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Channel Estimation for RIS-Aided mmWave MIMO
Systems via Atomic Norm Minimization
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Abstract— A reconfigurable intelligent surface (RIS) can shape
the radio propagation environment by virtue of changing the
impinging electromagnetic waves towards any desired direc-
tions, thus, breaking the general Snell’s reflection law. However,
the optimal control of the RIS requires perfect channel state
information (CSI) of the individual channels that link the base
station (BS) and the mobile station (MS) to each other via the
RIS. Thereby super-resolution channel (parameter) estimation
needs to be efficiently conducted at the BS or MS with CSI
feedback to the RIS controller. In this paper, we adopt a
two-stage channel estimation scheme for RIS-aided millimeter
wave (mmWave) MIMO systems without a direct BS-MS channel,
using atomic norm minimization to sequentially estimate the
channel parameters, i.e., angular parameters, angle differences,
and the products of propagation path gains. We evaluate the
mean square error of the parameter estimates, the RIS gains,
the average effective spectrum efficiency bound, and average
squared distance between the designed beamforming and combin-
ing vectors and the optimal ones. The results demonstrate that the
proposed scheme achieves super-resolution estimation compared
to the existing benchmark schemes, thus offering promising
performance in the subsequent data transmission phase.

Index Terms— Atomic norm minimization, channel parame-
ter estimation, compressive sensing, millimeter wave MIMO,
reconfigurable intelligent surface.

I. INTRODUCTION

THE millimeter wave (mmWave) bands with
multiple-input multiple-output (MIMO) transmission is

a promising candidate for 5G and beyond 5G communication
systems [1]. However, the transmission distance is limited due
to the high free-space path loss, which can be compensated
for by introducing large antenna arrays at both ends of the
link [2]–[4]. This in turn brings challenges on the channel
estimation (CE) compared to that for small-scale MIMO
systems with less unknown channel coefficients. Unlike
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the sub-6 GHz bands, the wireless channels at mmWave
frequencies are verified to have less scattering [1]. Thereby
fewer resolvable paths exist between the base station (BS)
and mobile station (MS). Thus, the mmWave MIMO
channel is typically inherently sparse (i.e., the number of
distinguishable paths in the angular domain is much smaller
than that of transmit and receive antennas). Efficient yet
effective compressive sensing (CS) techniques, which take
advantage of the sparsity, have been widely applied in
the channel (parameter) estimation of point-to-point (P2P)
mmWave MIMO channels, e.g., in [5]–[8].

Due to the channel sparsity, the mmWave communications
typically require line-of-sight (LoS) connection to maintain
sufficient receive power level. In practice, the direct channel
between the BS and MS can be blocked by objects [9].
In order to maintain the connectivity under LoS blockage,
the concept of a reconfigurable intelligent surface (RIS), also
known as intelligent reflecting surface (IRS) [10] or large
intelligent surface (LIS) [11], [12], has been recently proposed
in [13]–[17] as a smart reflector. It can also been interpreted as
a full-duplex (FD) relay [18], although it is in reality a passive
element with no active transmit power amplifier, which is a
core component of an actual relay station. Other potential ben-
efits brought by introducing a RIS include enhanced spectrum
efficiency (SE), energy efficiency (EE), and physical-layer
security [19], which makes RIS a promising candidate for
upcoming 6G [20]. Additionally, the RIS has potential to offer
higher-accurate indoor or outdoor radio localization [17], [21].
In practice, the RIS can be made of an array of discrete phase
shifters, which can passively steer beams towards dedicated
terminals by controlling the phase of each RIS unit. This kind
of RIS architecture is called the discrete RIS and does not have
any baseband processing capability [14], [15], [17]. Therefore,
extremely low power consumption is expected, used only for
the control of the RIS units. Another type of RIS, on the
contrary, is the continuous/contiguous RIS, which can be seen
as an active transceiver with baseband processing capabil-
ity [12] or a passive reflector [22] like the aforementioned
discrete RIS. Various works on RIS channel modelling were
conducted [23]–[25], and these will guide the development of
CE algorithm and design of RIS phase control matrix, studied
in this paper. In these works, the RIS elements are modelled as
individual scatterers and can be jointly considered for the pur-
pose of steering the signal in a dedicated direction. Dynamic
metasurface antennas with advanced analog signal processing
capabilities for 6G communication were discussed in [26] in
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terms of their main characteristics when used for radiation
and reception. In addition, a hardware architecture with single
radio frequency (RF) chain at the RIS was proposed explicitly
for channel estimation purpose with alternating optimization
method in [27].

CE methods for RIS-aided MIMO systems have been
recently studied in [28]–[34]. The RIS channel estimation was
discussed in [28], [29] as one of the main design challenges.
Taha et al. [30] considered a special setup with mixed active
and passive elements at the RIS. Therefore, CE was performed
using CS and deep learning (DL) methods at the RIS based
on the received signals at the active elements with pilots sent
from the BS and MS. The introduction of active receive ele-
ments at the RIS increases the power consumption, complexity
and cost of RIS, but can simplify the CE problem into two
P2P MIMO CE subproblems [35]. In [31], sparse matrix fac-
torization and matrix completion were exploited in a sequential
manner to perform iterative CE. Thereby full rate advantage of
the RIS is not achieved during the training process due to the
on/off state applied to the RIS elements. The individual MIMO
channels in the reflection link can also be estimated by parallel
factor decomposition [36], [37]. In these works, iterative
refinement of the individual channel estimation is conducted
by using bilinear alternating least squares (BALS). An optimal
CE scheme was studied by following the criterion of minimum
variance unbiased (MVU) estimation in [32]. In [33], CS was
applied to estimate the cascade mmWave channel. However,
a single antenna was assumed for the MS in both [32] and [33],
which applies for wireless sensor network applications, but
is not practical for mmWave MIMO communications. In our
recent work [34], we applied the iterative reweighted method
of [7], [38] to estimate the channel parameters. However, both
BS-RIS and RIS-MS channels were assumed to have only a
LoS path. Unlike all the aforementioned literature, a multi-
level hierarchical codebook based scheme was leveraged to
design the phase control matrix (reflection beam) at the RIS
and the combining vector at the MS jointly [39] instead of
estimating the MIMO channel parameters as an intermediate
step towards joint design of active combining vector at the MS
and passive beamforming (BF) at the RIS.

In this paper, we study the CE problem of passive
RIS-aided mmWave MIMO systems, where the direct channel
is obstructed and multiple paths exist for both the BS-RIS and
RIS-MS channels. We resort to the parametric channel model
for the individual channels [2], [40], based on angular para-
meters, i.e., angles of departure (AoDs) and angles of arrival
(AoAs), and propagation path gains. Furthermore, no data
sharing backhaul link is assumed between the BS and RIS;
low rate control link is sufficient. We divide the CE problem
into two CS subproblems and apply atomic norm minimization
to sequentially find the estimates of the channel parameters,
e.g., angular parameters, angle differences, and the products
of propagation path gains. We take advantage of channel
sparsity in the proposed CE algorithm. Unlike the estimation of
cascaded channel or individual channels, much fewer elements
need to be estimated. In addition, when the number of elements
(including both RIS elements and BS/MS antennas) increases,
estimation of individual channel matrices or cascaded channel

matrix will cause substantial increases in both training
overhead and computational complexity. On the contrary,
channel sparsity level will further increase, which may even
reduce the required training overhead. Besides evaluating the
mean square error (MSE) of the estimated channel parameters,
we design the RIS phase control matrix, the BS BF vector,
and the MS combining vector based on the estimates and
evaluate the average effective SE bound and RIS gains. The
proposed CE scheme significantly outperforms an orthogonal
matching pursuit (OMP) based two-stage counterpart [41].
Simulation results demonstrate that the average effective SE
bound achieved by the proposed method approximate that
with perfect channel state information (CSI) in the low signal-
to-noise ratio (SNR) regime with limited training overhead.

The contributions of the paper are summarized as follows:
• We propose an efficient super-resolution channel para-

meter estimation scheme for RIS-aided mmwave MIMO
systems, based on atomic norm minimization [42], [43].
The proposed scheme can reduce the training overhead
significantly by first estimating part of the channel para-
meters (i.e., AoDs of the BS-RIS channel and AoAs of
the RIS-MS channel) and utilizing the estimates in the
subsequent training period.

• Decoupled atomic norm minimization is applied in the
first stage with a multiple measurement vectors (MMV)
model for the estimation of AoDs of the BS-RIS channel
and AoAs of the RIS-MS channel, while atomic norm
minimization is applied in the second stage with a
single measurement vector (SMV) one for the estimation
of angle differences and the products of propagation
path gains.

• The design of RIS phase control matrix is studied by
following the criterion of maximizing the power of the
effective channel. On the basis of the designed RIS
phase control matrix, the joint design of BS BF and
MS combining vectors are considered based on the
reconstructed composite channel matrix (using estimated
channel parameters).

The rest of the paper is organized as follows: Section II
introduces the channel model for the RIS-aided mmWave
MIMO system, followed by the sounding procedure in
Section III. Section IV provides the details about the proposed
two-stage CE approach based on atomic norm minimization,
followed by the RIS control as well as beamforming and
combining design in Section V. The performance evaluation
is offered in Section VI. Section VII draws the conclusions
and discusses the potential directions for future investigation.

Notations: A bold lowercase letter a denotes the column
vector, a bold capital letter A denotes the matrix, (·)H, (·)T,
and (·)∗ denote the Hermitian transpose, transpose, and con-
jugate, respectively, diag(a) denotes a square diagonal matrix
with entries of a on its diagonal, Toep(a) is a Toeplitz matrix
with a being its first row, Tr(A) returns the sum value of
the diagonal elements of A, vec(A) denotes the vectorization
of A by stacking the columns of the matrix A on top of one
another, E[·] is the expectation operator, var(·) is the variance
of a random variable, �a� returns the least integer greater than
or equal to a, a ◦ b and a ⊗ b denote the Hadamard product
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Fig. 1. The considered RIS-aided mmWave MIMO system with one
multi-antenna BS, one multi-antenna MS, and one multi-element RIS, with
LB,R = 2 resolvable paths between the BS and RIS and LR,M = 3 resolvable
paths between the RIS and MS.

and Kronecker product of a and b, respectively, [a]i denotes
the ith element of vector a, [A]ij denotes the (i, j)th element
of A, [A]i,: and [A]:,i denote the ith row and column vectors
of A, respectively, A � 0 means A is positive semidefinite,
and � · �F is the Frobenius norm.

II. CHANNEL MODEL

We consider the RIS-aided mmWave MIMO system, which
comprises one multi-antenna BS, one multi-antenna MS, and
one multi-element RIS, as depicted in Fig. 1. No data-sharing
backhaul link is assumed between the BS and RIS. The
numbers of antenna elements at BS and MS are denoted as
NB and NM, respectively; the number of elements at the RIS
is NR. The antenna array is assumed to be an uniform linear
array (ULA) with consideration of azimuth angle only; an
extension to an uniform planar array (UPA) can be done.1

We further assume that the direct channel between the BS
and MS is obstructed, which renders the potential usage
of a RIS for maintaining the connectivity between the
BS and MS.2

We assume the geometric channel model, which is based
on the AoDs, the AoAs, and the propagation path gains of
each link. The channel model was also validated in the recent
works [23]–[25]. The channel between the BS and the RIS
HB,R ∈ CNR×NB is

HB,R =
LB,R∑
l=1

[ρB,R]lα([φB,R]l)αH([θB,R]l)

= A(φB,R)diag(ρB,R)AH(θB,R), (1)

where [θB,R]l and [φB,R]l denote the lth AoD and AoA of
the BS-RIS channel, respectively, LB,R denotes the number
of resolvable paths, which is usually on the order of 3–8 in
mmWave frequency bands [1], and [ρB,R]l denotes the
lth propagation path gain. Index l = 1 refers to the LoS
path, and l > 1 refer to the non-line-of-sight (NLoS)
paths, e.g., single-bounce or multi-bounce reflection paths.

1Fig. 1 shows the RIS as an UPA for the sake of better aesthetic illustration.
The proposed channel estimation scheme can also be extended to an UPA-type
RIS-aided mmWave MIMO system with some modifications.

2The proposed scheme can also be applied to the scenario, where the direct
BS-MS channel also exists. The process is summarized as follows: In the first
step, we turn the RIS into an absorption mode, and estimate the direct channel,
i.e., BS-MS channel; In the second step, we apply the proposed scheme to
estimate the channel parameters in the composite channel, i.e., BS-RIS-MS
channel.

Usually, |[ρB,R]1|2 	 |[ρB,R]l|2 for l > 1, and the difference
is easily more than 20 dB [44]. Finally, α([θB,R]l) ∈ CNB×1

and α([φB,R]l) ∈ CNR×1 are the array response vectors
with

[
α([θB,R]l)

]
k

= exp
(
j2π d

λ (k − 1) sin([θB,R]l)
)

for
k = 1, . . . , NB and

[
α([φB,R]l)

]
k

= exp
(
j2π d

λ (k −
1) sin([φB,R]l)

)
for k = 1, . . . , NR, where d is the antenna

element spacing, λ is the wavelength of the carrier frequency,

and j
�
=

√−1. By following φB,R =
[
[φB,R]1, . . . , [φB,R]LB,R

]T

and θB,R =
[
[θB,R]1, . . . , [θB,R]LB,R

]T
, array response matrices

A(φB,R) ∈ CNR×LB,R and A(θB,R) ∈ CNB×LB,R are formulated
as

A(θB,R) =
[
α

(
[θB,R]1), . . . , α([θB,R]LB,R

)]
, (2)

A(φB,R) =
[
α

(
[φB,R]1), . . . , α([φB,R]LB,R

)]
. (3)

Similar to (1), the channel between the RIS and the MS,
denoted as HR,M ∈ CNM×NR , is

HR,M =
LR,M∑
l=1

[ρR,M]lα([φR,M]l)αH([θR,M]l)

= A(φR,M)diag(ρR,M)AH(θR,M), (4)

where the channel parameters φR,M, ρR,M, θR,M, A(φR,M), and
A(θR,M) are defined in the same manner as those in (1).

Using (1) and (4), the composite channel H ∈ CNM×NB

between the BS and MS, after taking into consideration the
RIS, becomes

H = HR,MΩHB,R

= A(φR,M)diag(ρR,M)AH(θR,M)

ΩA(φB,R)diag(ρB,R)AH(θB,R), (5)

where Ω ∈ CNR×NR is the phase control matrix at the RIS.
We assume that the RIS is composed of a series of discrete
phase shifters. Therefore, matrix Ω is a diagonal matrix with
unit-modulus constraint on the diagonal entries, i.e., [Ω]kk =
exp(jω) with phase ω ∈ [0, 2π). In practice, the reflection of
RIS may not be perfect so that reflection coefficient a ∈ [0, 1]
as in [Ω]kk = a exp(jω) describes the amplitude scaling and
power loss3 [10]. We assume an ideal RIS with a = 1; for our
focus on CE, this does not decrease the generality of the work
as long as the value of a is known.4 In this regard, the received
power at the MS can be considered as a theoretical upper
bound if the RIS phase control matrix is optimally designed.

Let us define G ∈ CLR,M×LB,R as the effective channel,

G = diag(ρR,M)AH(θR,M)ΩA(φB,R)diag(ρB,R), (6)

taking into consideration of propagation path gains, RIS phase
control matrix and the angular parameters associated with the
RIS, i.e., θR,M and φB,R. The expression (6) will be utilized in
the second CE stage, discussed in Section IV-C and the design

3If a = 0, the RIS is assumed to be operating in an absorption mode.
On the contrary, if a = 1, the RIS is assumed to be operating in an ideal
reflection mode. In practice, due to the imperfect fabrication of RIS elements,
the reflection coefficients may vary from one RIS element to another.

4However, in practice, phase-dependent amplitude variation may exist in the
RIS elements [45], which may require redesign of the proposed CE scheme
and RIS phase control matrix.
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Fig. 2. The sounding procedure, where each CE subinterval contains T + 1
blocks (indexed by t = 0, . . . , T ) and Ωt varies over the blocks. In the
example, the phase control matrix keeps unchanged within the first 9 symbol
times (i.e., the first block of the CE subinterval, also known as stage 1
sounding), and varies every 6 symbol times in the stage 2 sounding.

of phase control matrix based on parameter estimates, dis-
cussed in Section V. Because G is a function of the RIS phase
control matrix, the design of Ω affects the effective channel,
which in turn influences the achievable rate (i.e., capacity) of
the composite channel. This imposes the significance of the
RIS design and control for data communications, especially,
when the direct BS-MS channel is blocked. By following (6),
the composite channel H in (5) can be further expressed as

H = A(φR,M)GAH(θB,R). (7)

Remark 1: The composite channel matrix H in (7) is simi-
lar to a P2P mmWave MIMO channel. However, a difference
exists. As for the P2P mmWave MIMO channel, G is a
diagonal matrix, like diag(ρB,R) in (1) and diag(ρR,M) in (4)
while for the RIS-aided MIMO channel, G is usually in a
general format, i.e., a full matrix. In addition, the effective
channel matrix G needs to be optimized via controlling the
RIS phase shifters in order to take the full potential of
introducing the RIS.

In the first CE stage, we estimate φR,M and θB,R

with randomly generated training sequences. In the second
CE stage, we estimate the remaining channel parameters, e.g.,
ρR,M, θR,M, ρB,R, and φB,R based on the training sequences
designed according to the estimates in the first stage. Due to
the coupling effect in (6), these parameters cannot be estimated
separately in the second stage, detailed in Section IV.

III. SOUNDING PROCEDURE

We also assume that the wireless channels are quasi-static
block fading. That is, the channel parameters remain
unchanged during a certain period of time, known as the
coherence time. For the sounding process, one coherence time
interval is divided into two subintervals, the first one for CE
and the second for data transmission (DT), as depicted
in Fig. 2. The CE subinterval is further divided into T + 1
blocks. In each block, a different Ω is taken into consideration,
i.e., Ω0 �= Ω1 �= . . . �= ΩT . The frequent change of the
RIS phase control matrix within one coherence time can be
achieved by n-type field-effect transistor (nFET) switches. The
turn-on and turn-off times of the switch are on the order
of 300 ps [46], which can be much smaller than a symbol
duration at mmWave communications.

A. Stage 1 Sounding

In the first block of CE subinterval, i.e., t = 0, the BS
sends a (random) training matrix X0 ∈ CNB×N0 which,
after reflected from the RIS with a (random) phase control
matrix Ω0,5 is received at the MS as Y0 ∈ CM0×N0

through a (random) combining matrix W0 ∈ C
NM×M0 . As in

mmWave MIMO systems, the BS and MS are commonly
assumed to possess a hybrid analog-digital precoding archi-
tecture with limited number of RF chains for the sake of
reduced complexity, cost, and power consumption [2], [3], [7],
[40]. We follow the same hybrid architecture in this paper.
Therefore, at the MS, we can only access to a maximum
NRF-dimensional signal vector per symbol time6 with NRF

being the number of RF chains at the MS. In other words,
the combining matrix at the MS can be as large as NM ×NRF

per symbol duration. Meanwhile, at the BS, we can only
explore one beam (i.e., one column vector of transmitted
signals in X0) per symbol duration regardless of the number of
RF chains at the BS [2], [7]. When NRF < M0, each training
beam from X0 needs to be sent � M0

NRF
� times. Thus, the training

overhead in the first stage is N0� M0
NRF

� [7].

B. Stage 2 Sounding

Based on the received signal Y0, we resort to the atomic
norm minimization to recover the angular parameters θB,R and
φR,M, which guide the design of sequential training matri-
ces {X1, . . . ,XT } and combining matrices {W1, . . . ,WT }.
To simplify the design, we fix X1 = · · · = XT ∈ CNB×LB,R

and W1 = · · · = WT ∈ CNM×LR,M while changing Ωt for t =
1, . . . , T and obtain the received signals as {Y1, . . . ,YT }.7

We intentionally choose N0 	 LB,R and M0 	 LR,M in order
to provide a very accurate estimate in the first stage. Therefore,
the training overhead can be greatly reduced for the block t
as t = 1, . . . , T compared to that for the first block. The
overall training overhead in the second stage is TLB,R�LR,M

NRF
�.

Based on {Y1, . . . ,YT }, the atomic norm minimization is
further applied to estimate the remaining channel parameters
as detailed below.

C. Observation Model

The received signals for all the blocks are summarized as

Yt = WH
t H(Ωt)Xt + WH

t Zt,

= WH
t A(φR,M)GtAH(θB,R)Xt + WH

t Zt,

for t = 0, . . . , T, (8)

5The phase control matrix is assumed to be known to the MS. This can be
achieved by generating it by agreed pseudo-noise (PN) sequences.

6The coherence time interval may include hundreds or even thousands of
modulated symbol times/durations at mmWave frequency bands, e.g., in [47],
which depends on the carrier frequency, MS velocity, and the bandwidth.

7In principle, we can refine the training and combing matrices at block t
based on the received signals up to block t−1. However, this will bring more
computational complexity of the proposed CE algorithm. Also, we intention-
ally use more time slots in the first block of CE subinterval in order to obtain
a super resolution for the estimates of channel parameters in the first stage.
Therefore, the room for gradual improvement will be rather limited.
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where we write H explicitly as a function of Ωt, Gt =
diag(ρR,M)AH(θR,M)ΩtA(φB,R)diag(ρB,R), and each entry in
additive white Gaussian noise (AWGN) Zt follows CN (0, σ2).

IV. TWO-STAGE CE APPROACH

Before moving to the details of the two-stage CE approach,
we briefly review the atomic set, the atomic norm, and the
atomic norm minimization.

A. Atomic Norm Minimization

Unlike the conventional greedy CS approaches, e.g., OMP,
the atomic norm minimization is based on an infinite set
and solved by resorting to convex optimization tools [42],
[48]. Atomic norm minimization can well address the basis
mismatch problem, which is commonly known in finite-size
dictionary based CS approaches. Depending on the signals to
be recovered, an atomic set is formulated by containing atoms
with the same dimension of the desired signals [42], [48].

1) 1D Signal: As in direction of arrival (DoA) estima-
tion or line spectral estimation problems [42], [49], the one
dimensional (1D) signal to be recovered is in the form of
α(θ) ∈ CNu×1.8 Therefore, the atomic set is defined as

A = {α(θ1) ∈ C
Nu×1 : θ1 ∈ [−π, π]}, (9)

where the cardinality of A is infinite, i.e., card(A) = +∞.
For any signal with the same dimension of the atoms, e.g.,
u ∈ CNu×1, its atomic norm with respect to A in (9) is defined
as

�u�A = inf{q : u ∈ qconv(A)},
= inf{θ1,l∈[−π, π],βl∈C}

{∑
l

|βl|
∣∣∣u =

∑
l

βlα(θ1,l)
}
,

(10)

where conv(A) is the convex hull of A, and u = Auβ falls
into the SMV model with Au = [α(θ1,1), α(θ1,2), . . .] and
β = [β1, β2, . . .]T.

The atomic norm is equivalent to the solution of the
following semidefinite program (SDP) [48]

�u�A = inf{u1,z}
{z

2
+

1
2 Nu

Tr(Toep(u1))
}

,

s.t.

[
Toep(u1) u

uH z

]
� 0. (11)

2) 2D Signal: As for a two-dimensional signal, one valid
matrix atomic set can be defined as [8]

AM = {α(θ1)cT ∈ C
NU×MU : θ1 ∈ [−π, π], �c� = 1}. (12)

We intentionally introduce such an atomic set, since it will
be used in the first stage of the proposed two-stage CE
scheme. Other types of matrix atomic sets also exist in the
literature depending on the structure of the original signal to

8The ultimate goal is to recover the angle (e.g., DoA θ) or equivalently
frequency (e.g., f = sin(θ)), which is contained in vector α(θ) or equiv-
alently in α(f). Knowing α(θ) is tantamount to knowing θ, and the same
principle is applied to α(f) and f , unless the following ambiguity exists,
∃ α(θ1) = α(θ2) with θ1 �= θ2 or ∃ α(f1) = α(f2) with f1 �= f2.

be recovered. Each atom in set AM is a rank-1 matrix, and
the atomic set size is also infinite due to the continuum of θ1.

For any matrix U ∈ CNU×MU with the same dimension
of α(θ1)cT, its atomic norm with respect to AM in (12) is
defined as

�U�AM = inf{q : U ∈ qconv(AM )},
= inf{θ1,l∈[−π, π],βl∈C}

{∑
l

|βl|
∣∣∣U

=
∑

l

βlα(θ1,l)cT
l

}
, (13)

where conv(AM ) is the convex hull of AM and U =
Audiag(β)CT = AuC̆ falls into the MMV model with
C = [c1, c2, . . .] and C̆ = diag(β)CT. This atomic norm
is equivalent to the solution of the following SDP, as in [48]

�U�AM = inf{u1,Z}
{ 1

2MU
Tr(Z) +

1
2 NU

Tr(Toep(u1))
}
,

s.t.

[
Toep(u1) U

UH Z

]
� 0. (14)

Similar to other CS methods, the goal of atomic norm mini-
mization is also to find the sparsest representation of u or U
with the least number of atoms from the predefined atomic
set [48].

B. First Stage of Channel Estimation Algorithm

The CE problem in the first stage falls into the category
of two decoupled 2D signal (with a MMV model) recovery
subproblems.

1) Estimation of φR,M: By expression Ū = A(φR,M)G0AH

(θB,R)X0 as Ū = A(φR,M)C̄ with C̄ = G0AH
t (θB,R)X0,

the estimation of φR,M based on Y0 in the first stage can be
formulated as regularized denoising

min
μ

2
�Ū�AM +

1
2
�Y0 − WH

0 Ū�2
F, (15)

which can be further expressed as

{ ˆ̄u1,
ˆ̄Z, ˆ̄U} = arg min

ū1,Z̄,Ū

μ

2 N0
Tr(Z̄) +

μ

2 NM
Tr(Toep(ū1))

+
1
2
�Y0 − WH

0 Ū�2
F

s.t.

[
Toep(ū1) Ū

ŪH Z̄

]
� 0, (16)

where μ is a regularization parameter controlling the
trade-off between sparsity and data fitting, set as μ ∝√

σ2NMN0 log(NMN0) [43]. We assume that we know the
number of (significant) paths as prior information. In prac-
tice, this can be identified either by long-term site specific
measurements or CS based support recovery algorithms, for
example. The recovery of φR,M is then based on the solution
of Toep(ˆ̄u1) from (16) by root finding approach or other
related approaches, e.g., the classical multiple signal clas-
sification (MUSIC) and estimation of signal parameters via
rotational invariant techniques (ESPRIT) [50], [51].
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2) Estimation of θB,R: Similarly, based on the YH
0 , we can

recover θB,R by addressing the following convex problem

min
η

2
�Ũ�AM +

1
2
�YH

0 − XH
0 Ũ�2

F, (17)

where Ũ = A(θB,R)GH
0 AH(φR,M)W0 = A(θB,R)C̃ with

C̃ = GH
0 AH(φR,M)W0, and η is a regularization parameter

controlling the trade-off between sparsity and data fitting,
set as η ∝ √

σ2NBM0 log(NBM0) [43]. It can be further
expressed as

{ ˆ̃u1,
ˆ̃Z, ˆ̃U} = arg min

ũ1,Z̃,Ũ

η

2 M0
Tr(Z̃) +

η

2 NB
Tr(Toep(ũ1))

+
1
2
�YH

0 − XH
0 Ũ�2

F

s.t.

[
Toep(ũ1) Ũ

ŨH Z̃

]
� 0. (18)

Similarly, the recovery of θB,R is based on the solution of
Toep(ˆ̃u1) from (18) by root finding approach or other related
approaches.

C. Second Stage of Channel Estimation Algorithm

In the second stage, we first design training and receive
beams, which leads to a simplified approximate observation
model. From this model, we can determine LB,RLR,M separate
observations and apply SMV atomic norm minimization on
each of these. These different steps are now detailed.

1) Training and Receive Beams: After estimation of θB,R

and φR,M, we align the training beams at BS and receiving
beams at MS with these angles. Namely, we design the Xt

and Wt, for t = 1, . . . , T , as follows

Xt =
1√
NB

A(θ̂B,R),

Wt =
1√
NM

A(φ̂R,M), (19)

where θ̂B,R and φ̂R,M are the estimates of θB,R and φR,M,
respectively, from the first stage. The numbers of columns
in Xt and Wt are LB,R and LR,M, respectively. In general,
these values are far less than the number of the training
beams/sequences used in the first stage, i.e., LB,R � N0 and
LR,M � M0. Therefore, the training overhead can be reduced
tremendously by first determining θB,R and φR,M in the first
stage and then guiding the design of Xt and Wt, used in
the second stage.

2) Simplified Observation Model: Assuming we have a very
accurate estimate in the first stage, i.e., θ̂B,R ≈ θB,R and
φ̂R,M ≈ φR,M, we have the following

AH(θB,R)Xt ≈
√

NBI,

WH
t A(φR,M) ≈

√
NMI, (20)

under the condition of sufficient separation of angles and a
large number of antennas at both BS and MS. In practice,
the estimation performance depends on the SNR level, number
of training sequences used in the first stage, and the size of the
combining matrix in the first stage. Super resolution estimation
can be achieved in the high SNR regime with reasonable

training overhead, as can be seen in the numerical study
in Section VI. In general, the estimation in the first stage loses
the order information on entries in θB,R and φR,M. Therefore,
the products may not be scaled identity matrices as in (20) but
scaled elementary matrices. This does not affect the parameter
estimation in the second stage, as explained in the sequel.

Let us assume that the relationship in (20) holds. Then,
the received signals in the second stage can be further approx-
imated as

Yt = WH
t A(φR,M)GtAH(θB,R)Xt + WH

t Zt

≈
√

NBNMGt + WH
t Zt, for t = 1, . . . , T. (21)

3) Formulation of LB,RLR,M Observations: Recalling that
Gt = diag(ρR,M)AH(θR,M)ΩtA(φB,R)
diag(ρB,R), the (m, n)th entry of Gt is in the form of

[Gt]mn = [ρR,M]mωT
t α([Δ]mn)[ρB,R]n,

for m = 1, . . . , LR,M, n = 1, . . . , LB,R, (22)

where [Δ]mn = asin
(
sin([φB,R]n) − sin([θR,M]m)

)
is the

angle difference matrix associated with the RIS and ωt ∈
CNR×1 is the vector composed of diagonal elements of Ωt,
i.e., Ωt = diag(ωt). By setting gt = vec(Gt), the ith element
of gt is of the form of

[gt]i = ρiω
T
t α(θ̃i) for i = 1, . . . , LB,RLR,M, (23)

where

ρi = [ρR,M]m[ρB,R]n,

θ̃i = asin
(
sin([φB,R]n) − sin([θR,M]m)

)
,

with m = (i − 1)%LR,M + 1, n =
⌈ i

LR,M

⌉
, (24)

where % is the modulo operation. In other words, the product
of propagation path gains ρi is taken from entries of vector
ρ = ρR,M ⊗ ρB,R, and θ̃i is taken from the set of angle
differences

Θ̃ = {θ̃ : asin
(
sin([φB,R]n) − sin([θR,M]m)

)
,

m = 1, . . . , LR,M, n = 1, . . . , LB,R}. (25)

Therefore, each element in vec(Yt) corresponds to one cou-
ple of unknown parameters {ρi, θ̃i}, i = 1, . . . , LB,RLR,M.
We now gather these observations across T transmission
blocks. By introducing Y =

[
vec(Y1), . . . , vec(YT )

]
and

Ḡ = [g1, . . . ,gT ], each element in the ith row in Y, denoted
by [Y]i,:, corresponds to the same {ρi, θ̃i}. Hence, we can
express the ith row in column format as

[Y]Ti,: ≈
√

NBNM[Ḡ]Ti,: + zi,

=
√

NBNM[ω1, . . . , ωT ]Tρiα(θ̃i) + zi,

=
√

NBNMΩ̄ρiα(θ̃i) + zi, (26)

where Ω̄ = [ω1, . . . , ωT ]T and zi is the additive noise as
zi = [vec(WH

1 Z1), . . . , vec(WH
T ZT )]Ti,:.
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Fig. 3. The proposed two-stage CE approach, where in the first stage AoDs
from BS-RIS channel and AoAs from RIS-MS channel are determined and
in the second stage, training and receive beams aligned with these directions
are used to collect observations to estimate the products of propagation path
gains and angle differences.

4) SMV Atomic Norm Minimization: According to the for-
mulation (26), this incurs LB,RLR,M sparsity-1 signal recovery
problems with Ω̄ being the linear measurement matrix. We can
estimate ρi and θ̃i by resorting to atomic norm minimization
on SMV. It should be noted that we cannot estimate ρR,M
and ρB,R separately due to the coupling effect, and the same
principle applies to φB,R and θR,M, as seen in (22) and (24).

In the second stage, LB,RLR,M atomic norm minimization
problems are formulated as

{v̂, ĥi, ẑ} = arg min
v,hi,z

0.5νiz +
νi

2 NR
Tr(Toep(v))

+
1
2
�[Y]Ti,: −

√
NBNMΩ̄hi�2

2

s.t.

[
Toep(v) hi

hH
i z

]
� 0,

for i = 1, . . . , LB,RLR,M, (27)

where hi = ρiα(θ̃i) and the regularization parameter νi is set

as νi ∝
√

σ2 NR log(NR). The estimate of θ̃i, denoted as ˆ̃θi,
relies on Toep(v̂) by resorting to root finding methods. The
estimation of ρi is obtained by using least squares (LS) as

ρ̂i =
(
α(ˆ̃θi)

)†
ĥi, (28)

where (·)† denotes Moore-Penrose pseudo-inverse and ĥi is
the solution from (27) for hi.

The proposed two-stage CE approach is summarized
in Fig. 3.

Remark 2: There exists one-to-one correspondence between
{ρi, θ̃i} and [Y]i,:, depicted in (26). As shown in (27),
we estimate the parameter pairs {ρi, θ̃i} one by one based
on one row from Y. The loss of order information on entries
in θB,R and φR,M in the first CE stage will only change the row
order of Y accordingly, which will only changes the order of
estimating the parameter pairs other than bring negative effect
on the estimation accuracy.

D. Complexity Analysis and Training Overhead

The computational complexity in the first stage depends on
the size of the positive semidefinite matrix in (16) and (18),
i.e., max

{
O

(
(NB + M0)3.5

)
, O

(
(NM + N0)3.5

)}
[43].

In the second stage, the computational complexity is pro-
portional to O

(
(NR + 1)3.5

)
. Therefore, the overall com-

plexity is proportional to max
{

O
(
(NB + M0)3.5

)
, O

(
(NM +

N0)3.5
)
, O

(
(NR +1)3.5

)}
, which is determined by the largest

number among the three-tuple {NB +M0, NM +N0, NR +1}.
The overall training overhead is

Tt = N0

⌈ M0

NRF

⌉
+ TLB,R

⌈LR,M

NRF

⌉
. (29)

V. RIS CONTROL AND BEAMFORMING

& COMBINING DESIGN

The ultimate motivation of estimating the channel parame-
ters discussed above is to enable coherent demodulation, to be
able to design the phase control matrix at the RIS and trans-
mit and receive beamforming vectors in order to maximize
the SE.

A. Design of Ω

The optimization criterion used here is to maximize the
power of G, defined in (6), as a function of Ω, i.e., �G�2

F,
to maximize the effective SNR at the receiver.9 The optimal
design of Ω is expressed as

Ω� = argmax
Ω

�G�2
F, (30)

where �G�2
F can be expressed as

�G�2
F

= �diag(ρR,M)AH(θR,M)ΩA(φB,R)diag(ρB,R)�2
F

(a)
=

LB,R∑
n=1

LR,M∑
m=1

∣∣∣[ρB,R]n[ρR,M]mωT
(
α∗([θR,M]m) ◦ α([φB,R]n)

)∣∣∣2
(b)
=

LB,RLR,M∑
i=1

∣∣∣ρiω
Tα(θ̃i)

∣∣∣2, (31)

where (a) and (b) are obtained by following (22) and (23),
respectively, and ω = diag(Ω). Therefore, the optimal ω
(denoted by ω�) based on the estimates in the second stage is
obtained by

ω� = arg max
ω

LB,RLR,M∑
i=1

∣∣∣ρ̂iω
Tα(ˆ̃θi)

∣∣∣2
= arg max

ω
ωTEEHω∗, (32)

where

E = [α(ˆ̃θ1), . . . , α(ˆ̃θLB,RLR,M)]diag([ρ̂1, . . . , ρ̂LB,RLR,M ]). (33)

We conduct singular value decomposition (SVD) on EEH

as EEH = JDJH, where JJH = JHJ = I and D is a

9Note that the design of phase control matrix in (30) is heuristic, and not
guaranteed to be optimal for SE maximization. Better criteria may exist for
the design of Ω, which is left for our future investigation.
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diagonal matrix with singular values on the diagonal as a
descending order. The optimal ω� is chosen as the conjugate
of the first column of J and then projected to the unit-modulus
vector space, i.e., ω� = exp(−jphase([J]:,1)), where phase(·)
denotes the element-wise operation of extracting the phases of
the argument.

Remark 3: The optimal phase control matrix Ω� =
diag(ω�) for the power maximization criterion of the effective
channel is closely aligned with the conjugate of the singu-
lar vector associated with the largest singular value of the
matrix EEH.

B. Beamforming at BS and Combining at MS

The BS BF and MS combining design is based on the
estimate of composite channel after setting Ω� = diag(ω�).
The reconstructed composite channel is formulated as

Ĥ = A(φ̂R,M)ĜAH(θ̂B,R), (34)

where Ĝ = vec2mat(ĝ) with [ĝ]i = ρ̂iω
�Tα(ˆ̃θi), constructed

by using Ω� and estimates in the second stage, i.e., {ρ̂i,
ˆ̃
θi},

and vec2mat(·) converts a vector to a matrix with a predefined
size.10 The SVD is further applied to Ĥ as Ĥ = ŬΣV̆H, and
the optimal BF and combining vectors at the BS and MS are
aligned with the singular vectors associated with the largest
singular value, i.e., the BF vector at the BS as f ≈ [V̆]:,1 and
the combining vector at the MS as w ≈ [Ŭ]:,1 after taking
into consideration the constraints of the hybrid precoding
architecture.11

VI. PERFORMANCE EVALUATION

In this section, we demonstrate the efficiency of the pro-
posed CE approach. We present several benchmarks, detail the
simulation scenario parameters as well as performance metrics,
and provide an in-depth performance analysis and discussion.

A. Benchmarks

For the benchmark scheme, we consider the OMP based
two-stage approach. In the first stage, the vectorization of Y0

is in the form of

y0 = vec(Y0) = (XT
0 ⊗ WH

0 )vec(H(Ω0)) + vec(WH
0 Z0),

= (XT
0 ⊗ WH

0 )Āg0 + n0, (35)

where Ā = A∗(θB,R) ⊗ A(φR,M) and n0 = vec(WH
0 Z0).

Āg0 in (35) can be further expressed as Āg0 = Adg̃0,
where Ad is deemed as an overcomplete dictionary containing
the columns of Ā and constructed by quantizing the angular
domains of AoD of the BS-RIS channel and AoA of RIS-MS
channel into 2 NB and 2 NM levels, respectively. Ideally, g̃0

is a vector with LB,RLR,M elements the same as these of g0

while the remaining elements are all-zeros. In other words,

10Here, vec2mat(·) is an inverse operation of vec(·). For instance, we have
ĝ = vec(Ĝ), and on the contrary, we have Ĝ = vec2mat(ĝ) under the
condition that the size of Ĝ is known.

11We use ≈ here due to the inherent hardware constraints, which may bring
some gap between f(w) and [V̆]:,1([Ŭ]:,1). If no constraints exist, like that
in the full digital precoding systems, = will be used instead.

Āg0 can be sparsely represented under a certain overcomplete
dictionary. XT

0 ⊗WH
0 is considered as the linear measurement

matrix. Therefore, the recovery of Ā (or equivalently θB,R

and φR,M) and g0 can be addressed by resorting to the OMP
algorithm [41], which sequentially finds the atoms from the
overcomplete dictionary Ad in order to greedily improve
the approximation. In the second stage, the dictionary is
constructed by quantizing the angular domains into 2 NR and
each atom is in the form of an array response vector. The
recovery of {ρi, θ̃i} is also conducted by using OMP on (26).

We also consider two benchmarks under perfect CSI: (i) CSI
of the individual channels is perfectly known to evaluate the
average SE, where the RIS phase control matrix, BS beam-
former, and MS combiner are jointly designed via an iterative
method. This perfect CSI may be obtained by knowing the
exact location information of the BS, MS, and RIS and
environmental information [52]; (ii) CSI of the LoS path is
perfectly known, where we align the beams with the angles
related to the LoS path and evaluate the average SE bound.

B. System Parameters and Performance Metrics

The simulation parameters are set as follows: NB =
NM = 16, NR = 64, and NRF = 8. The angle separation
in terms of directional sine is assumed to be larger than
4/NB, 4/NR, and 4/NM at the BS, RIS, and MS, respectively.
We assume that the propagation path gains follow CN (0, 1)
until Section VI-C.3 and each element of Zt follows
CN (0, σ2). The SNR is defined as 1/σ2, and 2000 realiza-
tions are considered for averaging. Without loss of generality,
we fix the channel coherence time as 500 (in symbol times,
i.e., Tc = 500) in the evaluation of effective SE bound.

Performance will be assessed in several metrics: (i) the
MSE of the estimated parameters (angles in the first stage,
angle difference and the product of propagation path gains
in the second stage), (ii) the average effective SE bound;
(iii) the average squared distance (ASD) between the designed
beamformer (combiner) in Section V-B and the optimal one
obtained by assuming full CSI; and (iv) the RIS gain based
on the estimated parameters. The MSEs of angular parameter
estimation and product of propagation path gains estimation
are defined as12

MSE
(
sin(θB,R)

)
= E

[� sin(θB,R) − sin(θ̂B,R)�2
2

LB,R

]
,

MSE
(
sin(φR,M)

)
= E

[� sin(φR,M) − sin(φ̂R,M)�2
2

LR,M

]
,

MSE
(
sin(Δ)

)
= E

[� sin(Δ) − sin(Δ̂)�2
F

LB,RLR,M

]
,

MSE(ρ) = E

[�ρ − ρ̂�2
2

LB,RLR,M

]
. (36)

12Another way to formulate the MSEs is directly based on the angular
estimates without taking sine operation. Nevertheless, the results based on
the two types of calculations will be consistent.
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Fig. 4. Comparison between the proposed CE algorithm and that from [34]
in terms of channel parameter estimation for the single path scenario.

The average effective SE bound for a given channel real-
ization is defined as13 [53]

R=E

[
Tc − Tt

Tc
log2

(
1+

|wHĤf |2
σ2+var

(
wHHe(Ω�)f

))
]

bits/s/Hz,

(37)

where the design of Ω� was discussed in Section V-A and the
design of w and f in Section V-B, and He(Ω�) is the channel
estimation error, defined as He(Ω�) = H(Ω�) − Ĥ. Recall
that Tc denotes that number of time slots in a coherence time
interval, while Tt is the training time from (29), expressed
as a multiple of the OFDM symbol duration. As can be seen
in (37), the average effective SE bound is closely coupled with
the estimation accuracy, the training overhead, and the design
criterion of joint active and passive beamformers. Therefore,
we also introduce it here as a performance metric, like in [2],
[7], [30]. As said above, we average the SE results over
2000 channel realizations.

The ASD of the beamformer is defined as

ASDf = E[�f − fo�2
2], (38)

ASDw = E[�w − wo�2
2], (39)

where fo and wo denote the optimal beamformer and combiner
at the BS and MS, respectively (assuming full CSI).

Finally, the RIS gain is defined as

GRIS = |AH(θR,M)Ω�A(φB,R)|2F/N2
R . (40)

C. Results and Discussion

1) Single Path Scenario: As an initial study, we make
a comparison between our proposed CE scheme with that
from [34] (using iterative reweighted method) for single path
scenario, i.e., LB,R = LR,M = 1. The simulation results are
provided in Fig. 4, where the training overhead is Tt = 30.
As seen from the figure, the proposed CE scheme outperforms
that in [34].

13It should be noticed that this is an asymptotic theoretical lower bound
on data rate for the subsequent data transmission phase after designing the
beamformers w and f and RIS phase control matrix Ω�, based on the
estimates by the proposed CE scheme.

Fig. 5. The effect of training overhead on angular parameter estimation
performance.

Fig. 6. The effect of training overhead on product of propagation path gains
estimation performance in the second stage.

2) Effect of Training Overhead: The simulation results on
the impact of training overhead on the parameter estima-
tion performance as a function of the SNR are shown in
Figs. 5 and 6 for LB,R = LR,M = 2 with two different setups:
N0 = M0 = T = 10 with Tt = 40 and N0 = M0 = T = 14
with Tt = 56. The results in Figs. 5 and 6 show that the
increasing training overhead brings better performance on the
channel parameter estimation at both stages as expected. The
angular parameter estimation performance of the OMP-based
benchmark scheme saturates to the level of 10−2 while the
proposed scheme can bring better performance even in the
low SNR regime, where a mild saturation of our scheme can
also be observed. The results for the average effective SE
bound and RIS gains are provided in Figs. 7 and 8, which
are aligned with the results for channel parameter estimates,
shown in Figs. 5 and 6. The proposed scheme approximates
the perfect CSI case in the low SNR regime with only dozens
of consumed time slots in terms of both average effective
SE bound and RIS gains. The saturation of average effective
SE bound may results from the saturation of variance of
channel estimation error, and this phenomenon needs to be
further studied in depth as our future work.

3) Effect of Path Gain Profile: We continue to study the
effect of path gain profile on the estimation performance.
Unlike the homogenous paths with all the paths modelled
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Fig. 7. Average effective SE bound vs. SNR.

Fig. 8. RIS gain vs. SNR.

as CN (0, 1) in the previous subsection, we consider the
scenario of inhomogenous paths with one path modelled as
CN (0, 1) and the remaining modelled as CN (0, 0.01). On the
average, 20 dB gap is considered regarding the average power
of the strongest path vs. that of a weak path. The simulation
parameters are set as N0 = M0 = T = 10 and LB,R =
LR,M = 2. The simulation results on channel parameter
estimation are provided in Fig. 9 path by path, where the prior
information on the number of paths is assumed to be known
precisely. The MSE performance of parameter estimation
related to the strong paths outperforms that related to the weak
path(s).

We now study the ASD between the designed beam-
former (combiner) in Section V-B and the optimal one,
designed by assuming full CSI of the individual channels.
We compare the performance with partial estimation, where
in Stage 2 only beams towards the strongest path are
formed (leading to a reduced Tt). We also compare with the
OMP-based two-stage approach. The performance is shown
in Fig. 10. From the figure, we observe that the partial
estimation can offer comparable performance compared to the
that by full estimation in the inhomogeneous paths scenario,
where only one path dominates in each individual channel. The
performance of the proposed scheme significantly outperforms
that of the OMP-based counterpart in terms of ASD.

Fig. 9. Channel parameter estimation for inhomogeneous paths scenario from
the path by path perspective.

Fig. 10. Average squared distance between the designed beam-
former/combiner and the optimal one for partial estimation vs. full estimation.

Fig. 11. Average effective SE bound for inhomogeneous paths scenario,
partial estimation vs. full estimation.

The full estimation aiming at estimating all the channel
parameters even brings some negative effect on the average
effective SE bound, shown in Fig. 11, compared to the
partial estimation. This may result from the poor estimation
of product of propagation path gains, related to weak paths,
which in turn provides a bad design of RIS phase control
matrix. An initial result on perfect CSI on the LoS (assuming
that the strongest path is the LoS with path gain following
CN (0, 1)) is obtained by aligning the beams towards the
corresponding angles. As shown in Fig. 11, knowing the
LoS path (e.g., from the accurate location information) even
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brings some gains compared to the proposed scheme in the
scenario of inhomogeneous paths, and offers similar perfor-
mance with perfect full CSI case. This will attract great
interests on application of location information (in practice
imperfect) to the RIS-aided mmWave MIMO systems to boost
the CE process and BF design.

VII. CONCLUSION AND FUTURE WORK

We have studied the CE problem for the RIS-aided
mmWave MIMO systems and proposed a two-stage atomic
norm minimization problem, which can efficiently perform
super-resolution channel parameter estimation. The power
maximization criterion has been utilized to guide the design
of phase control matrix at the RIS, followed by joint design
of beamforming and combining vectors at the BS and MS
based on the reconstructed composite channel. Simulation
results have confirmed the advantages of the proposed scheme
compared to the two-stage OMP approach in terms of MSE
of angular parameter estimation and product of propagation
of path gains estimation, average effective SE bound, and
RIS gains in the homogeneous paths scenario. In the inho-
mogeneous paths scenario, we have evaluated the parameter
estimation from the path by path perspective, where better
performance can be achieved for the parameters related to
the strong paths. The benefits brought by the availability of
location information in the inhomogenous paths scenario has
also been examined.

Future studies can include the optimization of training and
combining matrices during stage 1 sounding, optimization
of the regularization parameter to bring a better trade-off
between the data fitting (i.e., effect of noise term) and sparsity
(i.e., prior information). In addition, the transmit powers
during the entire sounding process can be optimized to bring
better estimation performance. The prior information on the
number of paths should be avoided to make the proposed
scheme practical. Some preliminary results on the benefits
brought by location information on the RIS and MS are
provided, and deserve to be explored in depth with a more
realistic assumption on the location awareness.
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