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Abstract—We consider the channel estimation problem
and the channel-based wireless applications in multiple-input
multiple-output orthogonal frequency division multiplexing sys-
tems assisted by intelligent reconfigurable surfaces (IRSs).
To obtain the necessary channel parameters, i.e., angles, delays
and gains, for environment mapping and user localization,
we propose a novel twin-IRS structure consisting of two IRS
planes with a relative spatial rotation. We model the training
signal from the user equipment to the base station via IRSs as a
third-order canonical polyadic tensor with a maximal tensor rank
equal to the number of IRS unit cells. We present four designs
of IRS training coefficients, i.e., random, structured, grouping
and sparse patterns, and analyze the corresponding uniqueness
conditions of channel estimation. We extract the cascaded channel
parameters by leveraging array signal processing and atomic
norm denoising techniques. Based on the characteristics of the
twin-IRS structures, we formulate a nonlinear equation system
to exactly recover the multipath parameters by two efficient
decoupling modes. We realize environment mapping and user
localization based on the estimated channel parameters. Simu-
lation results indicate that the proposed twin-IRS structure and
estimation schemes can recover the channel state information
with remarkable accuracy, thereby offering a centimeter-level
resolution of user positioning.

Index Terms— Channel estimation, parameter decoupling, ten-
sor factorization, twin-IRS structure, user localization.

I. INTRODUCTION
ILLIMETER wave (mmWave) (30-300 GHz) technolo-
gies have been identified as a promising candidate for
tackling the data traffic deluge and frequency resource shortage
in the fifth generation era [1]. Exploiting higher-frequency
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spectrum, e.g., terahertz (0.1-10 THz), has also been regarded
as one of the potential development directions of the future
sixth generation wireless communications [2]. The short sig-
nal wavelength enables miniaturized implementation of mas-
sive multiple-input multiple-output (MIMO) arrays, providing
considerable directional beamforming gains [3]. In order to
address the limited coverage and line-of-sight (LoS) obstruc-
tion of high-frequency systems, intelligent reconfigurable sur-
faces (IRSs) have been recently investigated to artificially
establish controllable non-line-of-sight (NLoS) links [4].

IRS technologies can contribute to the full coverage and
broadband connectivity of the future wireless networks [5].
An IRS, typically a programmable metasurface, is composed
of a massive number of unit cells independently interacting
with incident waves [6]. The reflection coefficients of IRS
elements can be predefined by digital controllers to perform
real-time manipulation of electromagnetic responses [7]. IRSs
can help realizing a smart wireless propagation environment,
providing additional degrees of freedom for transceiver design
and network optimization [8]. Some works have already inte-
grated IRSs into wireless applications, e.g., MIMO detection,
non-orthogonal multiple access, radio localization and map-
ping, etc. [9]-[11]. Nevertheless, these services require precise
knowledge of the propagation channels and multipath para-
meters, thereby entailing fundamental challenges to channel
estimation involving fully passive IRS modules.

We will now delineate the following relevant works: An
efficient scheme that developed parallel and sequential training
designs was proposed in [12]. A compressed sensing (CS)
method that converted the channel estimation into a sparse
recovery problem was proposed in [13]. A tensor-based
approach that factorized the cascaded channel by iterative
decompositions was presented in [14]. A message-passing
algorithm that solved a dictionary learning problem was
presented in [15]. A two-timescale training protocol that
individually estimated the one-hop channels was developed
in [16]. A matrix-calibration scheme that developed a joint
calibration and estimation algorithm was developed in [17].
Most of these works achieve separated channels from the base
station (BS) or user equipment (UE) to the IRS plane, which,
however, induces inherent estimation ambiguities that hinder
the exact recovery of multipath parameters. These ambigui-
ties limit the integration of IRSs into environment-dependent
applications [11], which can only be removed with strong
or unrealistic assumptions, e.g., normalized power, channel
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reciprocity, quasi-static states, a priori long-term information,
etc [14]-[17].

In this paper, we consider the channel estimation of
IRS-assisted MIMO orthogonal frequency division multiplex-
ing (OFDM) systems. By leveraging the concept of multi-IRS
networks [18], we propose a novel twin-IRS structure com-
posed of two IRS planes with a relative spatial rotation.
This three-dimensional (3-D) structure can provide channel
information along three orthogonal spatial dimensions, which
enables us to accurately extract the channel parameters in 3-D
propagation spaces. By leveraging the geometric relationship
of cascaded parameters obtained from the twin-IRS structures,
we can precisely recover the channel parameters, i.e., angles
of arrival (AoAs), angles of departure (AoDs) and time
delays, by solving systems of nonlinear equations. Unlike
some existing works that rely on strong assumptions, e.g.,
BS-IRS LoS components with a priori information [19], [20],
our work is able to exactly decouple the cascaded parameters
of common channels, supporting precise environment mapping
and localization applications. The main contributions of this
paper are summarized as follows:

o« We model the training signal as a third-order canonical
polyadic (CP) tensor, transforming the channel estimation
problem into a tensor factorization problem [21], [22].
By leveraging the assignment flexibility and distribu-
tion regularity of IRS unit cells, we apply the MIMO
antenna designs and array processing techniques to the
IRS configuration. We introduce four training designs,
i.e., random, structured, grouping and sparse patterns,
as well as, the corresponding uniqueness conditions of
channel estimates. The structural information artificially
attached to IRS coefficients can help to efficiently reduce
the training overhead.

o We combine the concept of sparse/grouping arrays
and atomic norm denoising techniques with the
tensor operations to realize the cascaded parameter
recovery [23]-[26]. Moreover, by leveraging the phys-
ical relationship of the novel twin-IRS structures,
i.e., the adjacent position and relative rotation, we intro-
duce additional information of channel paths into the
phases/amplitudes of the IRS array response vectors.
We further formulate a nonlinear equation system of
cascaded parameters and propose two efficient decou-
pling modes to exactly recover the channel parameters,
i.e., AoA/AoDs and time delays. Note that in most prior
works (e.g. [14]-[17], [19], [20]), these parameters cannot
be obtained without strong assumptions or estimation
ambiguities.

o By leveraging the geometric characteristics of mmWave
propagation, we implement a straightforward 3-D
propagation environment mapping, including scatterer
positioning of NLoS paths, user localization and orienta-
tion determination, based on the recovered channel path
parameters. Dedicated wideband and narrowband training
schemes with single and multiple twin-IRS structures are
respectively proposed.

Simulation results indicate that the proposed schemes

can achieve considerable channel estimation accuracy with
reduced training overhead for large-scale IRSs with massive
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TABLE I
SYMBOLS OF IMPORTANT VARIABLES AND PARAMETERS

Symbol Definition
Ny BS (UE) antennas
Mg ) BS (UE) RF chains

Ny reflectors in one IRS plane

Niv) horizontal (vertical) IRS reflectors
K OFDM subcarriers

Kir training subcarriers

Pir training frames

Tir training time slots per frame

Mty BS training streams

Lprau),» BS-IRS (IRS-UE) channel paths
QBI(IU),r, ¢ BS-IRS (IRS-UE) path gain
TBI(IU),r,¢ BS-IRS (IRS-UE) path delay
PBU),re horizontal AoA at BS (AoD at UE)
0B (U),re vertical AoA at BS (AoD at UE)
PA(D),re horizontal AoA (AoD) at IRS
OAD),r e vertical AoA (AoD) at IRS

G grouping pattern: total sub-groups
Ngnh(gv) grouping pattern: sub-group size
Nhd(va) sparse pattern: dense subarray size
Nis(vs) sparse pattern: sparse subarray size

number of elements. More importantly, the proposed twin-IRS
structure can help decouple the multipath parameters, lead-
ing to accurate environment mapping with a centimeter-level
resolution.

The rest of the paper is organized as follows: Section II
introduces the IRS-assisted MIMO-OFDM system, as well as,
the proposed twin-IRS structure. Section III presents the train-
ing pattern designs of IRS coefficients and the tensor-based
channel estimation schemes. Section IV presents the recovery
and decoupling procedures of cascaded channel parameters.
Section V discusses the application of user localization based
on the estimated channel information. Section VI presents
the numerical results of the channel estimation schemes and
environment mapping applications. Section VI draws the most
important conclusions.

Notations: a, A, A and A denote vectors, matrices, tensors
and element sets, respectively; (-)7, (-)*, (-)¥ and (-)! denote
the transpose, conjugate, Hermitian transpose and pseudo-
inverse, respectively; AN AW denote the columns and
rows of A indexed by N, respectively; aeb and a x b denote
the dot and cross products, respectively; ||a||, ||A|lr denote
the 2-norm and Frobenius-norm, respectively; ®, ® and o
denote the Kronecker, Khatri-Rao and tensor outer products,
respectively; Diag(a) denotes the diagonal matrix formed by
a; Tr(A) denotes the matrix trace; Z(n) = {1,...,n}; r(A),
k(A) denote the general rank and Kruskal-rank, respectively;
0,, 1,, and I,, denote all-zeros, all-ones vectors and identity

matrices, respectively; Matr(X; [k1, ..., kp], [kpt1,. .., kN])
P N

matricizes X € CI>*In into X € Clp=1 Tty XIg=pi1 Irq ;

Tens(X; [I1,...,In], [k1, ..., kp], [kpy1, ..., kN]) tensori-

zes X to X; X x, U denotes the mode-n tensor-matrix
product [27]. The symbols of important variables and
parameters are summarized in Table L.

II. SYSTEM MODEL
We consider an IRS-assisted MIMO-OFDM system as illus-
trated in Fig. 1(a), where one base station (BS) with Np
antennas and Mp radio frequency (RF) chains communicates
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Controller

obstruction

(a) Uplink UE-IRS-BS transmission.

(b) Twin-IRS structure.

Fig. 1. An IRS-assisted MIMO-OFDM system. (a) One BS communicates
with one UE via multiple IRSs with reflection coefficients configured by
a controller. (b) A twin-IRS structure composed of two IRS planes with a
relative spatial rotation.

with one user equipment (UE) with Ny antennas and My
RF chains. The system occupies K subcarriers with a central
carrier frequency f. and a bandwidth fs, where K, subcarriers
are allocated for training. Multiple two-dimensional (2-D)
IRSs with Nt elements are employed [5]-[7]. We propose to
arrange every two IRS planes closely together, constructing
R twin-IRS structures as shown in Fig. 1(b). Without loss of
generality, we assume that the primary IRS is configured on the
yz-plane (in the local coordinate system), while the secondary
IRS is rotated with horizontal and vertical angles, i.e., d, and
dy, relative to the primary one. Note that dy, d, can be viewed
as the yaw and pitch angles of the rotation about the z- and
y-axes, respectively. Other definitions of rotation, e.g., Euler
angles or quaternion [28], can also be applied.

We consider an uplink communication scenario, where the
direct BS-UE channel is assumed to be obstructed.! The
channel estimation procedure occupies P, training frames,
each containing 7%, training time slots. The training signal
within the tth time slot of the pth frame at the kth subcarrier
reflected via the primary IRS of the rth twin-IRS structure can
be represented as”

H .
Yrkpt = Wr,kHBLT,leag("/)r,k,p)
XH1u r b Bkt Xkt + Dy epe, (D

where X, € CMU and n,j ,+ € C® denote the transmit-
ted pilots and additive noise, respectively; F,.j , € CNv>*Mu
denotes the precoding beamformer within the ¢th time slot
of each frame; W, € CNexMu denotes the combining
beamformer with M, < Mp data streams processed in
parallel; Hpr, 1 € CNBxNt gpnd Hiy,ri € CNMxNu denote
the one-hop IRS-BS and UE-IRS channels, respectively;

!Actually, the BS-UE channel is expected to remain static with a large
coherence time. It can be efficiently removed by considering two received
signals with different IRS training coefficients and mutually subtracting them.
The IRS training pattern designs presented in this work are still applicable.

>The adjacent primary/secondary planes of each twin-IRS structure are
expected to share identical propagation conditions, which can be equivalently
regarded as a 2N7-element 3-D IRS. The proposed training designs can be
directly applied to this 3-D topology. Moreover, multiple twin-IRS structures
are distributed far apart from each other, whose propagation channels tend to
be weakly correlated. By leveraging the spatial orthogonality with directional
beamforming, or applying interference elimination methods with orthogonal
reflection coefficients [29], one can identify the signals via different twin-IRS
structures. For simplicity of notation and illustration, we here only represent
the signal via the primary IRS of one twin-IRS structure.
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Yy kp € CN1 denotes the dynamic reflection coefficient vector
during the pth training frame, which is sensitive to signal
frequencies [30].

We consider IRS-assisted systems working at mmWave
frequencies, where the uplink spatially sparse channels Hpj ;. 1
and Hjy ., via the rth primary IRS can be expressed as

Lp1,r

_ 2mkfs
Z aprree ' K BUCE(dp g, 0D )
—1

Hgi,r =

BBI,r k.t
xap (¢80, 08.r0)al (6D 10,00 10)
= AB,rDiag(ﬁBLr,k)Ag,rv
Ly, r»
—i ey e
Z aru,ppe VTR U (GA g, OA )
=1 B1U v kb
xar(pa,re, 0a.r.0)ag (U5, 0.r0)
= AA,rDiag(ﬁIU,r,k)A{_II,rv

where Lpy ., L1y, denote the numbers of propagation paths;
QBI,re, Q1U,r¢ denote the random complex gains; Tgr,¢,
Tiu,r¢ denote the time delays; ¢puy,r,e» OB(U),r,¢ denote the
horizontal and vertical AoAs at the BS (AoDs at the UE),
respectively; ¢pay,re Op(a),re denote the horizontal and
vertical AoDs (AoAs) at the primary IRS of the rth twin-IRS
structure, respectively; F'(¢,0) denotes the angle-dependent
IRS power radiation pattern defined as [31]

F(¢,0) £ (sinfcos¢)? 3)

(2a)

Hiy, i =

(2b)

where ¢ > 0 is the power radiation coefficient; ¢ = 0 corre-
sponds to omnidirectional IRS elements; A, € CVe*LeLr,
Ay, € CNuxLw.r concatenate the antenna steering vec-
tors formed by {¢p ,¢,08,r0}. {PUre,0u e}, respectively;
Ap, € CNoxleir Ay € CN*Lw.r concatenate the IRS
response vectors formed by {¢p ¢, 0p ¢}, {Pare, 06 rc}
respectively; Bgy ., € CL%r, By ., € CHUr concatenate
the equivalent path gains {3g1,,.x,¢}, {B1u.rk,¢}, respectively.
Note that Hpyqu),,;, may contain both the LoS and NLoS
components or only one kind of them, where the Rician
K -factor is denoted by Kgy(ru),-. In this paper, we consider
only the first-order NLoS components scattered/reflected once
by the environment objects, as illustrated in Fig. 1(a).?

The reflectors of an IRS plane form an (N}, x Ny )-uniform
planar array (UPA) topology with N; = NuV,. The array
response vector of the primary IRS can be represented in a
form of a Kronecker product aj(¢,6) £ ay(¢,0) @ a,(¢,0),
where

2mdy, . . 2nd . . T
ah(¢7 9) = |:17 e’ Ach SIDGSID(b’ EERE e’ Acb (M=) sinfsin ¢:| )
(4a)
. 27dy . omdy o T
a(6,0) 2 1,6 5 o0 L TR e es [T ap)

31t has been shown in [32], [33] that the higher-order rays with more
than two bounces suffer severe path loss and attenuation; as such, their
contribution to the total received energy is about 2%—10% and can be ignored.
Moreover, the second-order rays could have a power degradation of 10-20 dB
with respect to the first-order ones, which can be identified and filtered out
along with the diffuse scattering components, to enhance the accuracy of
environment mapping and positioning (see for instance [34]).



LIN et al.: CHANNEL ESTIMATION AND USER LOCALIZATION FOR IRS-ASSISTED MIMO-OFDM SYSTEMS

with dy(,) and A. denoting the azimuth (elevation)
inter-element spacing of IRS arrays and central carrier wave-
length, respectively. The BS/UE antennas can form either a
UPA or a uniform linear array (ULA) topology, whose array
steering vectors can be similarly defined as in (4).

Recall now that the secondary IRS is placed close to
the primary one with rotation angles dy, Jy. In the far-field
scenario, the radiation pattern of the secondary IRS can be
expressed as

F(¢,0;64,6,) = (sinf cos &, cos(¢ — dy) — cos f sin (5\,)% .

5)

Similarly, the array response elements of the secondary IRS
can be expressed as

[ah (gf), 9, 5h; 5V)]n b (ny,—1)sin 0 sin(¢— 5};)

_e],\

(6a)
in 0 sin 4, Cos((j) — 5h)>

+cos 6 cos oy

S
274y (n,, ><
[aV (¢7 97 5h7 5v)]nv =€

?

(6b)

where ny,(yy € Z(Ny(vy)). Now, the uplink channel matrices via
the rth secondary IRS can be represented by (2) with the radi-
ation patterns and steering vectors of (3), (4) being replaced by
those of (5), (6), respectively. One can also generate (3), (4) as
F(d)a 9a 0, O) and al(d)a 9a 0, O) = ah(d)v 97 0, 0) ®av(¢7 97 0, 0)9
respectively. Note that (5), (6) can be derived by multiplying
[sin 6 cos ¢, sin 0 sin ¢, cos )T with the yaw and pitch rotation
matrices defined by 4y, and J,, respectively [28].

III. TENSOR-BASED CHANNEL ESTIMATION

In this section, we develop channel estimation schemes
to recover the channel matrices, i.e., Hpy,r, Hiu,x. The
IRS plane adopts dynamic reflection coefficients {wr L p}P i
across the training frames. We concatenate the received train-
ing signals of (1) across P, T, training time slots in total
as Yok = [Yrk 1,1, Yrk1,2e s Yk P 1] € CMoX Pl
It can be equivalently regarded as a matricization of a
third-order tensor as Y, = Matr(Y,x;1,[3,2]), where
Vi € CMuxTuxPu fits the CP tensor model as [21], [22]

Yk = Z W HBI T k] n © FZ:k[HIUvTak]z,

+N,« k
=Z3n X1 Hprrg xo Hiuek X3 O + Ny, (7)

where W, = [1/zr7k71,...,1,br7k,Ptr]T S (CP“'XNi; F,p =
Frp1Xekt,- - Frpr,Xepm,] € CNUXTus Hpppp £
Wf]@HBI,r,k € CMuxNt gnd HIU,r,k £ FZ:]CH,ITU,T’,](:

CTr* Nt denote the combined and precoded equivalent chan-
nels, respectively; N, € CMuxTuxPu jg the equivalent
noise tensor; Z3 n, € {0, 1}NXNXN1 denotes a third-order
identity tensor. Performing the channel estimation is now
equivalent to solving the factorization problem of (7) with a
maximal tensor rank min( (Hpr,rk)r(Hiu,» k) (P, 1), NI).
Since the wideband training signal {y,«k}k * cannot be
modeled as a fourth-order CP tensor with frequency—sensitive

o [‘I’r,k]:,n

m
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{\Ilnk}kK:“l, we seek to subcarrier-wisely perform the factor-
ization of Y, ;. One can average the estimation results of
frequency-flat channel parameters along multiple subcarriers
to enhance the recovery accuracy.

Obviously, the training IRS coefficients significantly affect
the estimation strategy and performance. First of all, we con-
sider a training pattern W,.; with full column rank, which
requires the number of measurements to exceed the number
of signal components, i.e., P, > Ni. A cascaded beamformed
channel can be naturally derived by a least squares (LS)
solution as follows:

Heosrp £ ﬁBI,r,k © ﬁIU,r,k
T
= Matr (Y,.: 2, 1], 3) (qf{k) . 8)

The nth column of (8) can be reshaped into a rank-1 prod-
uct, ie., hpr,knhll . Jon € CMuxTi where hpr,kn =

[Hp,, k)L DU 2 2 [Hy,, k)
truncated smgular value decomposmon (tSVD) Alulvfl =
hBI rkn hIU ko with the dominant singular value A\, we can
take \/_ul € CMw and VA1vi € CTe as the estimates of
BBI,r,k,n and flmmk’n, respectively.

For the case of P, < Nj or \Il:[’k,\IlT’k # In,, however,
the LS solution in (8) is invalid, which undermines the
integration of large-scale IRSs with a massive number of unit
cells. To address this critical problem, we present four different
IRS reflection pattern designs, as well as, the corresponding
uniqueness condition analysis.

. By performing rank-1

A. Random Pattern

One of the simplest designs is to assign random reflec-
tion coefficients to the IRS elements [30]. For instance,
we employ a training pattern with unit moduli and random
phases, i.e., [\Ilrk]pn‘ = 1,Vp, n. A uniqueness condition of
factorizing (7) is presented as follows:

Lemma 1 ([35, Theorem 1], [36, Lemma 4.3]): Consider
a third-order CP tensor Y, € CMuxTux P with Hgi .,k
W,. ;. being the factor matrices in (7). If

Hiu, 1
k(ﬁBI,r,k) + k(ﬁIU,r,k) + k(

then, r(Y, ) = Ni, and the factorization of Y, is unique
up to column scaling and permutation. Furthermore, if ¥, ;
is known with k(\Ilr,k) = P, > 2, and

U,.p) >2N+2, (9

min (KBt ),k (Bio,ee) ) + k() > N +2, (10)

then, ITIBLTJC, ITIIU,T,;C can be found algebraically up to column
scaling ambiguities.

If F, ., W, have full column ranks with M, > Lpj,,,
Ti. > Ly, the beamformed channels inherit the sparse
nature, i.e., l"(HBLr,k) < r(Hprrk) < Lpiy, T (HIUrk) <
r(HIU,r’k) < Lyy,r. According to the property of k-rank:
k(A) < 1(A) < min(Z, J),YA € CI*7 [37], in the generic
case, (10) can be relaxed to min (Lgr,,, Liu,, ) + P > Ni+2.
Hence, to estimate low-rank mmWave channels with usually
3-5 paths [38], the quantity of training frames should be of
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the same order of magnitude as the number of IRS elements.
According to [36, Lemma 4.3], the factorization of (7) can be
algebraically implemented by generalized eigenvalue decom-
position. In practice, when Py, min(M;,,Ti,) > Ni, we can
adopt the bilinear alternating least squares (BALS) method
[14] to iteratively update Hpy,, x, Hiv k.

B. Structured Pattern

If additional structural information is embedded into the
IRS coefficients, one can develop a more flexible solution
with a more relaxed uniqueness condition. For instance,
we can design the training coefficients as [¥, k], = AB~!
with distinct {\,}2",, which has a column-wise phase
rotational-invariant characteristic. We note that this code-
book may be valid only for a particular subcarrier due to
the frequency-sensitive characteristics of IRS reflectors [30].
As such, this strategy is more suitable for single-carrier
training. In practice, the IRS is usually implemented by
finite-resolution phase shifters to reduce the hardware com-
plexity. Hence, one can employ a discrete Fourier trans-
form (DFT) codebook, i.e., A\, 2 e 727(n=1/Nt [pn this
way, the training codewords multiplex Np distinct phases
uniformly spaced within [0,27], which can be realized by
b = [log, Nr]-bit phase shifters. A corresponding uniqueness
condition is presented as follows:

Lemma 2 ([39, Theorem I11.3]): Consider a third-order CP
tensor Y, i, € CMurx T X Por yyith Hgr,r i, Hiu i, ¥ being
the factor matrices in (7). Define { Py, P>} : P14+ P, = P +1.
If (¥, klpn =AL"!, and

(22 6 B k) = 1 (W) 0 Hig ) =
(1D

then, r(yhk) = N, and IF:IBL,«,k, i:IIU,r,k can be found
algebraically up to column scaling ambiguities.

According to [35, Lemma 1], A ® B has full column rank
if k(A) +k(B) > D+ 1,VA € C'*P B € C’/*P, which
implies I +J > D+ 1= I1J > D with k(A) < I,k(B) <
J. In the generic case, (11) can be relaxed to min ((P1 —
1)Ly, P2Liy,r) > Ni. Compared with the random pattern
case, the necessary number of training frames for estimating
mmWave channels with 3-5 paths is now roughly halved to
about Nyp/2.

The decomposition of (7) can now be algebraically solved
by the structured CP decomposition (SCPD) method [40],
where the original eigenvalue decomposition for the generator
recovery is replaced by the eigenvector derivation with a priori
eigenvalues. One can adopt a set of valid candidates {P;, P»}
and average the obtained results to enhance the estimation
performance.

C. Grouping Pattern

We can cluster the IRS reflectors into G < Ny groups,
where the elements of the gth group are indexed by N
|Ny| = Ngy. The reflectors belonging to the same group adopt
identical training coefficients, i.e., [¥, 1].n = ¥? ,,Vn € Nj.
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2-D Lattice array
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2-D Nested array
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(] e o
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o oo . o o ‘. Dense subarray @ Sparse subarray @) Difference coarray ‘
(a) Grouping pattern: 2-D lattice array. (b) Sparse pattern: 2-D nested array.

Fig. 2. IRS training reflection patterns. (a) Grouping pattern with a 2-D lattice
array composed of G (Ngp, X Ngv )-subarrays, where identical training reflec-
tion coefficients are allocated to the elements in the same color. (b) Sparse
pattern with a 2-D nested array composed of an (N,q X Nyq)-dense subarray
and an (Nps X Nyg)-sparse subarray.

The training signal (7) can be modified as

G
yr,k = Z Z [ﬁBI,r,k}:’n ©

g=1neN,

=C, x1 Hprr, X2 Hiu ok X3 Ur g + Nk,

[ﬁIU,r,k} o © P+ Nk

(12)

where W, = {'l,[;,,k, sty k} € CP«xG concatenates

the grouping training coefficients; C, £ 7 3Ny X3 Iy €
{0, 1}N1xN1xG g a core tensor constrained by the grouping
indicator T',. € {0,1}¢*M with [T,],., = 1,Vn € N. Since
W, = Eth‘,« is rank-deficient, (12) fits a parallel profiles
with linear dependencies (PARALIND) model [41, (41)—(43)].

We propose to divide the IRS reflector array into latticed
(Ngh X Ngy)-subarrays with Gy, £ Nj,/Ngh, Gy = Ny/Ngy
and G = GG, as illustrated in Fig. 2(a). The horizontal and
vertical indices of the IRS entries belonging to the gth group
are defined as

9= {Gu(ngn — [9/Gnl) + g}"gl =1’

= {Gy(nge =)+ [g/Gu1}nE, . (13a)
Ny = {Nv(n[g] -1) —l—nvg]},
vnldh e A9 ol e A9, (13b)

We call a factor matrix partially unique if its columns can
be partitioned into disjoint subsets and each subset is identified
up to its linear span [42, Definition 3.2]. Then, a partial
uniqueness condition is presented as follows:

Lemma 3: Consider a third-order tensor Y, €
(CJM"XT"XP“ with HBI,r,k, HIU r.k» ‘Ilrk being the
factor matrices in (7). If ¥, ), = \Il,« eI with r(lII:[k) G
and [I';],, = 1,Vn € N, then, HBL,,,;C and HIU’T,k are
partially unique.

Proof: By removing the grouping codebook Enk from
(12) via the LS method, one can obtain G sets of rank-V,
products as

C, x1 ﬁBI,r,k Xo ﬁIU,r,k = YVrk X3 @i,k, (14a)

_ _ Ny (e \T

|:Cr x1 Hprre X2 Hiuer| = H1(31 r)k (HEUi’)k) )
’ (14b)
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where H§31 i € CMer N and H%U T)k € CT=*Ng contain the

columns of HBI rk and HIU ~k allocated to the gth group,
respectlvely By performing rank-NN, tSVD on the gth slice
of (14), HBI "T,)k and H%U"T) .. are factorized uniquely up to a
nonsingular transformation. |

The partial uniqueness condition is generally satisfied with
P, > G training frames, which is generally independent of
the channel ranks. The grouping pattern (13) does not directly
lead to a complete estimate of Hpy(1u),, % By leveraging the
phase shift feature of grouped subarrays, one can formulate
an equivalent (G}, x Gy )-array. As long as min(Gh, Gy) > 2,
we are able to acquire the cascaded channel parameters, which
in turn support a unique channel separation. The detailed
derivations will be provided in the next section.

D. Sparse Pattern

It can be observed from the earlier designs that the required
amount of training frames is generally proportional to the
number of reflectors. By leveraging the concept of sparse
arrays [43], we are able to obtain the parameterized channels
with fewer IRS elements, leading to reduced training overhead.
Specifically, Ny < Np reflectors are installed regularly in the
(Nn x Ny)-array aperture, leaving (N1 — Na ) virtual unit cells
with no circuits. We denote the index set of selected unit cells

by Na : [Na| = Na, and modify (7) as
Yk = Z [ﬁBI,r,k] o © [IA:IIU,T,I@} o © (W, )on + Nk
neENA
=13 N, X1 H(NA) X ﬁ%fﬁ)k X3 \If%“ + Nk,
(15)
where \Ilv(nNA) CPexNa contains columns of W, , indexed
by Ma; H j}[’;)k € CMuxNa and H;U T)k € CTuxNa cop-

tain the columns indexed by ANy of HBITk and HIU ks
respectively.

One can leverage sparse array topologies for the training
pattern. Since the nested array geometry admits a closed-form
expression for the locations of the antenna elements and
offers a consecutive difference coarray with large degrees of
freedom, we consider a 2-D symmetric nested array [43],
as illustrated in Fig. 2(b). The training pattern consists of
an (Npg X Nyq)-dense subarray and an (Nyus X Nyg)-sparse
subarray with Npq, Nps being odd values [23]. The 2-D
subarray coordinates are defined as*

Cha = {nna — (Nna + 1)/2} 0

Nnha=1"
Cod = {nva — Nua}iiy (16a)
Chs = {Nua(ms — (Nas +1)/2) 107
Cys = {Nua(nws — DI, (16b)

where Nyq, Nvd, Nus, Nvs € Z7T satisfy the geometric con-
straint, i.e., Npa(NVps — 1) +1 < Ny, NygNys < N,. The
total number of activated IRS elements is No = NpqNyq +

4The 2-D coordinates (Phd(hs), Mvd(vs)) Of the nested array defined by
(14) are uniquely mapped to the 2-D coordinates (ny,nv) of (5) as ny, =
[Nh/2]—nndhs), v = [Ny /2] =nyq4(vs), Which correspond to the indices
(nh — l)NV +ny € NA.
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TABLE 11
RECOMMENDED TRAINING SETTINGS FOR IRS PATTERN DESIGNS

IRS Pattern Design Recommended Training Settings

Random min (LBI,’V‘i LIU,T) + Ptr Z NI + 2.
Structured Pyr=P1+P—1,
min ((Py — 1)Lp1,r, P2Liy,r) > N1
Grouping min (Gy, Gv) > 2, Py > G = GLGy.
Sparse th(Nhs — 1) +1 S th Ndevs S Ny,
Py > NA = NnaNyd + NnsNvs — 1.
NpsNys — 1, and the difference coarray size is NpgNps X

(2NyaNys — 1). If r(EM) =
and tSVD solution as in (8) to factorize HEIA),C and H%f‘;)k
uniquely up to column scaling. The necessary number of
training frames is hence P, > Nj, which is independent
of the channel ranks. Generally, the sparsity of IRS arrays
enhances the channel estimation accuracy, but may yield
reduced beamforming gains or system capacity. Similar to the
grouping pattern (13), the sparse pattern (16) can only return a
portion of the subchannel columns. Fortunately, we are able to
recover the cascaded channel parameters and reconstruct the
channel matrices. The detailed derivation will be presented in
the next section.

Remark 1: Note that all the proposed training patterns do
not place any constraint on the specific values of reflection
coefficients. They can be designed as directional beams to
search across the cascaded angular parameters on the IRS
plane, while the BS can select the received signals with the
highest power to implement the channel estimation or dynam-
ically adjust the searching directions of the subsequent frames
through the controller [19]. Moreover, apart from the struc-
tured pattern, the others can be applied to multi-subcarriers
without being interfered by the frequency-sensitive nature
of reflectors. Based on the uniqueness conditions and other
physical constraints, we summarize the recommended training
settings for IRS pattern designs in Table II.

= Na, one can follow the LS

IV. MULTIPATH PARAMETER RECOVERY

We now recall that many wireless applications, e.g., environ-
ment mapping, user positioning, mobility tracking, etc., require
precise information of the propagation paths, i.e., AoAs,
AoDs, and time delays. Moreover, the channel estimates with
missing or partially unique columns, derived from the sparse
or grouping training pattern, can be well calibrated based
on the propagation parameters. Specifically, by leveraging
the characteristics of Hpiu),,x in (2), we can equiva-
lently represent the cascaded beamformed channel Itlcasmk
in (8) as

ITIC«aS,T’,k = (WTI’_IkAB rDiag(ﬂBI r k)

®FT1<'AU rDlag(ﬂIU T, k)) (Ag,r © Ag,r)
Lgi1,~ L1u,r
=W

) D D Pk
l1=1 l=1
X (aB (d)Bmél ) 9B;""7‘€1) ® a% (d)UJ’,fzv HUJ’,Zz))
(17)

Tk®F

T
Xag (Whﬂ’,flfzv 7TV,7“74142);
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o H T : A
where Hcas,r,k' = (Wr,k' ® Fﬁk) Hcas,T,k with Hcas,r,k' =

Hgi .k ®HITU7T, .- With a little abuse of notation, aj (7, my) =

ap(m) ® ay(my,) denotes the IRS response vector with
S 27

[an(v) (ﬂ—h(v))]n = I3 (=)  The cascaded channel

parameters via the primary IRS are defined as

Thyr 10, = —SINOD 1 ¢, SINPD 10,
+sin 9A,T742 sin d)AJ’,sz

(13)
—cosOp re, +COSOA 0,

Ty 1,01 0o

> |l>

Prke10s = BBLr k.01 BIU vk 00

Based on (17), (18), Hcas,ri can be reconstructed by the
channel parameters {¢(0)B,¢,, (0)U.ta Th(v),rf1 2 Prk,tate )
and be further separated into Hpy, ), and Hjy, , by the
tSVD. Note that in the noiseless case, the separated estimates
of beamformed channels can be represented as Hpr ;1 Ar
and IF:IIUmkA;_,i with a diagonal matrix A, ), € CN*M
containing the scaling ambiguities. Clearly, an arbitrary A,
does not change the values of Y, or Hcus 1, Which cannot
be e~xactly determined. Also, the row-subspace information
of Hgiu),,» has been compromised by those uncertain-
ties. Generally, without a priori assumptions or conditions,
one can only determine the cascaded parameters in (18)
but not the exact path parameters via a single IRS plane,
ie., {¢pa)re0D(A)re TBICUY,re)- It can be physically
explained by that the passive IRS cannot sense the environ-
ment, while the receiver can only process signals propagated
through the entire two-hop channel. To address these issues,
we propose the channel parameter recovery schemes, as well
as, the cascaded parameter decoupling strategy in this section.

A. Beamforming Design

We seek to adopt special beamforming to preserve the
structural information of BS/UE antenna arrays. By leveraging
the concept of beamspace ESPRIT method [44], [45], we adopt
a Kronecker product-formed DFT combining strategy for the
UPA-sized BS antennas as follows

Wr,k £ Wh,r,k‘ & Wv,r,lm (193)

“h(v),m

—j2m(n—1) N5 h(v)
’ )

-1
[Wh(v),r,k]n,m = NBi(V)e (19b)

where Wy ).z € CNBwm*Mie)  denotes the combiner
along the horizontal (vertical) direction with Ny = Np 1, IVB,v,
M, = MyM,; {wh(v)ﬁm} are beamspace codewords selected
from the candidate codebook Z(Np (). It can be verified
that the DFT beamforming preserves the rotational-invariant
feature of IRS array phases since

Ju16) Whivyrk = Ih2v2) Wiy r i Thv)s  (20a)
Qun) [Wh(v),r,k]%ﬁh(v)?: = Qu) Th) W), i1
= ONg oy x 15 (20b)

QTW/ap(¢,0) = QW ap(¢,0)
Xej%(dB’h sin 0 sin ¢p+dp v cos 6)

(20c)

where jhl(vl)vth(VQ) S {0, 1}(NB,h(v)*1)><NB,h(V) select the

first and last (Ngp(v) — 1) rows of matrices, respectively;
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Thy € CMuer*Mue s calculated as the LS solution
of (20a); Quyy € CNewe)*Mue js derived by forming
a projection corresponding to the orthogonal subspace of
{[Wh(v),r,k]%&h(v),mTh(v)[wh(v),r,k]{{;}; Q £ Qun®Q.,
Qr 2 Q(Ty, ® TV)H. The precoded pilot design at the UE
side can be similarly derived as in (20). As long as the search
region formed by the beamspace codewords covers the channel
path direction formed by {¢pv)¢, 0B}, We are able to
receive the training signal with a desired power level [44].
Furthermore, before transmitting Y, in (7), one can perform
a coarse sensing to find appropriate {wy(v),m } as in [45].
Remark 2: The beamforming method enables us to

recover {¢(0)p,¢} and {¢(0)u ¢} directly by exploiting the
column-subspaces of Yf},ﬂ £ Matr(Y,.x; 1, [3,2]) and Y(,le =

) T
Matr(Yr x; 2, [3, 1]), respectively. After obtaining the angular
parameters at the BS/UE ends, we can compute a smaller-sized

tensor signal (in the noiseless case) as

Zop 2V x1 (WHAR,) x5 (FT AL,

= I37N1 X1 Diag(l@BI,r,k)Ag,r X2 Diag(I@IU,r,k‘)Ai,r
X3W, k. (21

The rank-deficient factor matrices of (7) are transformed
into full-row-rank ones. Performing channel factorization or
parameter recovery of Z,.;, € CLerxLiu.xPu cap effectively
reduce the computational complexity.

B. Cascaded Parameter Recovery

For the training design of random or structured IRS reflec-
tion pattern, one can directly compute

Generk 2 (WY Ap, @ FT A5 ) (Hpr,p © Hiu g

= (Diag(ﬁBI,r,k) & Diag(/@IU,r,k‘)) (Ag,r © AK,T))
(22)

which concatenates Lpy L1y, parallel response vectors of
{prie,e10281(Th r 0105, Tv rt06,)} In (17). By leveraging the
2-D uniform array geometry of aj(m,,7,), we can easily
recover the cascaded channel parameters indexed by ({1, ()
in (18) from the ((¢/1 — 1)Lyy, + ¢2) row of Geasr k-
We note that 7y,(y),,¢,¢, ranges across [—2,2], which may
cause a spatial aliasing problem, i.e., the extracted phase of
7 Re D) Taw). ot b may exhibit an uncertain bias of 2i7, ¢ € Z.
In order to achieve a unique value of 7y, (yy ¢, ¢,, W€ propose
to configure the inter-element spacing of IRS arrays as dy, =
dy = X\¢/4, yielding a maximal phase range of [—,x]. Fur-
thermore, by exploiting the rotational-invariant phase feature
of {pr k.0, gQ}kK:“'l along multiple training subcarriers as

-1 o j2’;<fs
Pr.key 0105 Prkia b1l = €

(161*162)(‘F131,r,151Jr"'IU,r,Q)7 (23)
with ki,ke € Z(Ky:), we can recover the cascaded time
delays, i.e., TBI,r.¢;, + TIU,r.05-

Next, we develop two dedicated channel parameter recov-
ery solutions for the grouping and sparse training patterns
respectively, as well as, a generalized solution for an arbitrary
reflection pattern.
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1) Grouping Scheme: Recall that the grouping pattern
in Fig. 2(a) employs G distinct training codebooks {w‘;’,’k}.

Following (14), we define ?Casmk. £ Z,. ) X3 Ei,k" whose
mode-3 slice matrices can be expressed as

[gcas,r,k]:,:,g = Diag(ﬂBLr,k)[AD,r]ffg,:

x[Aarln, Diag(Bry ). (24)

With the regularly grouped lattice layout, the mode-3
(tube) fibers of Geasri € CherxliurxG haye a phase
rotational-invariant characteristic as

(JghQ & ng2)[§cas,7“,k]€1,€2,: - (Jghl & ngl)[?eas,r,k‘]él,b,:

Xeji_: (dhﬂh,r,zlz2 +dv7Tv,r,141/,2) ,
(25)

where (1 € Z(Lpry),l2 € Z(L1ur)s Jghi(evi)s Jgn2eve) €
{0,1}(En) =1 xGnw) are the selection matrices that select the
first and last (Gy(v) — 1) entries of the fibers, respectively.
Therefore, [Geas,rkler 0. € CY can be equivalently regarded
as the steering vector of a (G, x G,)-UPA topology, from
which we are able to derive the cascaded parameters in (18).

2) Sparse Scheme: Recall that the sparse pattern in Fig. 2(b)
activates Np out of Ny reflectors. One can derive a sub-
matrix of (22) as Giﬁﬁ«)k = Matr(Z,;[2,1],3) (\Ilv(n{\,gA))T.
Then, the following steps are performed: (i) Copy and
insert data at the overlapped origin of the sparse/dense
subarrays, yielding Ggﬁi)k € Cheurlwrx(Natl)  yith
Na & {Na, No([Nn/2] — 1) + [Ny/2]}; (ii) Compute

(GEZAT)k)H ® (G(VA) )T and sort its rows to fit the 2-D

as,r,k
nested array georrfetfylk (iii) Remove the repetitive or dis-
continuous rows, yielding Lgr L1y, response vectors of an
(NhaNhs X (2NyqNys — 1))-difference coarray; (iv) Leverage
rank-1 tSVD to recover the cascaded parameters in (18).
Note that these steps leverage the principle of nested array
processing, but do not require any statistical information of
the signal correlation.

3) ANM-SDP/ADMM Scheme: We leverage the atomic
norm denoising technique to develop a general solution of (18)
for arbitrary designs of IRS training patterns [25], [26]. The
(41, ¢2)th mode-3 fiber of Z, 1, i.e., [Z, k], 05, 1S expressed
as Zp k10, = WrkA1(Thr 0y 0e, Tv,r010s) Prok 0105 AT(Th, Ty)
can be regarded as a 2-D atom, whilst the 2-D atomic norm
of arbitrary vector x € CM with respect to the atomic set
A= {al(wh,wv)‘wh,wv € [-2, 2]} is then defined as

|x||.4 = inf{t: x € tconv(A)}

Th(v),£+Pt {%: |pg|‘x - zg: peaa(mn.c, Wv,e)}

inf

. t 1
= 1111175 {5 + Z—JVITF(TQ(U))} ,

Ty (u) x
s.t[i(H) t] =0,

where conv(A) is the convex hull of A; Ty(u) € CN1xM
denotes a two-level block Toeplitz matrix defined by u €
C@Na=1(EZNv=1) [25], [26]. We can now individually solve

(26)
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Lpi,-Liy, atomic norm minimization (ANM) subproblems
of (26) as

.t 1
min 5 4 LT (Ta(w) + 5 s — o]

u,x,t 2 2NI
Ta(u) x
S.t. <"t - 0,61 S I(LBI,r); 0y € I(LIU,T)7 27)

where p denotes the regularization parameter; x approximates
Pr k026231 (Th,r 0465, Tv,r 010, ). These optimization subprob-
lems can be solved by the semidefinite programming method
(SDP). In order to improve the computational efficiency of
parameter recovery for large-scale IRSs, one can adopt the
alternating direction method of multipliers (ADMM). The
detailed derivations of the Lagrangian function and variable
update are omitted due to space limitations, and the interested
readers are referred to [25], [26] and references therein.
Finally, one can exploit the rotational-invariant feature of
Ts(u) to recover the cascaded parameters.

C. Twin-IRS-Assisted Parameter Decoupling

Given arbitrary pairs of (¢p ¢, OA.r.e,)s (0D, rer0A,r0,),
(OBLr k01> B1U k.0, ) that satisfy the constraints of (18), one
can recover the cascaded channel H,s . 1 as in (17). However,
the information of (18) is not sufficient to support an exact
decoupling of the cascaded parameters. Concretely, there are
2(Lp1yr + L1u,r) AoA/AoDs at the IRS to be estimated but
only 2(Lpr, + L1y, — 1) out of 2Lpr L1y, effective phase
equations, whilst the amplitude equations cannot be directly
used due to the unknown path gains. Therefore, with a single
IRS plane, one can only formulate an underdetermined non-
linear equation system of {@a(),r¢, 0a(D),re}> Which does
not have a unique solution. In order to provide sufficient
information for the parameter decoupling, we propose the
twin-IRS structure, enabling the nonlinear solver to converge
to the precise solution with a much higher probability. Based
on (5), (6), we can represent the cascaded parameters via the
secondary IRS as

Dh,r 10, = = SINOD 1 g, SI0(GD 10, — On)
+sin 04 ¢, SIN(GA e, — On),
wv7r74152 é — Sin 5V sin 9[)7,«,[1 COS((meg1 — 5h)

+sin dy sin 04 ¢, COS(PA r e, — On)

+(—cosbp ye, + cosOa re,)COS 0y, (28)
N F(¢p,r01,0D,0,0,50n,0v)
Ork 010y = PBLr k01 B1U 1 k o Fmrtr00000:0,0)
F(&A,r05,0A,r.0550n,0v)
F(oarey,0a,r0,:0,0)
By combining the cascaded parameters in (18),

(28) and leveraging the trigonometric function theory,
extra phase equations of —sinfp g cos¢p e +

Sin0a e, COSPA re,, and magnitude equations  of
F(¢D,r,01,0D,r,01300,0v) F(PA r 05,07 r 05;00,0v) .

FGb e 0006, 000 F@arc O rieri0,0)  can be introduced
by the secondary IRS. These additional constraints make it

possible to realize the parameter decoupling. Here, we present
two decoupling modes of channel parameters against different
cases of system settings and channel conditions.
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1) “All” Decoupling Mode: If the IRS reflectors are omni-
directional, i.e., F'(¢,0;0y,0,) = 1, the magnitude equations
of (28) become invalid. Hence, the nonlinear solver is able
to converge to the exact azimuth/elevation AoA/AoDs only
when the number of effective phase equations is no less than
the number of angles to be estimated, i.e.,

3(Leryr + Liuy — 1) > 2(Lpr,r + Liu,y)
= Lp1, + L1y, > 3.

(29)

We jointly solve a nonlinear system of 3(Lgr,, + Liy,» — 1)
phase equations in (18), (28) involving geometric information
of sin @ cos ¢, sin fsin ¢, cos 6 along the x,y, z-axes, respec-
tively, to acquire precise estimates of all the 2(Lpr, +
Lyy,) angular parameters {¢(€)p.r.e,,@(6)a,re,} at once.
One can directly employ existing nonlinear algorithms,
e.g., Gauss-Newton method, Levenberg-Marquardt method,
trust-region (dogleg) method, etc., to efficiently solve this
problem.

2) “Pair” Decoupling Mode: 1f there exists only one
propagation path in both the BS-IRS and IRS-MS channels,
ie, Lpr, + Ly, = 2, one cannot just rely on three
phase equations to obtain unique estimates of four angles.’
We need to recover four angular parameters { ®p(a),150D( A),1}
by jointly solving four nonlinear magnitude/phase equations of
(18), (28). Note that this approach can also be applied to the
case (29), returning the angles of a pair of paths at a time. One
needs to average the recovery results of each angle to obtain
2(Lgr,» + L1u,-) distinct parameters from in total 4Lgy Lty »
estimates.

After obtaining the angles and the cascaded time delays,
we can remove their contributions from the equivalent path
gains in (18) or (28) to derive agr . x0qU, k. Due to the ran-
domly distributed complex gains including both the large-scale
fading and the small-scale fading, it is usually difficult to
decouple the path gains, as well as, the time delays solely
based on the training signals. Fortunately, we can leverage
the 3-D geometric relationship of communication devices to
realize the environment mapping, determining the precise
propagation distances. The detailed derivations are provided
in the next section.

V. CHANNEL PARAMETER-BASED USER LOCALIZATION

After acquiring precise estimates of the channel parameters
via the decoupling mode described in Section IV. C. 1) or
2), we can combine the information of propagation channels
and device physical configurations to realize an application
of user localization. The BS and UE are located at pp,
Pu € R3, respectively, whose orientations, i.e., the normals
to the antenna array planes, are defined as ng, ny € R?,
respectively. The adjacent primary/secondary IRSs of the rth
twin-IRS structure are assumed to share identical coordinates
pr € R3, while the normal direction to the primary IRS is
n, € R3. The scatterers of the ¢;th NLoS path of Hgry .5, and

SIf there exists a LoS path with a large Rician K-factor, the other
NLoS components are much weaker and may be regarded as environmental
noise. Then, the channel matrix Hpy(1u),,,x has approximately rank-1 with

Lpiqu),» = 1.
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(a) Scatterer mapping: Type L. (b) Scatterer mapping: Type II.

Fig. 3.  Environment mapping of the BS-IRS channels. (a) The scatterer
is approximated as the median point on the common perpendicular of two
spatial lines. (b) The scatterer is approximated as the intersection point of a
spatial line and a spatial plane.

the />th NLoS path of Hyy ;. are located at spy, ¢, € R3
and syu .z, € R3, respectively.

A. Preliminary Environment Mapping

The positioning performance depends on the environment
mapping that determines the distribution of scatterers and
propagation paths. Note that the AoA/AoDs at the IRS are
defined relative to the primary IRS on the yz-plane with a
default normal ng = [1,0,0]7, as illustrated in Fig. 1(b).
We parameterize the rotation of an IRS plane with a normal
n, € R? from the default orientation by the rotation axis and
rotation angle, which are defined as®

ng X n,

c, = & = cos (npemn,). (30)

o > n, |

The actual direction of a signal wave parameterized by
azimuth/elevation angles {¢, 0}, or equivalently a direction
dy £ [sinf cos ¢, sin 0sin ¢, cos ], relative to the primary
IRS can be derived by the Rodrigues’ rotation formula as [46]

d,=dp COS£T+(CT X dO) Singr"‘cr(cr L do)(l—COSfr).
(31

Given the angular estimates and known device orienta-
tions, we can derive the actual path directions at the BS
and IRSs, denoted by dp ,¢,,dp.re,,dare, € R3,V0 €
I(Lgiy),l2 € Z(Lw,), respectively. For a LoS path,
dg ¢, ,dp, e, should be (approximately) collinear.

Recall that only the NLoS paths scattered or reflected once
are considered. The scatterer located at spr,, € R3 is
the intersection point of two spatial lines passing through
ps and p, with directions dg ¢, and dp ,¢,, respectively.
In the noisy case, these estimated spatial lines may not
exactly intersect. As illustrated in Fig. 3(a), the scatterer
can be approximated by the median point on the common
perpendicular of the two spatial lines as

min ||Ax — b||?
x€R?

1
s.t. SBIre, = a(pB +dg,r ¢, (X1 + Pr — dp e, [X]2),
A =[dp ¢ ,dp,r s, (32)

Note that if the BS antennas are ULA-shaped, which are
commonly assumed to be parallel with the xy-plane, only the

b =7p, - ps.

If n,, ng are collinear, c,, € R3 can be arbitrary vector orthogonal to
n,(ng), and & =0 or .
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azimuth angle can be estimated (elevation angle is m/2 by
default). In this case, as illustrated in Fig. 3(b), the scatterer
can be derived as the intersection point of a spatial line passing
through p,. with a direction dp , ¢, and a spatial plane passing
through pg with a normal ng ¢, L dg ¢, as [47]

1

ng ¢, ®dp e,

% (1o ] S 0, )i (PB); — [P1))
i

+[dp v )i[0B e )i [PBi

+pei Yo ]sld s ).

JFi

[SBIre:]i =

(33)

where 7 € {1,2,3}. Once the scatterer position is determined,

the propagation distance, as well as, the path time delay from

the IRS to the BS can be directly computed as
_|lpB = sB1r 0, || + [IPr =SB, |l

TBLrf, = " )
C

(34)

where v, = 3 x 10% m/s is the light velocity. One can now
easily derive the UE-IRS path distance by combining (34) and
the estimated cascaded time delay, i.e., g1, ¢, + 71U, r¢,, from
(18), (28). Without the information of the user coordinates, it is
difficult to realize a unique environment mapping between the
IRS and UE. Fortunately, after acquiring the UE position and
orientation based on the LoS component of Hyy ., we can
finally determine the scattering details.

B. User Localization Implementation

We present two dedicated user localization schemes for
the single-carrier and multi-carrier training strategies, respec-
tively. When the UE-IRS channel contains a LoS path with
a relatively large Rician K-factor, it can be detected and
distinguished by its dominant complex gains.’

1) Single-Carrier Strategy: In the single-carrier strategy,
the system activates a single subcarrier to perform channel
estimation. With only one estimate of (g1, ke B1U,rk ¢2
we cannot recover the cascaded time delays 71, ¢, + 71U 7 05>
as well as, the LoS path distance of Hyy . We propose to
localize the UE by an AoA-based positioning scheme with
R = 2 distributed twin-IRS structures. The user position
can be derived as the intersection point of two spatial lines
passing through p; and p with directions da 1,1 and da 21,
respectively, which can be approximated by following (32) as

min ||Ax — b|?,
x€ER?2
st. A=I[da1,1,da2,1],b=p2—p1,

1
pu = =(p1 +da11[x]1 +p2 —daz1[x]2). (35)

2

2) Multi-Carrier Strategy: In the multi-carrier strategy,
we are able to precisely determine the LoS path distance of
Hiu, 5 by realizing the scatterer mapping. We propose to
localize the UE by a hybrid AoA-delay positioning scheme
with R = 1 twin-IRS structure. The user position can be

7Note that the proposed twin-IRS structure also provides precise information
required by NLoS-based positioning schemes, e.g., [48], [49]. Due to space
limitations, we consider only the case of LoS-based positioning here.
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Algorithm 1 Channel Estimation and User Localization

Require: observation Y, ;, IRS pattern ¥, ;, beamformers
F, 1, W, 1, channel ranks Lpj ., L1y ,.

1: procedure CH-EST

2:  Derive Yf};, Yf?,z by unfolding Y, as in Remark 2.

3:  Derive AoA/AoDs {¢(8)g ¢, } and {¢(6)u ¢, } from the
subspaces of Yv(nl,z and Yv(?,z, respectively, by (20).

4:  Compute the 7compresse7d tensor Z,. ;. by (21).

5. Derive {Tn(v),rei 05, Prk ere, ) from 2,5 with specific
training pattern as in Section I'V. B.

6:  Reconstruct Hc,s, with the recovered (cascaded)
channel parameters by (17).

7: end procedure

8: procedure CAS-DEC

9: Derive {Tn(v)reit0) Prk 162 }s LTR() 01000 Or k10 )}
by running CH-EST with the primary and secondary IRS
planes, respectively.

10:  Decouple {¢(0)p,r ey, #(0)a re, } by solving the non-
linear system of equations formulated by (18), (28) as in
Section IV. C.

11: end procedure

12: procedure UE-LOC

13:  Determine the actual signal directions by (30), (31).

14:  Derive the scatterer positions by (32), (33).

15:  Derive the UE position and orientation by (34)—(37).

16: end procedure

easily derived as the point, v.7u -1 meters away from p,,
on a spatial line passing through p; with the direction da 11
as

Pu =PpPr + dA,r,lchlU,r,l- (36)

3) Orientation Determination: We can further derive the
device orientation. The default direction of a LoS path para-
meterized by {¢uv.r,1,0u0,1} at the UE is defined as du 1 £
[sin 0y -1 cOS U 1,80 Oy 11 8N Pu 11, c08 0y 1], and the
actual direction of this path is —da .1 ~ pr» — pu. The
relative rotation is identical to that of the UE orientation from
ny = [1,0,0]7 to ny € R3, which can be derived by the
Rodrigues’ rotation theory as

du,1 X (—dar1)
[dur1 x (=da,r1)|’
érupn = cos ' (durr e (—dari)),
ny = ngcoséu,r,1 + (Cru,r1 X No) sinéy r1

+cru,r1(cru,r1 @ ng)(l — cos&ru,r1). (37b)

CIiu,r,1

(37a)

Finally, we summarize the channel estimation and user
localization schemes as Algorithm 1, where the terms “CH-
EST”, “CAS-DEC” and “UE-LOC” are abbreviations for
channel estimation, cascaded parameter decoupling and UE
localization, respectively.

VI. NUMERICAL RESULTS

Typical simulation settings are listed here: Ng = Ny = 24
(ULA), My, =Ty, = 12, K = 128, K, = 6, fs = 0.32 GHz,
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TABLE IIT
PERFORMANCE COMPARISON OF DIFFERENT BEAMFORMING SCHEMES

Approaches OMP [13] Coarse [45]

Baseline Uniform DFT ~ Optimized DFT

Pey SNR (dB) acc pow acc pow

acc pow acc pow acc pow

] 15 1.862 6.082 8229 5931
30 1.732 6.077 0904 5.929

0210 6.173
0.034  6.182

0.281  6.261
0.043  6.264

0.201  11.533
0.024  11.588

15 1.797  6.203  8.153  6.015

14 30 1.702  6.221  0.879  5.999

0.148  6.280
0.025  6.267

0201  6.373
0.032  6.360

0.139 11918
0.017  12.103

fe =28 GHz; Lg;, = Lu,»
distribution U (— %, %), ¢p(a),r¢ follows U (=5, %), Opa),re

= 3, ¢B(v),r,¢ follows a uniform

follows U (%, 2%), apiqu),.¢ follows a normal distribution

CN(0,1).8 The received signal-to-noise ratio (SNR) is defined
as | Vrr — Nrgll2/|INv k|3 The simulation of channel
estimation and parameter recovery considers a full-NLoS
propagation; the simulation of environment mapping and user
localization assumes that Hyy ., contains a LoS path, while
Hpgi ., consists of only NLoS components. Apart from the
narrowband positioning that requires two twin-IRS structures,
most simulations are realized with a single twin-IRS structure.
The two twin-IRS pairs are located at p; = [0,0,0]7, p2 =
[8,0,0]7 with orientations n; = [1,0,0]7,ny = [~1,0,0]
respectively. We leverage the first one to perform the chan-
nel estimation and parameter recovery by default. The pro-
posed channel estimation schemes, i.e., the sparse, grouping
and ANM-SDP/ADMM schemes described in Section IV. B.
1), 2) and 3), respectively, are compared with the OMP [13],
BALS [14] and SCPD [40] schemes.’

Table III tabulates the estimation performance of BS/UE
angular parameters and normalized signal power with random
training pattern for different beamforming schemes, where
N, = N, = 4 and ¢ = 1.5.9 It shows that the beamspace
beamforming (19) achieves the best recovery accuracy and
highest received signal strength when the search regions
generally cover the AoA/AoDs at the BS/UE. The baseline
scheme achieves slightly better performance than the uniform
DFT scheme but yields much lower effective signal power
than the optimized DFT scheme, leading to higher transmitted
power for a desired received SNR. Hereinafter, we introduce
a coarse estimation scheme with one extra frame, and use the
obtained estimates to construct the beamformers F,. ., W,. ,
as well as, the training signal tensor Y, ;.

80ne can leverage the principal component analysis or minimum length
description to estimate the number of paths [40]. For simplifying the evalu-
ation of the parameter recovery performance, we assume that Lgy(ru),, is
a priori known or perfectly estimated.

9The maximum iterations of BALS is 20; the angular resolution of OMP is

2“ o N ; the maximum iterations and penalty parameter of ANM-ADMM
are 20 and 0.1, respectively; the ANM-SDP is handled by the CVX toolbox
[50].

10¢ace” is defined as the rooted mean square error (RMSE) (degrees):

L i
(21" (BB (uy,me — dBUY,me) %/ LBI(IU),-) 12, “pow” is defined as

the normalized signal power: ||, 1, - N, rkllF /v M Ter Pyr; the resolution
of OMP is 27/ 4ANp(v);: “Coarse” applies the coarse estimation scheme [45]
within a single frame; “Baseline” applies the coarse estimation scheme [45]
across (Per + 1) frames; “Uniform DFT” applies the DFT beamforming (19)
across (Per+1) frames with uniformly-spaced {w,(v),m }3 “Optimized DFT”
applies the DFT beamforming (19) across Py frames with {wy, (v, } closest
to the coarse estimates.

RMSE

0 10 20 30 0 10 20 30
SNR (dB) SNR (dB)

(a) Th,r 014y (b) Ty ,rby6y

—~— % 4

0 10 20 30 0 10 20 30
SNR (dB) SNR (dB)

(C) Prk.t, 0y (d) Hcas,r,k

——OMP [13] —BALS [14] —SCPD [40]
—&—Sparse  —o— ANM-ADMM —— ANM-SDP

Grouping

Fig. 4. RMSE/NMSE of the cascaded parameters/channel vs. SNR, N}, =
Ny =4, Py =14, ¢ =1.5.

Table IV tabulates the RMSEs of cascaded phase/amplitude
parameters (18) and normalized mean square error (NMSE)
of the cascaded channel with different configurations of the
sparse and grouping patterns.'! It shows that when the quantity
of training frames is sufficient, the estimation accuracy is
mainly determined by the degrees of freedom of the difference
coarray and equivalent array of the sparse and grouping
patterns, respectively. Hereinafter, we adopt the best pattern
designs marked in bold in Table IV to evaluate the channel
estimation performance.

Figs. 4 and 5 plot the RMSEs of cascaded phase/amplitude
parameters (18) and normalized mean square error (NMSE)
of the cascaded channel versus the received SNR with Ny =
16 and 64, respectively. It shows that the OMP returns
SNR-insensitive results due to its fixed angular resolution.
The grouping scheme has relatively worse performance with
the lowest complexity. The BALS and SCPD yield dete-
riorated performance when the quantity of training frames
fails to keep pace with the increasing number of IRS unit
cells. Moreover, the ANM-SPD achieves the best estimation

"'"The RMSE of a parameter x,,¢, is defined as (221,22(@1@2 —
Izlzz)Q/LBI,rLIU,r) 1/2; the NMSE of the cascaded channel is defined as

HHCas,'r,k - Hcas,r,kH12—7‘/HHCas,r,kH12—7"
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TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT TRAINING PATTERN CONFIGURATIONS
System _ B B - B _ _ B
Settings Ny = Ny =4, Py =14, SNR = 30 dB Ny = Ny =8, P,y =48, SNR = 30 dB
Trainin Sparse Grouping Sparse Grouping
P Nius, Nvs, N, Nod; Na__ | Nan, Newi G Nis, Nvs, Vi, Nod; Na Naw, Nevs G
) 31,124 1,1,32:,6  1,2,32;7 2,2;4 1,2,33;10 3237211 3,2,3,3;14 444 2,2;16
Th,r k61 Lo 5.72e-3 5.42e-3 4.85¢-3 1.65e-2 2.10e-3 9.00e-4 9.24e-4 1.47e-2  4.37e-3
Ty rk, 01 o 8.32e-3 8.90e-3 3.64e-3 1.73e-3 1.14e-3 1.37e-3 9.17e-4 1.57e-2  4.27e-3
Prik,0165 1.57e-2 1.30e-2 9.29¢-3 8.56e-2 391e-3 2.97e-3 2.85e-3 1.58e-1  3.18e-2
cas,r,k 3.28e-4 3.12e-4 1.37e-4 3.39¢-3 4.33e-5 2.42e-5 2.02e-5 1.03e-2  6.17e-4
1 T -1
5 m 19 o 10
w2 v w
2 s \ s \
=4 . o
102 102
0 10 20 30 0 10 20 30 8 10 12 14 8 10 12 14
SNR (dB) SNR (dB) Py Py
(@) T, (®) T bt (@) T, () Tyr e,
" mo\‘:bﬁt !
m 107! 02 m 107 \ m
7] n %] 0 2
g < < 210 .
Z B & [~4 Z
2
10 10
107 10
0 10 20 30 0 10 20 30 8 10 12 14 8 10 12 14
SNR (dB) SNR (dB) Py Py
(©) Pritnty (d) Heasr ©) pripe (d) Heas ke
——OMP [13] <+ BALS[14]  —<SCPD [40] = Grouping ——OMP [13] —+—BALS [14]  —SCPD [40] = Grouping
—4—Sparse —o—ANM-ADMM ——ANM-SDP —~—Sparse —0—ANM-ADMM ——ANM-SDP
Fig. 5. RMSE/NMSE of the cascaded parameters/channel vs. SNR, N}, =  Fig. 6. RMSE/NMSE of the cascaded parameters/channel vs. training frames,

Ny, =8, Py =48, g = 1.5.

accuracy with the highest complexity. The sparse scheme and
ANM-ADMM can effectively acquire RMSE/NMSEs close
to those of ANM-SDP with reduced computational burden,
especially in the case of small-scale IRSs with sufficient
training measurements.

Figs. 6 and 7 plot the estimation performance curves of
the cascaded parameters and channels versus the number
of training frames with N = 16 and 64, respectively.
It shows that as P, increases, the recovery accuracy of the
BALS rapidly improves, while the SCPD is working when
the uniqueness condition (10) holds. Moreover, the perfor-
mance of the ANM-ADMM gradually approximates to that of
ANM-SDP. By contrast, the results of the sparse, grouping and
ANM-SDP schemes are relatively less sensitive to the quantity
of measurements, which originates from the robustness of
LS and SDP operations. One can observe from Figs. 4-7
that the sparse scheme and ANM-SDP can achieve better
performance than other counterparts. This can be attributed
to the fact that the former effectively reduces the number of
subchannels to be decomposed and reconstructed, while the
latter leverages the optimization approaches with dominant
computational complexity. Hereinafter, we combine these two

N, = Ny = 4, SNR = 30 dB, ¢ = 1.5.

methods with the proposed twin-IRS structure to implement
the decoupling of channel multipath parameters.

Figs. 8 and 9 plot the RMSEs of the decoupled angular
parameters versus the relative rotation angle and the power
radiation coefficient of twin-IRS structures, respectively. The
ANM-SDP and sparse schemes work with Ny = 16, P, = 14
and N1 = 64, P, = 48, respectively. The figures indicate
that the proposed twin-IRS structure enables us to precisely
recover the angular parameters at the IRS end with a reso-
lution less than 0.1°. Concretely, it can be observed that as
On, 0y increase from 5° to 30°, the RMSEs firstly decrease
and then increase. This can be explained as follows: too
small rotation angles cannot yield significant amplitude/phase
variations along the IRS array aperture, whilst too large
ones will lead to a disappearance of some weak paths with
near-zero AoA/AoDs relative to the IRS planes due to the
non-ideal power radiation pattern. Furthermore, as g increases
from 0 to 3, the performance of the “All” decoupling mode
gradually deteriorates, while that of the “Pair” counterpart
first improves and then worsens. The former does not rely on
amplitude equations derived by the power radiation pattern,
while the latter depends on effective amplitude equations with
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(C) Pr.k, 010y (d) Hcas,r,k

——OMP [13] —BALS[14] —SCPD [40]
—s—Sparse  —o—ANM-ADMM —— ANM-SDP

Grouping

Fig. 7. RMSE/NMSE of the cascaded parameters/channel vs. training frames,
Np = Ny =8,SNR =30dB, ¢ =1.5.

s 10 15 20 25 30 5 10 15 20 25 30
O, 0+(°) 0, 0v(°)
(@) ¢pre, (b) Opre,

15
O, 0v(%)

(©) dare,

(d) Oa 0,

‘%Sparse +ANM-SDP‘

Fig. 8. RMSE of the decoupled angular parameters vs. IRS relative rotation
angles, SNR = 30 dB, ¢ = 3.

an appropriate value of ¢. In conclusion, the optimal values of
on, 6y and ¢ are shown to be about 15° and 1.5, respectively.

Figs. 10 and 11 plot the RMSEs of the environment mapping
and user localization with the sparse scheme, where the pro-
posed multi-carrier (MC) and single-carrier (SC) strategies are
implemented with the aid of one and two twin-IRS structures,
respectively.'? The simulation results show that even with no

2The BS and UE are randomly located at pp = 2 ~ 6,-6 ~
—-2,-2 ~ 2T py = [2 ~ 6,2 ~ 6,—2 ~ 2]T with orientations
ng = [cosnp,sinng, 0], ny = [cosny,sinny,0]T with ng = 30° ~

150°, ny = —150° ~ —30°, respectively.
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(©) dare,

[—Sparse —— ANM-SDP|

Fig. 9. RMSE of the decoupled angular parameters vs. IRS power radiation
coefficient, SNR = 30 dB, 4y, = §y = 15°.

0 10 20 30 0 10 20 30
SNR (dB) SNR (dB)

(a) scatterer location (BS-IRS) (b) scatterer location (IRS-UE)

RMSE (m)

20
SNR (dB) SNR (dB)
(c) UE location (d) UE orientation

[-—Sparse (SC) —v—Sparse (MC) —— ANM-SDP (SC) —»~ ANM-SDP (MC)]

Fig. 10. RMSE of the environment mapping and user localization vs. SNR,
Ky =6, 0 = 6y = 15°, ¢ = 1.5, Ky, = 20 dB.

LoS path between the BS and IRSs, the proposed twin-IRS
structure and the corresponding channel estimation schemes
can achieve centimeter-level and degree-level resolution of the
scatterer/user locations and orientations, respectively. The MC
strategy consistently outperforms the SC counterpart, which
benefits from more training subcarriers and less error accu-
mulation of twin-IRS structures. More specifically, the “All”
decoupling mode returns more accurate results of scatterer
mapping, whilst the “Pair” counterpart generally performs
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TABLE V
COMPUTATIONAL COMPLEXITY OF CHANNEL ESTIMATION APPROACHES

Training IRS Pattern ~ Channel Estimation Method

Computational Complexity

Random BALS [14]
Structured SCPD [40]
Grouping LS + ESPRIT
Sparse LS + ESPRIT
Arbitrary ANM-SDP/ADMM

O(MirTer Pex N1) per iteration

O(Mix Tex PL P N7)

O(MtthrPtrG)

O(MuTer Por Ny )

O(Lgr,rL1u,» N$3)/O(Lp1,» Ly, - NE) per iteration

— All
TTe0--- -0 - _g=-_ Pair

5 15 25
K, (dB)

(a) scatterer location (BS-IRS)

35 5 15 25
K, (dB)

(b) scatterer location (IRS-UE)

35

Ky, (dB)
(d) UE orientation

(c) UE location

[—Sparse (SC) —— Sparse (MC) ——ANM-SDP (SC) ——ANM-SDP (MC)]

Fig. 11. RMSE of the environment mapping and user localization vs. Rician
K-factor, SNR = 30 dB, Kty =6, 6, = dv = 15°, ¢ = 1.5.

better at user positioning. The former can more robustly
recover the parameters of multiple NLoS paths, while the latter
is more suitable for solving the AoA/AoDs of a specific pair
of paths involving the LoS component. Furthermore, one can
observe that an increasing Rician K -factor leads to enhanced
performance of environment mapping and user localization
except that of IRS-UE scatterer positioning. This is due to
the fact that higher power of a LoS path can improve its
probability of being correctly detected, but will dominate the
NLoS components and make them more likely be treated as
environmental noise.

Finally, we analyze the computational complexity of
the involved channel estimation algorithms, as tabulated
in Table V. Our analysis indicates that the complexity of the
BALS and SCPD is proportional to the number of reflectors
Ni. The algebraic grouping and sparse schemes efficiently
reduce the complexity by activating fewer reflection unit
cells and formulating smaller-scale equivalent arrays, respec-
tively. Moreover, the optimization-based ANM-SDP/ADMM
can handle arbitrary designs of the IRS training coefficients at
the expense of relatively higher complexity.

VII. CONCLUSION

We considered the channel estimation, as well as,
the user localization problems of an IRS-assisted mmWave

MIMO-OFDM system. We proposed a novel twin-IRS struc-
ture consisting of two IRS planes with a relative spatial rota-
tion to extract the 3-D propagation channel. By leveraging the
techniques of tensor factorization, sparse array processing and
atomic norm denoising, we presented four IRS training pattern
designs and the corresponding parameter recovery schemes.
By concatenating the cascaded phase/amplitude parameters
recovered from the twin-IRS structure and leveraging the
geometric relationship of devices, we achieved the decoupling
of the exact channel angular and temporal parameters. We also
proposed wideband and narrowband training strategies with
single and multiple twin-IRS structures for the scatterer map-
ping and user positioning. Numerical results showed that the
proposed strategy can precisely extract the channel parame-
ters, and, therefore, can support a centimeter-level positioning
resolution. In our future work, we are going to exploit the
potential of conformal array topologies for the IRS designs
alongside the corresponding channel estimation strategies and
parameter recovery schemes.
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