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Abstract— The channel capacity of noncoherent reception of
multi-level one-sided amplitude-shift keying (ASK), which is
an asymmetric constellation, in Rayleigh fading with receive
diversity and energy detection is considered. The asymmetries
result in capacity achieving input probability distributions, that
is, a priori probability distributions, that deviate from uniformity.
An analytical expression for the mutual information in terms
of a single integral is derived, and from it the set of equations,
which can be solved to obtain the optimum or capacity achieving
input probabilities, is obtained. High and low signal-to-noise ratio
(SNR) approximations of the optimum input probabilities and
the capacity are derived next. Furthermore, a logarithmic upper
bound on the mutual information is obtained. Numerical results
confirm that the uniform distribution of input probabilities is
not capacity achieving. For example, with average SNR per
symbol per branch of 6 dB, the relative deviation of the mutual
information (with uniform input distribution) from the capacity is
nearly 20% for 4-level ASK with one transmit diversity branch
and two receive diversity branches. Furthermore, the derived
high and low SNR approximations to the capacity are shown to
be reasonably accurate.

Index Terms— Amplitude-shift keying (ASK), asymmetric con-
stellation, channel capacity, energy detection, input probabil-
ity, mutual information, noncoherent, Rayleigh fading, receive
diversity.

I. INTRODUCTION

RECENT interest in noncoherent communication has
focused on its application to the internet of things

(IoT) [1] and future wireless communication systems [2]. The
interest is due to its potential for low cost, low power, and low
latency systems that are straightforward to implement [1]–[5].
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It is particularly useful in IoT applications when integrated
energy detection and low complexity receivers are essen-
tial [6]. In addition, more recently, there has been an upsurge
in interest related to massive multiple-input multiple-output
(MIMO) noncoherent communication as it is considered a
potentially useful approach when there is fast fading [2], [7].

Noncoherent systems do not make use of channel state
information (CSI) at the receiver and there are two distinct
approaches in dealing with this issue. The first approach
assumes that there is correlation between adjacent received
symbols so that the phase and magnitude differences between
symbols is known. This has led to differential detection
[8], [9] and maximum likelihood sequence estimation (MLSE)
techniques [10]. The advantage of this approach over coherent
systems is that it provides a reduction in training overhead
without significant performance loss in capacity and is one
reason it is considered an option for future wireless commu-
nication in some scenarios [2], [3], [7].

The second approach in noncoherent systems is to use
straightforward energy detection with the result that all knowl-
edge of phase is lost between symbols [11]. It has also
been referred to as “one-shot” noncoherent system where
the receiver decodes information at the end of each symbol
time [12]. To perform energy detection, envelope detection is
often utilized and this can significantly reduce the complexity
of the receiver architecture. This approach is particularly
suitable for IoT systems that employ energy harvesting where
an integrated energy harvester and receiver can be developed
based around an envelope detector. An example is simultane-
ous wireless information and power transfer (SWIPT), where
energy harvesters and information decoders can be integrated
together to achieve a better rate-energy tradeoff than would be
achieved with a coherent receiver [13], [14].

The capacity of noncoherent channels has been studied.
For low signal-to-noise ratio (SNR) noncoherent channels it
has been shown that the asymptotic minimum bit energy per
channel use is the same as that for coherent systems [15].
Furthermore, results for the capacity of block fading nonco-
herent systems have been reported. It has been found that
gains in capacity are not possible if the number of antennas
is greater than the coherence time of the channels [16]. Under
this condition, it has also been shown that capacity is linearly
proportional to the product of the number of receive antennas
and SNR in low SNR regimes, and noncoherent systems can
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have near coherent performance [17]. Various other important
results for capacity with channel memory have also been
developed [18].

Few results for capacity are available for noncoherent sys-
tems when energy detection is utilized and block fading is not
assumed [12]. One reason for this is that without any CSI,
it is impossible to separate out the MIMO channels [19]–[21].
Therefore, previous work has focused on energy detection
MIMO when partial channel knowledge is available [22], for
which fundamental limits on system performance including
capacity and diversity have been obtained [23], [24]. These
reveal that capacity and diversity order are approximately
halved compared to coherent MIMO systems. For single-input
multiple-output (SIMO) systems using energy detection with-
out CSI, various results including scaling laws are available
[12], [25]. It has been shown that for channel magnitude based
energy detection SIMO systems, the diversity performance is
the same as that for full coherent systems [26].

Noncoherent systems with energy detection (one-shot non-
coherent detection) lead to the use of asymmetric constella-
tions such as one-sided amplitude-shift keying (ASK) since
phase information is not available. Multi-level one-sided ASK
can be conveniently applied to noncoherent SIMO systems
and it has been shown that minimization of symbol error
probability (SEP) in SIMO Rayleigh fading channels can
be performed by encoding the ASK amplitudes with a near
geometric progression [11]. Furthermore, earlier work on non-
coherent detectors considering energy detection with single-
input single-output [27]–[30] and SIMO [11] in additive white
Gaussian noise (AWGN) channels [27], [28], lognormal multi-
path fading channels [29], and Rayleigh channels with receive
diversity [11] are also available. The technique for obtaining
the optimal constellation signal amplitude levels has also been
considered in [11], [28], [29]. Results for frequency-shift
keying (FSK) are also available [31], where continuous phase
FSK has been utilized and comparisons between coherent
and noncoherent detection in AWGN are given. Extensions to
MIMO are also possible but they cannot provide multiplexing
gain due to the lack of phase information [21].

In this paper, we consider one-shot noncoherent recep-
tion of multi-level one-sided ASK, which is an asymmetric
constellation, in Rayleigh fading with receive diversity and
energy detection. The asymmetries result in channel capacity
achieving input probability distributions, that is, a priori proba-
bility distributions, that deviate from uniformity. An analytical
expression for the mutual information in terms of a single
integral is derived, and from it the set of equations, which can
be solved to obtain the optimum or capacity achieving input
probabilities, is obtained. High and low SNR approximations
of the optimum input probabilities and the capacity are derived
next. Although not supported by a rigorous mathematical
analysis, the quality of the approximations are validated by
means of numerical examples. Furthermore, a logarithmic
upper bound on the mutual information is obtained. Numerical
results showing the variation of the input probabilities and
the capacity with respect to the system parameters and the
accuracy of the approximations are presented. For example,
with average SNR per symbol per branch of 6 dB, the relative

deviation of the mutual information (with uniform input dis-
tribution) from the capacity is nearly 20% for 4-level ASK
with one transmit diversity branch and two receive diversity
branches.

The paper is organized as follows. In Section II, an ana-
lytical expression for the mutual information in terms of a
single integral is derived and the set of equations whose
solution gives the capacity achieving input probabilities is
obtained. High and low SNR approximations of the capacity
achieving input probabilities and the capacity are derived
in Sections III and IV, respectively. Section V presents a
logarithmic upper bound on the mutual information. Numerical
results are presented in Section VI. Section VII gives some
concluding remarks.

II. MUTUAL INFORMATION AND CHANNEL CAPACITY

Consider a digital communication system in flat Rayleigh
fading with N receive diversity branches and noncoherent
reception. The modulation scheme used is multi-level one-
sided ASK with L levels, and symbol-by-symbol detection is
performed. The N×1 complex baseband sampled signal vector
received at the N diversity branches in a symbol interval is
expressed as [11]

r = hs + n, (1)

where s is the information-bearing ASK symbol belonging to
the L-ary constellation S, h the random complex fading gain
vector, and n the AWGN vector, such that

S =
{√

E1, . . . ,
√

EL

}
, (2a)

E1 ≥ 0, Ei−1 < Ei, i = 2, . . . , L, (2b)

s ∈ S, h ∼ CN (
0N , σ2

hIN

)
, n ∼ CN (

0N , σ2
nIN

)
, (2c)

with 0N denoting the N × 1 vector of zeros and IN the
N × N identity matrix. Thus h, which is independent of n,
is a zero-mean complex circular Gaussian random vector with
covariance matrix σ2

hIN , implying independent and identically
distributed (i.i.d.) Rayleigh fading, while n is a zero-mean
complex circular Gaussian random vector with covariance
matrix σ2

nIN . Due to noncoherent reception, the CSI h is not
known at the receiver.

The conditional probability density function (p.d.f.) of r,
conditioned on s, is given by

f(r|s) =
exp

{
− rHr

(|s|2σ2
h + σ2

n)

}
πN (|s|2σ2

h + σ2
n)N

, (3)

where (·)H denotes the Hermitian (conjugate transpose) opera-
tor. The energy detector makes its decision on the basis of rHr.
Note that in the absence of CSI, rHr is a sufficient statistic
for the detection of s. Let si denote the ith symbol, given by

si =
√

Ei, i = 1, . . . , L. (4)

If p(si) = pi denotes the a priori probability of symbol si

such that
L∑

i=1

pi = 1, (5)
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then the mutual information I(s; r) between the transmit-
ted ASK symbol s and the received signal vector r is
expressed as

I(s; r) = −
∫ (∑

s∈S
p(s)f(r|s)

)
log2

(∑
s′∈S

p(s′)f(r|s′)
)

dr

− N
∑
s∈S

p(s) log2

(
πe
(|s|2σ2

h + σ2
n

))
,

that is

I(s; r) = −
∫ ( L∑

i=1

pif(r|si)

)
log2

⎛
⎝ L∑

j=1

pjf(r|sj)

⎞
⎠ dr

− N
L∑

i=1

pi log2

(
πe
(
Eiσ

2
h + σ2

n

))
. (6)

Note that the term N
∑L

i=1 pi log2

(
πe
(
Eiσ

2
h + σ2

n

))
in (6) is

the conditional entropy of r|s. The channel capacity is the
maximum of the mutual information between the transmitted
ASK symbol s and the received signal vector r over the
input probability distribution, that is, the a priori probability
distribution, {p1, . . . , pL}.

Substituting (3) in (6) we get

I(s; r)

= − N log2e − N

L∑
i=1

pi log2

(
π
(
Eiσ

2
h + σ2

n

))

−
∫ L∑

i=1

pi exp
{
− rHr

(Eiσ2
h + σ2

n)

}
πN (Eiσ2

h + σ2
n)N

× log2

⎛
⎜⎜⎝

L∑
j=1

pj exp
{
− rHr

(Ejσ2
h + σ2

n)

}
πN (Ejσ2

h + σ2
n)N

⎞
⎟⎟⎠ dr

= − N log2e −
L∑

i=1

pi log2

(
πN
(
Eiσ

2
h + σ2

n

)N)

×
∫ exp

{
− rHr

(Eiσ2
h + σ2

n)

}
πN (Eiσ2

h + σ2
n)N

dr

−
L∑

i=1

pi

∫ exp
{
− rHr

(Eiσ2
h + σ2

n)

}
πN (Eiσ2

h + σ2
n)N

× log2

⎛
⎜⎜⎝

L∑
j=1

pj exp
{
− rHr

(Ejσ2
h + σ2

n)

}
πN (Ejσ2

h + σ2
n)N

⎞
⎟⎟⎠ dr

= − N log2e

−
L∑

i=1

pi

∫ exp
{
− rHr

(Eiσ2
h + σ2

n)

}
πN (Eiσ2

h + σ2
n)N

×

⎡
⎢⎢⎢⎢⎢⎣

log2

⎛
⎜⎜⎝

L∑
j=1

pj exp
{
− rHr

(Ejσ2
h + σ2

n)

}
πN (Ejσ2

h + σ2
n)N

⎞
⎟⎟⎠

+ log2

(
πN
(
Eiσ

2
h + σ2

n

)N)

⎤
⎥⎥⎥⎥⎥⎦ dr

= − N log2e

−
L∑

i=1

pi

∫ exp
{
− rHr

(Eiσ2
h + σ2

n)

}
πN (Eiσ2

h + σ2
n)N

× log2

⎛
⎜⎜⎜⎜⎝

L∑
j=1

pj exp
{
− rHr

(Ejσ2
h + σ2

n)

}
[(

Ejσ
2
h + σ2

n

)N
(Eiσ2

h + σ2
n)N

]
⎞
⎟⎟⎟⎟⎠ dr. (7)

Putting r =
(
Eiσ

2
h + σ2

n

)1/2
v for each i in (7), we obtain

I(s; r)

= − N log2e

−
L∑

i=1

pi

∫
exp

{−vHv
}

πN

× log2

⎛
⎜⎜⎜⎜⎝

L∑
j=1

pj exp

{
−
(
Eiσ

2
h + σ2

n

)
(Ejσ2

h + σ2
n)

vHv

}
[(

Ejσ
2
h + σ2

n

)N
(Eiσ2

h + σ2
n)N

]
⎞
⎟⎟⎟⎟⎠dv. (8)

Viewing v = [V1, · · · , VN ]T , where (·)T denotes the transpose
operator, as a CN (0N , IN ) random vector, (8) can be rewritten
as

I(s; r)

= − N log2e

−
L∑

i=1

piEv

⎡
⎢⎢⎢⎢⎣log2

⎛
⎜⎜⎜⎜⎝

L∑
j=1

pj exp

{
−
(
Eiσ

2
h + σ2

n

)
(Ejσ2

h + σ2
n)

vHv

}
[(

Ejσ
2
h + σ2

n

)N
(Eiσ2

h + σ2
n)N

]
⎞
⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎦,

(9)

where Ev[·] denotes expectation over the statistics of v.
Denote the average SNR per branch of the ith symbol as

Γi, which is given by

Γi =
Eiσ

2
h

σ2
n

, i = 1, . . . , L. (10)

From (2b), we get

Γ1 ≥ 0, Γi−1 < Γi, i = 2, . . . , L. (11)

Put Xi = |Vi|2, i = 1, . . . , N , where X1, . . . , XN are N
i.i.d. exponentially distributed random variables (r.v.s), each
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with mean 1. The mutual information expression (9) can be
simplified in terms of Γ1, . . . , ΓL as

I(s; r) = − N log2e

−
L∑

i=1

piEX1,...,XN⎡
⎢⎢⎢⎢⎢⎣log2

⎛
⎜⎜⎜⎜⎜⎝

L∑
j=1

pj exp

{
− (Γi + 1)

(Γj + 1)

N∑
k=1

Xk

}
[
(Γj + 1)N

(Γi + 1)N

]
⎞
⎟⎟⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎦. (12)

This can be rewritten in the form of an expectation over the
statistics of r.v. X , which is the sum of X1, . . . , XN , as

I(s; r)
= − N log2e

−
L∑

i=1

piEX

⎡
⎢⎢⎣log2

⎛
⎜⎜⎝

L∑
j=1

pj exp
{
− (Γi + 1)

(Γj + 1)
X

}
[
(Γj + 1)N

(Γi + 1)N

]
⎞
⎟⎟⎠
⎤
⎥⎥⎦. (13)

It is clear that X has a gamma distribution with mean N and
shape parameter N , implying that (13) can be expressed as

I(s; r) = − N

ln 2

−
L∑

i=1

pi

∫ ∞

0

log2

⎛
⎜⎜⎝

L∑
j=1

pj exp
{
− (Γi + 1)

(Γj + 1)
x

}
[
(Γj + 1)N

(Γi + 1)N

]
⎞
⎟⎟⎠

×xN−1 exp{−x}
(N − 1)!

dx, (14)

which is an analytical expression for the mutual information
in terms of a single integral. The expression (14) can be
rewritten as

I(s; r) = − N

ln 2

− 1
ln 2

L∑
i=1

pi

∫ ∞

0

ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠

×xN−1 exp{−x}
(N − 1)!

dx, (15)

where the quantity Rj,i is defined as

Rj,i
�=

(Γi + 1)
(Γj + 1)

, i = 1, . . . , L, j = 1, . . . , L. (16)

It is clear from (16) and (11) that

Rj,j = 1, j = 1, . . . , L,

Rj,j+1 > 1, j = 1, . . . , L − 1,

Rj,i = R−1
i,j > 1, j = 1, . . . , i − 1, i = 2, . . . , L. (17)

To obtain the capacity, we need to maximize the mutual
information I(s; r) over the input probability distribution

{p1, . . . , pL} subject to the constraints

L∑
i=1

pi = 1, 0 ≤ pi ≤ 1, i = 1, . . . , L. (18)

We construct the Lagrangian function L as

L =
(

ln 2
N

)
I(s; r) − λ

(
L∑

i=1

pi − 1

)
+

L∑
i=1

vipi

= − 1 − 1
N

L∑
i=1

pi

∫ ∞

0

ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠

×xN−1 exp{−x}
(N − 1)!

dx

−
(

L∑
i=1

pi(λ − vi) − λ

)
, (19)

where λ is a Lagrangian multiplier and v1, . . . , vL are
nonnegative slack variables which are chosen such that
p1, . . . , pL ≥ 0 and v�p� = 0 for � = 1, . . . , L. We obtain
the capacity achieving p1, . . . , pL from (19) by solving the set
of equations(

ln 2
N

)
∂I(s; r)

∂p�
= λ − v�, � = 1, . . . , L, (20a)

L∑
i=1

pi = 1, (20b)

v�p� = 0, � = 1, . . . , L, (20c)

where v1, . . . , vL ≥ 0 and p1, . . . , pL ≥ 0.
By following the derivation presented in Appendix A, we

obtain from (20) the set of equations

− 1
N

∫ ∞

0

ln

⎛
⎝ L∑

j=1

pjR
N
j,� exp{−xRj,�}

⎞
⎠xN−1 exp{−x}

(N − 1)!
dx

= λ − v� +
1
N

, � = 1, . . . , L, (21a)

L∑
i=1

pi = 1, (21b)

v�p� = 0, � = 1, . . . , L, (21c)

where v1, . . . , vL ≥ 0 and p1, . . . , pL ≥ 0.
By solving the set of equations given by (21), we obtain

the optimum or capacity achieving p1, . . . , pL, λ, v1, . . . , vL,
which we denote as p1,opt, . . . , pL,opt, λopt, v1,opt, . . . , vL,opt,
respectively. Note that (21) can be conveniently solved using a
mathematical package such as MATLAB, without any restric-
tion on the Rj,i. By applying (21) to (15), we obtain the
capacity C (in bits per channel use) as

C =
(Nλopt + 1 − N)

ln 2
. (22)
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III. APPROXIMATION FOR HIGH SNR

Consider the case of high SNR with

(Γj+1 + 1)
(Γj + 1)

= Rj,j+1 = R−1
j+1,j � 1,

j = 1, . . . , L − 1. (23)

The logarithm in (15) can be expressed as

ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠

= ln

⎛
⎝ L∑

j=1

exp{ln pj + N ln Rj,i − xRj,i}
⎞
⎠

= ln pi − x

+ ln

⎛
⎜⎜⎜⎝1 +

L∑
j=1
j �=i

exp
{

ln
pj

pi
+ N ln Rj,i − x(Rj,i − 1)

}
⎞
⎟⎟⎟⎠

≈ ln pi − x

+
L∑

j=1
j �=i

exp
{

ln
pj

pi
+ N ln Rj,i − x(Rj,i − 1)

}
(24)

under the necessary condition

ln
pj

pi
+ N ln Rj,i − x(Rj,i − 1) < 0,

j 	= i, j, i = 1, . . . , L. (25)

The condition (25) implies

x >

(
N ln Rj,i + ln

pj

pi

)
(Rj,i − 1)

,

Rj,i > 1, j = 1, . . . , i − 1, i = 2, . . . , L, (26a)

x <

(
N ln Ri,j + ln

pi

pj

)
(
1 − R−1

i,j

) ,

Ri,j > 1, j = i + 1, . . . , L, i = 1, . . . , L − 1. (26b)

Note that

min
j

j<i

Rj,i = Ri−1,i, i = 2, . . . , L, (27a)

min
j

j>i

Ri,j = Ri,i+1, i = 1, . . . , L − 1. (27b)

Retaining only the significant terms of the summation over j
in (24) under the conditions (23), (25), and (27), we get

ln

⎛
⎝ L∑

j=1

pjR
N
j,1 exp{−xRj,1}

⎞
⎠

≈ ln p1 − x

+ exp
{
ln

p2

p1
− N ln R1,2 + x

(
1 − R−1

1,2

)}
,

i = 1, (28a)

ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠

≈ ln pi − x

+ exp
{
ln

pi−1

pi
+ N ln Ri−1,i − x(Ri−1,i − 1)

}

+ exp
{
ln

pi+1

pi
− N ln Ri,i+1 + x

(
1 − R−1

i,i+1

)}
,

i = 2, . . . , L − 1, (28b)

ln

⎛
⎝ L∑

j=1

pjR
N
j,L exp{−xRj,L}

⎞
⎠

≈ ln pL − x

+ exp
{
ln

pL−1

pL
+ N ln RL−1,L − x(RL−1,L − 1)

}
,

i = L. (28c)

Taking the limit as Rj,j+1 goes to infinity for
j = 1, . . . , L − 1, we obtain the limiting mutual information
under the infinite SNR condition

(Γj+1 + 1)
(Γj + 1)

= Rj,j+1 = R−1
j+1,j → ∞,

j = 1, . . . , L − 1. (29)

Applying (29) to (28) we get the approximation

ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠ ≈ ln pi − x, i = 1, . . . , L;

substituting this in (15) and noting that∫ ∞

0

xN exp{−x}
(N − 1)!

dx = N,

we obtain the limiting mutual information under the infinite
SNR condition (29) as

ISNR→∞(s; r) = − N

ln 2
− 1

ln 2

L∑
i=1

pi ln pi +
N

ln 2

L∑
i=1

pi,

that is,

ISNR→∞(s; r) = −
L∑

i=1

pi log2pi, (30)

which is maximized by the uniform input probability distrib-
ution given by

pi =
1
L

, i = 1, . . . , L. (31)

Note that under the infinite SNR condition, the mutual infor-
mation is the same as the source entropy, since the signal is
noise free at the output. Substituting (31) in (30), we find that
the limiting capacity (in bits per channel use) under the infinite
SNR condition (29) is

CSNR→∞ = log2L. (32)

It is clear from the infinite SNR behavior of the mutual
information that the capacity achieving p1, . . . , pL under the
high SNR condition (23) will not deviate largely from the
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uniform distribution. As a result, we can rewrite (26) approx-
imately as

x >
N ln Rj,i

(Rj,i − 1)
,

Rj,i > 1, j = 1, . . . , i − 1, i = 2, . . . , L, (33a)

x <
N ln Ri,j(
1 − R−1

i,j

) ,
Ri,j > 1, j = i + 1, . . . , L, i = 1, . . . , L − 1. (33b)

Application of (27) to (33) gives

x >
N ln Ri−1,i

(Ri−1,i − 1)
, i = 2, . . . , L, (34a)

x <
N ln Ri,i+1(
1 − R−1

i,i+1

) , i = 1, . . . , L − 1. (34b)

Let the quantity βi be given by

βi =
N ln Ri,i+1

(Ri,i+1 − 1)
, i = 1, . . . , L − 1. (35)

The conditions (34a) and (34b) can be expressed in terms of
βi as

x > βi−1, i = 2, . . . , L, (36a)

x < Ri,i+1βi, i = 1, . . . , L − 1. (36b)

Substituting (28) in (15) and applying (36), the mutual infor-
mation under the high SNR condition (23) approximates as

I(s; r)

≈ − 1
ln 2

L∑
i=1

pi ln pi

− 1
ln 2

L∑
i=2

pi−1

∫ ∞

βi−1

RN
i−1,ix

N−1 exp{−xRi−1,i}
(N − 1)!

dx

− 1
ln 2

L−1∑
i=1

pi+1

∫ Ri,i+1βi

0

R−N
i,i+1x

N−1 exp
{−xR−1

i,i+1

}
(N − 1)!

dx

= − 1
ln 2

L∑
i=1

pi ln pi

− 1
ln 2

L∑
i=2

pi−1

∫ ∞

Ri−1,iβi−1

xN−1 exp{−x}
(N − 1)!

dx

− 1
ln 2

L−1∑
i=1

pi+1

∫ βi

0

xN−1 exp{−x}
(N − 1)!

dx. (37)

Now ∫ ∞

Ri−1,iβi−1

xN−1 exp{−x}
(N − 1)!

dx

= exp{−Ri−1,iβi−1}
N−1∑
k=0

(Ri−1,iβi−1)k

k!
,

Ri−1,iβi−1 � 1, i = 2, . . . , L,∫ βi

0

xN−1 exp{−x}
(N − 1)!

dx

= 1 − exp{−βi}
N−1∑
k=0

βk
i

k!

= 1 − exp{−βi}
[
exp{βi} −

∞∑
k=N

βk
i

k!

]

= exp{−βi}
∞∑

k=N

βk
i

k!
,

βi � 1, i = 1, . . . , L − 1,

which can be approximated using (35) as∫ ∞

Ri−1,iβi−1

xN−1 exp{−x}
(N − 1)!

dx

≈ exp{−Ri−1,iβi−1} (Ri−1,iβi−1)N−1

(N − 1)!

=
(N ln Ri−1,i)N−1

(N − 1)!
(
1 − R−1

i−1,i

)N−1
R

N

(1−R
−1
i−1,i)

i−1,i

,

i = 2, . . . , L, (38a)∫ βi

0

xN−1 exp{−x}
(N − 1)!

dx

≈ βN
i

N !

=
(N ln Ri,i+1)N

N !(Ri,i+1 − 1)N
, i = 1, . . . , L − 1. (38b)

Substitution of (38) in (37) results in I(s; r) ≈ IhiSNR(s; r),
where

IhiSNR(s; r)

= − 1
ln 2

L∑
i=1

pi ln pi

− 1
ln 2

L∑
i=2

pi−1
(N ln Ri−1,i)N−1

(N − 1)!
(
1 − R−1

i−1,i

)N−1
R

N

(1−R
−1
i−1,i)

i−1,i

− 1
ln 2

L−1∑
i=1

pi+1
(N ln Ri,i+1)N

N !(Ri,i+1 − 1)N
. (39)

By following the derivation presented in Appendix B,
we obtain the optimum or high SNR capacity achieving
p1, . . . , pL, which are denoted as

p1,hiSNR,opt, . . . , pL,hiSNR,opt,

respectively, and are given in closed form by

p�,hiSNR,opt =
exp{−ν�}

L∑
k=1

exp{−νk}
, � = 1, . . . , L, (40a)

where

ν1 =
(N ln R1,2)N−1

(N − 1)!
(
1 − R−1

1,2

)N−1
R

N

(1−R
−1
1,2)

1,2

, (40b)
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ν� =
(N ln R�,�+1)N−1

(N − 1)!
(
1 − R−1

�,�+1

)N−1

R

N

(1−R
−1
�,�+1)

�,�+1

+
(N ln R�−1,�)N

N !(R�−1,� − 1)N
, � = 2, . . . , L − 1, (40c)

νL =
(N ln RL−1,L)N

N !(RL−1,L − 1)N
. (40d)

Substituting (40) in (39), the capacity (in bits per channel
use) under the high SNR condition (23) is obtained as

ChiSNR = log2

(
L∑

k=1

exp{−νk}
)

, (41)

where ν1, . . . , νL are given by (40b), (40c), and (40d).
Note that under the infinite SNR condition (29),

ν1, . . . , νL → 0, and we obtain from (41)

ChiSNR → CSNR→∞ = log2L,

where CSNR→∞ is given by (32).

IV. APPROXIMATION FOR LOW SNR

Consider the case of low SNR with
(Γj+1 + 1)
(Γj + 1)

− 1 = Rj,j+1 − 1 =
(
R−1

j+1,j − 1
)� 1,

j = 1, . . . , L − 1, (42)

which implies
|Rj,i − 1| � 1 for j 	= i. (43)

Under the low SNR condition (42) (when Rj,i is close to 1 for
j 	= i), the logarithm term in (15) with the constant −N/ ln 2
absorbed inside the logarithm, the argument of which is a
convex combination of

RN
1,i exp{−x(R1,i − 1)}, . . . , RN

L,i exp{−x(RL,i − 1)},
can be expressed as

− ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−x(Rj,i − 1)}

⎞
⎠

≈ −K(x)
L∑

j=1

pj ln
(
RN

j,i exp{−x(Rj,i − 1)}) , (44)

where K(x) is a scale factor which depends on x. The range of
integration over x in (15) is from 0 to ∞, and it is numerically
observed that applying (44) to (15) and replacing K(x) by
1/2 in the integrand gives a good approximation. As a result,
application of (44) to (15) and replacement of K(x) by 1/2
results in I(s; r) ≈ IloSNR(s; r), where

IloSNR(s; r)

= − N

2 ln 2

− 1
2 ln 2

L∑
i=1

pi

L∑
j=1

pj

∫ ∞

0

ln
(
RN

j,i exp{−xRj,i}
)

×xN−1 exp{−x}
(N − 1)!

dx. (45)

The integral in (45) simplifies to∫ ∞

0

ln
(
RN

j,i exp{−xRj,i}
) xN−1 exp{−x}

(N − 1)!
dx

= N ln(Ri,j)
∫ ∞

0

xN−1 exp{−x}
(N − 1)!

dx

− Rj,i

∫ ∞

0

xN exp{−x}
(N − 1)!

dx

= N ln(Rj,i) − NRj,i. (46)

Substituting (46) in (45), we get

IloSNR(s; r)

= − N

2 ln 2

+
N

2 ln 2

L∑
i=1

pi

L∑
j=1

pj [Rj,i − ln(Rj,i)]

= − N

2 ln 2

+
N

4 ln 2

L∑
i=1

L∑
j=1

pipj [Rj,i + Ri,j − ln(Rj,iRi,j)] ,

which simplifies to (since Rj,iRi,j = 1)

IloSNR(s; r) = − N

2 ln 2

+
N

4 ln 2

L∑
i=1

L∑
j=1

pipj [Rj,i + Ri,j ] ; (47)

this is a quadratic function of p1, . . . , pL. Let Ri,j denote the
element in the ith row and jth column of the L×L matrix R,
that is,

R = [Ri,j ]
L
i,j=1 , (48)

having ones as its diagonal elements, and let the L × 1
probability vector p be given by

p =

⎡
⎢⎣

p1

...
pL

⎤
⎥⎦ . (49)

Using (48) and (49), we can express (47) as

IloSNR(s; r) = − N

2 ln 2
+

N

4 ln 2
pT
[
R + RT

]
p. (50)

We conclude from (16) and (17) that Rj,i + Ri,j increases
with decrease of i or increase of j for i < j, and increases
with increase of i or decrease of j for i > j. As a
result, the maximum element of R + RT is in its Lth row
and 1st column and its 1st row and Lth column, which is
R1,L + R−1

1,L.
If we express Rj,j+1 as

Rj,j+1 = 1 + δj , 0 < δj � 1, j = 1, . . . , L − 1,

then, from (47), we get

IloSNR(s; r) =
N

4 ln 2

L∑
i=1

L∑
j=1

pipj [Rj,i + Ri,j − 2]
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=
N

2 ln 2

L∑
j=2

j−1∑
i=1

pipj

×
[

j−1∏
k=i

(1 + δk) +
j−1∏
k=i

(1 + δk)−1 − 2

]
,

which can be simplified as (using second order approximation
of
∏j−1

k=i(1 + δk)−1)

IloSNR(s; r) =
N

2 ln 2

L∑
j=2

j−1∑
i=1

pipj

(
j−1∑
k=i

δk

)2

;

from this, it can be shown that the convex combination
pT
[
R + RT

]
p of the elements of R + RT is maximized by

choosing

p1 = pL =
1
2
, p� = 0, � = 2, . . . , L − 1,

which implies that in the low SNR regime, we should use
binary modulation with equiprobable symbols. The low
SNR capacity achieving p1, . . . , pL, which are denoted as
p1,loSNR,opt, . . . , pL,loSNR,opt, respectively, are therefore
given by

p1,loSNR,opt = pL,loSNR,opt =
1
2
,

p�,loSNR,opt = 0, � = 2, . . . , L − 1. (51)

Substituting (51) in (50), the capacity (in bits per channel use)
under the low SNR condition (42) is obtained as

CloSNR =
N
(
R1,L + R−1

1,L − 2
)

8 ln 2
. (52)

Note that when Rj,i → 1 for j 	= i, we obtain from (52)
CloSNR → 0, as expected.

V. A LOGARITHMIC UPPER BOUND ON THE MUTUAL

INFORMATION

The integral in (15) can be expressed as

−
∫ ∞

0

ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠ xN−1 exp{−x}

(N − 1)!
dx

= −EX

⎡
⎣ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−XRj,i}

⎞
⎠
⎤
⎦ , (53)

where X is a gamma distributed r.v. with mean N and shape
parameter N . Since − ln

(∑L
j=1 pjR

N
j,i exp{−xRj,i}

)
is a

concave function of x, we apply Jensen’s inequality to (53)
over the p.d.f. of X , noting that E[X ] = N , and obtain

−
∫ ∞

0

ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠ xN−1 exp{−x}

(N − 1)!
dx

≤ − ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−E[X ]Rj,i}

⎞
⎠

= − ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−NRj,i}

⎞
⎠ . (54)

By applying (54) to (15) we obtain I(s; r) ≤ ILUB(s; r),
where ILUB(s; r) is a logarithmic upper bound on the mutual
information and is given by

ILUB(s; r)

= − N

ln 2

− 1
ln 2

L∑
i=1

pi ln

⎛
⎝ L∑

j=1

pjR
N
j,i exp{−NRj,i}

⎞
⎠ . (55)

If p1,opt, . . . , pL,opt denote the optimum or capacity achieving
input probabilities, then a logarithmic upper bound CLUB on
the capacity is obtained by putting pi = pi,opt for i = 1, . . . , L
in (55), resulting in

CLUB

= − N

ln 2

− 1
ln 2

L∑
i=1

pi,opt ln

⎛
⎝ L∑

j=1

pj,optR
N
j,i exp{−NRj,i}

⎞
⎠ . (56)

It can be easily shown that for y > 0, the function
yN exp{−Ny}, where N is a natural number, monotonically
increases for 0 < y < 1, attains a maximum of exp{−N} at
y = 1, and monotonically decreases for y > 1. As a result,
in (55), we have

max
i,j

RN
j,i exp{−NRj,i} = exp{−N},

and the maximum occurs when j = i. Therefore, in the case
of the high SNR condition (23), we get

RN
j,i exp{−NRj,i} � 1 for j 	= i. (57)

Furthermore, we have

lim
Rj,i→∞

RN
j,i exp{−NRj,i} = 0 for j 	= i. (58)

Under the infinite SNR condition (29), we obtain from
(55) and (58)

lim
Rj,j+1→∞, j=1,...,L−1

ILUB(s; r)

= − N

ln 2
− 1

ln 2

L∑
i=1

pi ln(pi exp{−N})

= − N

ln 2
+

N

ln 2

L∑
i=1

pi − 1
ln 2

L∑
i=1

pi ln pi

= −
L∑

i=1

pi log2pi. (59)

Denoting the limiting logarithmic upper bound on the mutual
information under the infinite SNR condition (29), which is
given by (59), as ILUB,SNR→∞(s; r), we get

ILUB,SNR→∞(s; r) = −
L∑

i=1

pi log2pi, (60)

which is the same as the limiting mutual information given
by (30). This is maximized by the uniform input probability
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distribution given by p1 = · · · = pL = 1/L, as in (31).
Substituting (31) in (60), we find that the limiting capacity
upper bound (in bits per channel use) under the infinite SNR
condition (29) is CLUB,SNR→∞ = log2L, which is the same
as the limiting capacity given by (32).

Note further that when Rj,i → 1 for j 	= i, we obtain from
(56) CLUB → 0.

Computation of the bound (55) is easy since it does
not require evaluation of integrals. Furthermore, this bound
approximates IhiSNR(s; r) given by (39) under the high SNR
condition (23), and approximates IloSNR(s; r) given by (47)
under the low SNR condition (42).

VI. NUMERICAL RESULTS

Denote the average SNR per symbol per branch as Γav,
which is given by

Γav =
1
L

L∑
i=1

Γi. (61)

Note that Γav is the arithmetic mean of Γ1, . . . , ΓL. The
average consumed signal power to noise power ratio per
symbol per branch, denoted as Γcav, is given by

Γcav =
L∑

i=1

piΓi.

If the input probability distribution is not uniform, then
Γav 	= Γcav.

We consider L-level one-sided ASK with SNR common
ratio RSNR (RSNR > 1) given by

RSNR = Ri,i+1 =
(Γi+1 + 1)
(Γi + 1)

, i = 1, . . . , L − 1,

and Γ1 = 0, which imply

Γi + 1 = Ri−1
SNR, i = 1, . . . , L. (62)

A common SNR ratio is used for noncoherent ASK just
like equally spaced constellation points are used for coherent
ASK. It has also been shown in earlier work [11] that an
approximately common SNR ratio is optimal for high SNR in
the noncoherent ASK case. Substituting (62) in (61), we obtain

L∑
i=1

Ri−1
SNR = L(Γav + 1). (63)

The SNR common ratio RSNR is obtained from the average
SNR per symbol per branch Γav by finding the real positive
solution (that is greater than 1) of the (L − 1)th degree
polynomial equation (in RSNR)

L∑
i=2

Ri−1
SNR −

[
L(Γav + 1) − 1

]
= 0.

The values of RSNR obtained for Γav = 1, 5, 10, 20, 100, that
is, 0 dB, 7 dB, 10 dB, 13 dB, 20 dB, are

1.4883, 2.4433, 3.1138, 3.9824, 7.0246, respectively,

when L = 4,

1.1917, 1.4927, 1.6673, 1.8649, 2.4108, respectively,

Fig. 1. Mutual information with uniform input distribution and capacity
versus average SNR per symbol per branch Γav for 16-level ASK (L = 16).

Fig. 2. Relative deviation of mutual information (with uniform input
distribution) from capacity versus average SNR per symbol per branch Γav

for 4-level ASK (L = 4).

when L = 8,

1.0864, 1.2103, 1.2764, 1.3471, 1.5241, respectively,

when L = 16.

Plots of the mutual information with uniform distribution
(computed from (15)) and the capacity (obtained from numeri-
cal maximization of (15) subject to the constraints (18)) versus
Γav for 16-level ASK with different values of the number of
receive diversity branches N are shown in Fig. 1. We find
from the figure that the capacity and the mutual information
with uniform input distribution increase with increase in Γav

and increase in N . Furthermore, for each N and Γav, the
capacity is higher than the mutual information with uniform
input distribution, as expected. The relative deviation of the
mutual information (with uniform input distribution) from the
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Fig. 3. Relative deviation of mutual information (with uniform input
distribution) from capacity versus average SNR per symbol per branch Γav

for 16-level ASK (L = 16).

capacity, given by

relative deviation of mutual information
(with uniform input distribution) from capacity

=
capacity−mutual informationwith uniform input distribution

capacity
,

(64)

versus Γav is plotted in Figs. 2 and 3 for L = 4 and L = 16,
respectively, with different values of N . It is observed from
the figures that the relative deviation decreases with increase
in Γav and increase in N , and increases with increase in L.
At Γav = 4 (that is, 6 dB), the relative deviations for L = 4
(Fig. 2) are 1.8%, 7%, 18.3%, and 28.8% with N = 8, N = 4,
N = 2, and N = 1, respectively, for L = 8 (plots are not
shown) they are 9.6%, 17.8%, 28.8%, and 39.8% with N = 8,
N = 4, N = 2, and N = 1, respectively, and for L = 16
(Fig. 3) they are 13.9%, 22.7%, 33.7%, and 44.7% with
N = 8, N = 4, N = 2, and N = 1, respectively. Thus there
is an advantage in using capacity achieving input probabilities
instead of a uniform input distribution for signaling, with the
advantage growing with decrease in Γav, decrease in N , and
increase in L. Plots of the capacity minus mutual information
with uniform input distribution versus N are shown in Figs. 4
and 5 for L = 4 and L = 16, respectively, with different values
of Γav. We find from the figures that there exists a value of N
for which this difference attains a maximum, and this maxi-
mizing N decreases with increase in Γav. The relative devia-
tion of the uniform distribution from the optimum or capacity
achieving probabilities p1,opt, . . . , pL,opt, given by

relative deviation of uniform distribution from optimum
probabilities

=

√√√√ L∑
�=1

(
pL,opt − 1

L

)2

√√√√ L∑
�=1

p2
L,opt

, (65)

Fig. 4. Capacity minus mutual information with uniform input distribution
versus number of receive diversity branches N for 4-level ASK (L = 4).

Fig. 5. Capacity minus mutual information with uniform input distribution
versus number of receive diversity branches N for 16-level ASK (L = 16).

versus Γav (0.4 ≤ Γav ≤ 20) is plotted in Fig. 6 for L = 8 with
different values of N . We find from the figure that the relative
deviation ranges from 86.6% to 86.7% at Γav = 0.4 (−4 dB)
over N = 1, 2, 4, 8, and from 38.7% to 81.3% at Γav = 20
(13 dB) over N = 1, 2, 4, 8. On the other hand, for L = 4
(plots are not shown), the relative deviation ranges from 70.8%
to 70.9% at Γav = 0.4 over N = 1, 2, 4, 8, and from 4.3%
to 58.7% at Γav = 20 over N = 1, 2, 4, 8, while for L = 16
(plots are not shown), the relative deviation is about 93% at
Γav = 0.4 over N = 1, 2, 4, 8, and ranges from about 72% to
about 91% at Γav = 20 over N = 1, 2, 4, 8. These indicate
that the relative deviation increases to significant amounts with
increase in L.

Plots of the capacity achieving probabilities (obtained by
numerically maximizing (15) subject to the constraints (18))
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Fig. 6. Relative deviation of uniform distribution from optimum probabilities
versus average SNR per symbol per branch Γav for 8-level ASK (L = 8).

Fig. 7. Variation of capacity achieving probabilities and their high SNR
approximations with SNR common ratio RSNR for binary ASK (L = 2)
with number of receive diversity branches N = 6 (relative approximation
error ∈ [2.4458 × 10−3%, 0.5%], average relative approximation error over
all data points = 0.11%).

and their high SNR approximations (computed from (40)) ver-
sus RSNR are shown in Fig. 7 for L = 2, N = 6 and in Fig. 8
for L = 4, N = 6. The relative approximation error in terms
of the capacity achieving probabilities p1,opt, . . . , pL,opt and
their high SNR approximations p1,hiSNR,opt, . . . , pL,hiSNR,opt

is given by

relative approximation error in probability

=

√√√√ L∑
�=1

(pL,opt − pL,hiSNR,opt)
2

√√√√ L∑
�=1

p2
L,opt

. (66)

Fig. 8. Variation of capacity achieving probabilities and their high SNR
approximations with SNR common ratio RSNR for 4-level ASK (L = 4)
with number of receive diversity branches N = 6 (relative approximation
error ∈ [0.03%, 0.36%], average relative approximation error over all data
points = 0.1%).

We find that for L = 2, N = 6 (Fig. 7), the relative
approximation error is in the range [2.4458 × 10−3%, 0.5%],
and the average relative approximation error over all data
points is 0.11%, while for L = 2, N = 2, using the same
values of RSNR as in Fig. 7 (plots are not shown), the relative
approximation error is in the range [0.01%, 0.76%] and the
average relative approximation error over all data points is
0.5%. On the other hand, for L = 4, N = 6 (Fig. 8), the
relative approximation error is in the range [0.03%, 0.36%],
and the average relative approximation error over all data
points is 0.1%, while for L = 4, N = 2, using the same
values of RSNR as in Fig. 8 (plots are not shown), the
relative approximation error is in the range [2.89%, 6.58%]
and the average relative approximation error over all data
points is 4.29%. Therefore the high SNR approximation (40)
is reasonably accurate, with the average relative approximation
error over all data points decreasing with increase in N .

Plots of the capacity (obtained from numerical maximiza-
tion of (15) subject to the constraints (18)), its high SNR
approximation (computed from (41)), its low SNR approx-
imation (computed from (52)), and its logarithmic upper
bound (computed from (56)) versus RSNR are shown in
Fig. 9 for L = 2, N = 2 and in Fig. 10 for L = 8,
N = 2. We find from the figures that the capacity increases
with increase in RSNR, and, to achieve a high capacity
close to log2L bits per channel use, such as a capacity of
0.8 log2L bits per channel use, a large RSNR is needed for
a small N . However, the value of RSNR needed reduces
with increase in N . For example, for L = 2, N = 2
(Fig. 9), an RSNR of about 12 is needed to achieve a
capacity of 0.8 bits per channel use, whereas for L = 2,
N = 6 (plots are not shown), an RSNR of only about 3.9
is needed for the same. Similarly, for L = 8, N = 2 (Fig. 10),
an RSNR of about 7.2 is needed to achieve a capacity of
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Fig. 9. Variation of capacity, its high and low SNR approximations, and
its logarithmic upper bound with SNR common ratio RSNR for binary ASK
(L = 2) with number of receive diversity branches N = 2.

Fig. 10. Variation of capacity, its high and low SNR approximations, and
its logarithmic upper bound with SNR common ratio RSNR for 8-level ASK
(L = 8) with number of receive diversity branches N = 2.

2.4 bits per channel use, whereas for L = 8, N = 6 (plots
are not shown), an RSNR of only about 2.9 is needed for the
same. We also find that the high and low SNR approximations
of the capacity are reasonably accurate. The accuracy of the
high SNR approximation increases with increase in N and
the accuracy of the low SNR approximation increases with
decrease in N .

VII. CONCLUSION

Analytical and numerical results for the capacity of non-
coherent reception of multi-level one-sided ASK, which
is an asymmetric constellation, in Rayleigh fading with
receive diversity and energy detection have been provided.

An analytical expression for the mutual information in terms of
a single integral is derived, and high and low SNR approxima-
tions of the optimum or capacity achieving input probabilities
and the capacity are provided. The approximations are found to
be reasonably accurate. Although not supported by a rigorous
mathematical analysis, the quality of the approximations is val-
idated by means of numerical examples. The numerical results
also confirm that the uniform distribution of input probabilities
is not capacity achieving. For example, with average SNR per
symbol per branch of 6 dB, the relative deviation of the mutual
information (with uniform input distribution) from the capacity
is nearly 20% for 4-level ASK with two receive diversity
branches. The relative deviation increases with increase in the
number of ASK levels; for 16-ASK with two receive diversity
branches, the relative deviation increases to over 30%. On the
other hand, the relative deviation decreases with increase in
average SNR per symbol per diversity branch and number
of receive diversity branches. These findings imply that in
the design of noncoherent energy detection systems with one-
sided ASK, optimization of the input probabilities is useful
for increasing channel capacity.

APPENDIX A
DERIVATION OF (21)

The partial derivatives of I(s; r) in (20a) are expressed
using (15) as

∂I(s; r)
∂p�

= − 1
ln 2

L∑
i=1

pi

∫ ∞

0

RN
�,i exp{−xR�,i}⎛

⎝ L∑
j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠

×
[
xN−1 exp{−x}

(N − 1)!

]
dx

− 1
ln 2

∫ ∞

0

ln

⎛
⎝ L∑

j=1

pjR
N
j,� exp{−xRj,�}

⎞
⎠

×xN−1 exp{−x}
(N − 1)!

dx,

� = 1, . . . , L. (67)

Changing the variable of integration from x to x′ = xR�,i in
each term in the summation over i in (67), we obtain∫ ∞

0

RN
�,i exp{−xR�,i}⎛

⎝ L∑
j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠

×
[
xN−1 exp{−x}

(N − 1)!

]
dx

=
∫ ∞

0

exp{−x′}⎛
⎝ L∑

j=1

pjR
N
j,i exp{−x′R−1

�,i Rj,i}
⎞
⎠

×
[

(x′)N−1 exp{−x′R−1
�,i }

(N − 1)!

]
dx′. (68)
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Observe from (16) and (17) that

R−1
�,i Rj,i = Ri,�Rj,i = Rj,�, R−1

�,i = Ri,�,

RN
j,i = RN

�,iR
N
j,� = R−N

i,� RN
j,�. (69)

Substituting (69) in (68), we get

L∑
i=1

pi

∫ ∞

0

RN
�,i exp{−xR�,i}⎛

⎝ L∑
j=1

pjR
N
j,i exp{−xRj,i}

⎞
⎠

×
[
xN−1 exp{−x}

(N − 1)!

]
dx

=
∫ ∞

0

(
L∑

i=1

piR
N
i,� exp{−x′Ri,�}

)
⎛
⎝ L∑

j=1

pjR
N
j,� exp{−x′Rj,�}

⎞
⎠

×
[
(x′)N−1 exp{−x′}

(N − 1)!

]
dx′

=
∫ ∞

0

(x′)N−1 exp{−x′}
(N − 1)!

dx′

= 1. (70)

Substitution of (70) in (67) results in

∂I(s; r)
∂p�

= − 1
ln 2

− 1
ln 2

∫ ∞

0

ln

⎛
⎝ L∑

j=1

pjR
N
j,� exp{−xRj,�}

⎞
⎠

×xN−1 exp{−x}
(N − 1)!

dx,

� = 1, . . . , L. (71)

Further substitution of (71) in (20) results in the set of
equations (21).

APPENDIX B
DERIVATION OF (40)

To obtain the capacity under the high SNR condition (23),
we need to maximize IhiSNR(s; r) over {p1, . . . , pL} subject
to the constraint

∑L
i=1 pi = 1. We construct the Lagrangian

function Lh as

Lh = (ln 2)IhiSNR(s; r) − λh

(
L∑

i=1

pi − 1

)
, (72)

where λh is a Lagrangian multiplier. We obtain the high SNR
capacity achieving p1, . . . , pL from (72) by solving the set of
equations

(ln 2)
∂IhiSNR(s; r)

∂p�
= λh, � = 1, . . . , L, (73a)

L∑
i=1

pi = 1. (73b)

Substituting (39) in (73a), we get

ln p1 = − 1 − λh

− (N ln R1,2)N−1

(N − 1)!
(
1 − R−1

1,2

)N−1
R

N

(1−R
−1
1,2)

1,2

, (74a)

ln p� = − 1 − λh

− (N ln R�,�+1)N−1

(N − 1)!
(
1 − R−1

�,�+1

)N−1

R

N

(1−R
−1
�,�+1)

�,�+1

− (N ln R�−1,�)N

N !(R�−1,� − 1)N
,

� = 2, . . . , L − 1, (74b)

ln pL = − 1 − λh − (N ln RL−1,L)N

N !(RL−1,L − 1)N
. (74c)

Applying the constraint (73b) to (74) gives

exp{1 + λh}

= exp

⎧⎪⎨
⎪⎩− (N ln R1,2)

N−1

(N−1)!(1−R−1
1,2)

N−1
R

N

(1−R
−1
1,2)

1,2

⎫⎪⎬
⎪⎭

+ exp
{
− (N ln RL−1,L)N

N !(RL−1,L−1)N

}

+
L−1∑
�=2

exp

⎧⎪⎨
⎪⎩− (N lnR�,�+1)

N−1

(N−1)!(1−R−1
�,�+1)

N−1
R

N

(1−R
−1
�,�+1)

�,�+1

⎫⎪⎬
⎪⎭

× exp
{
− (N ln R�−1,�)

N

N !(R�−1,�−1)N

}
. (75)

Substitution of (75) in (74) results in the optimum or high
SNR capacity achieving p1, . . . , pL, which are denoted
as p1,hiSNR,opt, . . . , pL,hiSNR,opt, respectively, and are
given by (40).

REFERENCES

[1] X.-C. Gao, J.-K. Zhang, H. Chen, Z. Dong, and B. Vucetic, “Energy-
efficient and low-latency massive SIMO using noncoherent ML detection
for industrial IoT communications,” IEEE Internet Things J., vol. 6,
no. 4, pp. 6247–6261, Aug. 2019.

[2] C. Xu et al., “Sixty years of coherent versus non-coherent tradeoffs
and the road from 5G to wireless futures,” IEEE Access, vol. 7,
pp. 178246–178299, 2019.

[3] H. Xie, W. Xu, H. Q. Ngo, and B. Li, “Non-coherent massive MIMO
systems: A constellation design approach,” IEEE Trans. Wireless Com-
mun., vol. 19, no. 6, pp. 3812–3825, Jun. 2020.

[4] D. Feng, C. Jiang, G. Lim, L. J. Cimini, Jr., G. Feng, and G. Y. Li,
“A survey of energy-efficient wireless communications,” IEEE Commun.
Surveys Tuts., vol. 15, no. 1, pp. 167–178, 1st Quart., 2013.

[5] J. K. Devineni and H. S. Dhillon, “Non-coherent detection and bit error
rate for an ambient backscatter link in time-selective fading,” IEEE
Trans. Commun., vol. 69, no. 1, pp. 602–618, Jan. 2021.

[6] S. Bi, C. K. Ho, and R. Zhang, “Wireless powered communication:
Opportunities and challenges,” IEEE Commun. Mag., vol. 53, no. 4,
pp. 117–125, Apr. 2015.

[7] D. Yu, G. Yue, A. Liu, and L. Yang, “Absolute amplitude differential
phase spatial modulation and its non-coherent detection under fast
fading channels,” IEEE Trans. Wireless Commun., vol. 19, no. 4,
pp. 2742–2755, Apr. 2020.

[8] J. G. Lawton, “Theoretical error rates of ‘differentially coherent’ binary
and ‘Kineplex’ data transmission systems,” Proc. IRE, vol. 47, no. 2,
pp. 333–334, 1959.

[9] C. Cahn, “Performance of digital phase-modulation communication
systems,” IRE Trans. Commun. Syst., vol. 7, no. 1, pp. 3–6, May 1959.



7388 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 11, NOVEMBER 2021

[10] T. Kailath, “Correlation detection of signals perturbed by a random
channel,” IEEE Trans. Inf. Theory, vol. IT-6, no. 3, pp. 361–366,
Jun. 1960.

[11] R. K. Mallik and R. D. Murch, “Noncoherent reception of multi-level
ASK in Rayleigh fading with receive diversity,” IEEE Trans. Commun.,
vol. 62, no. 1, pp. 135–143, Jan. 2014.

[12] M. Chowdhury, A. Manolakos, and A. Goldsmith, “Scaling laws for
noncoherent energy-based communications in the SIMO MAC,” IEEE
Trans. Inf. Theory, vol. 62, no. 4, pp. 1980–1992, Apr. 2016.

[13] X. Zhou, R. Zhang, and C. K. Ho, “Wireless information and power
transfer: Architecture design and rate-energy tradeoff,” IEEE Trans.
Commun., vol. 61, no. 11, pp. 4754–4767, Nov. 2013.

[14] D. I. Kim, J. H. Moon, and J. J. Park, “New SWIPT using PAPR: How
it works,” IEEE Wireless Commun. Lett., vol. 5, no. 6, pp. 672–675,
Dec. 2016.

[15] I. Jacobs, “The asymptotic behavior of incoherent M -ary communica-
tion systems,” Proc. IEEE, vol. 51, no. 1, pp. 251–252, Jan. 1963.

[16] L. Zheng and D. N. C. Tse, “Communication on the Grassmann mani-
fold: A geometric approach to the noncoherent multiple-antenna chan-
nel,” IEEE Trans. Inf. Theory, vol. 48, no. 2, pp. 359–383, Feb. 2002.

[17] S. Ray, M. Medard, and L. Zheng, “On noncoherent MIMO channels in
the wideband regime: Capacity and reliability,” IEEE Trans. Inf. Theory,
vol. 53, no. 6, pp. 1983–2009, Jun. 2007.

[18] A. Lapidoth and S. M. Moser, “The fading number of single-input
multiple-output fading channels with memory,” IEEE Trans. Inf. Theory,
vol. 52, no. 2, pp. 437–453, Feb. 2006.

[19] E. Björnson, J. Hoydis, M. Kountouris, and M. Debbah, “Massive
MIMO systems with non-ideal hardware: Energy efficiency, estima-
tion, and capacity limits,” IEEE Trans. Inf. Theory, vol. 60, no. 11,
pp. 7112–7139, Nov. 2014.

[20] A. Schenk and R. F. Fischer, “Noncoherent detection in massive MIMO
systems,” in Proc. 17th Int. ITG Workshop Smart Antennas (WSA),
Stuttgart, Germany, Mar. 2013, pp. 1–8.

[21] R. K. Mallik, S. Singh, R. D. Murch, and S. Mehra, “Signal design
for multiple antenna systems with spatial multiplexing and noncoherent
reception,” IEEE Trans. Commun., vol. 63, no. 4, pp. 1245–1258,
Apr. 2015.

[22] Y. Li, R. K. Mallik, and R. Murch, “Channel magnitude-based MIMO
with energy detection for Internet of Things applications,” IEEE Internet
Things J., vol. 6, no. 6, pp. 9893–9907, Dec. 2019.

[23] G. Psaltopoulos and A. Wittneben, “Nonlinear MIMO: Affordable
MIMO technology for wireless sensor networks,” IEEE Trans. Wireless
Commun., vol. 9, no. 2, pp. 824–832, Feb. 2010.

[24] G. K. Psaltopoulos and A. Wittneben, “Diversity and spatial multiplexing
of MIMO amplitude detection receivers,” in Proc. IEEE 20th Int.
Symp. Pers., Indoor Mobile Radio Commun., Tokyo, Japan, Sep. 2009,
pp. 202–206.

[25] M. Chowdhury, A. Manolakos, F. Gomez-Cuba, E. Erkip, and
A. J. Goldsmith, “Capacity scaling in noncoherent wideband massive
SIMO systems,” in Proc. IEEE Inf. Theory Workshop (ITW), Jerusalem,
Israel, Apr./May 2015, pp. 1–5.

[26] R. K. Mallik, R. D. Murch, and Y. Li, “Channel magnitude based energy
detection with receive diversity for multi-level amplitude-shift keying in
Rayleigh fading,” IEEE Trans. Commun., vol. 65, no. 7, pp. 3079–3094,
Jul. 2017.

[27] A. Al-Dweik and F. Xiong, “Frequency-hopped multiple-access commu-
nications with noncoherent M-ary OFDM-ASK,” IEEE Trans. Commun.,
vol. 51, no. 1, pp. 33–36, Jan. 2003.

[28] A. Anttonen, A. Kotelba, and A. Mämmelä, “Energy detection of
multilevel PAM signals with systematic threshold mismatch,” Res. Lett.
Commun., vol. 2009, pp. 1–4, Jan. 2009.

[29] A. Anttonen, A. Kotelba, and A. Mämmelä, “Error performance of PAM
systems using energy detection with optimal and suboptimal decision
thresholds,” Phys. Commun., vol. 4, no. 2, pp. 111–122, Jun. 2011.

[30] Y. Maghsoodi and A. Al-Dweik, “Error-rate analysis of FHSS networks
using exact envelope characteristic functions of sums of stochastic sig-
nals,” IEEE Trans. Veh. Technol., vol. 57, no. 2, pp. 974–985, Mar. 2008.

[31] W. Osborne and M. Luntz, “Coherent and noncoherent detection
CPFSK,” IEEE Trans. Commun., vol. COM-22, no. 8, pp. 1023–1036,
Aug. 1974.

Ranjan K. Mallik (Fellow, IEEE) received the
B.Tech. degree in electrical engineering from the
Indian Institute of Technology Kanpur, Kanpur,
in 1987, and the M.S. and Ph.D. degrees in electrical
engineering from the University of Southern Califor-
nia, Los Angeles, in 1988 and 1992, respectively.

From August 1992 to November 1994, he was a
scientist with the Defence Electronics Research Lab-
oratory, Hyderabad, India, working on missile and
EW projects. From November 1994 to January 1996,
he was a faculty member with the Department of

Electronics and Electrical Communication Engineering, Indian Institute of
Technology Kharagpur, Kharagpur. From January 1996 to December 1998,
he was with the faculty of the Department of Electronics and Communica-
tion Engineering, Indian Institute of Technology Guwahati, Guwahati. Since
December 1998, he has been with the Faculty of the Department of Electrical
Engineering, Indian Institute of Technology Delhi, New Delhi, where he is
currently an Institute Chair Professor. His research interests are in diversity
combining and channel modeling for wireless communications, space-time
systems, cooperative communications, multiple-access systems, power line
communications, molecular communications, difference equations, and linear
algebra.

Dr. Mallik is a member of Eta Kappa Nu, the IEEE Communications,
Information Theory and Vehicular Technology Societies, the American Math-
ematical Society, and the International Linear Algebra Society; a fellow of
the Indian National Academy of Engineering, the Indian National Science
Academy, The National Academy of Sciences, India, Prayagraj, the Indian
Academy of Sciences, Bengaluru, The World Academy of Sciences-for the
advancement of science in developing countries (TWAS), The Institution
of Engineering and Technology, U.K., The Institution of Electronics and
Telecommunication Engineers, India, and The Institution of Engineers (India);
and a life member of the Indian Society for Technical Education. He is a
recipient of the Hari Om Ashram Prerit Dr. Vikram Sarabhai Research Award
in the field of electronics, telematics, informatics, and automation, the Shanti
Swarup Bhatnagar Prize in engineering sciences, the Khosla National Award,
and the J. C. Bose Fellowship. He has served as an Area Editor and an
Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS and
an Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS.

Ross Murch (Fellow, IEEE) received the Bache-
lor’s and Ph.D. degrees in electrical and electronic
engineering from the University of Canterbury,
Christchurch, New Zealand.

He is currently a Chair Professor with the Depart-
ment of Electronic and Computer Engineering, The
Hong Kong University of Science and Technol-
ogy, Hong Kong, where he was the Department
Head from 2009 to 2015. He has taken sabbat-
icals at Imperial College London, London, U.K.;
MIT, Cambridge, MA, USA; Allgon, Akersberga,

Sweden; and AT&T, Newman Springs, NJ, USA. His unique expertise lies
in his combination of knowledge from both wireless communication systems
and electromagnetic areas. He has over 200 publications and 20 patents on
wireless communication systems and antennas with over 17000 citations. His
current research interests include multiport antennas, RF energy harvesting,
the Internet of Things, acoustics, and RF imaging.

Dr. Murch is a recipient of several awards, including the Computer Sim-
ulation Technology (CST) University Publication Award in 2015 and two
teaching awards. He has served the IEEE in various positions, including an
Area Editor, the Technical Program Chair, a Distinguished Lecturer, and a
member of the Fellow Evaluation Committee.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


