to the signal distribution. However, the /5 ;-norm
suffers from a bias toward large coefficients in the recovery.
Therefore, formulating the sparse recovery as an iterative
reweighted ¢;-norm [12] or {3 1-norm [13] problem provides
a significant improvement compared to their non-reweighted
counterparts.

A. Related Work

A rich line of research has been presented for grant-free
access in mMTC. In [14], Chen et al. addressed the user
activity detection problem in grant-free mMTC using AMP
and derived an analytical performance of the proposed AMP
algorithm in both single measurement vector and MMV setups.
Liu et al [15], [16] extended the analysis of [14] and
conducted an asymptotic performance analysis for activity
detection, channel estimation, and achievable rate. Senel and
Larsson [17] designed a “non-coherent” detection scheme for
very-short packet transmission by jointly detecting the active
users and the transmitted information bits. Ke et al. [18]
addressed the JUICE problem in an enhanced mobile broad-
band system and proposed a generalized AMP algorithm that
exploits the channel sparsity present in both the spatial and
the angular domains. Yuan et al. [19] addressed the JUICE
problem in a distributed mMTC system with mixed-analog-
to-digital converters under two different user traffic classes.

An SBL approach has been adopted in [20] and a maxi-
mum likelihood estimation approach using the measurement
covariance matrix has been considered in [21]. Recently,
Cui et al. [22] presented a model-driven framework for the
JUICE by utilizing CS techniques in a deep learning frame-
work to jointly design the pilot sequences and detect the active
UEs.

In addition to the sparsity of the activity pattern of the
UEs, the aforementioned algorithms require different degrees
of prior information on the (sparse) signal distribution. For
instance, in the AMP-based approaches [14]-[17], [21], the BS
is assumed to know the distributions and the large-scale fading
coefficients of channels. The work in [18] relies similarly
on the known channel distributions but assumes unknown
large-scale fading coefficients, which are estimated via an
expectation-maximization approach.

B. Main Contribution

This paper considers the JUICE problem in single-cell
mMTC, with single-antenna UEs under spatially correlated
multiple-input multiple-output (MIMO)' channels. In particu-
lar, we address the JUICE under two different cases, with and
without the availability of the channel distribution information
(CDI) at the BS. First, under unknown CDI, the JUICE is
formulated as an iterative reweighted {5 ;-norm minimization
with a deterministic regularization penalty that accounts for
the sparsity in the user activity. Second, when the CDI is

'In fact, the channels herein are multi-user single-input multiple-output
(MU-SIMO) channels. However, we adopt the common “MIMO” terminology,
which implies that the single-antenna users are the multiple inputs and the
BS antennas are the multiple outputs of the channel.
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available to the BS, we formulate the JUICE problem from the
Bayesian perspective. By using the available knowledge on the
CDI and imposing a sparsity-inducing prior on the sporadic
activity of the UEs, we formulate the JUICE under a maximum
a posteriori probability (MAP) estimation framework. For
both JUICE formulations, we derive computationally efficient
iterative solutions based on alternating direction method of
multipliers (ADMM).

The vast majority of JUICE works assume that the com-
munications channels are spatially uncorrelated and often also
independent Rayleigh fading. Although this assumption may
lead to analytically tractable solutions, it is not always practical
as the MIMO channels are almost always spatially corre-
lated [23]. Our paper aims to bridge this gap by addressing
spatially correlated channels, which have not been widely
studied in the context of JUICE in mMTC. In fact, incor-
porating the spatial correlation structure in the design of a
JUICE solution is crucial, because the performance of JUICE
solutions designed for uncorrelated channels may be sensitive
to the correlation structures faced in practical scenarios [22].
Recently, Cheng et al. [24] presented an orthogonal AMP
algorithm to exploit both the spatial channel correlation in
mMTC systems.

The main contributions of our paper can be summarized
as follows:

o We address the JUICE problem in spatially corre-
lated MIMO channels to provide a realistic assessment
of the performance of the proposed JUICE solutions.
Although precise knowledge of the CDI may be chal-
lenging in some practical applications, the results provide
channel estimation performance benchmark for system
design.

o When the BS has limited knowledge on the data struc-
ture, i.e., only the sparse behaviour of users activity
is taken into consideration, we exploit the benefits of
reweighting strategies in CS and formulate the JUICE
as a reweighted iterative /5 ;-norm optimization problem.
Reweighted /5 ;1-norm minimization has not been used for
JUICE problems earlier.

o When the CDI is known, we fully exploit the available
information and propose a novel JUICE formulation
from the Bayesian perspective. The proposed formulation
relaxes non-convex Bayesian MAP estimation to convex
regularization-based optimization. In particular, the CDI
knowledge is incorporated via the Mahalanobis distance
measure.

o For each JUICE formulation, we use a specific variable
splitting strategy that allows to derive an exact ADMM
solution. The proposed approach decouples the JUICE
problem into a set of convex sub-problems, each admit-
ting a computationally efficient closed-form solution that
can be computed efficiently via a simple analytical
formula.

e We show empirically that the proposed algorithms
enhance the accuracy of user activity detection and
channel estimation quality. In particular, for predefined
requirements, the proposed approaches achieve the same
performance as baseline MMV JUICE solutions even
when using significantly smaller signalling overhead.
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This paper is in line with our recent work [25], [26] where
we addressed the JUICE under spatially correlated highly
directive channels. In [25], [26], the JUICE was formulated
as a mixed-norm minimization problem, augmented by a
deterministic penalty that exploits the second-order statistics of
the channels. In this paper, we further leverage the available
knowledge on the entire CDI and treat the JUICE problem
under a more rigorous, Bayesian framework.

Organization: The rest of the paper is organized as follows.
Section II presents the system model and the canonical JUICE
problem formulation. Section III addresses the JUICE with
unknown CDI. Section IV derives the Bayesian formulation
for the MAP-based JUICE which exploits the prior knowledge
on the CDI. Simulation results are provided in Section VI, and
Section VII concludes the paper.

Notations: Throughout this paper, we use boldface upper-
case letters (A) to denote matrices, boldface lowercase letters
(a) for vectors, and calligraphy letters (S) to denote sets. The
ith column of matrix X is denoted by x;. The transpose,
the Hermitian, and the conjugate of a matrix are denoted
as ()T, (-)H, and (-)*, respectively. 0 and 1 are vectors of
all entries zero and one, respectively. The ¢5-norm and the
Frobenius norm are denoted as || - ||2 and || - ||, respectively.
laljo counts the number of non-zero entries of vector a. 1(a)
is an indicator function that takes the value 1 if a # 0,
and 0 otherwise. ® denotes the Kronecker product and vec(-)
denotes the operation of column-wise stacking of a matrix.

II. SYSTEM MODEL AND PROBLEM FORMULATION
A. System Model

We consider a single-cell uplink mMTC system, as depicted
in Fig. 1(a). The cell consists of a set N' = {1,...,N}
uniformly distributed single-antenna UEs communicating with
a BS equipped with a uniform linear array (ULA) containing
M antennas.

We consider a block fading channel response over each
coherence period T¢. Furthermore, to model the propagation
channels between the UEs and the BS, we consider a local
scattering model, which is suitable for multi-antenna channel
modelling as it can capture some key characteristics of the
typical MIMO channels [27, Sect. 2.6]. In the local scattering
channel model, the BS is considered to be located in an
elevated position and thus, it has no scatterers in its near-
field, whereas the UEs are surrounded by rich scattering
environment. The channel response vector from each UE
i € N is modelled as the superposition of P; physical signal
paths, each reaching the BS as a plane wave. Accordingly,
the channel response vector between the ¢th UE and the BS,
denoted as h; € CM, is modelled as

1 &
h; = 7 ;gi,pa(wp>, (1)

where g;, € C accounts for the gain and the phase-rotation
of the pth propagation path, 1);, is the angle of
arrival (AoA) of the pth path, and a(v;,) € CM is
the steering vector of the ULA, defined as a(v;,) =
[17 e*jQwA,. cos(wiyp)’ o eijW(Alfl)Ar cos(wiyp)]T’ where Ar
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denotes the normalized spacing between the adjacent BS
antennas. We consider that v;, = v; + (. p, where ¥; €
[-7/2,7/2] represents the (deterministic) incident angle
between the ¢th user and the BS, and (;, denotes a (ran-
dom) deviation from the incident angle with angular standard
deviation oy. We assume that each (;, follows a Gaussian
distribution ; , ~ CAN(0, ai) [27, Sect. 2.6].

The propagation channel between each UE and the BS is
often considered to follow a complex Gaussian distribution.
More specifically, by utilizing the valid assumption that the
number of scatterers around each UE is very large in practice
and invoking the central limit theorem, the channel vector h;
in (1) can be modelled as a complex Gaussian random variable

with zero mean and covariance matrix R; = E[h;hll] €
CM*M 127, Sect. 2.6], i.e.,
thCN(O,Rz), P, — oo, VieN. 2)

The channel realizations h; are independent between different
coherence intervals 7T,. We consider UEs with low mobility,
which is justified in the context of mMTC [28]. Hence,
we adopt the common assumption that the channels are wide-
sense stationary [29]. Thus, the set of channel covariance
matrices {R,;}}¥, vary in a slower timescale compared to the
channel realizations [30]. Accordingly, {R;}Y., are assumed
to remain fixed for 7, coherence intervals, where 7, can be on
the order of thousands [23]. We note that this assumption can
be challenging in mMTC where some UEs are inactive for
a longer period. Therefore, we will elaborate further on this
issue in Section IV-C.

Due to the sporadic activity pattern of mMTC, only K < N
UEs are active at each coherence interval 7., whereas the
remaining N — K are inactive. This is depicted in Fig. 1(b).
In order to deploy a grant-free multiple access scheme,
we assume that all the UEs and the BS are synchronized.
In addition, each coherence interval T, permits transmitting 7.
symbols and is divided into two phases, as shown in Fig. 1(c).
In the first phase, each active UE transmits its 7,-length pilot
sequence to the BS. In the second phase, using the remaining
Tc — Tp Symbols, the active UEs send their information data
to the BS. During each T¢, the BS uses the transmitted pilot
sequences from the first phase to identify the set of active UEs
and estimate their corresponding channels in order to decode
the information data transmitted at the second phase.

Regarding the channel estimation phase, the BS assigns to
each UE 7 € A a unique unit-norm pilot sequence ¢; € C™.
Due to the potentially large number of UEs, the UEs cannot be
assigned orthogonal pilot sequences, because it would require
a pilot length of the same order as the number of UEs.
Therefore, the BS assigns a set of non-orthogonal pilots which
can be generated, for instance, from an independent identically
distributed (i.i.d.) Gaussian or i.i.d. Bernoulli distribution.
Herein we consider pilot sequences generated from a complex
symmetric Bernoulli distribution. This approach would drive
the probability of pilot collision, i.e., assigning the same pilot
to two distinct UEs, to be negligible [17].

Furthermore, to mitigate the channel gain differences
between the UEs, a power control policy is deployed
such that each UE ¢ € A transmits with a power
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Fig. 1.
(c) division of a coherence interval T¢.

pYl that is inversely proportional to the average channel
gain [17], [23]. Accordingly, the received signal associated
with the transmitted pilots at the BS, denoted by Y € C™»*M |
is given by

N
Y =) viy/pPleh] + W, 3)
i=1

where W € C™»*M is an additive white Gaussian noise with
independent an i.i.d. elements as CA'(0, 02), and v; € B is
the 7th element of the binary user activity indicator vector
v = [v,%2,---,7n]", defined as

)1, ies
T= 0, otherwise,

where S C {1,...,N}, |S| = K, is the set of active users.
We assume that besides not knowing which users are active
at a given time, the BS does not either know the activity
level %

Let us define the effective channel of user i € N as x; =
Yi/ plULhi, and subsequently, the effective channel matrix as
X = [x1,...,xn] € CM*N_ The pilot sequence matrix is
defined as @ = [¢;,...,Py] € C»*N. Accordingly, we can
rewrite the received signal associated with the pilots in (3) as

Y =&X"+W. (5)

Vie N 4)

B. Problem Formulation

The columns of effective channel matrix X corresponding
to the inactive users are zeros, thus, XT is a row-sparse
matrix; it contains only K non-zero rows. The objective
of JUICE is to jointly identify and estimate the non-zero
elements of effective channel matrix X. Thus, JUICE can be
modelled as joint support and signal recovery from an MMV
setup. Subsequently, the canonical form of the JUICE can be
presented as

min 2| @XT Y+ 51X 0 ©)
where [|[XT|20 = Zivzl 1(||x:||2) is the sparsifying
regularizer and (; controls the trade-off between the empha-
sis on the measurement consistency term and the sparsity-
promoting term. However, the £y-“norm” (with slight abuse of
terminology regarding a norm) minimization is an intractable
combinatorial NP-hard problem. Therefore, several algorithms

Tlustration of a typical mMTC scenario: (a) an mMTC uplink system with K active UEs and N — K inactive UEs, (b) sporadic transmission,

have been presented in the literature to relax the optimization
problem (6). The existing algorithms can be categorized based
on their required prior information on the signal. For instance,
while AMP and SBL require prior information on the distrib-
utions of a sparse signal, mixed-norm minimization and most
of the greedy algorithms operate based on the mere fact that
the signal has a sparse structure.

In this paper, we cover both cases, i.e., JUICE with and
without prior knowledge on the CDI. First, when there is
no prior knowledge on the channel, we formulate the JUICE
as an iterative reweighted /5 j-norm optimization problem in
Section III. Second, in Section IV, we assume that the BS has
prior knowledge on the CDI, and we formulate the JUICE as a
MAP estimation problem. For both these JUICE frameworks,
we will derive a computationally efficient ADMM method
to solve the formulated optimization problem. Each ADMM
algorithm solves a relaxed version of the involved problem
iteratively, and in particular, provides a closed-form solution
to each sub-problem included in the optimization process.

III. JUICE VIA REWEIGHTED {5 1-NORM MINIMIZATION

Without the CDI, the ¢ ;-norm penalty is commonly used
to relax the £5 g-norm penalty in the JUICE formulation in (6)
as

1
min 2 [®XT — Y| + 61| X7]

2,1- (7

Nevertheless, unlike the democratic £y-norm which penalizes
the non-zero coefficients equally, ¢;-norm is biased toward
larger magnitudes, i.e., coefficients with a large magnitude
are penalized more heavily than smaller ones. Therefore,
striving for enhanced sparsity recovery, we use the log-sum
penalty [12] to relax the £y-norm in (6) as

N
o1
r)r(1711111 §||<I>XT — YH% + 01 ;log(ui + €o)

Vie N, (8)

st ||xill2 < wy,

where u = [uy, us, ..., uy]|T is a vector of auxiliary optimiza-
tion variables and € is a small positive stability parameter. The
log-sum penalty resembles most closely the ¢ o-norm penalty
when ¢y — 0. However, a practical, numerically robust choice
is to set €p to be slightly less than the expected norm of the

non-zero rows in X' [12].
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As the objective function in (8) is a sum of a convex and
a concave functions, it is not convex in general. Therefore,
by applying a majorization-minimization (MM) approxima-
tion, (8) can be solved as the following iterative reweighted
l3,1-norm minimization problem

N
o1
XD = min o[ @XT - Y7+ Y Ao kil ©)

i=1

with the weights set at iteration () as

g = (co+Ix{"2)7", vieN. (10)

A. IRW-ADMM Solution

The optimization problem (9) is convex and can be solved
optimally using standard convex optimization techniques.
However, as mMTC systems may grow large, the standard
techniques can suffer from high computational complexity.
As a remedy, we utilize ADMM [31] to solve (9) iteratively in
a computationally efficient manner at each MM iteration (1).

ADMM has been widely used to provide computationally
efficient solutions to sparse signal recovery problems [32].
Apart from signal reconstruction, ADMM has also been uti-
lized in the context of activity detection in mMTC [22], [33].
Cirik et al. [33] proposed an ADMM-based solution to multi-
user support and signal detection in an SMV model, where
they incorporate prior knowledge on the signal recovered from
the previous transmission instants. In addition, Cui et al. [22]
proposed an approximation step in ADMM similar to [32],
but they solved the sub-problems through a model-driven deep
learning decoder.

In contrast to the approximate solutions to problem (9)
provided in [22], [32], we solve (9) exactly by adopting a vari-
able splitting strategy different to [22], [32]. More precisely,
the proposed splitting technique decomposes the objective
function in (9) into two separable convex functions that can be
solved efficiently via simple analytical formulas. In particular,
we derive a set of update rules to solve (9) iteratively in a
sequential fashion over multiple convex sub-problems, where
each sub-problem admits a closed-form solution, as we will
show next.

By introducing a splitting variable Z € CM*¥ ie., a copy
of optimization variable X, we decompose the objective func-
tion in (9) into two separate functions: a quadratic function on
the measurement fidelity over Z and a reweighted ¢ ;-norm
penalty over X. Subsequently, we rewrite the optimization
problem (9) as

N
1 1
(XD, 200) = min 2|27 Y[+ Y Aig Il
’ i=1

st. X = Z. (11)

Next, we write the augmented Lagrangian of (11) as follows

N
1
LX.ZA) = |1 2Z" ~ Y[i+ 59! xill
i=1
Al
2p

P A
X -Z+—|f - 12
H5IX -z DI a2
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where A = [A,...,An] € CM*¥ denotes the dual variable
matrix containing the ADMM dual variables {\;}}¥,, and p
is a positive parameter for adjusting the convergence of the
ADMM.

The ADMM solves an optimization problem through
sequential phases over the primal variables followed by the
method of multipliers to update the dual variables [31]. There-
fore, by applying the ADMM to the optimization problem (9),
we first minimize (12) over the primal variable Z with (X, A)
fixed, followed by minimization over the primal variable
X with (Z,A) fixed. Finally, the ADMM updates the dual
variable matrix A using the most recent updates of (X, Z).
Thus, the ADMM for (9) consists of the following three steps:

VASRRURES min L(X® 7, AR

1 T 2 | P~ (k) 1 (k)2
mZ1n2H<I>Z YHF+2||X Z—i—pA I

(13)
X(k+1) .= min £(X, ZE+D AR

N
. l P 1
= min 3 ol el + GIX -2+ CAGI;

(14)

AT = (15)

A®) 4 p(x(k+1) _ Z(k“)),
where the superscript (k) denotes the ADMM iteration index.?
The derivations of the ADMM steps (13) and (14) are detailed
below.

1) Z-Update: ADMM updates the primal variable Z by
solving the convex optimization problem (13). Thus, Z*+1)
is obtained by setting the gradient of the objective function
in (13) with respect to Z to zero, resulting in

Z0HD = (pX® L A® 1 YTe*) (8T + pIy) . (16)
Note that the matrix inversion (¢*<I>T + pIN)f1 and the
product YT®* need to be computed only once, thus, they
can be stored, reducing the overall algorithm complexity.

2) X-Update: The optimization problem (14) can be
decomposed into N sub-problems as

l
. 5191( )
min ——

(k+1) _
X; =mi )

1 ; ,
Ixilla+5 lIxi—ef I3, Vie N, (7)

1 :
where c!") = zz(-kH) - —)\Ek) and ,\§"> is the ith column of

A(¥)_ The problem in (17) admits a closed-form solution given
by the soft thresholding operator [34] as

o
maX{O, ||C§k)||2 — b }
ot

(k+1) o
X; = -
[

, VieN.

(18)

Finally, the dual variable update A**1 is performed
using (15).

2For brevity, the dependency of the ADMM variables (e.g., X, Z, and A)
on the MM iteration index (1) is omitted throughout the paper.
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Algorithm 1: IRW-ADMM
Input: 1) Pilot matrix ®, 2) parameters
61; P, €0, €, lma)u kmax
Output: X
Initialization: 1) X, V(© Z©O A©) k=1 =1,
and 2) (®T®" + ply)

1 Receive Y at the BS, and compute and store YTH*
2 while [ < [, do
3 | while k < kpax or [|[X®) — XE=D|12 < ¢ do
4 Update Z**1 using (16)
5 Update X*+1) using (18)
6 AT — A(R) p(X(kJrl) _ Z(k+1))
7 k—k+1
g | XU — xk+1)
g = (co + [x\"||2)1,i € N
10| l—1+1

B. Algorithm Implementation

The details for the proposed iterative reweighted ADMM
(IRW-ADMM) algorithm to solve the problem (9) are summa-
rized in Algorithm 1. As one stopping criterion, Algorithm 1
is run until the X-update is converged, measured as || X*) —
X =112 < ¢ with a predefined tolerance parameter ¢ > 0,
or until a maximum number of iterations l,,.xkmax 1S reached,
where [,,,x denotes the maximum number of iterations in the
MM loop and ky,ax denotes the maximum number of iterations
in the ADMM loop. Note that if the weight vector is fixed
tog® =1, 1=1,2,..., Algorithm 1 provides the ADMM
solution for optimization problem (7), which we term ADMM
henceforth.

IV. SPATIAL CORRELATION AWARE JUICE
VIA BAYESIAN ESTIMATION

In this section, we propose a Bayesian formulation for
JUICE when the CDI is available at the BS. We formulate
the JUICE as MAP estimation and derive a computationally
efficient ADMM solution for a relaxed version of the MAP
problem.

A. MAP Estimation

The JUICE formulation presented in Section IIl as an
iterative reweighted £ 1-norm minimization (problem (9)) can
be viewed as a joint support and signal recovery problem
with a deterministic sparsity regularization. Such formulation
presents a robust approach as it is invariant to the channel
statistics, making it suitable for a broad range of channel
distributions. However, the optimization problem (9) omits
any available side information on the CDI. Alternatively, if the
CDI is available, the JUICE problem can be formulated in a
Bayesian framework to account for the fact that each unknown
channel to be estimated is a realization of a random vari-
able (vector) with the known distribution. A Bayesian sparse
signal recovery framework has great potential in providing
certain advantages over deterministic formulations [35].
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Developing a JUICE solution from a Bayesian perspective
is enabled by: 1) the fact that the propagation channels h;, i €
N, are modeled by Gaussian distributions as shown in (2), and
2) the relatively slowly changing covariance matrices {R;}2¥;
which can be estimated with high accuracy. In the rest of the
paper, we consider the common assumption that {R;}Y , are
known to the BS [29]. The acquisition of CDI knowledge is
further elaborated in Section IV-C.

Next, we utilize the prior information on the CDI and derive
a Bayesian formulation for the JUICE problem. The JUICE
performs two tasks in a joint fashion: 1) identification of
the support of the user activity indicator vector =y, and 2)
estimation of the effective channel matrix X, relying on the
current estimate of . The JUICE formulation in (9) applies a
deterministic penalty that accounts for the row-sparsity of XT
which inherently captures the sparsity in . However, in the
Bayesian modelling, we treat the two variables to be estimated,
~ and X, as unknown quantities with such prior distributions
that best model our knowledge on their true distributions, that
is: 1) the sparse distribution of the user activity indicator
vector ~, and 2) the effective channel x;, Vi € N, which
is a random vector consisting of a multiplication of ~; and the
complex Gaussian random vector h; (i.e., x; = /py vy hy).

We derive joint MAP estimates {X,%} by making an
explicit use of the prior knowledge on the fact that the propa-
gation channels between the UEs and the BS follow complex
Gaussian distributions given in (2), under the assumption that
the BS knows the estimates of the second-order statistics of
the channels, i.e., the matrices {Rz}f\il To this end, the joint
MAP estimates {X,4} with respect to the posterior density
given the measurement matrix Y is given by

{Xa ;7} = max p(X7 7|Y)
Xy
p(V)P(X[7)p(Y[X,v)
p(Y)

= 1ax p(V)p(X|v)p(Y[X)

= ggi}yl —log p(Y|X) —log p(X|vy) —log p(7)

= max
X,y

1 )
= gin 5 [|Y — X[ —log p(X|v) — log p(v),
(19)

where (a) follows from the Markov chain v — X — Y
and because p(Y) does not affect the maximization and
(b) follows from the additive Gaussian noise model in (3).
The term p(X|v) denotes the conditional probability density
function (PDF) of the effective channel X given the vector
~, whereas the term p(7y) represents the prior belief on the
distribution of the user activity.

Next, we elaborate in detail the choice of the prior p(y) and
the definition of the conditional PDF p(X|v). Then, having
fixed these quantities, we derive an ADMM algorithm to find
an approximate solution to the MAP estimation in (19).

1) Sparse Prior p(~y): By the model assumption on the
sporadic UE activity, the user activity indicator vector -~y
exhibits a sparse structure (y; = 0,Vi ¢ S). Thus, in the
context of sparse recovery, we impose a sparsity prior p(7y)
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on «. For instance, given a continuous-magnitude random
vector & € CY, a sparsity-inducing prior can be given by
p(0) x exp (— Zi\il |0;|7), where p € [0, 1] [36].

Note that setting p = 1 results in the /;-norm penalty
corresponding to the Laplace density function. On the other
hand, setting p = 0 renders the optimal sparsity-inducing
penalty corresponding to the £y-norm. Since = is a vector of
binary elements, setting p = 0 is equivalent to p = 1 as it
imposes the same sparsity prior p(7). Subsequently, we select
the prior p(y) as the ¢p-norm penalty as

N

p(y) o exp ( -3 1(%))

i=1

(20)

2) Conditional Probability p(X|vy): Since the user activity
is controlled by -, the conditional probability p(X|vy) is
defined as follows. First, we note that the activity patterns of
the different users are mutually independent, hence, the condi-
tional PDF factorizes as p(X|y) = Hﬁil p(xi|7y:). In addition,
for each user i € N, we distinguish the two possible cases
for p(x;|vi) as follows: 1) Conditioned on ; = 1, the ith
UE is active and x; follows a Gaussian distribution, i.e.,
p(xi|7 = 1) = px,, where py, ~ CN(0,R;) and R; denotes
the scaled covariance matrix defined as R; = p/™R,. 2)
Conditioned on ~; = 0, the ¢th UE is inactive, and x; is a
deterministic all-zero vector x; = 0 with probability 1, i.e.,
p(xi|y; = 0) = 1. Therefore, p(X|v) is given by

N
pXly) = [[pxilvi) = [ [ .- 1)
i=1 €S
By applying the log transformation to p(«y) in (20) and to
p(X]v) in (21), and by dropping the constant terms that do not
depend on v and X, the joint MAP estimation problem (19)

can be equivalently written as

N
P 1
{X.4} = win 7 [[Y — @XT; + 6y > 1)

i=1

N
2 ) xR X, (22)
i=1
where regularization weights ; and 35 balance the emphasis
on the priors both in relation to each other and to the
measurement fidelity term. The third term in (22) applies a
quadratic Mahalanobis distance measure,’ x?Rflxi, i eN,
for active UEs in order to incorporate the knowledge of the
spatial correlation matrices of the UEs into the optimization
process.

B. MAP-ADMM Solution

The non-convex problem (22) is a mixed-integer program-
ming problem due to involving binary optimization vari-
ables -, and is, thus, hard to solve for large V. In this section,

3The Mahalanobis distance between a vector @ and the Gaussian
distribution with mean g and covariance matrix R is defined as

\/ (6 — w)HR~1(0 — p). It measures the distance between the vector
and the mean of the distribution (p¢) measured along the principal component
axes determined the covariance matrix R.
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we develop a computationally efficient ADMM algorithm,
which is numerically illustrated to achieve great performance
in Section VI.

We start by noting that the recovery of effective channel
X renders implicitly the vector =, i.e., finding the index set
{i | 7 # 0, i € N} is equivalent to finding the index set
{i | |xill2 > 0, ¢ € N}. Therefore, we solve a relaxed
version of the MAP estimation (22) by approximating the
penalty term that depend on ~ by penalty term that depend on
[xill2, Vi € N.

Note that the second term Zi\;l 1(y;) in (22) is equiva-
lent to an [|X]||2,0 penalty in the sense that it enforces the
row-sparsity of the matrix XT. Therefore, Zﬁil 1(~y;) can be
relaxed by the log-sum penalty Eﬁil log(||x(|2 + €0)-

Subsequently, we can eliminate « and approximate (22) as

N
o1
min 5||Y — X%+ 1> log(ui + €o)

i=1

N
+62 ZX?R;IXi
1=1
S.t. HXiHQ < w4,

VieN. (23)

Again, we utilize MM and linearize the concave penalty
term by its first-order Taylor expansion at point u"). Thus,
an approximate solution to (23) is found by iteratively solving
the problem

N
XD = min LY~ @XTE 41> 0l
i=1
+82 ZN xR 1x;, (24)
=10 Y
where the weight vector g = [g{” gV ... gVIT is given
according to (10). The optimization problem (24) can be seen
as an iterative reweighted /5 ;-norm minimization augmented
with an additional penalty function that incorporates the spatial
correlation knowledge to the optimization process by applying
a Mahalanobis distance penalty on the active UEs.

The objective function in (24) is a sum of convex functions,
hence, the optimization problem (24) is convex. Thus, aiming
to provide a computationally efficient solution, we develop an
ADMM framework that solves (24) through a set of sequential
update rules, each computed in closed-form. In particular,
in order to decompose (24) into a set of separate functions,
we introduce two splitting variables Z,V € CM*N and
rewrite the optimization problem as

(X(l+1), Z(l+1)7 {/(l+1))

= min

1
S[IY — Z"[|7
X,Z,V 2

N N _
03 oVl kY R

st. X, =12, X;=vVv;, ViecN. (25)

The optimization problem (25) is block multi-convex, i.e.,
the problem is convex in one set of variables while all the
other variables are fixed. Since ADMM exploits implicitly
the block multi-convexity nature of (25), utilizing ADMM to
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solve (25) is a reasonable choice. Accordingly, the augmented
Lagrangian associated with (25) is given by

L(X,Z,V, Az Ay)

N
1 !
= 3IY =227 + 5 Y 0 il

i=1
S 1
02 3 VIR i+ SIX -V A
i=1
P Lo AR AR
+EIX—Z+ A, - - . (26)
5 P I 2 %
where A, = [Aa,...,An] € CM*YN and A, =
A1, .- Avn] € CMXN are the matrices of the ADMM dual

variables.

The ADMM solution to the optimization problem (24) at
the (I)th MM iteration is achieved by sequentially minimiz-
ing L(X,Z,V,A,, A,) over the primal variables (Z,V,X),
followed by dual variable (A, A,) updates as follows:

ZFHD) = min £(X®) |2, VE AR AR
VA Z ) v

1 p , 1
in=||®ZT — Y2 + 5||X®) —Z + —AP) |2
min o | I+ 51 + oA I

(27)
vkt .- m\i/nﬁ(X(k), Z*+D v AR AR
N
. ) AR
:= min 35 Zv?R;lvi + BHX(k)—V—i—LH%
\% p 2 p
(28)

XEHD = min £(X, 20D, VD AR AR)
X VA ) v

N
- D1l 4 LK~z L LA G2
m)én;ﬁ’lgl I1sll2 + 51X~ 2 +pAz IR

1
+ﬁx—vWﬂ+;MM@ (29)
AFTD = AR 4 (XKD _ 74D (30)
APHD = AR g p(X KD v D)y, (31)

We present the derivations of the ADMM steps (27), (28),
and (29) in detail below.

1) Z-Update: We note that the Z-update in (27) is identical
to the convex optimization problem in (13), hence, Z(**+1) is
computed using (16).

2) V-Update: We can easily show that the V-update in (28)
can be decoupled into N convex sub-problems, given by

. AR
vz(kJrl) =min BQVZHR;lvi—i—ngEk) —Vi—i—% ||§, Vie N.
(32)

The solution for (32) is obtained by setting the derivative
of the objective function with respect to v; to zero, resulting
in

1 - _ _
S = LR 1) ) AR, e
Ba B
(33)
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a) X-update: Using the manipulations for (29) shown
in Appendix A, the X-update solves the following convex
optimization problem:

N
X = min >~ ol xiflo + o X — SPE, (34)
1=1

where agk) = ﬂlgil) and {S*) =
AP AP

%(z(ku) 4 VD)

). The problem (34) decouples into N sub-
P o .

problems, each admitting the closed-form solution

22 2sMie N (35)

max {0, [|s{[|> —

k
B

X§k+1) _

C. CDI Knowledge

MAP-ADMM operates on the assumption that the BS
knows the CDI of the individual channels, i.e., {R}f—V:l.
We note that the assumption that the BS knows {R;} | is
widely accepted in the massive MIMO literature [27], [29].
Furthermore, a similar assumption on the availability of the
CDI has been adopted in [24] that addresses JUICE in mMTC
with sporadic user activity.

The acquisition of the CDI at the BS may be challenging,
especially for the UEs which are inactive for a long period.
Therefore, a possible solution to circumvent such an issue
can be realized by deploying a training phase to estimate the
CDI. The training phase can be implemented over separate
channel resource blocks that are solely dedicated to estimate
the CDI. In practice, the BS would consume a set of available
channel resources in order to obtain an estimate of all the
channel covariance matrices, denoted as {Rz}f\il In particu-
lar, at different time intervals, a specific group of UEs transmit
pre-assigned orthogonal training pilots to the BS over T coher-
ence intervals, and subsequently, the BS employs conventional
MIMO channel estimation techniques to obtain 7" estimates of
channel responses h;, denoted as h!,... h7. Subsequently,
the BS computes the estimated channel covariance matrix*
for the ith UE as R; = & Y1 ﬁfflfH

The frequency of updating the CDI at the BS depends
on the mobility and the activity level of the UEs as well
as the changes in the multi-path environment. Therefore, the
estimated Ri can be used over several coherence intervals due
to the fact that: 1) the channel covariance matrices vary in a
slower timescale compared to the channel coherence time, and
2) the UEs have very low mobility in many practical mMTC
systems. Consequently, learning the CDI does not consume
disproportionate amount of resources. As we will show in the
simulation results, the BS does not require a large number
of training samples T to estimate {R}Y . In fact, the BS
needs roughly 7' = 2M samples to provide near-optimal
results in terms of the mean square error for channel esti-
mation, and we note that similar conclusion has been reported
in [27, Sect. 3.3.3].

4For a recent review on the different techniques on channel estimation and
channel covariance estimation in massive MIMO networks, we refer the reader
to [27, Sect. 3.2-3.3].
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Algorithm 2: MAP-ADMM

Input: 1) Pilot matrix ®, covariance matrices {R;} ,,
(@@ +ply) . AR (L£Ri+Ly) L VieN
2) parameters 51,524’, €0, € R, lmaXvkmaXv
Output: X
Initialization: X (), V(©) Z© A© A©) 7 — 7 7=1,
1 Receive Y at the BS, and compute and store while
| < lnax do

2 | while k < Koy or |[X*) — XE=D|| < € do
3 Update Z**+1 using (16) and V*+1) using (33)
4 Update X(#+1) using (35)
s ARFD — AR 4 p(X(+D) — Z(+D)
. AU = A (XD O
7 k—k+1
g8 | XU — X(*k+1)
Update ggl) using (10)
1 | l—Il+1

D. Algorithm Implementation

The details of the proposed MAP-based JUICE, termed
MAP-ADMM, are summarized in Algorithm 2. We note
that Z-update (27) and the V-update (28) are independent
from each other, hence, they can be performed fully in
parallel. Similarly to Algorithm 1, MAP-ADMM is run until
[X*) — XE=D|2 < ¢ or until a maximum number of
iterations [y axkmax 1S reached.

V. ALGORITHM COMPUTATIONAL COMPLEXITY

In a typical mMTC scenario, where the number of con-
nected devices is very large, the complexity of the recovery
algorithms is an important issue to address. In fact, for the
implementation of the proposed algorithms, the computational
complexity determines the hardware processing cost. Next,
we analyze the complexity of the proposed JUICE algorithms
in terms of the number of required complex multiplications per
iteration using the big O(-) notation. The complexity analysis
is summarized in Table I which also shows the exact number
of matrix multiplications.

At the Z-update step of IRW-ADMM and MAP-ADMM,
for fixed p, the quantity (®T®* + pIN)_1 is computed only
once at an algorithm initialization. Similarly, the term YT®*
is computed only once upon receiving the pilot signal Y.
Therefore, computing Z*+1) requires (M + 1)N? complex
multiplications. For the V-update of MAP-ADMM, the terms
iﬁi(ﬁ—gf{i + IM)_l,W € N, in (33) need to be computed
only once and can subsequently be used for several coherence
intervals. Hence, MAP-ADMM requires N (M?2 + 2M) com-
plex multiplications to compute V¥ +1) The soft-threshold
operators in (18) and (35) for the X-update require 2M N
complex multiplications. Finally, the weight vector g(*) is
computed only at the outer MM iteration level (1) and it
requires M N complex multiplications. Therefore, the overall
complexity for IRW-ADMM and MAP-ADMM is O(M N?)
and O(MN? + N M?), respectively.
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Table I also compares the complexity of IRW-ADMM and
MAP-ADMM to the three baseline algorithms that we con-
sider in the numerical experiments: Fast alternating direction
method (F-ADM) [32], simultaneous orthogonal matching
pursuit (SOMP) [7], and temporal sparse Bayesian learning
(T-SBL) [11]. F-ADM solves the problem (7) using an
ADMM algorithm and it has computational complexity of
O(MT,N). The greedy SOMP is reported in [18] to exhibit
computational complexity of O(Mr, N). T-SBL has compu-
tational complexity’ of O(N2M?>7,).

In summary, incorporating the channel spatial correlation
information results in increased computational complexity. For
instance, MAP-ADMM has higher computational complexity
per iteration compared to IRW-ADMM due to incorporating
the spatial structure information in the V-update step. In addi-
tion, as the proposed IRW-ADMM and MAP-ADMM aim at
providing an exact solution to the JUICE problem, they are
more computationally complex than F-ADM. Nevertheless, the
additional cost of the proposed algorithms is compensated for
by the convergence to a more accurate solution, as we will
show in the next section.

VI. SIMULATION RESULTS

In this section, we provide simulation results to show the
performance of the proposed JUICE algorithms in terms of
user activity detection accuracy, channel estimation quality,
and convergence rate, and compare them to existing MMV
reconstruction algorithms.

A. Simulation Setup

We consider a single-cell of a radius of 50 m, where the
BS is surrounded by N = 200 uniformly distributed UEs, out
of which K = 10 UEs are active at each coherence interval
T.. The propagation channel between the ith user and the
BS in (1) consists of P; = 200 paths with angular spread
deviation oy = 10°. Each user i = 1,..., N is assigned
with a unique normalized quadratic phase shift keying (QPSK)
sequence ¢;, where the QPSK pilot symbols are drawn from
an i.i.d. complex Bernoulli distribution. The SNR is defined

E[||®X]|2
as SNR [dB] = 10log;, <W

B. Performance Metrics

The JUICE performance is quantified in terms of nor-
malized mean square error (NMSE), support recovery rate

(SRR), and the convergence rate. The NMSE is defined as
E[|Xs—Xs||7]

E[|XsZ]
estimated effective channel matrix, respectively, restricted to
the true active support S. The expectation in the NMSE is
computed via Monte-Carlo averaging over the randomness of
effective channel matrix X, the pilot sequence matrix ®, and
noise W; thus, the NMSE is presented as the normalized
average square error (NASE).

, where Xs and Xs denote the original and

SThe authors in [11] also devised a low-complexity version of T-SBL
relying on approximate updates which was shown to work well in the high
SNR regime. However, since we are interested in a broader SNR range, this
implementation is not readily applicable to our JUICE problem.
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TABLE I

COMPUTATIONAL COMPLEXITY FOR DIFFERENT RECOVERY ALGORITHMS, WHERE (k) IS THE ITERATION INDEX AND K Is THE
ESTIMATED NUMBER OF NON-ZERO ELEMENT AT ANY PARTICULAR ITERATION

Algorithm H Number of complex multiplications in each iteration H o)
IRW-ADMM (M +1)N?+3MK + M(N - K)+ MN O(MN?)
MAP-ADMM || (M 4+ 1)N? + NM? + 3MK + M(N — K) + MN | O(MN? 4+ NM?)
F-ADM [32] 47, M N 4+ 5MN O(7,MN)

SOMP [7] (21, + YMN + 1, M? + (M + 1)1 (k)? + (k)? O(r,MN)

T-SBL [11] 2M3N?7, + M?12 + NM?7, O(N?M?37,)
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(a) SRR versus SNR.
Fig. 2.

The SRR is defined as % where S = {i | %[z >

€thr, Vi € N} denotes the detected support for a small
pre-defined threshold ety,,. Thus, |S NS | represents the number
of correctly identified active users, whereas |S — S | accounts
for both the number of misdetected active UEs and falsely
identified inactive UEs. The SRR rate approaches 1 when S
is close to the true S.

C. Baselines

We compare the performance of the proposed algorithms
against the following algorithms that solve any MMV sparse
recovery problem: 1) SOMP [7], 2) F-ADM algorithm [32],
which differs from the proposed ADMM in Algorithm 1
(with g = 1) in that while ADMM provides an exact
solution to (7), F-ADM solves (7) approximately by lin-
earizing the X-update sub-problem with the first-order Tay-
lor expansion; 3) SPARROW, which reformulates (7) as a
semi-definite programming problem [8, Eq. (22)] and we solve
it using CVX toolbox [37]; and 4) T-SBL [11] where both
the second-order statistics and the noise variance are known
at the BS and the sparse recovery is performed using the
update rules given by [11, Egs. (6), (7), (12)] (i.e., “B-update”
in [11, Eq. (13)] is not performed, because we provide the
covariance matrices {R;}¥,.). In addition, we use both the
oracle least square (LS) and the oracle joint minimum mean
square error (MMSE) estimator, shown in Appendix B, where
each estimator is provided “oracle” knowledge on the true set
of active UEs. While the oracle LS estimator provides a good
benchmark for channel estimation when no CDI is available
at the BS, the joint MMSE estimator provides a lower bound
on channel estimation performance when both the CDI and
the noise variance is available at the BS.

1075

NASE
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(b) NASE rate SNR.

Performance of JUICE with no side information in terms of SRR and NASE against SNR for N = 200, M = 20, and K = 10.

D. Parameter Tuning

The sparse recovery algorithms require fine-tuning of their
regularization parameters to yield their best estimates. While
the regularization parameters depend on the different system
parameters, such as N, M, K, 7,, and o2, they are selected
empirically by cross-validation in practice. For a fair com-
parison, all the parameters have been empirically tuned in
advance and then fixed such that they provide overall the best
performance in terms of NASE for the SNR range [0—16] dB.
For instance, 31 depends highly on the ratio %, however, since
the K is not known to the BS in general, we tuned 3; based
on the noise variance 0% as 3; = "—; since it provided the
most robust convergence. Furthermore, we set 35 and log-sum
stability parameter ¢y to S = 1 % and ¢g = 0.07 — 0.12 %
of the average norm of the effective channels. Moreover,
since ADMM converges typically in few tens of iterations,
a maximum number of iterations of ly.x = 12, kpax = D,
and stopping criterion € = 10~ were found to be sufficient
for the ADMM-based algorithms to converge to their best
performance. All the optimization variables for MAP-ADMM
X, V,Z,A,, and A,) and for IRW-ADMM (X, Z, and A)
are initialized as zero matrices. The results are obtained by
averaging over 10% random channel realizations.

E. Results

1) Performance Without Side Information: First, we exam-
ine the scenario when no CDI is available to the BS. To this
end, we compare the performance of the proposed ADMM
and IRW-ADMM algorithms (Algorithm 1) with F-ADM,
SPARROW, SOMP, and oracle LS.
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Fig. 2(a) illustrates the obtained SRR against SNR for
the different sparse recovery algorithms. The obtained results
reveal that the proposed IRW-ADMM provides the best per-
formance by achieving the highest user activity detection
accuracy. In fact, the IRW-ADMM using pilot sequence length
Tp = 20 is able to achieve SRR = 0.95 for SNR > 6 dB.
Furthermore, even with the 25 % reduced pilot length, i.e.,
Tp = 15, the IRW-ADMM still outperforms the other MMV
recovery algorithms by a large margin. Fig. 2(a) shows that
the proposed ADMM provides similar performance F-ADM.
However, we note that ADMM uses fewer regularization
parameters compared to F-ADM, thus, it may be more resilient
to parameter tuning.

Fig. 2(b) depicts the channel estimation performance for the
different recovery algorithms in terms of NASE against SNR,
including the comparison to the genie-aided LS benchmark.
It can be readily seen that for 7, = 20, the performance of
the proposed IRW-ADMM nearly matches the performance of
the genie-aided LS. Furthermore, IRW-ADMM with a reduced
pilot sequence length of 7, = 15 still outperforms ADMM,
F-ADM, SOMP and SPARROW for SNR > 8 dB. Similarly
to the SRR performance, the proposed ADMM and F-ADM
achieve similar NASE performance. Moreover, as the sparsity
regularization parameter for both F-ADM and ADMM is based
on the knowledge of the noise variance, F-ADM and ADMM
shows to outperform the oracle LS for SNR < 4 dB. Finally,
while SOMP provides a lower SRR performance, it outper-
forms ADMM, F-ADM, and SPARROW in terms of NASE for
the high SNR regime. The low SRR in SOMP is caused by the
high number of falsely identified inactive UEs. However, since
NASE is quantified only for the true active UEs, the NASE
performance does not suffer a huge degradation. In summary,
the results presented in Fig. 2 highlight the remarkable gains
obtained by formulating the JUICE as an iterative reweighted
l3,1-norm minimization problem.

Fig. 3 presents a typical convergence behavior of ADMM,
IRW-ADMM, and F-ADM for SNR = 16 dB. The figure
shows the number of iterations required for the algorithms to
converge to the optimal performance. The results reveal that
IRW-ADMM using 7, = 20 takes approximately 40 iterations
to convergence, with a slower convergence when reducing the
pilot sequence length to 7, = 15. On the other hand, different
from the SRR and NASE performance where ADMM and
F-ADM provide similar performance, F-ADM converges in
about 20 iterations which is much faster than the proposed
ADMM taking about 50 iterations to converge.

2) The Impact of Exploiting Channel Statistics: Since we
have shown the superiority of IRW-ADMM over conventional
sparse recovery algorithms where no knowledge on the CDI is
used, next, we investigate the effect of incorporating the CDI
on the JUICE performance.

First, we quantify the activity detection accuracy perfor-
mance of the proposed MAP-ADMM and compare it to
IRW-ADMM and T-SBL. Fig. 4(a) presents the SRR against
SNR for the proposed algorithms for different values of pilots
lengths. The results clearly show that MAP-ADMM provides
superior performance compared to IRW-ADMM. For instance,
MAP-ADMM identifies the set of true active users S perfectly
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Fig. 3. Convergence behaviour in terms of NASE versus the number of

iterations at SNR = 16 dB for N = 200, M = 20, and K = 10.

for SNR > 8 dB using a pilot length 7, = 20. Furthermore,
reducing the pilot length by a factor of 25 % (i.e., 7, = 15)
affects the performance of MAP-ADMM only moderately and
optimal performance is achieved for SNR > 10 dB. More
interestingly, the results indicate that even with 40 % reduction
in the pilot sequence length (i.e., 7, = 12), MAP-ADMM
provides 95 % SRR rate for SNR > 10 dB. Finally, the results
show that while T-SBL suffers from an inferior performance in
the low SNR regime, it provides an optimal activity detection
performance when SNR > 8 dB.

Fig. 4(b) illustrates the channel estimation performance in
terms of NASE for MAP-ADMM against SNR for different
pilot lengths and compares it to IRW-ADM, T-SBL, and
the oracle MMSE benchmark. The proposed MAP-ADMM
indisputably provides superior performance and significant
improvement over IRW-ADMM. For instance, given the same
pilot sequence length of 7, = 20, MAP-ADMM achieves the
same performance as IRW-ADMM while using up to 6 dB
lower SNR. Furthermore, Fig. 4(b) reveals one advantageous
feature of utilizing available CDI: even with 25 % reduction
in the pilot length, i.e., 7, = 15, MAP-ADMM still provides
2 dB gain compared to IRW-ADMM. Comparing the per-
formances between the MAP-ADMM and T-SBL algorithms,
we distinguish two cases: 1) For SNR < 8 dB, T-SBL does not
provide a reliable performance and MAP-ADMM outperforms
T-SBL by a large margin, or so. 2) In the high SNR regimes,
i.e., SNR > 8 dB, T-SBL outperforms slightly MAP-ADMM.
These results can be explained by the fact that, in contrast
to MAP-ADMM, T-SBL knows and uses the exact noise
variance o2. However, when the BS has the exact knowledge
on the noise variance o2 as well as the CDI, the slight gap
in the NASE performance between T-SBL and MAP-ADMM
can be compensated for by utilizing a joint MMSE estimator
on the received signal associated with the estimated active
UE set S obtained by MAP-ADMM. Fig. 4(b) shows that
using the joint MMSE estimator on the estimated active UEs
provides even the same performance as the oracle joint MMSE
estimator starting from SNR > 8 dB, which consolidate the
results from with Fig. 4(a) where perfect recovery is attained
at SNR > 8 dB. The results shown in Fig. 4 highlight
clearly the advantages of exploiting the prior information
about the channel to improve the JUICE performance in
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Fig. 4. Performance of the proposed MAP-ADMM in terms of SRR and NASE against SNR for N = 200, M = 20, and K = 10.
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N =200, M = 20, and K = 10.

terms of activity detection accuracy and channel estimation
quality.

Fig. 5(a) presents a typical convergence behavior of NASE
versus the number of ADMM iterations for MAP-ADMM
using different pilot sequence lengths at SNR = 16 dB. The
results reveal that MAP-ADMM using 7, = 20 requires about
40 iterations to converge, which is similar to IRW-ADMM
performance. On the other hand, the results show that reducing
the pilot length affects also the convergence rate of MAP-
ADMM, as it takes more iterations to converge.

Fig. 5(b) plots the SRR performance versus the average
number of ADMM iterations using different pilot lengths.
MAP-ADMM using 7, = 20 achieves the perfect activity
detection in 20 iterations, whereas it takes up to 40 iterations
to achieve the same performance for 7, = 15. This result is
interesting as MAP-ADMM needs not to run until convergence
in the NASE domain, where it takes up to 40 iterations, rather,
MAP-ADMM can be run for few iterations until it detects
perfectly the set of active UEs (20 iterations on average) as
shown in Fig. 5. Afterward, the joint MMSE estimator (39)
can be applied on the estimated set of active UEs to provide
the optimal channel estimation quality for the effective channel
matrix, as shown in Fig. 4(b).

E. Effect of the Number of BS Antennas

Next, we focus on quantifying the effect of the number
of the BS antennas on the JUICE performance. Fig. 6(a)
illustrates the SRR of MAP-ADMM versus the number of
BS antennas M. It is clear that increasing the number of
BS antennas improves significantly the active user detection
accuracy. Moreover, for the low SNR regime, i.e., SNR < 8
dB, the results show the significance of increasing the number
of antennas to be greater than the number of active UEs, i.e.,
M > K. However, the SRR performance starts to saturate
gradually with increasing the number of BS antennas M.
In fact, increasing the number of BS antennas from M = 8 to
M = 16 provides more gains than increasing from M = 24 to
M = 32; this means that the gain in SRR gradually decreases
as M increases. Fig. 6 (b) depicts the channel estimation
performance as a function of the number of BS antennas M
at SNR = 12 dB. First, as expected, increasing M improves
NASE for all the algorithms. Moreover, by increasing M,
the channel estimation quality obtained by MAP-ADMM
improves significantly and it approaches the lower bound
offered by the oracle joint MMSE. More interestingly, in con-
trast to activity detection accuracy where the performance
saturates when M > 2K, channel estimation quality improves
considerably with the increase of M. Fig. 6 points out the
effects of operating in massive MIMO regime, i.e., M > K:
while user activity detection accuracy saturates around M >
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2K, channel estimation quality consistently improves when
moving to the large numbers of BS antennas M.

G. Impact of Imperfect Knowledge of the Channel
Covariance Matrix

This section investigates the impact of the training phase to
estimate the second-order statistics of the channels {Ri}ij\il
on the channel estimation. More precisely, we vary the number
of training samples 7" and we quantify the NASE performance
of MAP-ADMM and the oracle joint MMSE estimator. Note
that once the set of covariance matrices is generated using a
particular number of samples 7', it is used directly as an input
to MAP-ADMM, hence, the BS does not need to update them
at each MAP-ADMM iteration.

Fig. 7 depicts the NASE versus the number of samples
T used to generate {R;}Y, for M = 20 and M =
40 at SNR =16 dB. The regularization parameters for
MAP-ADMM and IRW-ADMM are fixed to the ones pro-
viding the best results when perfect knowledge of {R,;}Y
is available. First, Fig. 7 indicates that using a low number
of training samples 7' is detrimental to the performance of
MAP-ADMM and the joint MMSE estimator as they require

at least 7' > — training samples to achieve the same
performance as IR%V—ADMM. Second, as expected, increasing
the number of samples 7' improves the channel estimation
quality for both MAP-ADMM and the joint MMSE estimator
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Channel estimation performance versus the number of samples 7', N = 200, K = 10, and 7, = 20, SNR = 16 dB.

as their NASE asymptotically approaches the lower bounds
achieved by their counterparts that rely on perfect knowl-
edge of {R;}N,. More interestingly, the results show that
MAP-ADMM and joint MMSE requires around 7" = 2M sam-
ples in order to a achieve the same NASE performance to their
optimal lower bound. This results indicate that MAP-ADMM
is not highly sensitive to imperfect channel statistics. Finally,
we note that a similar conclusion on the required number
samples T to achieve near-optimal performance for the MMSE
estimator is reported in [27, Sect. 3.3.3].

VII. CONCLUSION AND FUTURE WORK

The paper addressed the JUICE problem in grant-free access
in mMTC under spatially correlated fading channels. We pre-
sented two JUICE formulations depending on the availability
of CDI. If no CDI is available, we proposed an iterative
reweighted /5 1-norm optimization problem that depends only
on the sparsity of the channel matrix and it is robust and
invariant to different channel distributions. When the CDI is
available at the BS, we approached the JUICE from a Bayesian
perspective and proposed a novel JUICE formulation based
on MAP estimation. Furthermore, we derived ADMM-based
algorithms that feature computationally efficient closed-form
solutions that can be computed via simple analytical formulas.

The obtained numerical results highlight the following key
findings. 1) Formulating the JUICE as an iterative reweighted
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{3,1-norm minimization problem provides a huge performance
improvement over conventional {3 ;-norm minimization.
2) While incorporating the spatial correlation of the chan-
nels increases the computational complexity of the recovery
algorithms, it results in significant gains even with a smaller
signalling overhead. 3) The performance of the JUICE improve
dramatically when moving from the conventional MIMO
regime to the massive MIMO regime. 4) The training phase
for estimating the second-order statistics of the channel does
not require a substantial amount of resources. Furthermore,
MAP-ADMM is robust against imperfect channel statistics
knowledge, which is conducive for practical use cases.

MAP-ADMM relies on the knowledge of the CDI at the BS,
which may be challenging to acquire in practice. A potential
future work is to design a sparse recovery algorithm that
estimates the second-order statistics of the channels within the
recovery process. Another interesting future direction would
be to extend the JUICE framework into multi-cell and cell-free
mMTC.

APPENDIX
A. Derivation of X-Update

First, recall that the X-update (29) solves the following
optimization problem:

N
. k 14 ~ P ~
XD = min Y~ ol + SIX — Z[[F+ S IX -V,

i=1
(36)
k 5 (k) ~
where ag ) — 51g§ ), 7 — Z,(k+1) _ cand V = V(k+1) _
P

AR

Y. We can rewrite (36) as

P

N
(k+1) _ (k) ||+ . P H , 77H
X —m)én;ai |||z + 2%(2XX + 77
LUV X2+ V) — (Z+ V)HX)
al 1
. k s
:m)én;aﬁ )||xi|\2+pTr XXI'I—|—§(ZZI'I

1 1~ -
+VVH) = SXM(Z V) - S(Z+ V)HX>,
(37
By subtracting the constant term EHV — Z||2 from (37), and

1 ,~ =
denoting S**) = 3 (V + Z), the X-update becomes (34).

B. Joint MMSE Estimator

The received signal in (3) can be rewritten as

y = Osxs +w, (38)

where y = vec(YT) € C»M, w = vec(WT) € C»M,
and O = Ps @ Iy € CMXKM_  The vectorization
in (38) transforms the matrix estimation into a classical vector
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estimation. Thus, we utilize the MMSE estimator [38] to
Jjointly estimate the channels of the active UEs, as

XJ_MMSE = VeC(XJ_MMSE) =X+ RdiagQHQ(y - @)_(),
(39)

where Q = (@RdiagQH + O'QITPM)_l, X denotes the mean
of x, and Rqijag denotes the covariance matrix of xs given
as a block diagonal matrix whose main-diagonal blocks are
given by the scaled covariance matrices R; corresponding to
the active UEs i € S.
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