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Multi Direction-of-Arrival Tracking Using Rigid
and Flexible Antenna Arrays

Zhuqing Tang , Student Member, IEEE, and Athanassios Manikas

Abstract— This paper is concerned with the problem of
simultaneously tracking the direction-of-arrival (DOA) of far-
field multiple moving sources/users in wireless communications
using the vector-signal received by an antenna array of N ele-
ments. The antenna array can be rigid (fixed array locations) or
flexible (time-varying array locations), and it is used in conjunc-
tion with a “manifold extender”, a spatiotemporal state-space
model and a Kalman-type tracking approach for non-stationary
wireless channels. In particular, two tracking approaches
are proposed. The first is based on an arrayed Extended
Kalman Filter (arrayed-EKF) algorithm and the second on an
arrayed Unscented Kalman Filter (arrayed-UKF) algorithm.
Furthermore, if the array is rigid the spatiotemporal state-space
model incorporates the DOAs and the angular velocities of the
sources, while if it is flexible it also includes the array locations in
the set of state-variables. The performance of the two approaches
using both rigid and flexible arrays is evaluated using computer
simulation studies and compared with a subspace tracking
algorithm and a particle filter method under the same conditions.
The results show that the arrayed-UKF and the arrayed-EKF
show superior tracking performance, especially for low SNRs.

Index Terms— Array processing, flexible array, DOA tracking,
extended Kalman filter, unscented Kalman filter, spatiotemporal
arrays, array manifolds, extended manifolds.

NOTATION

A, a Scalar
A, a Column vector
A, r Matrix
(·)T Transpose
(·)H Hermitian transpose
E {·} Expectation operator
⊗ Kronecker product
IN N × N Identity matrix
ON×M N × M matrix of zeros
1N Column vector of N ones
0N Column vector of N zeros
R Set of real numbers
C Set of complex numbers
exp(A) Element by element exponential of vector A
∇ Vector differential operator
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triu(A) Upper triangular potion of A

QR(A) QR decomposition of A

chol(A) Cholesky factorization of A

I. INTRODUCTION

D IRECTION-of-Arrival (DOA) tracking of multiple mov-
ing sources/users using an array has been an important

research area with a wide range of applications in sonar,
radar, air traffic control, wireless communications, remote
sensing, etc..

DOA tracking techniques can be classified into probabilistic
and parametric. For instance, in [1], a probabilistic DOA
tracking approach is presented which is based on a probability
hypothesis density filter with a likelihood function expressed
as a complex Wishart random matrix. In [2], the tracking
of DOAs is also probabilistic and is based on the sparse
approximation technique LASSO. One of the main tracking
families of parametric techniques is the “subspace tracking”
[3]–[6]. In [3], a cross-correlation based 2D DOA tracking
algorithm is proposed using an automatic pair-matching batch
method which, however, is restricted to only L-shape array
geometries. Some “subspace tracking” techniques are based on
various decomposition forms such as Singular Value Decom-
position (SVD) [4], URV decomposition [5] and cross RV
decomposition (CRV) [6].

However, many DOA tracking techniques assume that the
sources are stationary over a small time frame (observation
interval) and for each time frame a DOA subspace estima-
tion algorithm like multiple signal classification (MUSIC) [7]
can be applied. In these type of techniques the tracking is
based on repetitive DOA estimation (or, in general, repetitive
localization) where the set of consecutive estimates provide
the tracking trajectory (e.g. [8]). However, in non-stationary
environments, repetitive high-resolution estimation algorithms
for DOA source trajectory tracking exhibit serious perfor-
mance degradation. In addition, these techniques suffer from
the data association problem and several algorithms have been
proposed to avoid this problem. In [9], the authors minimize
the norm of an error matrix based on the covariance matrix of
the received array output. A repetitive DOA source tracking
algorithm is proposed in [10] which uses the most recent
received data to update the existing DOA estimates using the
MUSIC algorithm. Both [9] and [10] avoid data association by
preserving the order of the estimated DOAs over certain itera-
tions, which however suffer from spread array spatial spectrum
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effects caused by the source motion. Alternatively, state-
space model based approaches have been proposed which are
combined with various tracking algorithms (e.g. [11]–[14]).
In [11], multiple target states (MTS) are defined to describe
the source motion, followed by a ML algorithm for updating
the MTS and tracking the DOAs. In [12], a bank of linear
combiner matrices are formed as state variables, and then
they are updated adaptively by an H-infinity filter to track
the noise subspaces and consequently the DOAs. Furthermore,
some Bayesian state-space models have been used in [13], [14]
which incorporate the source motion and the likelihood of
received measurements based on the source’s state. Then,
a particle filter is used to track the source state to obtain
the DOA of the sources. The particle filter has also been
used in [15] and [16] for target tracking in radar system.
However, in radar literature, “active” radar tracking approaches
have been employed where both system architectures and
assumptions are different than those used in communications.

Another family of approaches for repetitive DOA estima-
tion are based on Kalman Filter (KF). Since the standard
Kalman filter requires the measurement model to be linear,
all the approaches that use standard Kalman filter need to
pre-estimate the DOA and view the DOA estimates as “mea-
surement”. Then the pre-estimated DOA is refined by the
Kalman filter. For example, the Kalman filter has been used
for multiple DOA tracking which are pre-estimated by a least
squares (LS) estimator [17], or a Maximum Likelihood (ML)
estimator [18], [19]. In [20], the proposed algorithm improves
the algorithm in [10] by employing a source movement model
and a Kalman filter. The Kalman filter has also been used
in [21] for tracking signal subspace towards the objective of
tracking single target. However, it is important to point out
that the above KF approaches require the overall observation
interval to be divided into small intervals over which the DOAs
can be assumed to be stationary. Consequently, they will suffer
from serious performance degradation when this assumption
is not valid.

In addition to KF, the Extended Kalman filter (EKF) and the
Unscented Kalman Filter (UKF) are suitable for the case that
the measurement model is non-linear. For instance, the EKF
has been employed in [22] for trajectory tracking of moving
sources using a large aperture rigid array and in [23] for DOA
tracking of moving sources using a small aperture rigid array.
In [24], the EKF is combined with a particle filter forming
an EKPF algorithm. However, to the best of our knowledge,
there are not many papers for DOA tracking using EKF and
the majority of these papers are for single DOA tracking.
In addition, the UKF has been rarely used and in [25], [26] it
has been used for single DOA tracking. In general, the EKF
and UKF algorithms have equal computational complexity but
they are conceptually different. The EKF linearizes nonlinear
transformations by using Taylor series expansions and then
uses these linear transformations in standard Kalman filter.
Whereas the UKF involves the unscented transformation which
essentially selects a set of points (sigma points) via a deter-
ministic sampling approach, and then propagates these points
to the true nonlinear function which are then exploited to form
the mean and covariance of the estimation [27], [28]. In this

paper, both the EKF and UKF are employed to track multiple
DOAs in non-stationary environment and our paper is the first
paper to employ UKF for multi-DOA tracking.

All the above methods, like the majority of array processing
techniques assume by default that the array geometry is rigid.
On the other hand, using flexible array geometries is an interest
problem in array signal processing for airborne, vehicular,
underwater and other applications [29]. The “flexible array”
is defined as an antenna array with time varying geometry,
i.e. each of the array elements move independently and this
paper is an extension of [30] where a flexible array formed by a
swarm of unmanned aerial vehicles (UAVs) is presented. If the
array geometry is flexible, i.e. the array geometry changes
as a function of time, then the majority (if not all) of the
array processing algorithms and theory cannot be directly
used.

Several approaches have been proposed for solving source
tracking problem with time varying arrays but for static
sources. For example, the ML estimator has been employed
in [31]–[33]. However, in these cases, a multi-dimensional
search is required which is computationally prohibitive.
In [34], two eigenstructure-based algorithms based on the con-
cept of array interpolation and focusing matrices are proposed
with faster approximations to the ML estimators. However,
these algorithms need relatively large Signal to Noise Ratio
(SNR) levels to maintain satisfactory performance. In [35],
the authors use noncoherent time-varying arrays that are a
collection of coherent subarrays with stationary covariance
matrices. Then, the functions of the covariance matrices of the
subarrays are derived to find source locations. As it was stated
before, all these approaches ([31]–[35]) are designed for static
sources. In [36], a dynamic radar network is proposed which
is related with a swarm of UAVs working independently for
tracking the location of a single target. It uses a Markovian
state space model and employs a two-step EKF algorithm.
However, this approach is not related with flexible arrays as
the UAVs work independently and this scenario belongs to
radar applications.

This paper is concerned with tracking the DOA of multiple
sources in non-stationary wireless communications using both
rigid and flexible arrays. In addition to [30] in the current
literature, to the best of our knowledge, there are only two
papers [37], [38] that deal with the tracking using time-
varying arrays. Reference [37] is concerned with tracking
stationary sources using an array of hydrophones. This is
a “towed-array” - towed behind a submarine or a surface
ship on a cable – where the hydrophones are placed at
specific/constant distances along the cable. This is also a
flexible array because when the ship turns this line becomes
curvy and there are small but very restricted changes in the
overall shape. However, [37] deals with DOA estimation of
stationary acoustic sources using Maximum Likelihood (ML)
followed by a second estimation of the shape of the array using
Kalman filtering. Reference [38] is a “probabilistic” approach
for non-stationary channels which completely ignores the para-
meterisation in terms of the array manifold vector and array
geometry. It recursively estimates a conditional probability
density function (Bayesian filtering) by following the EKF
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iterative steps, although this is not an EKF approach, while its
performance is compared with that of a particle-filter method.

In our proposed approaches, all the sources and the array
locations are tracked in a unified way which is suitable for
tracking even of fast moving sources using antenna array
systems. In particular, two novel approaches are proposed
based on an arrayed-EKF and an arrayed-UKF using

• a rigid array and a flexible array,
• a spatiotemporal state-space model and
• a “manifold extender”

for simultaneously tracking multiple DOAs snapshot-by-
snapshot. In our proposed approaches, both “rigid” and “flex-
ible” arrays as well as arrayed-EKF and arrayed-UKF are
presented in a unified way. Furthermore, the concept of “man-
ifold extender” (see [39]) is employed which increases the
“degrees of freedom” of the system by integrating the spatial
and the temporal domains. This is used in the spatiotemporal
state-space model. Note that the “extended manifold” vectors
are longer vectors than the spatial manifold vector and the
locus of these vectors are mathematical objects (manifolds)
that are embedded in a larger observation space than the
one provided by the number of antenna array elements N
(see [39]). If the array is flexible, apart from tracking multiple
DOAs, the array locations are also simultaneously tracked as
they change arbitrarily with time. Therefore, we developed
our array processing algorithms (arrayed-EKF/UKF), based on
fixed or time-varying array geometry, where all the antenna
array elements (in a constant or a time varying geometry)
work together as one unit for solving the problem of trajec-
tory tracking of moving sources. The integration of all the
above forms our proposed “arrayed-EKF” and “arrayed-UKF”
algorithms.

Note that the proposed algorithms in this paper have many
applications, including UAV communications. For instance,
a rigid antenna array may be deployed on a single UAV
platform1 for tracking multiple users. Furthermore, a number
of UAVs (a swarm of UAVs), each equipped with a single
antenna having its own propulsion system, can be used as
a flexible array for multi-user tracking (e.g. [30]). In this
case, each UAV is equipped with a GPS-clock so that the
array system will have a common clock to keep the system
coherent.

The remainder of this paper is organized as follows.
In Section II, the array system and the received vector-signal
model are presented. In Section III, the mobility model of
the multiple sources is described. Then, the extended mobility
model is presented. In the case of flexible arrays, the mobility
model of the array elements is also discussed. In Section IV,
the proposed approaches are introduced based on arrayed-
EKF and arrayed-UKF for both rigid and flexible arrays.
In Section V, the performance of the proposed approaches
is evaluated using computer simulation studies. Finally, this
paper is concluded in Section VI.

1Except the UAV platform, the rigid array may be deployed in aircraft,
automobile, shipboard as well as in Node-B, eNode-B or gNode-B in an
access network.

II. SYSTEM MODEL

Consider an array system for tracking multiple users with a
receiver array of N antennas. Figure 1 shows the baseband rep-
resentation of the array system model consisting of M far-field
transmitters/users, a wireless channel and an array receiver.2

With reference to Figure 1, at Point-A, the transmitted data
sequence of symbols of the i-th user {ai[n]} (with a symbol
duration of Tcs) where each symbol is weighted by a Nc × 1
weight-code vector given by

wi
Δ= [wi [1] , wi [2] , . . . , wi [q] , . . . , wi [Nc]]

T (1)

with

wi[q] ∈ ±1, q ∈ [1,Nc] (2)

Then, at Point-B, the weighted data symbol sequence
{wiai[n]} is driven to a Digital-to-Analog Converter (DAC)
to produce a baseband transmitted signal mi(t) at Point-C.

At the receiver, an antenna array of N antennas is employed
with locations

r = [r1, r2, . . . , rm . . . , rN ]

=
[
rx, ry, rz

]T ∈ R3×N (3)

where the vector rm ∈ R3×1 denotes the Cartesian coordi-
nates of the m-th antenna and the N × 1 vectors rx, ry , rz

are the Cartesian coordinates of all antennas on the x-axis,
y-axis and z-axis, respectively. In this paper, we also consider
the scenario where the array locations (and thus the array
geometry) change due to any unknown forces. In this case,
the array is flexible with time-varying geometry, re-modelled
as functions of time as follows

r (t) = [r1 (t) , r2 (t) , . . . , rm (t) . . . , rN (t)]

=
[
rx (t) , ry (t) , rz (t)

]T ∈ R3×N (4)

Thus, at Point-D in Figure 1, the received baseband vector
signal x (t) ∈ CN×1 can be modelled as follows

x (t) =
M∑
i=1

βi (t) exp(j2πFit)Si(t)mi(t) + n(t) (5)

where, for the i-th user, βi (t) denotes the path fading coef-
ficient, Fi represents the Doppler frequency and the vector
n(t) ∈ CN×1 denotes the additive white complex Gaussian
noise of zero mean and covariance matrix given by

Rnn = σ2
nIN (6)

with σ2
n denoting the noise power. In Equ 5, Si(t) ∈ CN×1

denotes the time-varying manifold vector which is given as
follows

Si(t) =

⎧⎪⎪⎨⎪⎪⎩
exp

(
−j

2πFc

c
rT ui (t)

)
for rigid array

exp
(
−j

2πFc

c
r (t)T

ui (t)
)

for flexible array

(7)

2The M narrowband far-field users operate at the same time and on the
same frequency band.
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Fig. 1. Baseband representation of the array system model consisting of M transmitters, a SIMO multiuser wireless channel and an array receiver. The array
can be rigid or flexible.

Fig. 2. The array’s Cartesian coordinate system and the unit-norm vector
u (θ, φ) in terms of the azimuth angle θ and elevation angle φ.

where Fc is the carrier frequency, c denotes the speed of light
and ui (t) is given by

ui (t) =

⎡⎣ cos θi (t) cosφi (t)
sin θi (t) cosφi (t)

sin φi (t)

⎤⎦ (8)

with θi (t) and φi (t) representing the azimuth and the ele-
vation angles of the i-th source. In general, the vector u =
u (θ, φ) denotes the (3 × 1) unit-norm vector pointing towards
the direction (θ, φ), as illustrated in Figure 2. In this paper,
with no loss of generality, the elevation angle is assumed to
be zero (i.e. φi (t) = 0).

Equ 5 can also be rewritten in a more compact form as
follows

x (t) = S(t)m(t) + n(t) (9)

where S(t) ∈ CN×M is the matrix with columns the array
manifold vectors, i.e.

S(t) = [S1(t), S2(t), . . . , Si(t), . . . , SM (t)] (10)

and m(t) ∈ CM×1 is expressed to include, in addition to the
M baseband message signals, the Doppler frequencies and the
path coefficients as follows

m(t) =

⎡⎢⎢⎢⎣
β1 (t) exp(j2πF1t)m1(t)
β2 (t) exp(j2πF2t)m2(t)

...
βM (t) exp(j2πFM t)mM (t)

⎤⎥⎥⎥⎦ (11)

with its covariance matrix Rmm defined as

Rmm = E
{
(m(t) − E {m(t)}) (m(t) − E {m(t)})H

}
(12)

With reference to Figure 1, the (N × 1) vector signal x (t) is
firstly discretised (see Point-E). Then, at Point-F the (NNext×
1) vector signal x [n] can be expressed as follows

x [n] =
M∑
i=1

(Si[n] ⊗ wi)︸ ︷︷ ︸
hi[n]

mi[n]︷ ︸︸ ︷
βi [n] exp(j2πFinT )ai [n] + n [n]

(13a)

=
M∑
i=1

hi[n]mi[n] + n [n] (13b)

= H[n]m[n] + n[n] (13c)

where the vector n [n] ∈ CNNext×1 denotes the discretised
“extended” noise (i.e. the noise at Point-F in Figure 1) and
the matrix H [n] ∈ CNNext×M is given by

H [n] = [h1 [n] , h2 [n] , . . . , hi [n] , . . . , hM [n]] (14)

with its i-th column hi [n] ∈ CNNext×1 denoting the time-
varying extended manifold vector of the i-th user given as
follows

hi [n] = Si [n] ⊗ wi (15)

with Next = N c. Furthermore, at the transmitter, if the user
being tracked does not include the weight wi, then wi = 1Next
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may be used. In this case, the extended manifold vector of
Equ 15 is simplified to

hi [n] = Si [n] ⊗ 1Next
(16)

Therefore, the extended manifold vector here has two
forms/cases as described in Equ 15 and Equ 16 although
other forms from [23], [39] may be included. In addition,
if the manifold extender is not employed in this model, then
Next = 1 and

hi[n] = Si[n] (17)

Thus, the vector hi [n] ∈ CNNext×1 can be expressed as
follows

hi [n] =

⎧⎪⎨⎪⎩
Si [n] ⊗ wi Next = N c

Si [n] ⊗ 1Next
Next = N c

Si [n] Next = 1

∣∣∣∣∣∣∣ (18)

Note that the array locations that constitute the extended
manifold vector hi [n] may be a function of time (changing
from symbol to symbol), depending on whether the array is
rigid or flexible.

III. MOBILITY MODEL

A. Source/User Mobility Model

Since the array operates in the presence of M co-channel
users, Figure 3 illustrates the mobility model of the i-th user,
for i = 1, 2, . . . , M relative to the array reference point.
As shown in Figure 3, the i-th user moves in an arbitrary
direction with velocity-vector vi ∈ R3×1 given as follows

vi = vρiuvρi
+ vθiuvθi

(19)

where the velocity vector vi is decomposed into two other
vectors:

• the radial component vρiuvρi
, and

• the orthoradial (angular) component vθiuvθi
,

with vρi denoting the radial velocity of the i-th source and
vθi representing its angular velocity. The vectors uvρi

and
uvθi

are unity vectors that are mutually orthogonal. The radial
velocity vρi causes the Doppler effects which is modelled as
exp(j2πFit) in Equs 5 and 11. Note that Fi is given by

Fi = −Fcvρi

c
(20)

As shown in Equ 13, the Doppler coefficient has been incor-
porated into the combined vector-signal m[n] which will then
be estimated and utilised by the proposed tracking algorithms.
Thus, the radial velocity does not affect the DOA/azimuth θi.
If the i-th user moves with an angular velocity vθi , which can
be constant or variable, its azimuth angle may be described as

θi (t) = θi (t0) + vθi (t0)T (21)

where

T = t − t0 (22)

Fig. 3. Illustration of the mobility model of the i-th source/user. The velocity
vector vi of the source is decomposed into its radial term vρiuvρi

and the

orthoradial term vθi
uvθi

, respectively. The direction (DOA) θi of the source
is measured with respect to the array reference point. The array geometry at
the receiver may be rigid or flexible.

is the time elapsed between t and t0. If T is assumed to be
equal to the sampling period, i.e.

t0 = (n − 1)T (23)

t = nT (24)

then Equ 21 is discretised and becomes

θi[n] = θi[n − 1] + vθi [n]T (25)

Thus, let us define the discrete-time state vector for the i-th
user as bi[n], i.e.

bi[n] �=
[

θi[n]
vθi [n]

]
(26)

Then, the discrete time kinematic model for the i-th user for
t = nT is given as

bi[n] = Gibi[n − 1] + b̃i[n] (27)

where Gi ∈ R2×2 is the transition matrix given by

Gi =
[

1, T
0, 1

]
(28)

In Equ 27, b̃i[n] ∈ R2×1 represents perturbations about the
azimuth angle and the angular velocity, and can be modelled as
“noise” with zero mean and covariance matrix R�bi

�bi
∈ R2×2

given by

R�bi
�bi

= σ2
θi

⎡⎢⎣
T 3

3
,

T 2

2
T 2

2
, T

⎤⎥⎦ (29)

where σ2
θi

denotes the continuous time model intensity for the
azimuth-velocity.

B. Flexible Array Mobility Model

With reference to Figure 3, it is shown that the array at the
receiver can be either rigid or flexible. The movement of the
flexible array may include



TANG AND MANIKAS: MULTI DOA TRACKING USING RIGID AND FLEXIBLE ANTENNA ARRAYS 7573

• a known motion of the whole array which is represented
by the motion of the array’s reference point and does not
affect the array geometry,

• a known motion of its individual elements relative to the
reference point, and

• small unknown motion or perturbations casued by any
unknown forces3

with the last two motions changing the array geometry. Thus,
in a flexible array the tracking of the array geometry (i.e. the
tracking of the locations of the array elements) is essential.

With a sampling period T , the discrete time mobility model
of the array locations4 is expressed as follows

bxy[n] = Gxybxy[n − 1] + b̃xy[n] (30)

where the vector bxy[n] is given as follows

bxy[n] =
[

rx[n]
ry[n]

]
∈ R2N×1 (31)

which includes the instantaneous array locations on the x-axis
and y-axis, respectively. The vector b̃xy[n] ∈ R2N×1 in Equ 30
denotes the perturbations associated with their respective loca-
tions, with its intensity σ2

xy , and its covariance matrix is given
as follows

R�bxy
�bxy

= σ2
xyI2N (32)

The matrix Gxy ∈ R2N×2N is a block diagonal matrix
containing known transition matrices of all the array elements
shown as

Gxy=

⎡⎢⎢⎢⎣
F1, O2, · · · , O2

O2, F2, · · · , O2

...
...

. . .
...

O2, O2, · · · , FN

⎤⎥⎥⎥⎦ (33)

where Fj ∈ R2×2 represents a known transition matrix of j-th
array element. For instance, if ωj denotes the angular velocity
of the j-th array element about the reference point, then

Fj =
[

cosωjT, − sin ωjT
sin ωjT, cosωjT

]
(34)

C. Overall Mobility Model

The overall mobility model, which is the discrete
time M -user kinematic model, is constructed based on
Equs. 27 and 30, as follows

b[n] = Gb[n − 1] + b̃[n] (35)

where b[n] is the overall discrete-time state vector which is
constructed as

b[n] =

{�
bT
1 [n], bT

2 [n], . . . , bT
M [n]

�T ∈ R2M×1 rigid array�
bT

xy[n], bT
1 [n], . . . , bT

M [n]
�T ∈ R(2N+2M)×1 flexible array

(36)

and its perturbation vector b̃[n] is given as follows

b̃[n] =

{��bT

1 [n],�bT

2 [n], . . . ,�bT

M [n]
�T ∈ R2M×1 rigid array��bT

xy [n],�bT

1 [n], . . . ,�bT

M [n]
�T ∈ R(2N+2M)×1 flexible array

(37)

3Note that, even in fixed array geometries, constant uncertainties in the array
locations may decrease the performance of the direction-finding system [31].

4With no loss of generality, the antenna array elements are assumed to be
located on the (x, y) plane, i.e. rz [n] = 0N .

TABLE I

THE DIMENSIONALITY OF THE VECTOR/MATRIX PARAMETERS
USED IN THE MOBILITY MODELS

The matrix G represents the overall transition matrix
given by

G =

⎧⎪⎨⎪⎩
IM⊗Gi rigid array[

Gxy, O2N×2M

O2M×2N , IM⊗Gi

]
flexible array

(38)

Based on the above equations, the covariance matrix P[n] of
the discrete time state vector b[n] is constructed as follows

P[n] = GP[n − 1]GT + R�b�b ∈ RNdim×Ndim (39)

where

Ndim =

{
2M rigid array

2N + 2M flexible array
(40)

and the perturbation matrix R�b�b is given as

R�b�b =

⎧⎪⎨⎪⎩
IM⊗R�bi

�bi
rigid array[

R�bxy
�bxy

, O2N×2M

O2M×2N , IM⊗R�bi
�bi

]
flexible array

(41)

Table I provides the dimensionality of the various vector/
matrix parameters used in the mobility models. The mobility
models employed in this section can be seen as some repre-
sentative examples but other mobility models may be used in
this proposed framework.

IV. TRACKING ALGORITHMS BASED ON

SPATIOTEMPORAL STATE-SPACE MODEL

In this section, based on the antenna array models pre-
sented in Sections II and III, two tracking algorithms are
proposed which belong to the Kalman family of techniques
for non-linear “measurement” models. We will call them
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“arrayed-EKF” and “arrayed-UKF” as they are based on the
integration of

• the array signal model of Section II for both “rigid” and
“flexible” antenna arrays,

• the mobility models of Section III, and
• the EKF/UKF iterative theoretical tools.

Based on the snapshot at Point-F in Figure 1, modelled by
Equ 13, and the overall mobility model given by Equ 36, the
spatiotemporal state-space model is constructed as follows

b [n] = Gb [n − 1] + b̃ [n] (42)

x [n] = H (b [n])m [n] + n [n] (43)

describing the dynamics of all users’ motion (Equ 42) and the
vector signal received by the rigid or flexible arrays (Equ 43).

The two proposed algorithms are summarised in
Tables II and III. Note that the notation has been simplified,
by replacing the symbol index [n] with a subscript n and,
thus, the following notation is employed in Tables II and III

bn
�= b [n] ∈ RNdim×1 (44a)

Pn
�= P[n] ∈ RNdim×Ndim (44b)

xn
�= x [n] ∈ CNNext×1 (44c)

mn
�= m [n] ∈ CM×1 (44d)

It is important to point out that, in the presentation of the
two algorithms in these two tables, the selection of a common
Kalman structure is deliberately maintained for better clarifi-
cation of each step. However, in the arrayed-UKF, which is
based on the square-root UKF, the state-vector b [n] of Equ 36
and the non-linear “measurement” vector x [n] of Equ 43
should be further processed to form two matrices Bn and X.
In particular, the matrix Bn ∈ RNdim×(2Ndim+1) can be formed
as follows

Bn =
[
B1, B2, . . . , Bj , . . . , B2Ndim+1

]
(45)

= bn ⊗ 1T
2Ndim+1 + [0Ndim

, ηTn,−ηTn] (46)

where

• Bj is the j-th column of the matrix Bn which is known
as the j-th “sigma point-vector”.

• η is a scaling factor
• Tn is an Ndim × 2Ndim matrix which is the Cholesky

factorisation5 of the covariance matrix Pn of the state
vector of Equ 36. That is

Pn = TnT
H
n (47)

Then, by applying the nonlinear function to these “sigma point
vectors” the measurement matrix X ∈ CNNext×(2Ndim+1) is
formed, i.e.

X =
[
H (B1)mn, H (B2)mn, . . . , H

(
B2Ndim+1

)
mn

]
(48)

Thus, using the unscented transformation instead of the Jaco-
bian matrix of the nonlinear measurement, and propagating the

5The Cholesky factorisation of Pn is unique as Pn is a positive definite
matrix.

Cholesky factor Tn instead of the covariance of the estimate
error Pn, the proposed arrayed-UKF algorithm is summarised
in Table III.

Note that in Table III, the matrices W(m) and W(c)

are diagonal matrices whose diagonal values are the
weights to compute the mean and the covariance of the
measurement, respectively. These matrices have the following
definitions:

W
(m) =

1
Ndim + μ

diag

{[
μ

1
2
12Ndim

]}
(49)

W
(c) =

1
Ndim + μ

diag

{[
β

1
2
12Ndim

]}
(50)

where the scaling parameters μ and β are as follows

μ = Ndim(α2 − 1) (51)

β = μ + (1 − α2 + ρ)(Ndim + μ) (52)

with the constant α controling the spread of the “sigma point-
vectors” around bn, and ρ compensating for the distribution
of bn. Furthermore, the parameter η in Equ 46 is related to μ
as follows

η =
√

(Ndim + μ) (53)

With reference to Table II and Table III, the initial state b0

can be provided by a priori guess or pre-estimated by any
kind of the DOA estimation approaches, such as the ML,
LS, or subspace approaches. The initial covariance P0 can
be set to γI2M where γ indicates the confidence level in the
accuracy of the initial estimates.

V. COMPUTER SIMULATION STUDIES

The performance of the proposed algorithms are evaluated
in this section using computer simulation studies. The data
symbol sequence transmitted by each user is assumed to be a
random complex sequence of zero mean and unity variance.
The weight-codes are gold-codes of ±1s of length Next = N c

generated by modulo-two addition of two m-sequences
described by the polynomial D3+D2+1 and D3+D+1. This
implies that Next = N c = 7. The user tracking is assumed
to be carried out over a time interval of 5000 spatiotemporal
snapshots x [n] ∈ CNNext×1 collected at Point-F in Figure 1.
The continuous time model intensity for the azimuth-velocity
(see Equ 29) is set to σ2

θi
= 1.1 × 10−8(deg /T )2, ∀i and

the intensity of the perturbations for the array locations is
set to σ2

xy = 6.4 × 10−7(λ/T )2. The parameter γ of the
initialization stage of the proposed algorithms is set to 10−6.
The parameters used in Equs 51 and 52 are set to α = 10−4,
and ρ = 2.

A. Rigid Array Geometry

For the rigid antenna array, the geometry is assumed
(without any loss of generality) to be a grid planar array
of 9 elements and its locations are shown in Figure 4.
Furthermore, it is assumed that the array operates in the
presence of 4 far-field moving sources/users and their ini-
tial angular velocities are assumed to be 0 deg /T which
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TABLE II

FIRST PROPOSED APPROACH (ARRAYED-EKF ALGORITHM)

then change according to the velocity trajectory shown
in Figure 5.

Figure 6 shows an example of DOA trajectory tracking of
four far field moving sources using the proposed arrayed-EKF
and arrayed-UKF approaches for SNR = 10 dB. In Figure 6,
the tracking results of the “Source 2” between the 3700-th
snapshot and the 3800-th snapshot (framed area) are zoomed
to show the tracking performance using both approaches. It is
clear that both approaches track the DOAs with high accuracy,
especially the arrayed-UKF approach. Then, the performance
of the proposed arrayed-EKF and arrayed-UKF approaches
for all three cases of Equ 18 is examined using Monte Carlo
simulation studies. The results are shown in Figure 7 where
the Root Mean Square Error (RMSE) of the estimated azimuth
angles is plotted as a function of the SNR for 500 Monte Carlo
simulations, where in each simulation the error is averaged
over the whole trajectory corresponding to 3000 snapshots.
It is evident in Figure 7 that the proposed approaches with
the extended manifold vector hi [n] = Si [n] ⊗ wi have
better source tracking accuracy over the whole SNR range
than with the vectors hi [n] = Si [n] ⊗ 1Next

and hi [n] =
Si [n]. In addition, the arrayed-UKF approach outperforms the
arrayed-EKF approach.
Then, under the same simulation environment as in Figure 7,
the proposed algorithms with the extended manifold vector
hi [n] = Si [n] ⊗ wi are compared with

• the subspace tracking algorithm presented in [12] which
employs an H-infinity filter for estimating the noise sub-

TABLE III

SECOND PROPOSED APPROACH (ARRAYED-UKF ALGORITHM)

space which is then used to track snapshot-by-snapshot
the DOAs of multipaths,

• the particle filter approach of [40], but integrated with
the received array vector-signal model for both rigid and
flexible antenna arrays and the overall mobility model
with the state vector of Equ 36. This particle filter will
be referred here as “arrayed-PF”.

The comparative results are shown in Figure 8 and it is evident
that the proposed algorithms outperform both the subspace
tracking and the “arrayed-PF”algorithms.

Next the RMSE performance of the arrayed-UKF algorithm
for the extended manifold vector hi [n] = Si [n]⊗wi is exam-
ined. Figure 9 shows the RMSE of the estimated DOA angles
as a function of the number of spatiotemporal snapshots using
the proposed arrayed-UKF algorithm for different SNRs. Note
that, in Figure 9a, the initial DOAs are assumed known, and
in Figure 9b the initial DOAs are obtained from a random
Gausian distribution with unity variance. The results show that
the estimation error for different signal environments is small
and remains constant over time, which illustrates the stability
of the proposed arrayed-UKF approach. Overall, based on
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Fig. 4. Rigid array case: Grid planar array geometry of N = 9 antennas, and
the Cartesian coordinates of the array elements. Note: for the flexible array,
this is the initial array geometry.

Fig. 5. Rigid array case: the azimuthal velocity trajectories of four moving
sources.

Fig. 6. Rigid array geometry: True (solid red lines) and estimated (dashed lines) trajectories of four moving sources using the proposed arrayed-EKF (green
lines) and arrayed-UKF (blue lines) approaches.

Fig. 7. RMSE of the estimated source azimuth angles averaged over
3000 spatiotemporal snapshot evaluations using the arrayed-EKF and the
arrayed-UKF approaches for the three cases of Equ 18 (500 iterations).

Fig. 8. Comparison of the proposed arrayed-EKF and arrayed-UKF algo-
rithms with other algorithms (the subspace tracking [12] and an arrayed-PF
algorithm based on [40] using 100 particles).
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Fig. 9. RMSE of the estimated source azimuth angles versus number of spatiotemporal snapshots using the arrayed-UKF approach with the extended manifold
vector hi [n] = Si [n] ⊗ wi under different SNR levels (1000 iterations).

the results of both Figures 7 and 9, it can be concluded
that the arrayed-UKF algorithm offers significant tracking
accuracy over the SNR range, which indicates its robustness
to noise.

B. Flexible Array Geometry

For the flexible antenna array, the initial geometry is
assumed to be also given by Figure 4 but then the geometry
will change randomly and a representative trajectory of the
9 antennas relative to the array reference point is shown
in Figure 10. The fifth antenna array element is assumed to

be the array reference6 point. For this trajectory, the angular
velocity for each flexible array element is assumed to be ωj =
0.01(deg /T ), ∀j. The angular velocities of the sources are
shown in Figure 11.

Figure 12 shows another example of DOA trajectory track-
ing of four moving sources using the proposed arrayed-EKF
and arrayed-UKF approaches with a flexible array geometry
for SNR = 10 dB. The tracking results of “Source 1” between
the 3700-th snapshot and the 3800-th snapshot are zoomed
in. It can be observed that the DOA tracking works well
with a flexible array. The estimated array locations for
n = 3000 and 5000 by the two algorithms are illustrated
in Figures 13 and 14, respectively. Furthermore, the trajecto-
ries of the flexible array locations and the trajectories of the
estimated array locations using the arrayed-UKF algorithm are
shown in Figure 15. It is clear that the array geometry changes
dramatically with time and its instantaneous array locations are
successfully estimated by the proposed approaches.

Finally, for the flexible array case, 500 Monte-Carlo sim-
ulations have been carried out under the same simulation
environment as used in Figure 12. The two proposed algo-
rithms are also compared with the “arrayed-PF” approach
(using 150 particles) for the flexible array case under the same
simulation environment. Note that the “subspace tracking”
algorithm [12] examined in Figure 8 is not able to work

6The array reference point also moves but this motion is not shown (only
the relative motion with respect to this reference point is shown).

in the case of flexible arrays. The results are shown in
Figures 16 and 17 where the RMSE of the estimated array
locations (Figure 16) and azimuth angles (Figure 17) are plot-
ted as a function of the SNR where in each simulation the error
over the DOA trajectory of 3000 snapshots is averaged for
each moving source. These figures indicate that the proposed
arrayed-UKF algorithm with the extended manifold vector
hi [n] = Si [n]⊗wi has superior tracking accuracy in both the
estimated array locations and the estimated azimuth angles.

Finally, it can be seen from Figures 6 and 12 that the
proposed algorithms do not suffer from the data association
problem when the source trajectories cross each other. This
is because of the use of the spatiotemporal state space model
which provides a one-to-one mapping between the sources and
their manifold vectors.

VI. CONCLUSION

In this paper, a theoretical framework is presented for track-
ing far-field sources in an non-stationary environment using
both rigid and flexible antenna array geometries. The proposed
multi-source tracking framework is based on the integration of
a spatiotemporal state-space modelling, the extended manifold
concept and EKF/UKF theoretical iterative tools, for both
rigid and flexible array geometries. The performance of the
proposed approaches was examined using computer simula-
tion studies under various noise levels and compared with a
subspace tracking and a particle filter algorithms. The results
indicate that the arrayed-UKF algorithm has better tracking
performance than the other algorithms for both rigid and
flexible array geometries, while it shows robustness to noisy
environments.

For further extension of the current work, antenna arrays
may be deployed at each transmitter of Figure 1 (i.e. MIMO).
In such system, the manifold vector Si [n] in Equ 18 can be
replaced by S

∗
i [n] ⊗ Si [n], which is known as “virtual array

manifold”, where Si [n] denotes the manifold vector of the
transmitter. In this case, the tracking performance could be
further improved.
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Fig. 10. Flexible array geometry: a representative trajectory of the flex-
ible array locations. The instantaneous array locations are plotted every
100 snapshots.

Fig. 11. Flexible array case: the azimuthal velocity trajectories of four moving
sources.

Fig. 12. Flexible array geometry: True (solid red lines) and estimated (dashed lines) trajectories of the moving sources using the proposed arrayed-EKF
(green lines) and arrayed-UKF approaches (blue lines).

Fig. 13. Array geometry at n = 3000 showing the initial array loca-
tions (circle), the true array locations (square) and the estimated array locations
using the arrayed-UKF (diamond) and the arrayed-EKF (cross).

Fig. 14. Array geometry at n = 5000 showing the initial array locations
(circle), the true array locations (square) and the estimated array locations by
the arrayed-UKF (diamond) and the arrayed-EKF (cross).
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Fig. 15. Trajectories of the flexible array locations over 5000 snapshots. The instantaneous array locations are plotted every 100 snapshots.

Fig. 16. RMSE of the estimated array locations averaged over 3000 spatiotemporal snapshot evaluations using the arrayed-EKF approach and the arrayed-UKF
approach for the three cases of Equ 18, and the “arrayed-PF” approach, as a function of SNR (500 iterations).

Fig. 17. RMSE of the estimated source azimuth angles with the flexible array averaged over 3000 spatiotemporal snapshot evaluations using the arrayed-EKF
approach and the arrayed-UKF approach for the three cases of Equ 18, and the “arrayed-PF” approach, as a function of SNR (500 iterations).
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