
6940 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 10, OCTOBER 2021

Capacity Characterization for Reconfigurable
Intelligent Surfaces Assisted
Multiple-Antenna Multicast

Linsong Du , Student Member, IEEE, Shihai Shao , Member, IEEE, Gang Yang , Member, IEEE,

Jianhui Ma, Member, IEEE, Qingpeng Liang , Member, IEEE, and Youxi Tang, Member, IEEE

Abstract— The reconfigurable intelligent surface (RIS), which
consists of a large number of passive and low-cost reflecting
elements, has been recognized as a revolutionary technology to
enhance the performance of future wireless networks. This paper
considers an RIS assisted multicast transmission, where a base
station (BS) with multiple-antenna multicasts common message to
multiple single-antenna mobile users (MUs) under the assistance
of an RIS. An equivalent channel model for the considered
multicast transmission is analyzed, and then an optimization
problem for the corresponding channel capacity is formulated to
obtain the optimal covariance matrix and phase shifts. In order to
solve the above non-convex and non-differentiable problem, this
paper first exploits the gradient descent method and alternating
optimization, to approach the locally optimal solution for any
number of MUs. Then, this paper considers a special case, which
can obtain the global optimal solution, and shows the sufficient
and necessary condition for this special case. Finally, the order
growth of the maximal capacity is obtained when the numbers
of the reflecting elements, the BS antennas, and the MUs go to
infinity.

Index Terms— Reconfigurable intelligent surfaces, capacity
characterization, multicast transmission.

I. INTRODUCTION

IN future cellular networks, with the increased demands
of sending common messages to multiple mobile users

(MUs), such as music sharing, video streaming, and pictures
downloading [1], the application of multiple antenna multicast
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transmission becomes more promising for sending common
messages to multiple MUs with the high transmission rate [2].
When compared with the unicast transmission, where the base
station (BS) only servers one MU during one time slot, multi-
cast transmission can significantly reduce energy consumption
and save spectral resources [2]. However, in many multicast
scenarios [3], the direct link from the BS to MUs is blocked,
due to the existence of buildings, trees, and cars. In order
to overcome this problem, an effective solution is to add
a new link to maintain multicast communication. Moreover,
the capacity of the multicast communication only depends
on the minimum received signal-to-noise ratio among all the
BS-MU links. It follows that if any one of the links suffers
from bad channel conditions, the multicast capacity will
become very low. Therefore, it is best to obtain an effective
way to improve the BS-MU links with bad channel conditions.

Therefore, the reconfigurable intelligent surface (RIS) tech-
nology is considered to be a new way in the multicast commu-
nication, which provide wireless connectivity in future 6G sys-
tem [4]. The RIS consists of a large number of reconfigurable
reflecting elements, each of which can induce the phase shifts
of the electromagnetic waves and then reflects them [5]–[8].
The RIS can proactively control the multicast channel between
the BS and MUs via highly controllable and intelligent signal
reflection. Thus, the RIS provides a new degree of freedom to
improve the performance of the multicast communication. It is
worth noting that the RIS can be regarded as a no-power full-
duplex (FD) amplify-and-forward (AF) relay with multiple-
antenna, which receives signals and then forwards them to
the MUs. However, there exists some differences between the
relay and the RIS as follows. Similar to backscatter [9]–[11],
since the RIS does not use the transmit radio frequency (RF)
chain, it hardly consumes any energy. Thus, RIS can achieve
much higher energy efficiency and is more environmentally-
friendly than the regular FD AF relay, and does not cause self-
interference as well. In fact, the RIS can achieve a higher rate
than the AF relay when the total transmit power (i.e., the sum
of the transmit power at the BS and the AF relay) is fixed [12].
Moreover, comparing with massive multiple-input multiple-
output (MIMO), the RISs have a less complex structure and
lower cost. They are easy to densely deploy at various types of
places such as trees, buildings, and rooms [13]. The RIS is able
to cater to the different application scenarios. First, the RIS
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can provide a new link to maintain transmission in the dead
zone [14]–[17], where the direct paths between the BS and the
MUs are blocked by obstacles. Then, the RIS can improve the
physical layer security by enhancing the desired signals and
suppressing the undesired signals [18]–[21]. In addition, when
MU suffers co-channel interference from other interferers,
the RIS can be placed to suppress the interference. Finally,
indoor environments can be coated with the RIS to increase
the throughput offered by conventional access points. Due to
the above benefits, the RIS can adaptively adjust the phase
shifts of the received signals, it can enhance the BS-MU links
with bad channel conditions under indoor and outdoor scenar-
ios. Therefore, this paper focuses on RIS assisted multicast
communication.

However, the application of the RIS on multicast commu-
nication is confronted with a challenge. In order to optimize
the phase shifts at the RIS, the RIS assisted multicast system
requires the accurate channel state information (CSI) on the
RIS-related channel with the BS and the MUs. The acquisition
of CSI on the RIS-related channel is difficult since RIS without
any RF chains cannot perform baseband processing func-
tionality. Therefore, the CSI of BS-RIS and RIS-MUs links
cannot be separately estimated via the traditional training-
based approaches in general [22], [23]. Considering this issue,
the authors in [24] considered deploying the dedicated RF
chains at RIS to acquire the CSI of RIS-MUs links. However,
this approach increases the implementation cost and decreases
energy efficiency, which loses the essential benefits of the
RIS. Thus, the authors in [25]–[29] proposed the channel
estimation methods in multiple MUs scenario to obtain the
cascaded CSI of BS-RIS-MU links without using RF chains
at the RIS. In [25], [26], the BS can obtain the global CSI
of all BS-RIS-MU links by uplink channel estimation due
to channel reciprocity, where each MU transmits its pilot
symbols to the BS on the different time slots, such that
each cascaded CSI of BS-RIS-MU link is estimated by BS.
A three-phase channel estimation framework was proposed
in [26] to shorten the estimated time. In [27], a transmission
protocol was proposed to estimate cascaded CSI of BS-RIS-
MU for orthogonal frequency division multiplexing (OFDM)
system under unit-modulus constraint. In [28], a fast channel
estimation scheme with reduced OFDM symbol duration was
proposed for the fading channel. In [29], the SeUCE scheme
was proposed to estimate cascaded CSI for multi-user OFDM
access system. The cascaded CSI of the BS-RIS-MU link is
sufficient for the design of the phase shifts at the RIS and the
covariance matrix at the BS.

Based on the available cascaded CSI, the authors
[8], [30], [31] studied how to optimize the phase shifts at
the RIS in a multicast system. The authors in [30] considered
the fair quality of service for multicasting assisted by the RIS
and proposed efficient algorithms to optimize the quality of
service by jointly designing the transmit beamforming and
the phase shifts. The authors in [31] considered the RIS
assisted multi-group multicasting and maximized the sum rate
of all the multicasting groups by optimizing the transmit
beamforming and the phase shifts. However, the works in
[30], [31] only study the transmit beamforming vector at BS,

which cannot embody the theoretically maximal achievable
rate, i.e., capacity, for RIS assisted multicast communication.
The study of capacity indicates the optimal performance
achievable on the RIS assisted multicast channel and how
to achieve such optimal performance. In order to obtain the
capacity, the covariance matrix at BS should be optimized,
which brings a new challenge. Indeed, the authors in [24]
studied the capacity characterization for the RIS assisted
MIMO communications in the unicast scenario. However,
the results in [24] cannot generalize to the multicast scenario.
The capacity maximization problem in the multicast scenario
is more difficult to solve as compared to that in the unicast
scenario since the capacity maximization problem in RIS
assisted multicast communication is a non-differentiable max-
min problem, and phase shifts and covariance matrix need to
be designed to balance the different BS-RIS-MU links. To the
best of our knowledge, there is no work considering capacity
characterization for the RIS assisted multicast communication.

In this paper, we consider the RIS assisted multi-antenna
multicast transmission, where a multi-antenna BS sends com-
mon messages to a group of single-antenna MUs. An RIS
consisting of a large number of reconfigurable reflecting ele-
ments is deployed to assist the multicast transmission, where
the BS sends signals to the RIS, and then the RIS forwards the
received signals to the MUs with phase shifts. It is assumed
that the cascaded CSI of BS-RIS-MU links and the CSI of BS-
MUs links are perfectly known to the BS and the RIS. The
equivalent channel model for the considered multicast system
is obtained, which can be regarded as a conventional multicast
channel, and its characteristics can be partly controlled by the
reconfigurable reflecting elements. Thus, it is crucial to find
the optimal phase shifts of the RIS to maximize the capacity
of the equivalent channel model. The main contributions of
this paper are summarized as follows.

• First, an optimization problem of the channel capacity
is formulated to obtain the optimal phase shifts for the
RIS and the corresponding covariance matrix of the trans-
mitted symbol vector for the BS. Since this problem is
non-convex and non-differentiable, it is difficult to obtain
the optimal solution directly. Thus, the non-differentiable
problem is reformulated into a differentiable problem.
Then, the gradient descent method and alternating opti-
mization, respectively, are proposed to approach a locally
optimal solution. We consider a specific case, which
owns optimal semi-closed form solution, and show the
sufficient and necessary conditions that the special case
happens.

• Next, we analyze the order growth of the optimal capacity
of RIS assisted multicast transmission in some asymptotic
cases: 1) The number of MUs is fixed and the num-
ber of antennas or reflecting elements goes to infinity;
2) The numbers of antennas and reflecting elements are
fixed, and the number of MUs goes to infinity; 3) The
numbers of antennas, reflecting elements, and MUs all
go to infinity.

• Finally, we numerically evaluate the performance of the
proposed two algorithms, which confirm the asymptotic
analysis of optimal capacity. From the numerical results
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Fig. 1. RIS assisted multicast transmissions with K MUs.

and asymptotic analysis, we observe that the optimal
capacity grows logarithmically with the number of anten-
nas and the square of the number of reflecting elements,
and it is the inverse proportion with the number of MUs.
When both numbers of MUs and antennas go to infinity
at a fixed ratio, the optimal capacity remains a constant.

The structure of this paper is organized as follows. Section II
introduces the system model and formulates an optimization
problem of the channel capacity. Section III proposes two
algorithms for optimization problem for any number of MUs.
Section IV shows the asymptotic analysis for the capacity of
the RIS assisted multicast transmission. Section V presents
some numerical results. Section VI concludes the paper.

Notation: a is a vector, A is a matrix. �a� is Euclidean
norm of a. AH , AT , �A�m2

, A−1 denote Hermitian trans-
pose, transpose, Frobenius norm and pseudo-inverse of A,
respectively. diag (a) is a diagonal matrix with the entries of
a on its main diagonal. A � B means that A−B is positive
semidefinite. A ⊗ B denotes the kronecker product between
A and B. Tr (A) denotes the trace of A. E {A} denotes
the expected value of each element for A. detA denotes the
determinant of A. vec (A) is an operator that transforms A
into a column vector by vertically stacking the columns of
the matrix. A

x means that the each element of A divides by x.
CN×M denotes the set of all N×M complex-valued matrices.
I is an identity matrix. j �

√−1 is the imaginary unit.
arg (·) denotes the argument of a complex number. Cov (·, ·)
is covariance.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

As shown in Fig. 1, a BS with M -antennas sends a common
message to K single-antenna MUs1 [32], [33]. An RIS with
N reflecting elements is deployed between the BS and the K
MUs, where the cascaded CSI of BS-RIS-MU link and the CSI
of BS-MU link are perfectly known. Accordingly, the received
signal at MU k, k = 1, 2, · · · ,K is given by

yk =
�
hH

k ΦH + tH
k

�
s + zk, (1)

1Since we focus on the capacity for RIS assisted multicast, we consider the
single group scenario (pure multicast), i.e., the BS sends the same message to
all K MUs. If this is the multi-group scenario (K MUs divided into multiple
groups, and the BS sends an independent message to each group), we need
to study the capacity region rather than capacity.

where s = [s1, s2, · · · , sM ]T is the transmitted symbol vector;
tH
k ∈ C1×M is the channel vector between the BS and MU
k, i.e., tH

k = [tk,1, tk,2, · · · , tk,M ], with tt,m = att,me
jθtk,m ;

H ∈ CN×M is the channel matrix between the BS and the
RIS, i.e.,

H =

⎡
⎢⎢⎢⎣
H1,1 H1,2 · · · H1,M

H1,2 H2,2 · · · H2,M

...
...

. . .
...

H1,N H2,N · · · HN,M

⎤
⎥⎥⎥⎦ , (2)

with Hn,m = aHn,me
jθHn,m ; hH

k ∈ C1×N is the channel
vector between the RIS and the MU k, i.e.,

hH
k = [hk,1, hk,2, · · · , hk,N ] , (3)

with hk,n = ahk,n
ejθhk,n ; Φ = diag [Φ1,Φ2, · · · ,ΦN ] ∈

CN×N represents the phase shifts introduced by the reflecting
elements at the RIS, with Φn = ejθn ; and zk is the circularly
symmetric complex Gaussian (CSCG) noise with zero mean
and unit variance σ2 = 1.

In fact, it is hard to directly obtain the CSI of the separate
BS-RIS and separate RIS-MU links, i.e., H and hH

k . However,
the signal model (1) is equivalent to

yk =
�
uHGkH + tH

k

�
s + zk, (4)

where GkH is the cascaded channel form the BS to the
k-th MU via RIS, and uH = [Φ1, · · · ,ΦN ], Gk = diag (hk).
Notice that the cascaded CSI of the channel matrix GkH can
be acquired to the BS, which implies that the each element of
matrix GkH, i.e., hk,nHn,m = ahk,n

aHn,me
j(θhk,n

+θHn,m),
is known.

B. Problem Formulation

For the fixed Φ, the capacity of RIS assisted multicast
channel is given by [32], [33]

C (Φ) � max
Q:Q�0,Tr(Q)≤Pmax

min
k=1,··· ,K

log


1 +

�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

��
(5)

where Q = E
�
ssH


is the covariance matrix of the trans-

mitted symbol vector s; Pmax is the power budget, and
Tr (Q) ≤ Pmax is the power constraint. From (5), it is
observed that the capacity depends on Φ. In order to obtain
the optimal capacity for the equivalent multicast channel by
jointly the optimizing the covariance matrix Q and the phase
shifts θ = [θ1, θ2, · · · , θN ]T , an optimization problem is
formulated as

(P1)C = max
Q,θ

min
k=1,··· ,K

log


1 +

�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

� �
(6)

s.t. Tr (Q) ≤ Pmax, (7)

Q � 0, (8)

|Φn| = 1, n = 1, 2, · · · , N. (9)

Since the objective function in (6) is non-convex due to
the phase shifts [34], Problem (P1) is non-convex, and its
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optimal solution cannot be obtained directly by any effective
and standard method. Moreover, the objective function (6) is
non-differentiable because the pointwise minimum min {·} is
non-differentiable [34], and hence the KKT conditions2 for
(P1) do not exist [34].

III. PROPOSED ALGORITHM TO PROBLEM (P1)

In this section, we propose two efficient algorithms to find
the phase shifts and covariance matrix for Problem (P1).
First, the objective function in (6) for Problem (P1) is non-
differentiable, and thus we reformulate (P1) as the following
differentiable problem:

(P2) max
Q,θ,γ

γ (10)

s.t. γ ≤ �
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

�
,

k = 1, · · · ,K,
(7), (8), (9), (11)

where γ is an auxiliary variable. Notice that Problems (P1)
and (P2) have the same optimal solution {Q∗,θ∗}. In this
section, we propose two algorithms, i.e., gradient descent
method and alternating optimization to obtain the locally
optimal solution for (P2).

Since (P2) is an inequality constrained optimization problem
and continuously differentiable, we perform the logarithmic
barrier method, which is one of the descent methods [34],
to converge the objective function of (P2) as a local optimum.

A. Gradient Descent Method

We reformulate Problem (P2) as an unconstrained minimiza-
tion problem

(P2-t) min Γ(t) (Q,θ, γ) , (12)

where Γ(t) (Q,θ, γ) = −γ − 1
t f (Q,θ, γ), and f (Q,θ, γ) is

given as

f (Q,θ, γ) =
K�

k=1

log
�−γ +

�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

��
+ log (−Tr (Q)

+Pmax) + log (detQ) , (13)

and − 1
t log(−x) is the logarithmic barrier function for the

inequality constraints.
Problem (P2-t) can be regarded as an approximation of

Problem (P2), where t > 0 is a parameter to the accuracy of
the approximation. Thus, a large value of t can be used to
approximate Problem (P2).

We solve a sequence of problems with each corresponding
to (P2-t) for a certain value of t sorted in ascending order, and
the optimal point for the previous problem in the sequence is
used as the initial value for the current one [34].

For Problem (P2-t), we perform the gradient descent
method to compute the optimal solution

�
Q(t),θ(t), γ(t)

�
,

2KKT conditions are the necessary conditions that optimal solutions need
to satisfy for a differentiable problem.

where the descent direction {ΔQ,Δθ,Δγ} and the step size
k are obtained as follows.

• Descent Direction: By taking the derivative of
Γ(t) (Q,θ, γ) with respect to Q, θ, and γ, respectively,
we obtain the descent direction as

ΔQ =
1
t

K�
k=1

�
HHGH

k u + tk

� �
uHGkH + tH

k

�
−γ +

�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

�
+

I
t (Tr (Q) − Pmax)

+
Q−1

t
, (14)

Δθ =
1
t

K�
k=1

�
GkHQHHGH

k + 2tH
k QHHGH

k

�
ϕ

−γ +
�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

� ,
(15)

Δγ = 1 − 1
t

K�
k=1

1
−γ +

�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

� .
(16)

where ϕ =
�
jejθ1 , · · · , jeθN

�T
.

• Step Size: We also adopt the backtracking line search to
determine the step size k, where the initial value of k is
k = 1 and then the value of k is reduced by k := kη,
with 0 < η < 1, until the stopping condition

Γ(t) (Q + kΔQ,θ + kΔθ, γ + kΔγ) < Γ(t)

(Q,θ, γ) − αk
�
�ΔQ�2

m2
+ �Δθ�2 + |Δγ|2

�
(17)

satisfies.

Algorithm Summary: Based on the above discussion,
we can compute the optimal solution {Q∗,θ∗, γ∗} for Prob-
lem (P2) by two-level iterations, and the detailed algorithm is
summarized in Algorithm 1.

From (17), it follows that Γ(t) (Q,θ) decreases over itera-
tions. Thus, Algorithm 1 is guaranteed to converge to a locally
optimal solution. The convergence rate of the Algorithm 1 is
at least linear form [34].

From [35], we obtain that the complexity of each iter-
ation is mainly due to the calculations of ΔQ and Δθ,
whose complexities are O ��

MN2 +M2N
�
K +M3

�
[35]

and O �
N2 +M2 +MN

�
. It is obvious that the order of the

complexity of Δθ is less than that of ΔQ, we can ignore the
complexity of Δθ. Then, the number of the inner and outer
iterations are I and J , respectively, and thus the complexity of
Algorithm 1 is given as O(((MN2+M2N)K+M3)IJ) [35].

B. Alternating Optimization

If we only optimize Q for Problem (P2), the correspond-
ing subproblem is convex. Thus, we consider adopting the
alternating optimization technique to separately and iteratively
solve for Q and θ. In each iteration, we first optimize Q
with fixed θ, and then solve for θ with fixed Q. For the
phase shift optimization problem, the non-convex constraints
(11) are handled by the characteristic of multicast capacity
expression, and then we obtain the optimal semi-closed form
solution.
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Algorithm 1 Gradient Descent Method for Problem (P2)
Input: Gk, k = 1, · · · ,K , H, Pmax, and the error tolerances

δ1 > 0 and δ2 > 0.
Output: {Q∗,θ∗, γ∗}.

1: Initialize
�
Q(ti),θ(ti), γ(ti)

�
and {Qj ,θj , γj}, which

represent the output of the i-th outer iteration and the input
of the j-th inner iteration, respectively.

2: while 1
ti−1

> δ1 do
3: Let ti = ρti−1.
4: Initialize Q = Q(ti−1), θ = θ(ti−1), and γ(ti−1).
5: while

��Γ(ti) (Qj ,θj , γj) − Γ(ti) (Qj−1,θj−1, γj−1)
�� >

δ2 do
6: Compute ΔQj+1, Δθj+1, and Δγj+1 by (14), (15)

and (16), respectively.
7: Initialize l1 = l0
8: while Condition (17) is false do
9: Let li := li−1η.

10: end while
11: Let Qj+1 = Qj + liΔQj+1, θj+1 = θj + liΔθj+1,

and γj+1 = γj + liΔγj+1.
12: end while
13: Let Q(ti) = Qj+1, θ(ti) = θj+1, and γ(ti) = γj+1.
14: end while
15: Let {Q∗,θ∗, γ∗} =

�
Q(ti),θ(ti), γ(ti)

�
.

1) Optimization of Q With Fixed θ: For the fixed θ,
the subproblem which only optimizes Q is formulated as

(P2.1)max
Q,γ

γ (18)

s.t. γ ≤ Tr (RkQ) , k = 1, · · · ,K
(7), (8), (19)

where Rk =
�
HHGH

k u + tk

� �
uHGkH + tH

k

�
, and (19) is

due to�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

�
= Tr (RkQ) . (20)

Obviously, Problem (P2) is a convex problem and can be effi-
ciently solved by standard semi-definite programming (SDP)
[34] and we can employ standard convex optimization tools,
e.g., CVX [36], to compute the optimal solution.

2) Optimization of θ With Fixed Q: Next, we solve the
following subproblem with the fixed Q:

(P2.2) max
θ,γ

γ

s.t. (9), (11). (21)

Since Q is a positive semi-definite matrix, the eigen-
value decomposition of UΣUH can be obtained, where
U ∈ CM×M , and diagonal elements in Σ are non-negative
real numbers. Thus, we can define V = HUΣ

1
2 =

[v1, · · · ,vN ]H ∈ CN×M and pk = Σ
1
2 UHtk ∈ CM×1.

Then,
�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

�
in (11) can be

rewritten as�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

�
= uHGkVVHΦHtk + uHGkVpk

+pH
k VHGH

k u + tH
k Qtk

=
N�

i=1

ejθihk,ivH
i

N�
j=1

e−jθjh∗k,jvj +
N�

i=1

ejθihk,ivH
i pk

+
N�

j=1

e−jθjh∗k,jp
H
k vj + tH

k Qtk

=
N�

n=1

|hk,n|2 vH
n vn +

N�
i=1

N�
j=1,j �=i

ej(θi−θj)hk,ih
∗
k,jv

H
i vj

+
N�

i=1

2ci,k cos (θi + ωi,k) + tH
k Qtk

= ak +
N�

i=1

N�
j=i+1

2bi,j,k cos(θi − θj + ψi,j,k)

+
N�

i=1

2ci,k cos (θi + ωi,k) , (22)

where ak =
�N

n=1 |hk,n|2 vH
n vn + tH

k Qtk,

bi,j,k =
���hk,ih

∗
k,jv

H
i vj

���, ci,k =
��tk,ivH

i pk

��, ψi,j,k =

arg
�
hk,ih

∗
k,jv

H
i vj

�
, ωi,k = arg

�
hk,ivH

i pk

�
are constants.

From (22), it follows that the condition (11) in Problem (P2.2)
can be simplified as

γ ≤ ak +
N�

i=1

N�
j=i+1

2bi,j,k cos(θi − θj + ψi,j,k)

+
N�

i=1

2ci,k cos (θi + ωi,k) , k = 1, · · · ,K (23)

Based on (23), we can obtain the semi-closed-form solution for
Problem (P2.2) can be obtained as the following proposition.

Proposition 1: The necessary conditions that the optimal
solution {θQ, γ

∗} of Problem (P2-2) needs to satisfy are given
as (23) and

λk

⎛
⎝γ − ak −

N�
i=1

N�
j=i+1

2bi,j,k cos(θi − θj + ψi,j,k)

−
N�

i=1

2ci,k cos (θi + ωi,k)

�
= 0,

N�
j=1,j �=n

b̄n,j sin
�
θn − θj + ψ̄n,j

�
+ c̄n sin (θn + ω̄n) = 0,

n = 1, · · · , N,−1 +
K�

k=1

λk = 0,

k = 1, · · · ,K, (24)

where b̄n,j =
�K

k=1 2λkbn,j,k, c̄n =
�K

k=1 2λkcn,k, ψ̄n,j and
ω̄n are the auxiliary angle of ψn,j,k and ωn,k, k = 1, · · · ,K ,
respectively.

Proof: Lagrangian function of Problem (P2.2) is given as

L = −γ +
K�

k=1

λk

⎡
⎣− N�

i=1

N�
j=i+1

2bi,j,k cos(θi − θj + ψi,j,k)

−
N�

i=1

2ci,k cos (θi + ωi,k) + γ − ak

�
. (25)
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Based on [34], we obtain that for the non-convex problem,
by taking the derivative of the Lagrangian function (25), we
can obtain the KKT optimality conditions in (24), which are
the necessary conditions that the optimal solution {θQ, γ

∗}
needs to satisfy.

We denote the solution set of equation set (24) as Τ, which
can be obtained by the interval iterative method [37]. The
main ideas of this method are given as follow: First, we divide
the domain of θ into a finite number of initial intervals and
make sure that each interval has a unique solution (When
the radius of the interval is greater than the radius of its
Krawczyk operator, the interval has a unique solution). Then,
when we make sure each interval only has one solution,
we start to obtain the solution via the iteration method. In each
iteration, we obtain the intersection of the intervals and the
its Krawczyk operator as the new interval, and then compute
the new Krawczyk operator of the new interval for the next
iteration. Until the radius of the interval is smaller than an
error. The center of the interval can be regarded as a solution.

From (21), it is observed that the optimal solution {θQ, γ
∗}

can be determined by the maximums of all γ, which belong
to set Τ, i.e.,

γ∗ = max {γ : {θ, γ} ∈ Τ} , (26)

and the corresponding θQ is optimal for Problem (P2.2).
3) Algorithm Summary: The detailed alternating optimiza-

tion for Problem (P2) is summarized as Algorithm 2. In each
iteration, we first optimize Qi+1 with the fixed θi, which is
obtained at the previous iteration. Then, we optimize θi+1 for
the fixed Qi+1 by Proposition 1 and (26), which is obtained
at the current iteration.

Algorithm 2 Alternating Optimization for Problem (P2)
Input: Gk, k = 1, · · · ,K , H, Pmax, and error tolerances

δ > 0.
Output: {Q∗,θ∗}.
1: Initialize Randomly generate J independent realizations of

θ(j), j = 1, · · · , J , and compute the corresponding optimal
Q(j), j = 1, · · · , J , according CVX. Select initial value
{Q1,θ1} as the realization yielding the largest objective
value of Problem (P2)

2: while |γi − γi−1| > δ do as
3: Compute Qi+1 with the fixed θi by CVX.
4: Compute θi+1 with the fixed Qi+1 by Proposition 1

and (26).
5: Let γi+1 = max

�
uH

i+1GkHQi+1HHGH
k ui+1


6: end while
7: Let {Q∗,θ∗} = {Qi+1,θi+1}

C. Optimal Solution for the Special Case

The previous two subsections proposed two numerical algo-
rithms to obtain the phase shifts and covariance matrix for
Problem (P1), which loses insight and cannot obtain the opti-
mal solution for Problem (P1). However, the semi-closed-form
optimal solution can be obtained in a special case that we
only need to maximize the capacity of a MU. We first show

the sufficient and necessary conditions that the special case
happens, and then compute the semi-closed-form optimal
solution of the special case.

For the convenience, Problem (P1) can be rewritten as

max
{Q,θ}∈Q

min
k=1,··· ,K

Rk (Q,θ) , (27)

where Q = {Q,θ |(7), (8), (9)} is the feasible set for
Problem (P1), and Rk (Q,θ) is defined as

Rk (Q,θ) = log
�
1 +

�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

��
.

(28)

First, the following proposition shows the sufficient and
necessary conditions that the special case happens.

Proposition 2: The optimal solution for max{Q,θ}∈Q
Rk0 (Q,θ) is denoted as {Qk0 ,θk0}, k0 ∈ {1, · · · ,K}. If and
only if

Rk0 (Qk0 ,θk0) ≤ Rk (Qk0 ,θk0) , k = 1, · · · ,K, (29)

then {Qk0 ,θk0} is the optimal solution for Problem (P1).
Proof: The necessary of the conditions (29) is obvi-

ous. We only prove the sufficiency of the conditions (29).
We denote {Q∗,θ∗} is the optimal solution for Problem (P1).
Due to (29), it follows

min
k=1,··· ,K

Rk (Q∗,θ∗) ≤ Rk0 (Q∗,θ∗)

≤ Rk0 (Qk0 ,θk0)
≤ Rk (Qk0 ,θk0) , k = 1, · · · ,K. (30)

Based on (30), we obtain mink=1,··· ,K Rk (Q∗,θ∗) ≤
mink=1,··· ,K Rk (Qk0 ,θk0), which implies that {Qk0 ,θk0} is
the optimal solution for Problem (P1).

Remark 1: From Proposition 2, we observe that in this
special case, even if we only maximize the capacity of the
MU k0, its capacity is still smaller than the capacities of other
MUs. In other words, in this special case, even if we optimize
channel condition for MU k0 by designing the phase shift θ,
the MU k0 still own the worst channel condition. It implies
that the multicast capacity only depends on the capacity for
the MU k0.

Next, we show how to obtain {Qk0 ,θk0} by optimizing

max
{Q,θ}∈Q

log
�
1 +

�
uHGk0H + tH

k0

�
Q
�
HHGH

k0
u + tk0

��
,

(31)

which is equivalent to the capacity of multiple-input single-
output (MISO) channel [32]. For the MISO channel, the capac-
ity equals that of a single-input single-output channel with
the signal transmitted over the multiple-antenna coherently
combined to maximize the channel signal noise ratio (SNR).
Thus, for a fixed θ, the corresponding capacity and optimal
covariance matrix Qθ are respectively given as [32]

max
Q∈Q

log
�
1 +

�
uHGk0H + tH

k0

�
Q
�
HHGH

k0
u + tk0

��
= log

�
1 + Pmax

���uHGk0H + tH
k0

���2
�
, (32)

Qθ = VH
θ diag [Pmax, 0, · · · , 0]Vθ, (33)

where Vθ ∈ CN×N is obtained by the singular value decom-
position of uHGk0H + tH

k0
, i.e.,

uHGk0H + tH
k0

� UθΣθVH
θ , (34)
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where Uθ = 1, VH
θ is unitary matrix, and Σθ ∈ C1×N is a

rectangular vector whose first element are non-negative real
numbers and whose other elements are zero.

Remark 2: From (32), (33) and (34), it is observed
that we only need to compute θ0 for maximizing
log

�
1 + Pmax

���uHGk0H + tH
k0

���2
�

. After θ0 is obtained,
Qk0 can be obtained by (33) and (34).

Thus, we only need to solve the following problem

(P3)max
θ

���uHGk0H + tH
k0

���2
. (35)

Then, the optimal solution θk0 for Problem (P3) is summa-
rized in the following proposition.

Proposition 3: The necessary conditions for the optimal
solution θk0 = [θk0,1, · · · , θk0,N ] for Problem (P3) are
given as

0 =
M�

m=1

N�
j=1,j �=n

2G(2)
n,j,m sin

�
θk0,n − θk0,j + ϑ

(2)
n,j,m

�

+
M�

m=1

2B(2)
n,m sin (θk0,n + ιn,m) ,

n = 1, · · · , N, (36)

where G
(2)
n,j,m = ah2,naHn,mah2,jaHj,m , ϑ(2)

n,j,m = θh2,n +
θHn,m − θh2,j − θHj,m , B(2)

n,m = ah2,naHn,mat2,m , and ιn,m =
θh2,n + θHn,m + θt2,m .

Proof: Same as Proposition 1, and hence omitted for
simplicity.

Remark 3: From Proposition 3, we have
• The solution set Q which satisfies condition (36) can

be obtained by the interval iterative method [37]. The
optimal solution θk0 can be determined by the maximums
of all Υ (θ), where θ belongs to set Q, i.e.,

Υ∗ (θk0) = max {Υ (θ) : θ ∈ Q} , (37)

where

Υ (θ) =
M�

m=1

N�
i=1

N�
j=i+1

2G(2)
i,j,m cos

�
θi − θj + ϑ

(2)
i,j,m

�

+
M�

m=1

N�
n=1

2B(2)
n,m cos (θn + ιn,m) . (38)

If the special case happens, we adopt (37) to obtain
the optimal solution; else we adopt the gradient
descent method and alternating optimization to solve
Problem (P2).

• Proposition 3 only presents the semi-closed-form optimal
solution for Problem (P3). Here, we set M = 1 for
example to demonstrate Proposition 3 for (P3), which
has the closed-form solutions.
When M = 1, (P3) can be rewritten as

max
θ

N�
i=1

N�
j=i+1

2G(2)
i,j,1 cos

�
θk0,i − θk0,j + ϑ

(2)
i,j,1

�

+
N�

i=1

2B(2)
i,1 cos (θk0,1 + ιi,1) . (39)

Fig. 2. The cumulative distribution function of running times.

Therefore, θk0,n = − �
θh2,n + θHn,1 + θt2,1

�
, n =

1, · · · , N , is optimal for (39), which is the optimal
solution for M = 1 as well.

Fig. 2 shows the cumulative distribution function of running
times under the gradient descent, the alternating optimization,
and the special case, where ρ = 20 (dB), N = 8, and M = 8.
It is observed that the running time of the special case is
smaller than those of gradient descent and the alternating
optimization.

IV. ASYMPTOTIC ANALYSIS

In the previous two sections, the capacity of RIS assisted
multicast transmission is maximized by the numerical algo-
rithms, which lose some intuition for the performance of
RIS in multicast transmission. Since the reflecting elements
are low-cost with a simple structure, the RIS can inte-
grate a large number of the reflecting elements [13]. Thus,
it is worth to study the asymptotic behaviors of capac-
ity C when some or all of the number of reflecting ele-
ments, BS antennas, and MUs go to infinity. We con-
sider H, GH

k , and tH
k as Rician Fading. The channels

of the BS-RIS link, the RIS-MUs links, and the BS-MUs
links are denoted as H =

�
B

B+1H̄ +
�

1
B+1Ĥ, Gk =�

B
B+1diag

�
h̄k

�
+

�
1

B+1diag
�
ĥk

�
, and tk =

�
B

B+1 t̄k +�
1

B+1 t̂k, respectively. Here, B is the Rician factor;

Ĥ, ĥk, and t̂k are the non-line-of-sight (NLoS) compo-
nent, and elements of Ĥ, ĥk, and t̂k are i.i.d., com-
plex Gaussian distribution CN (0, 1). The line-of-sight
(LoS) components are expressed by uniform rectangular
array (URA). The array response of URA is given as
aH

M (ω, ϑ) = vec
�
aM1 (ω, ϑ)aH

M2
(ω, ϑ)

�
, where aM1 =


1, ej2π d
λ sin ω cos ϑ, · · · , ej2π d

λ (M1−1) sin ω cos ϑ
�
, aM2 =



1,

ej2π d
λ sin ω sin ϑ, · · · , ej2π d

λ (M1−1) sin ω sin ϑ
�
; ω and ϑ are the

angle of departure (AoD) or angler of arrival (AoA) for
x-axis and y-axis. Thus, the LoS components H, hH

k , and tH
k

are expressed as H̄ = aN (ωAoA, ϑAoA)aH
M (ωAoD, ϑAoD),
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h̄k = aN (ωAoD, ϑAoD), and t̄k = aM (ωAoD, ϑAoD), respec-
tively, where ωAoA and ϑAoD are AoA, and ωAoA and ϑAoA

are the AoD, respectively; d and λ are the antenna separation
and wavelength, respectively.

A. Fixed MUs, Increasing Antennas and Reflecting Elements

First, we consider the asymptotic behaviors of the maximal
capacity C at the cases where the number of MUs is fixed
while either the number of reflecting elements or that of BS
antennas goes to infinity.

Proposition 4: If K is fixed, the order growth of C is given
as follows.

• When N is fixed and M goes to infinity, C grows at the
following rate

C ≈ O (logM) . (40)

• When M is fixed and N goes to infinity, C grows at the
following rate

C ≈ O �
logN2

�
. (41)

• When both of N and M go to infinity, C grows at the
following rate

C ≈ O �
log

�
N2M

��
. (42)

Proof: Please see Appendix I.
Remark 4: From Proposition 4, we observe
• C grows logarithmically with N2 and M , as either the

number of reflecting elements or that of BS antennas goes
to infinity. It follows that the increase in the numbers
of antennas and reflecting elements can improve the
capacity. This is due to the fact that the diversity order
increases as N and M . Moreover, the increase in N can
provide more performance gain than that of M . This
is due to the fact that with increasing of N , the RIS
can provide more the transmit diversity and the receive
diversity. The simulations in Fig. 3 also confirms the
results in Proposition 4.

• From the results of Proposition 4, we observed that C
goes to infinity. In reality, C will converge to a finite value
even if N and M go to infinity since the power budget is
limited. The main reason for this result is that the Rician
channel model assumption is ideal. For Proposition 4.1,
we focus on observing the tendency of capacity.

• From the proof of Proposition 4, it is obtained that C ≈
O
�

log
�

B
B+1

�2
�

, when B goes to infinity.

• The results in Proposition 4 are under the i.i.d. channel
coefficients. However, in some scenarios, the channel
coefficients may not be i.i.d., and it leads that the covari-
ances between gk,n,m and ḡk,i,m are not zero. Thus, in the
proof of Proposition 4, (75) is rewritten as

E

�
|Ψm,k|2

�
= A

�
N2

�
+

N�
n=1

N�
i=1,i�=n

Cov (gk,n,m, ḡk,i,m) ≤ A
�
N2

�
+N (N − 1)

�
1 −

�
B

B + 1

�2
�
. (43)

By the same idea as proof of Proposition 4 and Birkhoff’s
ergodic theory, we obtain that (40), (41), and (42) are
rewritten as

C ≤ O �
logN2

�
(44)

C ≤ O (logM) (45)

C ≤ O �
log

�
N2M

��
, (46)

respectively.

B. Increasing MUs, Fixed Antennas and Reflecting Elements

Then, we consider the asymptotic behaviors of the maximal
capacity C at the case where the number of MUs K goes to
infinity while both of N and M are fixed. We can see that
mink=1,··· ,K

���hH
k

�� → 0 and mink=1,··· ,K
���tH

k

�� → 0,
as K → ∞, which implies that at least one RIS-MU link and
at least one BS-MU link both being completely unavailable,
and we also have C → 0, which is discussed in detail as
follows.

Proposition 5: When both of N and M are fixed, and K
goes to infinity, the maximal capacity C goes to 0 at the
following rate

C ≈ O
�

1
K1/(N2M)

�
. (47)

Proof: From the proof of Proposition 4, we obtain
that

��uHGkH + tH
k

��2
follows the non-central chi-square

distribution with a mean of MA
�
N2

�
and 2M degrees

of freedom. It is concluded that the minimum of K
non-central chi-squared random variables

��uHGkH + tH
k

��2
,

i.e., mink=1,··· ,K
���uHGkH + tH

k

��2
�

, can be scaled as

K−1/(MA(N2)) [32].
Note that C is upper bounded by the minimum of the point-

to-point capacity of the RIS system as:

C ≤ log
�

1 + Pmax min
k=1,··· ,K

��uHGkH + tH
k

��2
�

≈ log
�

1 +
Pmax

K1/(MA(N2))

�

≈ Pmax

K1/(MA(N2))
, (48)

which is O
�

1
K1/N2M

�
, and C is lower bounded by the

spatially white rate [32]:

C ≥ log
�

1 +
Pmax

N
min

k=1,··· ,K
��uHGkH + tH

k

��2
�

≈ Pmax

NK1/(MA(N2))
, (49)

which is also O
�

1

K1/N2M

�
.

From Proposition 5, it is obtained that C is the inverse
proportion with the number of MUs K . The declining ratio
decreases with the increasing M and N . It implies that the
increase in the M and N can reduce the negative effect of
the number of MUs. This result in Proposition 5 has been
confirmed in Fig. 5.
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C. Increasing MUs, Antennas and Reflecting Elements

Finally, we consider the asymptotic behaviors of the maxi-
mal capacity C at the case where all of N , M and K go to
infinity.

Proposition 6: When both M and K go to infinity at the
ratio 0 < M

K <∞, the order growth of C is given as follows:

• If N is fixed, we have

E {C} ≈ O (1) . (50)

• If N goes to infinity, we have

O (1) ≤ E {C} ≤ O �
log(N2)

�
. (51)

Proof: See Appendix II.
From Proposition 6, we observe the following results. When
the number of reflecting elements N is fixed, E {C} remains
constant as the number of MUs and antennas are taken to
infinity at a fixed ratio. When N goes to infinity, E {C} is
lower bounded by a constant, and its growth rate is not greater
than logN2. The above results conclude that increasing the
numbers of reflecting elements and antennas can effectively
counter the negative effect caused by the increase in MUs.
These results are verified by Fig. 6.

From the proof of Proposition 6, we can observe that this
proof is not dependent on i.i.d. channel assumption. Thus,
the results in Proposition 6 are applicable to non-i.i.d. channel.

V. NUMERICAL RESULTS

This section presents the numerical results of capacity by the
following two algorithms: 1) the gradient descent method, 2)
alternating optimization. The channel model is same to section
IV. Moreover, we set ρ = Pmax

σ2 , M = 16, d
λ = 1, ωAoD,

ωAoD, ϑAoA, and ϑAoD are randomly set within [0, 2π). The
following numerical results are averaged over 1000 random
realization.

A. Benchmark

In comparison, we compute the multicast capacity with the
following scheme:

1) Brute-Force Search: The optimal solution for Prob-
lem (P1) is obtained by brute-force search.

2) Lower Bound: The lower bounds of the capacity are
obtained by asymptotic analysis.

3) Beamforming Design: The covariance matrix Q degen-
erates to beamforming vector v. The capacity in Problem (P1)
is rewritten as

max
�v�2≤Pmax

min
k=1,···K

log
�
1 +

���uHGkH + tH
k

�
v
��2
�
. (52)

The solution is given in [31] in detail.
4) Beamforming Design With Imperfect CSI: 3Due to the

imperfect cascaded CSI of BS-RIS-MU links, the cascaded

3The beamforming design with imperfect CSI has been studied for the RIS-
assisted broadcast transmission. However, there are not works considering the
problem for the multicast transmission. This is because this solution of the
problem for the multicast transmission is similar to that for the broadcast
transmission. Thus, we regard the achievable rate for beamforming design
with imperfect CSI as a baseline.

channel GkH is represented as

GkH = Ĉk + ΔCk, k = 1, · · · ,K, (53)

where Ĉk is the estimated cascaded CSI of BS-RIS-MU link
at the k-th MU, and ΔCk is the unknown cascaded CSI
given as

�ΔCk�F ≤ �k, k = 1, · · · ,K, (54)

where �k is the radii of the uncertainty regions known at the
BS, and we set �k = 0.5 in simulation. The transmission rate
maximization problem (52) is equivalent to

(P4) min
v,u

�v�2 (9), (54), (55)

log
�
1 +

���uHGkH + tH
k

�
v
��2
�

≥ R, k = 1 · · · ,K, (56)

where R is the target transmission rate and constrains (56) are
the worst-case SNR requirements for the MUs. From [38],
we obtain that for the given optimal solution at the i-th�
v(i),u(i)


,
���uHGkH + tH

k

�
v
��2

is linearly approximated
by its lower bound at

�
v(i),u(i)


as follows

vecT (ΔCk)Avec (ΔC∗
k) + 2Re {lkvec (ΔC∗

k)} + ϕk,

(57)

where

A = vvH,(i) ⊗ uuT,(i) + v(i)vH ⊗ u(i)uT

−v(i)vH,(i) ⊗ u(i)uT,(i), (58)

lk = vec
�
u
�
tH
k + uH,(i)Ĉk

�
v(i)vH

�
+vec

�
u(i)

�
tH
k + uHĈk

�
vvH,(i)

�
−vec

�
u
�
tH
k + uH,(i)Ĉk

�
v(i)vH,(i)

�
, (59)

ϕk = 2Re
��

tH
k + uH,(i)Ĉk

�
v(i)vH

�
tk + ĈH

k u
��

−
�
tH
k + uH,(i)Ĉk

�
v(i)vH,(i)

�
tk + ĈH

k u(i)
�
. (60)

Thus, constraints (56) can be reformulated as

vecT (ΔCk)Avec (ΔC∗
k) + 2Re {lkvec (ΔC∗

k)}
+ϕk ≥ 2R − 1, (61)

By general S-procedure [38], conditions (54) and (61) can be
approximately rewritten as the linear matrix inequality, i.e., 

�kI + A lk
lTk ϕk − (2R − 1) −�k�k

!
� 0, (62)

Based on (62), Problem (P4) can be approximately reformu-
lated as

(P5) min
v,u,�

�v�2

(9), (62), (63)

where � = [�1, · · · , �K ]T ≥ 0 are slack variables.
Problem (P5) can be solved by the alternating optimization.
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Optimization of v with fixed u: First, for the fixed u,
the subproblem is given as

(P5.1) min
v,�

�v�2

(9), (62), (64)

which is convex problem and can be solved by SDP tech-
niques.

Optimization of u with fixed v: Then, for the fixed v,
the subproblem of u is a feasibility-check problem. By intro-
ducing slack variables βk, k = 1 · · · ,K , constraint (61) is
modified as

vecT (ΔCk)Avec (ΔC∗
k) + 2Re {lkvec (ΔC∗

k)} + ϕk

≥ 2R − 1 − βk. (65)

Thus, the constraint (62) can be modified as 
�kI + A lk

lTk ϕk − (2R − 1) −�k�k − βk

!
� 0, (66)

and the subproblem for the fixed v is formulated as

(P5.2) max
v,�,β

K�
k=1

βk (67)

(9), (66),
β ≥ 0, (68)

where β = [β1, · · · , βK ]. Problem (P5.2) is non-convex, and
thus we adopt convex-concave procedure [39]. For the fixed
Φ(j)

n , the non-convex part of the constraint (9) are linearized

by
���Φ(j)

n

���2 − 2Re
�
Φ∗

nΦ(j)
n

�
≤ −1. Thus, Problem (P5.2) is

solved by a sequence of problems, i.e.,

(P5.2*) max
v,�,β,δ

K�
k=1

βk − ι(j)
N�

n=1

δn (69)

(9), (66) (68),���Φ(j)
n

���2 − 2Re
�
Φ∗

nΦ(j)
n

�
≤ δn − 1, (70)

|Φn|2 ≤ 1 n = 1 + δn, n = 1, · · · , N, (71)

δ ≥ 0, (72)

Here, δ = [δ1, · · · , δM ] are slack variables imposed over the
equivalent linear constraints of constraint (9).

�N
n=1 δn is the

penalty term in the objective function (69). ι(j) is a parameter
to control the accuracy of the approximations. Obviously,
when ι(j) goes to infinity, Problems (P5.2*) and (P5.2) become
same. It is notice that Problem (P5.2*) is convex, which can be
solved by CVX. Based on above discussions, the alternating
optimization for Problem(P4) is summarized as Algorithm 3.

Remark 5: It is worth to theoretically characterize the per-
formance gap between the perfect CSI and the imperfect CSI.
It is hard to the direct performance gap, since we cannot obtain
the closed-form solution for the two cases. However, we can
obtain the lower bound of the gap by comparing the lower
bound of the prefect CSI case and the upper bound of the
imperfect CSI case. To our best knowledge, there are no works
considering to compute the upper bound of the imperfect CSI
case, which will be an interesting research problem for future
study.

Algorithm 3 Alternating Optimization for Problem (P4)

Input: Gk, k = 1, · · · ,K , H, R, ι0, η > 1, and the error
tolerances δ1 > 0 and δ2 > 0.

Output: {v∗,u∗}.
1: Initialize

�
v(i),u(i)


and u(j), which represent the output

of the i-th outer iteration and the input of the j-th inner
iteration, respectively.

2: while
����v(i)

��− ��v(i−1)
���� > δ1 do

3: Compute v(i+1) by solving Problem (P5.1) with u(i)

and v(i).
4: Initialize ι(1) = ι0 and u(1) = u(i).
5: while

��u(j) − u(j−1)
�� > δ2 do

6: Compute u(j+1) by solving Problem (P5.2*) with
u(j), v(i+1), and ι(j).

7: ι(j+1) = ηι(j).
8: end while
9: Let u(i+1) = u(j).

10: end while
11: Let {v∗,u∗} =

�
v(i+1),u(i+1)


.

Fig. 3. Achievable rates versus the number of reflecting elements (N ).

B. Performance Comparison

Fig. 3 shows the achievable rates versus the number of
reflecting elements N , where M = 8, K = 8, B = 1,
and ρ = 20 (dB). All the schemes with RIS are better than
the scheme without RIS. The achievable rate for alternating
optimization closes to the maximal capacity obtained by brute-
force search, which proves that the alternating optimization has
a brilliant performance. The proposed algorithms outperform
the beamforming design scheme. This is because beamforming
vector can be seen as one-rank covariance matrix Q, and in
most cases cannot achieves the capacity. The gaps between
the curves of the proposed algorithms and the lower bound
increase significantly. This is because with more reflecting
elements, the RIS provides more degrees of freedom further
to improve the BS-MU link with the worst channel condition
and thus obtain the high gains.

Fig. 4 presents the achievable rates versus the Rician
factor B, where ρ = 20 (dB), N = 8, and M = 8.
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Fig. 4. Achievable rates versus the Rician factor (B).

Fig. 5. Achievable rates versus the number of MUs (K).

Fig. 4 shows that the achievable rates first increase and then
approach constants, which conforms Remark 4.It implies that
only LoS components exists, and the channel coefficients
remain unchanged. Please notice that the lower bound is the
one of the capacity rather than the one of the achievable rate
for the beamforming design. Thus, the lower bound is greater
than achievable rate of the beamforming design whenB ≤ 1.6.

Fig. 5 shows the relationship between the achievable rates
and the number of MUs K , where N = 8, M = 8, B = 1, and
ρ = 20 (dB). From Fig. 5, we can observe that the achievable
rates decrease with the increase in K . Notice that the gap of
the curves between the robust beamforming and the capacity
increase with K increasing. This is because the increase in
K rises the uncertainty for robust beamforming design, which
leads to the reduction of the achievable rate. The lower bound
is given by (49), and the gap of the curves between the capacity
and lower bound decrease.

Fig. 6 shows the achievable rates with identical K and M
(i.e., K

M = 1), where N = 8 and B = 1. The lower bound
given by (87) is a constant. The achievable rates rise firstly
and then approach a finite value. It follows that the capacity
is limited when M and K go to infinity at a ratio, which
confirms Proposition 6.

Fig. 6. Achievable rate versus the equal numbers of MUs (K) and
antennas (M ).

Fig. 7. Achievable rate versus the equal numbers of MUs (K) and
antennas (M ).

Fig. 7 considers the effect of the path-loss in far-field
communication. The 3GPP propagation environment described
in [17]: 1) The large scale fading mode at distance d is given
as 10−3.75

d3.76 ; 2) The BS and RIS are located at (0, 0) and
(d0, 50m), respectively, where d0 is the horizontal BS-RIS
distance, and the MUs are randomly and uniformly placed
in the circular region with centre (150m, 0) and radius 50m.
Moreover, we set K = 8, M = 8, N = 8, Pmax = 10 dBW,
and the power of noises is set as −80 dBm. From Fig. 7,
it is concluded that the RIS near either the BS and MUs owns
higher capacity than the RIS in the middle of BS and MUs.
This is because the RIS near the BS can reflect a stronger
signal from the BS, and the MU near the RIS is able to receive
the stronger reflected signal from the RIS.

VI. CONCLUSION

This paper considered a RIS assisted multicast communi-
cation. First, we formulated a capacity optimization problem
and proposed two algorithms to obtain the locally optimal
covariance matrix and phase shifts. Then, this paper considered
a special case, where we only need to optimize the MU with
the worst channel condition. Lastly, we analyzed the order
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growth for the optimal capacity of RIS assisted multicast
transmission when the numbers of reflecting elements, BS
antennas, and MUs go to infinity.

APPENDIX I
PROOF OF PROPOSITION 4

It is obvious that C is smaller than the capacity of the
channel from BS to any MUs, i.e.,

C ≤ max
θ

log
�
1 + Pmax

��uHGkH + tH
k

��2
�
, (73)

which is also an upper bound for C. From (3) and (2),
we obtain

uHGkH + tH
k = [Ψ1,k,Ψ2,k, . . . ,Ψm,k] , (74)

where Ψm,k =
�N

n=1 gk,n,m + tk,m, with gk,n,m =
Φnhk,nHn,m. By the definitions in the first of section

IV, we obtain hk,n ∼ CN
��

B
B+1an,

1
B+1

�
, Hn,m ∼

CN
��

B
B+1anam,

1
B+1

�
, tk,m ∼ CN

��
B

B+1am,
1

B+1

�
,

where an = ej2π d
λ (n−1) sin2 ω cos ϑ sin ϑ. Since |Φn| = 1,

|an| = 1 and hk,n, Hn,m, tk,m are independent, it follows

E

�
|Ψm,k|2

�
=

�
N

B

B + 1
+

"
B

B + 1

�2

+N

��
B

B + 1
+

1
B + 1

�2

−
�

B

B + 1

�2
�

+
1

B + 1
= A

�
N2

�
. (75)

Then, based on the law of large numbers and (75), it follows

��uHGkH + tH
k

��2
=

M�
m=1

|Ψm,k|2 (76)

→ ME

�
|Ψm,k|2

�
= MA

�
N2

�
, (77)

a.s., as M → ∞. Thus, C is upper bounded by

log
�
1 + PmaxMA

�
N2

��
. (78)

Next, from [32], it is obtained that C is lower bounded in

max
θ

log
�

1 +
Pmax

K2

��uHGkH + tH
k

��2
�
. (79)

By the same proof for the upper bound of C, the lower bound
of that can be rewritten as

max
θ

log
�

1 +
Pmax

K2

��uHGkH + tH
k

��2
�

→ log

�
1 + Pmax

MA
�
N2

�
K2

�
, (80)

a.s., as M → ∞.
From the upper and lower bounds in (78) and (80),

we obtain that
• When K and N are fixed and M goes to infinity, both

the upper and lower bounds of C are O (logM), and it
follows (40);

• When N and M go to infinity and K is fixed, both the
upper and lower bounds of C are O �

logN2M
�
, and it

follows (42).

Last, the proof of (41) is similar to that of (40) and (42), and
thus we only show its difference. By the law of large number,
we can obtain that as N → ∞,

|Ψm,k|2 =

�
N�

i=1

gk,n,m + tk,m

��
N�

n=1

ḡk,i,m + t̄k,m

�

→
N�

n=1

N�
i=1,i�=n

E {gk,n,mḡk,i,m}+
N�

n=1

E

�
|gk,n,m|2

�

+2
N�

n=1

E {gk,n,mt̄k,m} + E

�
|tk,m|2

�
(81)

=

�
N

B

B + 1
+

"
B

B + 1

�2

+N

�
1 −

�
B

B + 1

�2
�

+
1

B + 1
= A

�
N2

�
,

(82)

It follows
��uHGkH + tH

k

��2 = MA
�
N2

�
, as N → ∞. The

other steps of this proof is same to the proof of (40) and (42),
and thus is omitted.

APPENDIX II
PROOF OF PROPOSITION 6

We first show the lower bound of E {C}. From the proof of
Propositions 4, we obtain that the mean of

��uHGkH + tH
k

��2

is MA
�
N2

�
and the variance of that is MD

�
N3

�
, where

D
�
N3

�
= 4

��
1 −

�
B

B + 1

�2
�
N +

1
B + 1

�
�

NB

B + 1
+

"
B

B + 1

�2

+2

��
1 −

�
B

B + 1

�2
�
N +

1
B + 1

�2

. (83)

It follows that the mean and variance of
�uHGkH�2

M are

A
�
N2

�
and

D(N3)
M , respectively. Therefore, letting l ≤

1
B+1 (N + 2) /2 + B

B+1 (N + 1)2, we derive

P

#��uHGkH + tH
k

��2

M
≤ l

$

= P

#��uHGkH + tH
k

��2

M
−A

�
N2

� ≤ �
l −A

�
N2

��$

≤ P

#�����
��uHGkH + tH

k

��2

M
−A

�
N2

������ ≥ �
A
�
N2

�− l
�$

≤ D
�
N3

�
M (A (N2) − l)2

, (84)
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where (84) is due to Chebyshev inequality. By the extreme
value theory [40], we obtain

P

#
min

k=1,··· ,K

��uHGkH + tH
k

��2

M
≥ l

$

=

�
1 − P

#��uHGkH + tH
k

��2

M
≤ l

$�K

. (85)

Then, combing (84) and (85), it is obtained that

P

#
min

k=1,··· ,K

��uHGkH + tH
k

��2

M
≥ l

$

=

�
1 − D

�
N3

�
M (A (N2) − l)2

�K

→ exp

�
− KD

�
N3

�
M (A (N2) − l)2

�
, (86)

as K → ∞. It is obvious that the lower bound of E {C} is
given as

E {C} ≥ E log

�
1 + Pmax min

k=1,··· ,K

��uHGkH + tH
k

��2

M

�

≥ P

#
min

k=1,··· ,K

��uHGkH + tH
k

��2

M
≥ l

$

log (1 + lPmax)

→ exp

�
− KD

�
N3

�
M (A (N2) − l)2

�
log (1 + lPmax) , (87)

as K → ∞, where (87) is due to (86). From (87), it is easy
to see that since l < A

�
N2

�
and K

M ≤ ∞ is a fixed ratio,
the lower bounds of E {C} are both O (1) for the case of fixed
N and N → ∞ cases, respectively.

Next, we show the upper bound of E {C}. For the minimum
received SNR, we derive

max
Q

min
k=1,··· ,K

�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

�

≤ 1
K

max
Q

K�
k=1

�
uHGkH + tH

k

�
Q
�
HHGH

k u + tk

�
(88)

=
1
K

max
Q

Tr
�
QΧΧH

�
(89)

=
Pmax

K
λmax

�
ΧΧH

�
, (90)

where Χ =
�
HHGH

1 u + t1, · · · ,HHGH
k u + tK

�
; (88) is

due to the fact that the minimum received SNR is upper
bounded by the average received SNR; (90) is due to the fact
that the maximization (89) is equivalent to the maximal eigen-
value of the matrix λmax

�
ΧΧH

�
[34]. From the eigenvalue

of random matrix theory [41] (Ψm,k is elements of matrix Χ),
we obtain

Pmax

K
λmax

�
ΧΧH

� → PmaxA
�
N2

��
1 +

"
M

K

�2

, (91)

a.s., as K → ∞, M → ∞ and K
M <∞, which implies

C ≤ log

⎛
⎝1 + PmaxA

�
N2

��
1 +

"
M

K

�2
⎞
⎠ . (92)

It follows E {C} ≤ O (1) for the fixed N , and E {C} ≤
O �

log(N2)
�

for the N → ∞.
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