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Abstract— In-band full-duplex (IBFD) communication systems
utilize self-interference cancellation to mitigate high-power self-
interference caused by simultaneous transmission and recep-
tion at the same frequency in the digital baseband domain.
Self-interference is distorted by transceiver nonlinearity. Thus,
the IBFD literature includes reports of nonlinear self-interference
cancellers developed to achieve better cancellation performance.
However, there are no detailed theoretical studies analyzing the
performance of nonlinear cancellers in IBFD systems. In this
work, we develop a theoretical analysis technique for IBFD sys-
tems using parallel Hammerstein self-interference cancellers. The
nonlinear characteristics of the system are expanded by a gen-
eralized Fourier series using orthonormal Laguerre polynomials.
Then, the canceller’s performance and the system’s symbol error
rate (SER) are analyzed using the obtained Fourier coefficients.
The analytical results are compared with simulation results,
demonstrating good correlation in a wide range of situations,
from extremely nonlinear cases to good linear cases. Additionally,
we show that the SER of the IBFD system is reduced by
moderately nonlinearizing rather than linearizing the amplifier.

Index Terms— Full-duplex radio, self-interference, digital
cancellation, amplifier nonlinearity, theoretical analysis.

I. INTRODUCTION

AS DEMAND for wireless communications increases
unabated, achieving efficient frequency utilization is

an ongoing challenge. In-band full-duplex (IBFD) [2]–[6],
in which the same frequency band is used for simultaneous
transmission and reception, definitely will cause a paradigm
shift in wireless communication. However, IBFD has yet to be
implemented in traditional wireless systems, primarily because
of high-power self-interference caused by the signal transmit-
ted by the terminal. In the IBFD literature, self-interference
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cancellation has been achieved using TX/RX isolation
[7]–[10], analog domain cancellation [11]–[13], and digital
domain cancellation [14]–[19]. Digital cancellation is the final
step in a series of cancellation processes. Thus, the perfor-
mance of an IBFD system is determined by the performance
of the digital canceller.

Additionally, transceiver nonlinearity is one of the main
sources of performance degradation in full-duplex systems.
This nonlinearity is caused by the non-ideality of analog
circuits such as amplifiers, I/Q mixers, analog-to-digital (A/D)
and digital-to-analog (D/A) converters. Since self-interference
is affected by these nonlinearities, the self-interference can-
celler needs to eliminate the distorted self-interference sig-
nal. Thus, we need a mechanism for cancelling nonlinear
self-interference to successfully implement IBFD.

The parallel Hammerstein canceller is one of most
well-studied nonlinear cancellers in the IBFD literature. This
type of canceller was initially developed to deal with amplifier
nonlinearity [4], [20], but versions have subsequently been
developed to deal with IQ imbalance [14], [18], [21] and
crosstalk in multiple-input and multiple-output (MIMO) sys-
tems [22]. These papers [4], [14], [18], [20]–[22] have ana-
lyzed the performance of such Hammerstein cancellers using
computer simulation. However, the literature does not contain
any detailed theoretical analyses, or comparisons between
simulation and theoretical results.

A. IIP-Based Distortion Analysis

In the conventional radio-frequency (RF) engineering litera-
ture, the distortion from an RF component is usually calculated
from the input intercept point (IIP). The power of the n-th
order distortion from an RF component can be estimated as

Dn =
Pout

(IIPn/Pin)n−1
, (1)

where Pin and Pout are the input and output power of the RF
component, respectively, and IIPn is the n-th order IIP of the
component. Some papers [20], [21], [23] have calculated the
power of distortions caused in a transceiver using the IIP-based
method.

Although this method is suitable for simple estimations
of distortion power, it cannot be used in applications that
require detailed analysis. Figure 1 shows the power growth of
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Fig. 1. The linear and nonlinear component powers of two-tone and OFDM
signals in the Rapp model. The smoothness factor of the Rapp model is s = 2,
and the saturation level is Vsat = 1. In the two-tone case, each component
power is computed by simulation. In the OFDM case, each component power
is theoretically calculated as [25].

linear and nonlinear components with a two-tone signal and
orthogonal frequency-division multiplexing (OFDM) signal as
the input to a Rapp model [24] with AM-AM characteristic of

|x| (1 + |x|4)− 1
4 . IIP-based analysis assumes that distortion

power increases monotonically as the power of the input
signal increases. However, we can see that the power of the
fifth-order distortion has a local minimum value in Fig. 1 even
in the two-tone case. In addition, in the high input power
region in Fig. 1, as input power increases, the slope of the
increase in distortion power decreases due to saturation. In the
low input power region in Fig. 1, we can see that the slope of
the third-order distortion does not increase for the third power
of the input power, but clearly increases for the fifth power.
These behaviors are not represented in (1).

Additionally, the results of the two-tone test are not useful
for analyzing OFDM systems because the probability dis-
tributions and peak-to-average-power ratio (PAPR) of these
two signals are completely different. In Fig. 1, the third-order
component of the OFDM signal is about 10 dB or larger than
that of the two-tone signal since the OFDM signal is more
susceptible to nonlinear distortion due to its higher PAPR. As
in the examples we have shown so far, the IIP-base analysis
cannot be used for applications that require detailed analysis
of current wireless systems.

B. Contributions

State-of-the-art studies of the theoretical analysis on in-band
full-duplex radios [20], [21], [23] have calculated the power
of distortions using IIP-based method. These studies are very
useful and very important, e.g., for the design of full-duplex
terminals and digital cancellers, as they allow easy estima-
tion of distortion power using the IIP. However, as written
in Section I-A, IIP-based method is not an exact analysis
and involves rough approximations. Thus, these studies only
analyze power level of distortions, and these techniques can-
not calculate the performance of in-band full-duplex com-
munications such as symbol error rate (SER) or bit error

rate (BER). In this paper, we use a generalized Fourier
series expansion with orthonormal Laguerre polynomials to
analyze the performance of in-band full-duplex radios with
parallel Hammerstein cancellers. While amplifiers are modeled
with a few parameters of IIP in the papers [20], [21], [23],
we model them as arbitrary functions, which increases the
degree of freedom of analysis. Arbitrary functions used
here are mathematically infinite dimensional vectors, and
our method has infinite dimensional degrees of freedom for
modeling of memoryless amplifiers. The core of our analysis
is based on studies of OFDM systems in half-duplex commu-
nication [25]–[29]. We extend them to include the analysis of
nonlinear self-interference cancellers and in-band full-duplex
systems that have nonlinear amplifiers in their transmitters and
receivers. The proposed method can be used to analyze both
the performance of parallel Hammerstein cancellers and the
SER of in-band full-duplex systems. In addition, we show
that the theoretical and simulation results match well each
other.

C. Organization and Notations

The rest of this paper is organized as follows: In Section II,
we provide a summary of papers [25]–[29] on nonlinear
analysis, and present additional useful theorems for analysis of
parallel Hammerstein cancellers. In Section III, we present our
detailed analysis method for in-band full-duplex transceivers
with parallel Hammerstein cancellers, which is the main
contribution of this paper. In Section IV, results obtained using
this analysis approach are compared with results from equiv-
alent baseband simulations, and discussed in detail. Finally,
Section V concludes the paper.

In this paper, the complex Gaussian distribution with mean
μ and variance σ2 is denoted CN (μ, σ2), and the exponential
distribution with mean ρ2 is denoted Exp(ρ2), i.e., |x|2 ∼
Exp(σ2) when x ∼ CN (0, σ2). The expected value of a
random variable R is written as E [R] = R. The binary
operator ∗ denotes convolution. For a matrix M , the transpose
of M is denoted by MT, and the inverse of M is denoted by
M−1. In denotes a n×n identity matrix, and 0m×n denotes a
m×n zero matrix. We write the Fourier transform for a signal
s(t) as F [s(t)]. A tilde above a variable (e.g., x̃) indicates it to
be a coefficient of a generalized Fourier series expansion with
orthonormal Laguerre polynomials, as defined in Section II.
In contrast, a dot above a variable (e.g., ȧ) indicates it to be
a coefficient of a power series expansion. The variables used
in this paper are listed in TABLE I.

II. THEORETICAL BACKGROUND AND THEOREMS

In this section, we describe a generalized Fourier series
expansion and some related theorems that form the core of our
theoretical analysis. In Section II-A, we provide a summary of
papers [25]–[29] relevant to the analysis of the nonlinearities
shown in Fig. 2. In Section II-B, we describe some useful
theorems for analyzing nonlinear self-interference cancellers
using the signal model of Fig. 3.
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TABLE I

VARIABLES USED IN THIS PAPER

Fig. 2. The signal model used in Section II-A. The input signal has a complex
Gaussian distribution with zero mean and unit variance. The nonlinear transfer
function α(x) has AM-AM and AM-PM nonlinearities.

A. Generalized Fourier Series Expansion With Orthonormal
Laguerre Polynomials

We define orthonormal Laguerre polynomials as

ψ2m+1(x) =
(−1)m√
m+ 1

L1
m(|x|2)x =

m∑
i=0

lm,i x|x|2i, (2)

where L1
m(z) is a generalized Laguerre polynomial defined as

L1
m(z) =

m∑
n=0

(−1)n

n!

(
m+ 1
n+ 1

)
zn, (3)

and the coefficients lm,i can be expressed as

lm,i =
(−1)i+m

i!
√
m+ 1

(
m+ 1
i+ 1

)
. (4)

Equation (2) is orthonormal with the following inner product:

〈ψp(x), ψq(x)〉 = E
[
ψp(x)ψ∗

q (x)
]

=
1
π

∫
C

ψp(x)ψ∗
q (x)e

−|x|2dx =

{
1, (p = q)
0, (p �= q)

(5)

where ∫
C

f(x)dx =
∫ 2π

0

dθ
∫ ∞

0

f(rejθ)rdr, (6)
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Fig. 3. The signal model for Section II-B. The self-interference model has
infinite-order nonlinear components corresponding to the orthonormal polyno-
mials ψp(x). In contrast, the canceller can regenerate and cancel finite-order
nonlinear components corresponding to the simple powers x|x|p−1.

for an arbitrary function f(x). Also, the cross-correlation of
ψp(x(t)) has orthogonality as

Rψpψq (τ) =

{
Rxx(τ) |Rxx(τ)|p−1

, (p = q)
0, (p �= q)

(7)

where Rxx(τ) is the cross-correlation function of x(t) [27].
This means than the orthogonal polynomials of different orders
are all uncorrelated. Then, for the signal model in Fig. 2,
we define the generalized Fourier series expansion of nonlinear
amplifier α(x) with orthonormal Laguerre polynomials as
follows:

Definition 1 (Generalized Fourier Series Expansion): If an
amplifier whose transfer function α(x) = α(|x|) x

|x| has only

AM-AM and AM-PM nonlinearity, and E

[
|α(x)|2

]
< ∞

is satisfied by x ∼ CN (0, 1), the transfer function can be
expanded with the orthonormal Laguerre polynomials as

α(x) =
∞∑

p=1,3,...

α̃pψp(x), (8)

where α̃p is the p-th Fourier coefficient, given by

α̃p =
1
π

∫
C

α(x)ψ∗
p(x)e

−|x|2dx

=
∫ ∞

0

α(r)ψp(r) · 2re−r2dr. (9)

The series expansion of (8) is referred to as the gener-
alized Fourier series expansion with orthonormal Laguerre
polynomials.

The generalized Fourier series expansion has suitable prop-
erties for analyzing nonlinear characteristics with a CN (0, 1)-
distributed input signal. In [25], [27], the following theorem
is introduced and proved.

Theorem 1: For the signal model in Fig. 2, the autocorre-
lation function of the output signal α(x(t)) is given by

Rαα(τ) =
∞∑

p=1,3,...

|α̃p|2Rxx(τ) |Rxx(τ)|p−1
, (10)

where Rxx(τ) is the autocorrelation function of the input
signal x(t). Also, the power spectral density (PSD) of the
output signal α(x(t)) is given by

|A(f)|2 =
∞∑

p=1,3,...

|α̃p|2 |Ψp(f)|2 , (11)

where |Ψp(f)|2 is defined as

|Ψ2m+1(f)|2 = F
[
Rxx(τ) |Rxx(τ)|2m

]
= |X(f)|2 ∗ |X(f)|2 ∗ · · · ∗ |X(f)|2︸ ︷︷ ︸

(m+ 1)-times convolution

∗

∗ |X(−f)|2 ∗ |X(−f)|2 ∗ · · · ∗ |X(−f)|2︸ ︷︷ ︸
m-times convolution

(12)

and |X(f)|2 = F [Rxx(τ)] is the PSD of x(t).
Proof: See the paper [27, Eq. (23) and (24) with σ2

z = 1].
�

We can then use Theorem 1 to prove Parseval’s theorem
and Bussgang’s theorem as follows:

Corollary 1 (Parseval’s Theorem): In the signal model of
Fig. 2, the expected output power of α(x) is given by

E

[
|α(x)|2

]
=

∞∑
p=1,3,...

|α̃p|2 . (13)

Proof: Substituting τ = 0 in (10), we get the following
equation:

E

[
|α(x(t))|2

]
=

∞∑
p=1,3,...

|α̃p|2
(
E

[
|x(t)|2

])p
. (14)

Then, we obtain (13) since E

[
|x(t)|2

]
= 1. �

Corollary 2 (Bussgang’s Theorem): In the signal model of
Fig. 2, we can express the output signal from a nonlinear
transfer function α(x) with an input signal x(t) ∼ CN (0, 1)
as

α(x(t)) = α̃1x(t) + dα(t), (15)

where dα(t) is a distorted signal uncorrelated with x(t). Also,
the power of the output distorted signal dα(t) can be written
as

E

[
|dα(t)|2

]
=

∞∑
p=3,5,...

|α̃p|2 = E

[
|α(x(t))|2

]
− |α̃1|2 . (16)

Proof: By comparing (8) and (15), we can see that the
distorted signal dα(t) is described by

dα(t) =
∞∑

p=3,5,...

α̃pψp(x(t)). (17)

Then, the cross-correlation of x(t) and dα(t) can be written as

Rxdα(τ) =
∞∑

p=3,5,...

α̃pRxψp(τ), (18)
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where Rxψp(τ) is the cross-correlation of x(t) and ψp(x(t)).
Since ψ1(x(t)) = x(t), Eq. (18) can be rewritten as

Rxdα(τ) =
∞∑

p=3,5,...

α̃pRψ1ψp(τ) = 0 (19)

due to the orthogonality of (7). Thus, dα(t) is uncorrelated
with x(t). In addition, from Theorem 1, the power of the
distorted signal can be written as

E

[
|dα(t)|2

]
=

∞∑
p=3,5,...

|α̃p|2 =

( ∞∑
p=1,3,...

|α̃p|2
)

− |α̃1|2

= E

[
|α(x(t))|2

]
− |α̃1|2 . (20)

�

B. Theorems Related to the Parallel Hammerstein Canceller

Theorem 1, Theorem 1, and Theorem 2 are useful for
evaluating the output signal of the nonlinear transmitter.
However, these theorems are inadequate for analyzing the
received self-interference since they do not consider a chan-
nel’s impulse response. In Fig. 3, we assume that the input
signal x(t) is distributed on CN (0, 1). The following theorem
can address the parallel Hammerstein model with orthonormal
polynomials for Fig. 3.

Theorem 2: For self-interference signal model of Fig. 3, it is
assumed that the signal y(t) can be expressed as

y(t) =
∞∑

p=1,3,...

h̃p(τ) ∗ ψp(x(t)), (21)

where h̃p(τ) is an impulse response corresponding to the
orthonormal Laguerre polynomials ψp(x), and their frequency

response is H̃p(f) = F
[
h̃p(τ)

]
. Then, the following expres-

sions hold:

|Y (f)|2 =
∞∑

p=1,3,...

∣∣∣H̃p(f)
∣∣∣2 ∣∣∣Ψp(f)

∣∣∣2 , (22)

E

[
|Y (f)|2

]
=

∞∑
p=1,3,...

ρ2
p |Ψp(f)|2 , (23)

E

[
|y(t)|2

]
=

∞∑
p=1,3,...

ρ2
p, (24)

where Y (f) = F [y(t)] is the frequency-domain representation

of the output signal y(t), and ρ2
p = E

[∣∣∣H̃p(f)
∣∣∣2].

Proof: See Appendix A. �
To perform a theoretical analysis of nonlinear cancellers

within a functional analysis framework, we must first define
them in a manageable form. Thus, we define the parallel
Hammerstein canceller as follows:

Definition 2 (parallel Hammerstein canceller): For the
signal model of Fig. 3, the output signal of the parallel
Hammerstein canceller composed of up to P -order
polynomials is defined as

c(t) =
P∑

p=1,3,...

ċp(τ) ∗ x(t) |x(t)|p−1
, (25)

where hp(τ) are impulse responses that minimize the following
residual self-interference power:

E

[
|y(t) − c(t)|2

]
. (26)

Then, we can prove the existence of impulse responses
c̃p(τ) to satisfy (27) with some trivial manipulations.

c(t) =
P∑

p=1,3,...

c̃p(τ) ∗ ψp(x(t)) (27)

The impulse responses ċp(τ) and c̃p(τ) have the following
relationships:⎡⎢⎢⎢⎣

ċ1(τ)
ċ3(τ)

...
ċP (τ)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

ċ(τ)

=

⎡⎢⎢⎢⎢⎢⎣
l0,0 l1,0 l2,0 · · · lm,0
0 l1,1 l2,1 · · · lm,1
0 0 l2,2 · · · lm,2
...

...
. . .

. . .
...

0 0 0 · · · lm,m

⎤⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

Lm+1

⎡⎢⎢⎢⎣
c̃1(τ)
c̃3(τ)

...
c̃P (τ)

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

�c(τ)

⇔ c̃(τ) = L−1
m+1ċ(τ), (28)

where m = (P − 1)/2. In other words, there is a method
for completely transforming (25) and (27), and Eq. (27) also
minimizes (26). Additionally, we can provide the following
noteworthy theorem by taking advantage of the useful prop-
erties of (27) and orthonormal polynomials.

Theorem 3: In the signal model of Fig. 3, the impulse
responses c̃p(τ) corresponding to the generalized Fourier
expansion of the parallel Hammerstein canceller (27) are
given by

c̃p(τ) = h̃p(τ). (29)

Proof: Equation (26) can be transformed into the follow-
ing expression:

E

[
|y(t) − c(t)|2

]
=

P∑
p=1,3,...

∫ ∞

−∞
E

[∣∣∣H̃p(f) − C̃p(f)
∣∣∣2] |Ψp(f)|2 df

+
∞∑

p=P,P+2,...

∫ ∞

−∞
E

[∣∣∣H̃p(f)
∣∣∣2] |Ψp(f)|2 df

+E

[
|z(t)|2

]
, (30)

where H̃p(f) and C̃p(f) are the frequency response of h̃p(τ)
and c̃p(τ), respectively. When H̃p(f) = C̃p(f) is satis-
fied, the above expression is minimized. Thus, (29) can be
derived. �

Theorem 3 states that if the received self-interference is
approximated in the form of (21), we can analyze the the-
oretical characteristics of the parallel Hammerstein canceller.
Additionally, we can analyze the characteristic of the residual
self-interference signal, denoted w(t) = y(t)− c(t). Although
we have described the time-domain Hammerstein canceller
in Theorem 3, a similar relationship, H̃p(f) = C̃p(f),
can be established for the frequency-domain Hammerstein
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Fig. 4. Analysis model of the full-duplex transceiver.

canceller [18], [30] due to the one-to-one correspondence
between the frequency response and the impulse response.

Note that even if the received signal is expanded to a
Hammerstein model of x|x|p−1 and impulse responses ḣp(τ)
as

y(t) =
∞∑

p=1,3,...

ḣp(τ) ∗ x(t)|x(t)|p−1 + z(t), (31)

the p-th impulse response of the Hammerstein canceller ċp(τ)
is not represented by ḣp(τ), i.e.,

ċp(τ) �= ḣp(τ). (32)

We provide the proof for the above inequality in Appendix B.
In contrast, (29) is an identity, and it is always holds true for
an arbitrary transfer function. Hence we use the generalized
Fourier series expansion for the theoretical analysis of nonlin-
ear self-interference cancellers. Of course, the model of (31)
can be analyzed by transforming it into the model of (21)
using the matrix Lm+1. Equation (81) of Appendix B is a
formula of the transformation between the two models.

III. THEORETICAL ANALYSIS OF FULL-DUPLEX RADIOS

WITH PARALLEL HAMMERSTEIN CANCELLER

In this section, we describe a theoretical analysis technique
for full-duplex transceivers and nonlinear self-interference
cancellers. First, we show the analytical model and apply
equation deformations to make the analysis easier. Then,
we show how the performance of the canceller and the symbol
error rate can be analyzed.

A. Analytical Model

In preparation for the analysis, we describe the analytical
model summarized in Fig. 4. Only one terminal is depicted,
but we assume that there are two terminals, terminal#1 and
terminal#2. The transmitted baseband signal is the OFDM
signal with many subcarriers, and we can assume that its
envelope amplitude and power have a Rayleigh distribution
with σ2

x = 0.5 and an exponential distribution Exp(1),
respectively.

In the transmitter of terminal#1, the transmitted signal is
distorted by the power amplifier (PA), and the signal received
by the receiver antenna can be described as

yANT,1(t) = hSI,1(τ) ∗ α1(g1x1(t))
+h21(τ) ∗ α2(g2x2(t)) + z1(t), (33)

where hSI,1(τ) is the impulse response between the TX
and RX antennas, h21(τ) is the channel impulse response
between terminal#1 and terminal#2, and z1(t) is the thermal
noise. Also, x1(t) and x2(t) are the signal transmitted from
terminal#1 and terminal#2, respectively. The nonlinear func-
tions α1(·) and α2(·) are the AM-AM and AM-PM transfer
functions of both terminals’ PAs.

Generally, in full duplex, an RF canceller is used to prevent
saturation of the receiver LNA or A/D converter. The residual
self-interference, which is the input signal to the LNA, can be
expressed as

yRFSIC,1(t) = (hSI,1(τ) − hCir,1(τ)) ∗ α1(g1x1(t))
+h21(τ) ∗ α2(g2x2(t)) + z1(t), (34)

where hCir(τ) is the impulse response of the RF canceller.
Then, the nonlinear distorted signal from the LNA can be
described as

y1(t) = β1

(
h11(τ) ∗ α1(g1x1(t))

+h21(τ) ∗ α2(g2x2(t)) + z1(t)
)
, (35)

where h11(τ) = hSI,1(τ) − hCir,1(τ), and the nonlinear
function β1(·) is the AM-AM and AM-PM transfer function
of the LNA. In this paper, we assume that the self-interference
channel after RF cancellation h11(τ) and the channel between
terminals h21(τ) are Rayleigh fading channels, and the mean
power gain of h11(τ) and h21(τ) are ρ11 and ρ21, respectively.
In other words, ρij can be written as

ρ2
ij = E

[
|Hij(f)|2

]
, (36)

where Hij(f) is the frequency response of hij(τ), and Hij(f)
is distributed on CN (0, ρ2

ij). To obtain the coefficients of the
nonlinear canceller using Theorem 3, we need to transform
(35) to the form of (21). Thus, we derive (37) from (35) using
Bussgang’s theorem.

y1(t) = β̃1,1h11(τ) ∗ α1(g1 x1(t))

+β̃1,1h21(τ) ∗ α2(g2 x2(t)) + β̃1,1z1(t) + zNL,1(t),
(37)

where β̃1,1 is the linear gain of the LNA, and zZL,1(t) is
the nonlinear distortion caused by the LNA. For simplicity,
we make the following assumptions:

• If there is no self-interference signal, the LNA does not
saturate and operates as a linear amplifier.

• The power of the self-interference is much larger than the
received desired signal and noise.

From above assumptions, we can formulate the following
equations:

β̃1,1 =
1

ρ11ν1

∫ ∞

0

β1(ρ11ν1r)r · 2re−r2dr, (38)

NNL,1 = E

[
|zNL,1(t)|2

]
=
∫ ∞

0

|β1(ρ11ν1r)|2 · 2re−r2dr −
∣∣∣β̃1,1ρ11ν1

∣∣∣2 ,
(39)
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where ρ2
11 is the mean power gain of h11(τ), NNL,1 is the

mean power of zNL,1(t), and ν2
1 is the mean transmission

power of terminal#1, expressed as

ν2
1 =
∫ ∞

0

|α1(g1 r)|2 · 2re−r2dr. (40)

Applying the generalized Fourier series expansion with the
orthonormal Laguerre polynomials to (37), we obtain

y1(t) = β̃1,1h11(τ) ∗
∞∑

p=1,3,...

α̃1,pψp(x1(t))

+β̃1,1h21(τ) ∗
∞∑

p=1,3,...

α̃2,pψp(x2(t))

+ztot,1(t), (41)

where

α̃n,p =
∫ ∞

0

αn(gnr)ψp(r) · 2re−r2dr, (42)

ztot,1(t) = β̃1,1z1(t) + zNL,1(t). (43)

From Theorem 3, the regenerated self-interference signal of
the nonlinear canceller composed of up to P -order polynomi-
als can be written as

c1(t) = β̃1,1h11(τ) ∗
P∑

p=1,3,...

α̃1,pψp(x1(t)). (44)

Thus, the residual signal after self-interference cancellation
can be expressed as

w1(t) = y1(t) − c1(t)

= β̃1,1h11(τ) ∗
∞∑

p=P+2,P+4,...

α̃1,pψp(x1(t))

+β̃1,1h21(τ) ∗
∞∑

p=1,3,...

α̃2,pψp(x2(t)) + ztot,1(t).

(45)

B. Cancellation Performance

The following self-interference cancellation ratio (SICR),
which indicates the performance of a digital canceller, can be
expressed as

SICR1 =
I11 +N tot,1

IR
11 +N tot,1

, (46)

where I11 is the mean power of the self-interference before
digital cancellation, and IR

11 is the mean power of the residual
self-interference after digital cancellation. From Theorem 2,
I11 and IR

11 can be written as

I11 = E

[∣∣∣β̃1,1h11(τ) ∗ α1(g1 x(t))
∣∣∣2] =

∣∣∣β̃1,1

∣∣∣2 ρ2
11ν

2
1 .

(47)

IR
11 = E

⎡⎢⎣
∣∣∣∣∣∣β̃1,1h11(τ) ∗

∞∑
p=P+2,P+4,...

α̃1,pψp(x1(t))

∣∣∣∣∣∣
2
⎤⎥⎦

=
∣∣∣β̃1,1

∣∣∣2 ρ2
11

(
ν2
1 −

P∑
p=1,3,...

|α̃1,p|2
)
. (48)

Also, the total noise power Ztot,1, which is the power of
ztot,1(t), can be written as

N tot,1 =
∣∣∣β̃1,1

∣∣∣2N thermal +NNL,1, (49)

where N thermal is the power of the thermal noise, and NNL,1,
which is defined in (39), is the power of the nonlinear
distortion caused by the LNA.

C. Symbol Error Rate

To analyze the symbol error rate (SER), we need to derive
statistical properties for the signal to interference, distor-
tion, and noise ratio (SIDNR). The SIDNR on terminal#1 is
described by

SIDNR1(f) =
U21(f)

D21(f) + IR
11(f) +N tot,1(f)

, (50)

where U21(f) and D21(f) are the powers of the useful and
distortion signals of the received desired signal, and IR

11(f) is
the residual self-interference power after digital cancellation.
U21(f), D21(f), and IR

11(f) can be written as

U21(f) =
∣∣∣β̃1,1

∣∣∣2 |H21(f)|2 |α̃2,1|2 |X(f)|2 , (51)

D21(f) =
∣∣∣β̃1,1

∣∣∣2 |H21(f)|2
∞∑

p=3,5,...

|α̃2,p|2 |Ψp(f)|2 , (52)

IR
11(f) =

∣∣∣β̃1,1

∣∣∣2 |H11(f)|2
∞∑

p=P+2,P+4,...

|α̃1,p|2 |Ψp(f)|2 .

(53)

The total noise contains the nonlinear distortion caused by the
LNA, and its PSD N tot,1(f) is not flat in the band − 1

2 < f <
1
2 . In the proposed analysis, we approximate the PSD of the
total noise as

N tot,1(f) =
∣∣∣β̃1,1

∣∣∣2N thermal(f) +NNL,1 |Ψ3(f)|2 , (54)

where N thermal(f) is the PSD of the thermal noise. Thus,
SIDNR1(f) can be expressed as

SIDNR1(f) =
1

λsinr,1(f) + λsdr,1(f)
, (55)

where

λsdr,1(f) =
D21(f)
U21(f)

=
1

|α̃2,1|2
∞∑

p=3,5,...

|α̃2,p|2 |Ψp(f)|2 ,

(56)

λsinr,1(f) =
IR
11(f) +N tot,1(f)

U21(f)
. (57)

Since (56) does not depend on the channels’ frequency
responses, Eq. (56) is not a random variable and can have a
fixed value. Thus, if the probability density function (PDF) of
(57) is derived, we can formulate the PDF of the SIDNR and
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analyze the SER of the full-duplex system. From Appendix C,
the PDF of (57) can be written as

pλsinr,1(x; f) =
N tot,1(f)(xU21 + IR

11(f) ) + xU 21I
R
11(f)

x(xU 21 + IR
11(f))2

× exp
(
−N tot,1(f)

xU 21

)
, (58)

where

IR
11(f) =

∣∣∣β̃1,1ρ11

∣∣∣2 ∞∑
p=P+2,P+4,...

|α̃1,p|2 |Ψp(f)|2 , (59)

U21 =
∣∣∣β̃1,1ρ21α̃2,1

∣∣∣2 . (60)

Therefore, the average SER can be analyzed by averaging
the random variable in the band − 1

2 < f < 1
2 and can be

expressed by the following integral:

SER1 =
∫ 1/2

−1/2

∫ ∞

0

Ps

(
1

x+ λsdr,1(f)

)
pλsinr,1(x; f)dxdf,

(61)

where Ps(γ) is the symbol error probability of the subcarrier
modulation. If we use M -ary QAM for each subcarrier, Ps(γ)
can be written as [31]

Ps (γ) = 1 −
[
1 −
(

1 − 1√
M

)
erfc

(√
3γ

2(M − 1)

)]2
.

(62)

D. Analysis Summary

In summary, we can analyze the performance of full-duplex
communication using the following procedure:

1) Determine the following parameters:
• Nonlinear transfer function of amplifiers: α1(x),
α2(x), β1(x), and β2(x)

• The gain of the VGA gn
• The input back-off:

IBOn (dB) = 20 log10

Asat,n

gnGn
, (63)

where Asat,n and Gn are the output saturation level
and linear gain of αn(x), respectively.

• Sum of propagation and RF cancellation (dB) =
−20 log10 ρnn

• The propagation gain between terminals: ρ21 and
ρ12

• Thermal noise level, including the noise figure of
the LNA: N thermal

• The nonlinear order of the canceller P

2) Compute the transmission power of the n-th terminal
using (40).

3) Compute the Fourier coefficients α̃n,p of the n-th termi-
nal’s transmitter using (42).

4) Compute the linear gain β̃n,1 and nonlinear distor-
tion power NNL,n of the n-th terminal’s LNA with
(38) and (39), respectively.

TABLE II

OFDM MODULATION SPECIFICATIONS

TABLE III

SIMULATION AND ANALYSIS SPECIFICATIONS

5) Analyze the cancellation performance of a digital can-
celler SICR with (46)–(49).

6) Analyze the SER with (54), (56), and (58)–(61), where
the PSD of the orthonormal Laguerre polynomial can be
written as [27]

|Ψp(f)|2 =
p∑

k=0

(−1)k

(p− 1)!

(
p

k

)(
|f |−k +

p

2

)p−1

+
,

(64)

where

(u)p+ =

{
up, (u > 0),
0, (u ≤ 0).

(65)

In the above procedure, we use numerical integration formu-
lae because there some integrals cannot be evaluated with
closed-form expressions. The source code for an example
implementation of the proposed analysis is available from the
author’s GitHub repository.1

IV. EXAMPLES AND VERIFICATION

In this section, we provide some results from the pro-
posed analysis, and some simulation results for verifying
the proposed analysis. TABLE II and TABLE III list the
simulation parameters. In the simulations, the self-interference
channel hnn(τ), comprising the wireless channel and the RF
self-interference canceller on the n-th terminal, was modeled

1https://github.com/k3kaimu/theory_of_nonlin_canceller
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as a quasi-static Rayleigh fading channel with a constant
impulse response in a given simulation trial, with different
impulse responses used in different simulation trials. We
assumed there to be two full-duplex terminals, with identical
nonlinear characteristics and parameters. Thus, in the simula-
tion, the SICRn and SERn of the two terminals were identical.
The nonlinearities of the PAs and LNAs were implemented
using the Rapp model [24], which is often used to simulate
the baseband behaviors of class AB solid-state amplifiers. The
AM-AM conversion of the Rapp model can be expressed as

Rapp(x;G,Asat, s) =
Gx(

1 +
(

|Gx|
Asat

)2s
) 1

2s

, (66)

where G is the linear gain of the amplifier, Asat is the
output saturation level, and s is the smoothness factor of the
Rapp model. The larger the smoothness factor s, the stronger
the linearity of the Rapp model. When the smoothness factor
s is infinity, the Rapp model becomes an ideally predistorted
amplifier, represented by the following AM-AM conversion:

IdealPA(x;G,Asat) = Rapp(x;G,Asat,∞)

=

{
Gx, (|Gx| ≤ Asat),
Asat

x
|x| , (|Gx| > Asat).

(67)

We also implemented time-domain parallel Hammerstein
cancellers [4], [20] in the simulator. The regenerated
self-interference signal by the cancellers can be written as

c[n] =
Mc−1∑
m=0

P∑
p=1,3,...

cp[m]x[n−m] |x[n−m]|p−1
, (68)

where cp,q[m] is estimated by the least squares algorithm
with 200 OFDM symbols to achieve best performance. In
this section, we provide results from the Rapp model. For
reference, we also provide results from the Saleh model [32],
including both AM-AM and AM-PM nonlinearities in Appen-
dix D and results in the presence of IQ imbalance and phase
noise in Appendix E.

A. Cancellation Performance

Figure 5 shows the cancellation performance of the parallel
Hammerstein canceller with different value of order P under
various conditions of propagation and RF domain cancellation.
We can confirm that the theoretical results and simulation
results match well for nonlinear cancellers, demonstrating the
accuracy of the proposed analysis method.

A more detailed discussion of Fig. 5 is as follows: The
self-interference and noise ratio, INR, is defined as

INR1 =
E

[
|h11(τ) ∗ α1(g1 x1(t))|2

]
E

[
|z1(t)|2

] =
ρ2
11ν

2
1

N thermal
, (69)

where the numerator indicates the power of the
self-interference on the first terminal. The upper bound
of the cancellation performance SICR1 can be expressed by
using INR1 as

SICR1 ≤ I11 +N thermal

N thermal
≤ INR1 + 1. (70)

Fig. 5. The performance of nonlinear self-interference cancellers with
different values of received self-interference powers. The nonlinear amplifiers
αn(x) and βn(x) were modeled using the Rapp model.

Fig. 6. The performance of nonlinear self-interference cancellers with
different values of smoothness factors for both terminals’ PAs when ρ211 =
50 dB. The nonlinear amplifiers αn(x) and βn(x) were modeled using the
Rapp model. Arrows on the y-axis indicate the SICR1 value of the infinite
smoothness factor (ideally predistorted amplifier).

Cancellers achieve the above upper bound when they have
been trained with a sufficient number of OFDM symbols, and
the LNA is not saturated by self-interference. In Fig. 5, we can
see that the performance of the canceller with P = 7 reaches
to the upper bound when ρ2

11 < −60 dB. In contrast, when the
order of the canceller P is less than seven, the performance
cannot reach the upper bound when ρ2

11 < −60 dB because
the residual nonlinear self-interference distorted by the PA
becomes larger than the thermal noise level. In Fig. 5, we can
also see that the cancellation performance is significantly
degraded by saturation of the LNA when ρ2

11 > −55 dB even
if P = 7. The parallel Hammerstein canceller cannot estimate
and regenerate the nonlinear self-interference caused by the
LNA; to achieve higher performance, we need to consider the
nonlinearity of the LNA [19], [33]–[39].

Figure 6 shows the cancellation performance of the parallel
Hammerstein canceller with various smoothness factors for
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Fig. 7. The average SER of the two full-duplex terminals with different
values of input back-offs for both terminals’ PAs when ρ211 = 50 dB and
ρ221 = 70 dB. The nonlinear amplifiers αn(x) and βn(x) were modeled
using the Rapp model.

both terminals’ PAs. Firstly, we can confirm good correlation
between the theoretical and simulation results. Furthermore,
the linear canceller (i.e., P = 1) achieves the best cancellation
performance when the PAs are ideally predistorted. The higher
smoothness factor improves amplifier linearity. Thus, ampli-
fier linearization is an effective technique for a full-duplex
system with linear canceller. More interestingly, the nonlinear
cancellers such as P = 3, 5, and 7 achieve maximum cancel-
lation performance when the PAs show moderate nonlinearity.
This means that the linearization degrades the cancellation
performance of the nonlinear cancellers. We provide a detailed
discussion of this phenomenon in Section IV-C.

B. Symbol Error Rate

Figure 7 shows the average SER of the full-duplex system
under various back-offs for both terminals’ PAs, i.e., under
various transmit powers. Similar to the results of the cancel-
lation performance shown in Fig. 5 and Fig. 6, the theoretical
and simulation results match well in Fig. 7. When the input
back-off is less than 10 dB, the SER degrades rapidly because
the distortion introduced by the PAs increases. When the input
back-off is greater than 15 dB, the SER also degrades slowly
because the power of the desired signal decreases. Thus, there
is an optimum back-off value, which depends on the nonlinear
canceller’s order P .

Figure 8 shows the average SER of the full-duplex system
with various PA smoothness factors. Again, the theoretical
and simulation results show good correlation. The full-duplex
system with a linear canceller such as P = 1 achieves
the minimum SER when the PAs are ideally predistorted.
In contrast, when we use nonlinear cancellers such as P =
3, 5, and 7, the full-duplex system achieves the minimum
SER for the smoothness factor 1 < s < 2. As in Fig. 6,
these results indicate that amplifier linearization is not the
best approach for a full-duplex system with the nonlinear
cancellers. Although this result deviates from the common
knowledge of half-duplex systems, it is confirmed by the

Fig. 8. The average SER of the two full-duplex terminals with different
values of smoothness factors for both terminals’ PAs when ρ211 = 50 dB
and ρ221 = 70 dB. The nonlinear amplifiers αn(x) and βn(x) were modeled
using the Rapp model. Arrows on the y-axis indicate results for the infinite
smoothness factor (ideally predistorted amplifier).

theoretical analysis and simulation results shown in Fig. 8 for
a full-duplex system with nonlinear self-interference canceller.
These results are very interesting; in the following section we
will clearly show why such results are obtained.

C. How Does a Nonlinear Amplifier Perform Better Than a
Linearized Amplifier?

From Fig. 6 and Fig. 8, we can confirm that the full-duplex
terminal with a nonlinear canceller does not achieve the best
performance using ideally linearized amplifiers for the trans-
mitters. We can explain these results in terms of the residual
self-interference power IR

11 defined as (48) and rewritten as

IR
11 =

∣∣∣β̃1,1

∣∣∣2 ρ2
11

(
|α̃1,P+2|2 + |α̃1,P+4|2 + · · ·

)
. (71)

To achieve high cancellation performance and low SER, it is
important to reduce the residual self-interference IR

11. For the
linear canceller, P = 1, reducing the sum of all nonlinear dis-
tortions |α̃1,3|2 + |α̃1,5|2 · · · leads to a reduction in IR

11. Thus,
the linearization reducing the total distortion power is effective
for the full-duplex system with a linear canceller. However,
for nonlinear cancellers such as P = 3, 5, 7, . . ., reducing the
sum of all nonlinear distortions |α̃1,3|2 + |α̃1,5|2 · · · does not
lead to a reduction in IR

11. This is because when the total
power of distortions is reduced, the nonlinear component, with
a higher order than P , does not necessarily become smaller.
The third-order distortion has the greatest power among the
nonlinear distortions. If the total distortion power can be
reduced, the linearization will try to reduce the third-order
distortion even if it increases the fifth- or seventh-order dis-
tortion power. Therefore, linearization does not reduce the
residual self-interference when we use nonlinear cancellers. In
summary, linearization is not the best approach for full-duplex
systems with nonlinear cancellers. In addition, if we want to
achieve higher performance in full-duplex communications,
we should design predistorters such that the SER is small. Our
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proposed analysis technique can be used to guide the design
of such predistorters.

V. CONCLUSION

This paper first presented some useful theorems for
analysis of parallel Hammerstein cancellers and residual
self-interference in full-duplex systems. Using these theorems,
we demonstrated that the performance of a full-duplex system
with parallel Hammerstein cancellers can be expressed by
coefficients of the generalized Fourier series expansion for
nonlinear amplifiers. We compared results from the proposed
analysis with simulation results in terms of self-interference
cancellation performance and SER, and confirmed that they
match well. In addition, discussion of the results revealed that
amplifier linearization is not the best approach in full-duplex
systems with the nonlinear cancellers. In Appendix E, we ana-
lyzed the power of residual self-interference under the effect
of IQ imbalance.

APPENDIX A
PROOF OF THEOREM 2

In this appendix, we provide the proof of Theorem 2. The
autocorrelation function of y(t) is expressed as

Ryy(τ) = Et [y(t)y∗(t+ τ)] (72)

=
∞∑

p=1,3,...

∞∑
q=1,3,...

R(p,q)
yy (τ), (73)

where Et [·] denotes the expected value for time t, and
R

(p,q)
yy (τ) is defined as

R(p,q)
yy (τ) = Et

⎡⎢⎢⎣
(∫ ∞

0

h̃p(τ1)ψp(x(t− τ1))dτ1

)
×
(∫ ∞

0

h̃∗q(τ2)ψ
∗
q (x(t+ τ − τ2))dτ2

)
⎤⎥⎥⎦

=
∫ ∞

0

∫ ∞

0

h̃p(τ1)h̃∗q(τ2)Rψpψq(τ+τ1−τ2)dτ1dτ2,
(74)

where Rψpψq(τ) is the cross-correlation function of ψp(x(t))
and ψq(x(t)). From (7), Rψpψq(τ) = 0 when p �= q.

Thus, the frequency domain representation of R(p,q)
yy (τ) can

be expressed as

F
[
R(p,q)
yy (τ)

]
=

⎧⎨⎩
∣∣∣H̃p(f)

∣∣∣2 |Ψp(f)|2 , (p = q)

0, (p �= q)
(75)

where H̃p(f) is the frequency response of h̃p(τ). Then,
the PSD of y(t) can be written as

|Y (f)|2 =
∞∑

p=1,3,...

∣∣∣H̃p(f)
∣∣∣2 ∣∣∣Ψp(f)

∣∣∣2 . (76)

By taking the expected values of both sides of the above
equation, Eq. (23) can be derived. Also, the expected power
of y(t) can be expressed as

E

[
|y(t)|2

]
=
∫ ∞

−∞
E

[
|Y (f)|2

]
df

=
∞∑

p=1,3,...

∫ ∞

−∞
ρ2
p |Ψp(f)|2 df

=
∞∑

p=1,3,...

ρ2
pE

[
|ψp(x(t))|2

]
=

∞∑
p=1,3,...

ρ2
p. (77)

Thus, Eq. (24) can be derived.

APPENDIX B
CONDITION OF ċp(τ) = ḣp(τ)

In this appendix, we prove the following theorem:
Theorem 4: It is assumed that the received self-interference

is expressed by a Q-order Hammerstein model as

y(t) =
Q∑

p=1,3,...

ḣp(τ) ∗ x(t) |x(t)|p−1 + z(t), (78)

where ḣp(τ) is an impulse response corresponding to
x(t) |x(t)|p−1, and z(t) is a signal uncorrelated with the
transmitted signal x(t). Then, the impulse responses ċp(τ) of
the parallel Hammerstein canceller in (25) composed of up to
P -order power series are given by the following identity

ċp(τ) = ḣp(τ), (79)

when P ≥ Q. In contrast, when P < Q, ċp(τ) �= ḣp(τ).
In other words, we cannot theoretically analyze the residual
nonlinear self-interference by using the non-orthogonal poly-
nomial expansion.

Proof: The received signal y(t) can be expressed as the
following orthonormal Laguerre polynomial expansion:

y(t) =
Q∑

p=1,3,...

h̃p(τ) ∗ ψp(x(t)) + z(t), (80)

where h̃p(τ) is an impulse response corresponding to
ψp(x(t)). Similar to (28), we can write the relationship
between ḣp(τ) and h̃p(τ) as

h̃(τ) = L−1
n+1ḣ(τ), (81)

where n = (Q− 1)/2, and

ḣ(τ) =
[
ḣ1(τ) ḣ3(τ) · · · ḣQ(τ)

]T
, (82)

h̃(τ) =
[
h̃1(τ) h̃3(τ) · · · h̃Q(τ)

]T
. (83)

From Theorem 3, when P ≥ Q, c̃(τ) is given by

c̃(τ) =
[

In+1

0(m−n)×(n+1)

]
h̃(τ), (84)

where m = (P − 1)/2. Using (28) and (81), ċ(τ) is given by

ċ(τ) = Lm+1

[
In+1

0(m−n)×(n+1)

]
L−1
n+1ḣ(τ) =

[
ḣ(τ)
0m−n

]
. (85)

Thus, ċp(τ) = ḣp(τ) is derived: when the order of the
self-interference model Q is less than the order of the can-
celler P (i.e., P ≥ Q), all self-interference of (78) can be
removed. However, the theoretical analysis of the case where
all self-interference is removed is easy. Also, our main focus is
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the case where there is a residual nonlinear self-interference,
i.e., P < Q. When P < Q, ċp(τ) is given by

ċ(τ) = Lm+1

[
Im+1 0(m+1)×(n−m)

]
L−1
n+1ḣ(τ)

=

⎡⎢⎢⎢⎣
ḣ1(τ)
ḣ3(τ)

...
ḣP (τ)

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
l�0,m+1 l�0,m+2 · · · l�0,n
l�1,m+1 l�1,m+2 · · · l�1,n

...
...

. . .
...

l�m,m+1 l�m,m+2 · · · l�m,n

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
ḣP+2(τ)
ḣP+4(τ)

...
ḣQ(τ)

⎤⎥⎥⎥⎦ ,
(86)

where l�i,j =
(
L−1
n+1

)
i,j

. Then, we derive ċp(τ) �= ḣp(τ)
when P < Q. The result shows that the analysis of
residual self-interference is very difficult when using the
non-orthogonal polynomial expansion.

�

APPENDIX C
PROBABILITY DENSITY FUNCTION OF (57)

In this appendix, we derive the PDF of (57). We assume
that |H11(f)|2 and |H21(f)|2 are have exponential distribu-
tions Exp(ρ2

11) and Exp(ρ2
21), respectively. Thus, IR

11(f) and
U21(f) are distributed exponentially, and expected values for
these random variables in − 1

2 < f < 1
2 can be expressed as

IR
11(f) = E

[
IR
11(f)

]
=
∣∣∣β̃1,1ρ11

∣∣∣2 ∞∑
p=P+2,P+4,...

|α̃1,p|2 |Ψp(f)|2 , (87)

U21 = E [U21(f)] =
∣∣∣β̃1,1ρ21α̃2,1

∣∣∣2 . (88)

Thus, the probability distribution function of IR
11(f) and

U21(f) can be described as

pIR11(x; f) =
1

IR
11(f)

exp
(
− x

IR
11(f)

)
, (89)

pU21(x) =
1
U21

exp
(
− x

U21

)
. (90)

Then, the cumulative distribution function of (57) in − 1
2 <

f < 1
2 can be written as

Prob {λsinr,1(f) < x}
= Prob

{
IR
11(f) +N tot,1 < xU21(f)

}
=
∫ ∞

Ntot,1/x

(∫ xU−Ntot,1

0

pIR11(I; f)dI

)
pU21(U)dU

= exp
(
−N tot,1

xU21

){
1 − 1

U21

(
x

IR
11(f)

+
1
U21

)−1
}
,

(91)

where pIR11(x; f) and pU21(x) are PDFs of the exponential
distributions of IR

11(f) and U21(f), respectively. In (91),

Fig. 9. Domain of the two-dimensional integration in (91).

the domain of the two-dimensional integration is as shown
in Fig. 9. Thus, the PDF of (57) can be described as

pλsinr,1(x; f)

=
d
dx

Prob{λsinr,1(f) < x}

=
N tot,1(xU21 + IR

11(f)) + xU21I
R
11(f)

x(xU 21 + IR
11(f))2

exp
(
−N tot,1

xU21

)
.

(92)

APPENDIX D
ANALYSIS EXAMPLES ON SALEH MODEL

To prove that the proposed technique can analyze AM-PM
characteristics as well as AM-AM characteristics, we show
additional analysis results using the Saleh model [32]. The
transfer function of the Saleh model can be expressed as

f(x) =
A1x

1 +B1|x|2 exp
(

j
A2|x|2

1 +B2|x|2
)
, (93)

where A1, A2, B1, and B2 are parameters that characterize the
nonlinearity of the Saleh model. When the linear gain, output
saturation level, and phase displacement at the saturation point
are G, Asat, and Φsat respectively, the parameters of the Saleh
model can be expressed as

A1 = G,A2 =
2ΦsatG

2

4A2
sat

, B1 = B2 =
G2

4A2
sat

. (94)

In this paper, we use Φsat = π/6, and G and Asat, as with the
Rapp model. Figure 10 shows the average symbol error rate
of the full-duplex system which has Saleh-modeled amplifiers
with various back-offs. The simulation and analysis parame-
ters of Fig. 10 are the same as those in Fig. 7 except for
the nonlinear transfer function. As with the results of the
Rapp model, which does not have an AM-PM characteristic,
we can also confirm that the theoretical results and simulation
results match well even if the transfer functions have an
AM-PM characteristic.

APPENDIX E
DISCUSSIONS ABOUT IQ IMBALANCE AND PHASE NOISE

The main focus of the proposed analysis is the effect of
AM-AM and AM-PM characteristic on the performance of
parallel Hammerstein cancellers. However, the effects of IQ
imbalance and phase noise are also important research subjects



6784 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 10, OCTOBER 2021

Fig. 10. The average symbol error rate (SER) of the two full-duplex terminals
with different values of input-back-offs of both terminals’ PAs when ρ211 =

50 dB and ρ221 = 70 dB. The nonlinear amplifiers αn(x) and βn(x) are
modeled using the Saleh model with Φsat = π/6.

for full-duplex radios. In this appendix, we provide simulation
results under IQ imbalance and phase noise and compare them
with analysis results. The simulation considers IQ mixers with
image rejection rate (IRR) of 25 dB at the transmitter and
receiver, and a local oscillator that generates phase noise of
about −90 dBc/Hz at 10 kHz offset. These parameters are set
based on NI 5791R transceiver [40] and previous literature
on in-band full-duplex communication [21], [41]. The other
parameters are the same as in Section IV, but the number of
simulation trials is 1001. Also, in Appendix E-B, we provide
a modification of the proposed analysis to analyze the perfor-
mance of FD radios when the self-interference caused by IQ
imbalance cannot be cancelled sufficiently.

A. Comparison of Analysis and Simulation Results in the
Presence of IQ Imbalance and Phase Noise

Figure 11 shows the cancellation performance of the parallel
Hammerstein canceller with various smoothness factors for
both terminals’ PAs as in Fig. 6. In contrast to Fig. 6, the IQ
imbalance and phase noise are taken into account on the
simulation results, and simulated cancellers can estimate and
regenerate self-interference signal affected by IQ imbalance.
The regenerated self-interference signal by the cancellers can
be written as

c[n]=
Mc−1∑
m=0

P∑
p=1,3,...

p∑
q=0

cp,q[m] (x[n−m])q (x∗[n−m])p−q

(95)

instead of Eq. (68), where cp,q[m] is estimated by the least
squares algorithm. In addition, the analysis results are shown
exactly the same as Fig. 6. For the canceller with P = 1 to 5,
we can see from Fig. 11 that the simulation results are in good
agreement with the results of the proposed theoretical analysis,
as in Fig. 6. Even for the canceller with P = 7, the difference
between the simulation and theoretical results is only a few dB.
This shows that the most serious problem in cancellers that

Fig. 11. The performance of parallel Hammerstein cancellers with different
values of smoothness factors for both terminals’ PAs when ρ211 = 50 dB.
Unlike Fig. 6, IQ imbalance and phase noise are also taken into account
in the simulation. The simulated cancellers can estimate and regenerate
self-interference signal affected by IQ imbalance.

Fig. 12. The performance of parallel Hammerstein cancellers with different
values of smoothness factors for both terminals’ PAs when ρ211 = 50 dB.
Unlike Fig. 6, IQ imbalance and phase noise are also taken into account
in the simulation. In constrast to Fig. 11, the simulated cancellers cannot
estimate and regenerate self-interference signal affected by IQ imbalance.
On the theoretical analysis, the residual self-interference power is calculated
by Eq. (96).

support IQ imbalance is the nonlinearity from amplifiers, and
that IQ imbalance and phase noise have only a small effect on
the canceller performance. As for phase noise, in in-band full-
duplex, the transmitter and receiver can share a local oscillator,
so the phase noise generated by the transmitter is reduced by
the receiver. Therefore, in this situation, our analysis method
is still valid even in the presence of IQ imbalance and phase
noise.

B. Modification of the Proposed Analysis for IQ Imbalance

Figure 12 shows the cancellation performance of the parallel
Hammerstein canceller with various smoothness factors for
both terminals’ PAs as in Fig. 11. Unlike Fig. 11, the simulated
cancellers cannot estimate and regenerate self-interference
signal affected by IQ imbalance. In this situation, cancellers
suffer from IQ imbalance, and the residual self-interference is
increased by the self-interference affected by the IQ imbalance
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that cannot be removed. Since our proposed method does not
take into account the effect of IQ imbalance, the performance
of cancellers cannot be analyzed well if no modification is
made to the proposed method. To address this issue, we use
the following residual interference power:

IR
11 =

∣∣∣β̃1,1

∣∣∣2 ρ2
11

[
ν2
1

(
1 + 2

IRR

)−∑P
p=1,3,... |α̃1,p|2

]
. (96)

instead of Eq. (48) where IRR is the image rejection rate of IQ
mixers. The coefficient 2

IRR means that IQ imbalance compo-
nents that are difficult to remove occur in the transmitter and
receiver, respectively. Figure 12 shows that the performance of
the canceller can be evaluated accurately by Eq. (96) instead
of Eq. (48).
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