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Abstract— Energy efficiency (EE) and spectral efficiency (SE)
are two of the key performance metrics in future wireless
networks, covering both design and operational requirements.
For previous conventional resource allocation techniques, these
two performance metrics have been considered in isolation,
resulting in severe performance degradation in either of these
metrics. Motivated by this problem, in this paper, we propose
a novel beamforming design that jointly considers the trade-off
between the two performance metrics in a multiple-input single-
output non-orthogonal multiple access system. In particular,
we formulate a joint SE-EE based design as a multi-objective
optimization (MOO) problem to achieve a good trade-off between
the two performance metrics. However, this MOO problem
is not mathematically tractable and, thus, it is difficult to
determine a feasible solution due to the conflicting objectives,
where both need to be simultaneously optimized. To overcome
this issue, we exploit a priori articulation scheme combined
with the weighted sum approach. Using this, we reformulate
the original MOO problem as a conventional single objective
optimization (SOO) problem. In doing so, we develop an iterative
algorithm to solve this non-convex SOO problem using the

Manuscript received March 12, 2019; revised August 5, 2019, December
15, 2019, and April 14, 2020; accepted June 13, 2020. Date of publication
July 2, 2020; date of current version October 9, 2020. The work of Haitham
Al-Obiedollah was supported by the Hashemite University, Zarqa, Jordan. The
work of Zhiguo Ding was supported by the U.K. Engineering and Physical
Sciences Research Council (EPSRC) under Grant EP/P009719/2. The work
of Octavia A. Dobre was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC), through its Discovery Program. The
associate editor coordinating the review of this article and approving it for
publication was X. Yuan. (Corresponding author: Haitham Al-Obiedollah.)

Haitham Al-Obiedollah is with the Electrical Engineering Department, The
Hashemite University, Zarqa 13133, Jordan (e-mail: haithamm@hu.edu.jo).

Kanapathippillai Cumanan and Alister G. Burr are with the Department of
Electronic Engineering, University of York, York YO10 5DD, U.K. (e-mail:
kanapathippillai.cumanan@york.ac.uk; alister.burr@york.ac.uk).

Jeyarajan Thiyagalingam is with the Rutherford Appleton Laboratory,
Scientific Computing Department, Science and Technology Facilities Council,
Harwell Campus, Oxon OX11 0QX, U.K. (e-mail: t.jeyan@stfc.ac.uk).

Jie Tang is with the School of Electronic and Information Engineering,
South China University of Technology, Guangzhou 510641, China (e-mail:
eejtang@scut.edu.cn).

Zhiguo Ding is with the School of Electrical and Electronic Engineer-
ing, The University of Manchester, Manchester M13 9PL, U.K. (e-mail:
zhiguo.ding@manchester.ac.uk).

Octavia A. Dobre is with the Department of Electrical and Com-
puter Engineering, Memorial University, St. John’s, NL A1B, Canada
(e-mail:odobre@mun.ca).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TWC.2020.3004292

sequential convex approximation technique. Simulation results
are provided to demonstrate the advantages and effectiveness of
the proposed approach over the available beamforming designs.

Index Terms— Energy efficiency (EE), spectral efficiency (SE),
non-orthogonal multiple access (NOMA), convex optimization,
multi-objective optimization (MOO), sequential convex approxi-
mation (SCA).

I. INTRODUCTION

OVER recent years, extensive research efforts have been
devoted to the practical implementations of new disrup-

tive technologies for the fifth generation (5G) and beyond
wireless networks [1]. The unexpected exponential growth
in the number of connected devices and the unprecedented
requirements of higher data rates, low latency and ultra reli-
ability are of major concerns in future wireless networks [1].
However, these demanding requirements are difficult to meet
or almost impossible to achieve without an enormous power
consumption, which is not only unacceptable due to unde-
sirable impacts on the natural environmental [2], but also
financially unaffordable. Therefore, it is important to consider
both as performance metrics, the spectral efficiency (SE) and
energy efficiency (EE), simultaneously. SE is defined as the
ratio between the achieved rate and the available bandwidth,
whereas EE is defined as the ratio between the achieved sum
rate in the system and the total required power to achieve this
sum rate [3].

Different disruptive technologies, including massive
multiple-input multiple-output (MIMO) [4], [5], millimeter-
wave (mmWave) [1] [6], [7], and non-orthogonal multiple
access (NOMA) techniques [8] have been proposed to meet
the stringent design and operational requirements surrounding
EE and SE. In particular, NOMA has been envisioned as
one of the key techniques for significantly improving the SE
while providing massive connectivity to support the Internet-
of-Things (IoT) in 5G and beyond wireless networks [9].
Unlike the conventional orthogonal multiple access (OMA)
schemes, the users in NOMA can be served within the same
resource blocks such as time, frequency, and code without
any orthogonal divisions between them, by exploiting the
power-domain multiplexing [10]. For instance, superposition
coding (SC) is utilized at the base station to encode the
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transmit signals of multiple users with different transmit
power levels [11], [12]. At the receiver end, successive
interference cancellation (SIC) is employed at the strong
users (i.e., the users with stronger/better channel gains) to
detect and remove the interference caused by signals intended
to the weaker users prior to decoding their own desired
signals [8].

To exploit different potential benefits, NOMA has been
recently integrated with different technologies such as
cognitive radio (CR) [13], millimeter-wave [14] [15],
multiple-antenna techniques [16]–[18] and conventional OMA
techniques [19]. In particular, the combination of NOMA
with spatial domain multiple access (SDMA) offered by
multiple-antenna can provide additional benefits, by jointly
utilizing both the spatial and power domains. The notion
of joint utilization of multiple domains helps meeting the
demanding requirements in future wireless networks, par-
ticularly when compared against conventional stand alone
SDMA techniques [16], [20]. For instance, incorporating
NOMA with the multiple-antenna techniques was consid-
ered in [20]. Another example is multiple-input single-output
(MISO)-NOMA [21], [22] [23], which can be classified into
two main categories: beamformer-based and cluster-based
MISO-NOMA schemes [24], [25]. In this paper, we focus
on the beamformer-based MISO-NOMA scheme, where each
user is served by a single beamforming vector. For the sake
of notational simplicity, the beamformer-based MISO-NOMA
is referred to as MISO-NOMA throughout this paper.

One of the conventional beamforming designs developed
for MISO-NOMA systems in the literature considers SE as
a performance metric with the sum rate maximization (SRM)
problem [26]. This SRM design is developed not only at the
cost of the exponential increase in the available power, but
also with significant loss in the EE performance. In fact, with
the unprecedented growth in the number of mobile devices
and volume of mobile data traffic in future wireless networks,
EE becomes a prominent performance metric. This is primarily
due to the fact that EE has the potential to achieve a good
balance between the transmit power consumption and system
throughput [3]. To overcome the EE degradation associated
with the SRM design, we have proposed a global EE max-
imization (GEE-Max) design in our previous work [27] to
maximize the overall EE of the system. However, a major
drawback of such a design is that the base station does not
have the flexibility to utilize the available power resources
after achieving the maximum EE with its green power. In fact,
this limitation becomes an important issue that needs to be
addressed in some of the scenarios, such as base station being
powered by renewable energy sources [27], [28]. Therefore,
the trade-off between SE and EE motivates one to explore
novel design approaches for beamforming so that a good bal-
ance between SE and EE performance metrics can be achieved.
Furthermore, this joint SE-EE design provides flexibility to
the base station to adapt the beamforming design by taking
the instantaneous transmission conditions and the different
requirements of the system into consideration. In particular,
the practical applications of the proposed SE-EE trade-off
design can be summarized as follows:

• Base stations with hybrid power sources are expected to
play a crucial role on the deployments of 5G and beyond
wireless networks [29]. These hybrid base stations are
powered by either non-renewable energy sources such
as diesel generators, or renewable energy sources such
as photovoltaic panels and wind turbines to provide
the communication services [30], alternately. For such
hybrid base stations, the priority to choose either EE or
SE depends on the available energy source, i.e., if the
base station utilizes a renewable energy resource, then
the importance of EE becomes less than that of SE,
and vice-versa for non-renewable energy sources. Hence,
an SE-EE trade-off based design offers flexibility to the
base station to switch between different design criteria
based on the available energy source.

• Furthermore, some resource allocation techniques aim
to maximize EE with an SE constraint [31]. However,
this design limits the performance of either SE or EE
due to its inflexibility [32]. Hence, the SE-EE trade-off
based design has a potential capability to achieve a good
balance between these conflicting performance metrics,
especially in some practical applications where both SE
and EE have similar importance.

The joint SE and EE-based design can be developed by
formulating a multi-objective optimization (MOO) problem
with these two performance metrics in the multi-objective
function. In contrast to a unique global optimal solution in the
conventional single objective optimization (SOO) problems,
the MOO problems have many Pareto-optimal solutions which
would yield a better performance in one of the multiple
objectives [33], [34]. However, the required Pareto-optimal
solution will be determined based on the relative importance
of each objectives in the overall problem. Therefore, the
decision maker (DM) (i.e., the base station in our scenario)
has to firstly articulate the weights of each objective prior
to evaluate the solution for the MOO problem, which is
referred as a priori articulation in the literature [35]. Then,
those multiple objectives are converted into a single objective
function known as the utility function to represent the corre-
sponding multi-objective functions [36]. In particular, many
utility functions have been considered in the literature for
different MOO problems, including the weighted-sum [34],
the weighted-product, and the weighted max-min function
[33]. As the MOO problems have different Pareto-optimal
solutions, the DM chooses the best trade-off solutions (Pareto-
optimal solutions) [33]. It is worth mentioning that the SE-EE
trade-off designs have been considered in the wireless com-
munications literature. For example, an SE-EE design for
a point-to-point communication link is considered in [32].
Furthermore, a generalized framework for the SE-EE trade-
off was investigated for orthogonal frequency-division mul-
tiplexing (OFDM) in [37]. Additionally, a multi-objective
optimization approach is considered for link adaptation in
an OFDM-based cognitive system in [38], where throughput
and transmit power are simultaneously optimized. A number
of MOO-based resource allocation techniques can be found
in [31], [39], [40].
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A. Contributions

Motivated by the importance of both key performance
metrics SE and EE in 5G and beyond wireless networks
[1], [41], and to overcome the limitations associated with the
conventional GEE-Max and SRM designs [26], [27], in this
paper we propose an SE-EE trade-off based design for an
MISO-NOMA system. Unlike the conventional designs, this
SE-EE design optimizes SE and EE simultaneously to achieve
a good balance between these conflicting performance metrics.
In doing that, we make the following key contributions:

• We formulate the overall SE-EE design as a MOO
problem. Although this renders the overall problem as a
challenging form, where direct approaches for obtaining
a feasible solution are inherently difficult, it offers an
avenue for achieving a good balance between SE and EE.
This approach is radically different from the conventional
approaches, such as those outlined in [17], [26], [27],
and [42]. More specifically, conventional optimization
techniques, which are often employed in the context of
the SOO problems, cannot directly be applied to solve
this MOO problem. Our design approach provides a
generic framework, where the GEE max and SE max
designs can be considered as special cases by setting
appropriate weight factors;

• We provide an algorithm to solve this non-trivial MOO
problem. This algorithm utilizes a priori articulation
method combined with weighted-sum utility function to
recast the MOO problem into a form of an SOO problem
[33]–[35];

• We prove that solving the SOO problem provides a
Pareto-optimal solution to the original MOO problem.
In particular, the sequential convex approximation (SCA)
is exploited in the context of handling the non-convexity
of the SOO problem.

The rest of the paper is organized as follows. In Section II,
the system model and the problem formulation are introduced
to represent the SE-EE trade-off-based design. Section III
presents the proposed techniques to tackle the SE-EE trade-
off-based design. To verify the proposed beamforming design,
numerical results are provided in Section IV, where the
performance of the proposed beamforming design is compared
with that of the conventional beamforming design criteria.
Finally, conclusions are drawn in Section V.

B. Notations

We use lower case boldface letters for vectors and upper
case boldface letters for matrices. (·)H denotes complex conju-
gate transpose, and �(·) and �(·) stand for real and imaginary
parts of a complex number, respectively. The symbols CN

and RN denote N -dimensional complex and real spaces,
respectively. || · ||2 and | · | represent the Euclidean norm
of a vector and the absolute value of a complex number,
respectively. x � 0 means that all the elements in the vector
x are greater than zero.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink transmission of a MISO-NOMA
system with K single-antenna users in which a base station
equipped with N antennas simultaneously transmits to these
K users. The transmit signal from the base station is given by

x =
K∑

j=1

wjsj , (1)

where sj and wj ∈ CN×1 represent the symbol intended
to the jth user, and the corresponding beamforming vector,
respectively. It is assumed that these symbols (i.e., sj , ∀j)
are independent and with unity power. In addition, digital
beamforming is considered; hence, each user is served with a
dedicated beamforming vector. As a result, we do not impose
any constraint on the relationship between K and N and the
proposed design is valid for any number of antennas and users.
The received signal at the ith user can be written as

yi =
K∑

j=1

hH
i wjsj + ni, (2)

where ni represents the zero-mean additive white Gaussian
noise (AWGN) with variance σ2

i , while hi ∈ CN×1 denotes
the vector that contains the channel coefficients between
the base station and the ith user. Furthermore, we assume
frequency-flat channel conditions, and the channel coefficients
can be modelled as

hi =
√

d−κ
i gi,

where κ and gi are the path loss exponent, and the small
scale fading, respectively, whereas di represents the distance
between the ith user and the base station in meters. We con-
sider that perfect channel state information (CSI) of the users
is available at the base station.

In the downlink power-domain NOMA, the power levels
are assigned to the users based on their channel strengths
such that the allocated power levels are inversely proportional
to the channel strengths of the users [8], [9]. Furthermore,
the stronger users (i.e., users with higher channel strengths)
perform SIC by firstly decoding the signals intended to the
users with weaker channel conditions, and then subtracting the
decoded signals prior of decoding their own signals [8], [43].
The weaker users detect their signals by treating the interfer-
ence caused by the signals intended to the stronger users as
noise [44]. Hence, user ordering plays a crucial role in power
allocations, users’ SIC capability, and the overall performance
of the the NOMA systems. However, the optimal ordering
could be determined through performing an exhaustive search
among all the user ordering possibilities, which is not prac-
tical to implement, especially in dense networks. Therefore,
we consider the first user (U1) as the strongest user in the cell,
whereas the UK is the weakest user based on the following
channel conditions:

||hK ||2︸ ︷︷ ︸
Weakest

≤ ||hK−1||2 ≤ · · · ≤ ||h1||2︸ ︷︷ ︸
Strongest

. (3)
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Based on this user ordering, to ensure that the power
allocated to each user in the system is inversely proportional
to its channel gain, and to successfully implement SIC at
the stronger users [26], the following conditions should be
satisfied with the beamforming design [27]:

|hH
i wK |2 ≥ · · · ≥ |hH

i w1|2, ∀i ∈ K. (4)

It is worthy to point out that some work in the context of
downlink NOMA transmission literature assumes that NOMA
transmission can be achieved without including the constraint
in (4), such as in [45]. However, this power allocation con-
straint facilitates the design SIC orders, and has been assumed
in most of the works in the literature to ensure successful
implementation of SIC.

Therefore, the received signal at Ui after performing SIC is
written as

∗
yi = hH

i wisi︸ ︷︷ ︸
Intended signal

+
i−1∑
j=1

hH
i wjsj

︸ ︷︷ ︸
Interference

+ ni︸︷︷︸
Noise

, ∀i ∈ K, (5)

where K �
= {1, · · · , K}. Note that the interference caused by

Ui+1, · · · ,UK is removed through SIC. Furthermore, Uk has
the capability to decode the message of Ui (k ≤ i) with signal-
to-interference and noise ratio (SINR) that can be written as

SINR(i)
k =

|hH
k wi|2∑i−1

j=1 |hH
k wj |2 + σ2

k

, ∀i ∈ K, k ≤ i. (6)

Now, with the assumption that si is only decodable provided
its SINR is higher than a threshold denoted as SINRth, this
explicitly requires that decoding of si at other stronger users
should be also higher than this threshold [26], i.e., SINR(i)

k ≥
SINRth, ∀k = 1, 2, · · · , i. Based on this argument, the def-
inition of SINRi should take into account the decoding of
si at the stronger users in order to align with the basic
principle of NOMA, namely SIC. Based on this requirement,
the achievable SINR can be defined as follows:

SINRi =min(SINR(i)
1 , SINR(i)

2 ,· · ·, SINR(i)
i ), ∀i∈K. (7)

Based on the above discussion, the achieved rate at Ui can be
defined as [26]

Ri = min(R(i)
1 , R

(i)
2 , R

(i)
3 , · · · , R

(i)
i ), ∀i ∈ K. (8)

Note that R
(i)
k is the rate of decoding si at Uk, and it is given

as

R
(i)
k =Bw log2

(
1+

|hH
k wi|2∑i−1

j=1 |hH
k wj |2 + σ2

k

)
, ∀i ∈ K, (9)

where Bw is the available bandwidth, set to be one in this
analysis.

The global energy efficiency (GEE)1 of the system is defined
as the ratio between the achieved sum rate of the system and
the total power required to achieve this rate (bits/Joules) [3],
and is expressed as

EE = GEE =
∑K

i=1 Ri

1
ε0

Pt + Pl

, (10)

1GEE and EE carry the same meaning throughout this paper.

where ε0 denotes the power amplifiers efficiency at the base
station. Furthermore, Pl and Pt represent the power losses at
the base station and the transmit power, respectively. Note that
Pt should be less than the the available power budget at the
base station (Pava) which can be expressed as the following
constraint:

Pt =
K∑

i=1

||wi||22 ≤ Pava, (11)

For the MISO-NOMA system considered in this paper, the
GEE maximization (GEE-Max) design can be formulated into
the following optimization problem [27]:

OPEE : max
{wi}K

i=1

GEE (12a)

subject to
K∑

i=1

||wi||22 ≤ Pava, (12b)

Ri ≥ Rth
i , ∀i ∈ K, (12c)

(4). (12d)

The constraint in (12c) ensures that each user can achieve
minimum predefined threshold rate (Rth

i ) which is referred
to as minimum rate constraint. Furthermore, the constraint
in (12d) facilitates the successful implementation of SIC which
is referred to as the SIC constraint throughout this paper.
It is worth mentioning that the GEE-Max problem OPEE is
solved in [27] using the SCA technique and the Dinkelbach’s
algorithm. In particular, the maximum GEE is achieved with a
certain available power which is known as the green power in
the literature [46], [47]. Beyond this green power, both GEE
and the achieved sum rate saturate [48].

Now, we formulate the SE maximization (SE-Max) problem
for the MISO-NOMA system defined in this paper, as fol-
lows [26]:

OPSE : max
{wi}K

i=1

SE (13a)

subject to
K∑

i=1

||wi||22 ≤ Pava (13b)

(4), (13c)

where SE =
�K

j=1 Rj

Bw
. Note that the SE-Max problem is

equivalent to the conventional SRM with the assumption
of unit bandwidth, i.e., Bw = 1. Hence, without loss of
generality, SE-Max and SRM refer to the same problem
throughout this paper. In particular, this SE-Max problem is
solved for the MISO-NOMA system in [26]. Note that if
the minimum rate constraint in (12c) is added to the original
SE-Max OPSE , then, the modified SE-Max problem will be
referred as SE-Max (min-rate) in this paper. It is obvious that
these conventional SE-Max and GEE-Max designs maximize
either EE or SE individually, without jointly considering them
to achieve a trade-off between these performance metrics.
In the following subsection, we develop a joint SE-EE trade-
off design.
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B. Problem Formulation

For notation simplicity, we represent SE and EE (i.e., GEE)
by the functions f1

({wi}K
i=1

)
and f2

({wi}K
i=1

)
, respectively.

In particular, we aim to develop a beamforming design that
can jointly maximize these performance metrics (i.e., max
f1

({wi}K
i=1

)
and f2

({wi}K
i=1

)
with the given set of con-

straints. Therefore, the beamforming vectors that can achieve
a trade-off between the conflicting SE and EE metrics in the
considered MISO-NOMA system can be formulated into the
following MOO problem:

OP : max
{wi}K

i=1

f
({wi}K

i=1

)
(14a)

subject to
K∑

i=1

||wi||22 ≤ Pava, (14b)

Ri ≥ Rth
i , ∀i ∈ K, (14c)

(4). (14d)

Note that the objective vector f
({wi}K

i=1

)
consists of

the SE and GEE functions, such that f
({wi}K

i=1

)
=[

f1

({wi}K
i=1

)
, f2

({wi}K
i=1

)]
. It is obvious that there is no

global optimal solution that maximizes these conflicting objec-
tives in OP [33]. However, the MOO problem OP searches
for all possible best trade-off solutions, which are known as
the Pareto-optimal solutions in the literature [35].

Definition 1 [34], [35]: A feasible solution {w∗
i }K

i=1 is
defined as a Pareto-optimal solution if there exists no other fea-
sible solution {w′

i}K
i=1 such that f

({w′
i}K

i=1

) � f
({w∗

i }K
i=1

)
.

The set of all Pareto-optimal solutions are collectively defined
as the Pareto front in the literature [34].

Therefore, our aim is to find the set of the feasible solutions
that satisfy the Pareto-optimality conditions for this MOO
problem. However, due to the fact that the original OP
problem might be infeasible with certain Pava, we carry out
a feasibility check prior to solving it. The feasibility check
and the proposed methodology to solve the problem OP are
provided in the next section.

III. PROPOSED METHODOLOGY

First, we carry out a feasibility check prior to solving the
optimization problem OP . For infeasible problems, we pro-
pose another beamforming design. The feasible OP is solved
by reformulating it as SOO problem using a priori articulation
technique combined with the weighted-sum approach. Then,
the SCA technique is exploited to tackle the non-convexity
issue of the SOO problem. At the end of this section, we pro-
vide some discussions on the convergence and the performance
evaluation of the proposed SCA algorithm to solve OP .

A. Feasibility Check

Firstly, it is worthy to mention that the original optimization
problem OP turns out to be infeasible when the minimum rate
requirements at each user cannot be met with the available
power budget at the base station (i.e., Pava). Therefore, it is
important to investigate the feasibility of the original problem
OP prior to solving it. In particular, this feasibility check

can be performed through evaluating the minimum transmit
power, referred as P ∗, that is required to satisfy the minimum
rate and SIC constraints, in (14c) and (14d), respectively. This
P ∗ can be determined through solving the following power
minimization problem:

OPP : P ∗ = min
{wi}K

i=1

K∑
i=1

||wi||22 (15a)

subject to (14c), (14d). (15b)

Note that the original problem OP can only be solved
provided that P ∗ ≤ Pava, and is infeasible when P ∗ is
higher than the available power at the base station (i.e., Pava).
To overcome this infeasibility, an alternative beamforming
design can be considered to maximize the sum rate with
available power budget, as in OPSE defined in (13). Without
loss of generality, we assume that OP is feasible (i.e., P ∗ ≤
Pava), and propose an effective approach to solve it in the
following subsection.

B. Proposed Methodology

As mentioned before, we first reformulate the original MOO
problem OP into a SOO form. Then, we employ the SCA
technique to solve the SOO problem. More details are provided
in the following discussions.

1) Single Objective Transformation: First, we use a priori
articulation scheme where the base station determines the rela-
tive importance of each objective function prior to determining
the beamforming vectors based on the design requirements.
In particular, the weight factor αi is assigned to the ith objec-
tive function (i.e., fi({wi}K

i=1) to reflect its relative importance
on the overall design, such that

∑2
i=1 αi = 1, αi ∈ [0, 1].

Then, the vector containing the objective functions in the origi-
nal MOO problem (i.e., OP ) is replaced with a single objec-
tive function known as the utility function in the literature.
Note that the utility function is a single-objective function that
can alternatively represent the original multi-objective function
based on the importance of each objective function [33]. There
are several utility functions available in the literature [33], [34]
[35]; we choose the weighted sum approach as it provides
the Pareto-optimal solution to the original problem, as shown
in Theorem 1. Based on the previous discussion, the SOO
framework that represents the original MOO problem OP can
be formulated as follows:

∼
OP : max

{wi}K
i=1

fEE−SE

({wi}K
i=1

)
(16a)

subject to
K∑

i=1

||wi||22 ≤ Pava, (16b)

Ri ≥ Rth
i , ∀i ∈ K, (16c)

(4), (16d)

where fEE−SE

({wi}K
i=1

)
=

∑2
l=1 αlf

Norm
l

({wi}K
i=1

)
.

Note that fNorm
1

({wi}K
i=1

)
and fNorm

2

({wi}K
i=1

)
repre-

sent the unit-less normalized version of f1

({wi}K
i=1

)
and
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f2

({wi}K
i=1

)
, respectively, which can be defined as

fNorm
1

({wi}K
i=1

)
=

f1

({wi}K
i=1

)
f1

∗ , (17a)

fNorm
2

({wi}K
i=1

)
=

f2

({wi}K
i=1

)
f∗
2

, (17b)

where f∗
1 and f∗

2 are the maximum values of SE and GEE,
respectively. In particular, f∗

1 and f∗
2 can be determined

through solving OPSE and OPEE , respectively. Note that the
normalization of the objectives in (17) is an important step in
the context of solving the original MOO problem OP due to
several reasons. Firstly, it is obvious that the performance met-
rics GEE and SE have different units. Therefore, an addition of
such (un-normalized) functions is neither allowable nor defines
any meaningful performance metric. Secondly, as these two
functions have completely different ranges, combining them
uisng a weighted-sum utility function will certainly degrade
the achievable objective value of the function with lower
range [33]. Therefore, to treat both objective functions in a
fair manner, we employ a unitless normalization, by dividing
each objective function with its corresponding optimal value.
With such a normalization, we obtain a non-dimensional
objective function with an upper bound of one. Note that
different normalization (i.e., transformations) methods have
been considered for MOO problems in the literature [32], [33],
[35]. For notation simplicity, we use α2 = α and α1 = 1−α.

To examine the Pareto-optimality of
∼

OP , we present the
following theorem:

Theorem 1: The solutions of the weighted-sum SOO prob-

lem in
∼

OP provide the Pareto-optimal solutions for the orig-
inal MOO OP problem.
Proof : Please refer to Appendix A. �

It is obvious that
∼

OP turns out to be SE-Max (min-rate)
when α = 0. Furthermore, the problem becomes GEE-Max
with α = 1. However, a good balance between the conflicting
SE and EE can be achieved through choosing an appropriate
α between 0 and 1. To this end, we have transformed the
original MOO problem OP into a form of a SOO prob-

lem
∼

OP . However, the optimization problem
∼

OP cannot be
directly solved due to the non-convexity nature of the objective
function and the corresponding constraints. To circumvent this
non-convexity issue, we propose an effective approach to solve∼
OP in the next subsection.

2) Sequential Convex Approximation: The SCA technique
is an iterative approach to solve the original non-convex opti-
mization problem by approximating the non-convex functions
by lower-bounded convex functions [49], [50]. In particular,
the SCA technique has been employed to solve different
non-convex resource allocation problems in the literature
[26], [27]. Similarly, we exploit the SCA technique to solve the∼
OP problem by approximating each non-convex term with a
convex one. We start with the objective function by introducing
two new slack variables Γ1 and Γ2 such that

(1 − α)fNorm
1

({wi}K
i=1

) ≥ Γ1, (18a)

αfNorm
2

({wi}K
i=1

) ≥ Γ2. (18b)

Based on these slack variables, the original
∼

OP problem
can be equivalently written as

≈
OP : max

Γ1,Γ2,{wi}K
i=1

Γ1 + Γ2 (19a)

subject to
K∑

i=1

||wi||22 ≤ Pava, (19b)

Ri ≥ Rth, ∀i ∈ K, (19c)

(4), (19d)

αfNorm
2

({wi}K
i=1

) ≥ Γ2, (19e)

(1 − α)fNorm
1

({wi}K
i=1

) ≥ Γ1. (19f)

It is obvious that the objective function in
≈

OP is a linear
function in terms of Γ1 and Γ2. Furthermore, the constraints
are not convex and we handle these non-convexity issues as
follows. First, we look into the non-convexity of the constraint
in (19f) by rewriting it as

K∑
i=1

log2(1 + SINRi) ≥ f∗
1

(1 − α)
Γ1. (20)

We handle this non-convexity issue by introducing new slack
variables zi, ρi, such that

log2(1 + SINR(i)
k ) ≥ ρi, ∀i ∈ K, k ≤ i, (21a)

1 + SINR(i)
k ≥ zi, ∀i ∈ K, k ≤ i. (21b)

Based on these multiple slack variables, the constraint in (20)
can be equivalently written as the following set of constraints:

(20) ⇔

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

K∑
i=1

ρi ≥ f∗
1

(1 − α)
Γ1, (22a)

zi ≥ 2ρi , ∀i ∈ K, (22b)

(21b). (22c)

It is obvious that the inequalities (22a) and (22b) are convex
constraints, whereas the constraint in (22c) remains still non-
convex. Furthermore, we introduce another slack variable ai,k

to convert it into a convex one as follows:

|hH
k wi|2 ≥ (zi − 1)a2

i,k, ∀i ∈ K, k ≤ i, (23a)

a2
i,k ≥

i−1∑
j=1

|hH
k wj |2 + σ2

k, ∀i ∈ K, k ≤ i. (23b)

We handle the non-convexity issues in the constraint (23a) by
approximating |hH

k wi|2 with a lower bound which is chosen
to be �(hH

k wi), such that

|hH
k wi|2 ≥ (�(hH

k wi)
)2

, ∀k, ∀i. (24)

Note that the constraint in (24) is always held true for any set
of channel coefficients and beamforming vectors, and thus,
is not required to be included in the optimization problem.
Now, we take the square-root of both sides in (23a) after
incorporating the new approximation in (24). Next, the right-
hand side of this inequality can now be approximated with
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linear function using the first-order Taylor series approxima-
tion. Based on that, the constraint in (23a) can be written in
the following approximated convex form:

�(hH
k wi) ≥

√
(z(n)

i − 1)a(n)
i,k

+ 0.5
1√

(z(n)
i − 1)

a
(n)
i,k (zi − z

(n)
i )

+
√

(z(n)
i − 1)(ai,k − a

(n)
i,k ), ∀i ∈ K, k ≤ i,

(25)

where a
(n)
i,k and z

(n)
i represent the approximations of ai,k and

zi in the nth iteration, respectively. However, the constraint
in (23b) can be reformulated into the following second-order
cone (SOC) [51]:

ai,k ≥ || [hH
k wi−1 · · ·hH

k w1 σk

]T ||2, ∀i ∈ K, k ≤ i. (26)

Next, the non-convexity of the constraint in (19e) is tackled
by introducing a new slack variable b such that∑K

j=1 Rj

1
∈Pt + Pl

≥ f∗
2

α

Γ2b
2

b2
, (27)

hence, the constraint in (19e) can be split into the following
two constraints:

K∑
j=1

Rj ≥ f∗
2

α
Γ2 b2, (28a)

b2 ≥ 1
ε0

K∑
i=1

||wi||22 + Pl. (28b)

To resolve the non-convexity issue in (28a), we exploit the
same approaches used to handle the constraint in (20) by
introducing a set of new slack variables, ri, ξi,k, and ρi, such
that

Ri ≥ ρi, ∀i ∈ K, (29a)

|hH
k wi|2∑i−1

j=1 |hH
k wj |2+σ2

k

≥(ri − 1)
ξ2
i,k

ξ2
i,k

, ∀i∈K, k≤ i. (29b)

Based on these multiple slack variables, the constraint in (28a)
can be approximated through the following convex constraints:

�(hH
k wi) ≥

√
(r(n)

i − 1)ξ(n)
i,k

+ 0.5
1√

(r(n)
i − 1)

ξ
(n)
i,k (ri − r

(n)
i )

+
√

(r(n)
i − 1)(ξi,k − ξ

(n)
i,k ), ∀i ∈ K, k ≤ i,

(30)

ξi,k ≥ || [hH
k w1 · · ·hH

k wi−1 σk

]T ||2, ∀i∈K, k≤ i,

(31)

ri ≥ 2ρi , ∀i ∈ K, (32)
K∑

j=1

ρi ≥ f∗
2

α

(
Γ(n)

2 b2(n)

+ 2b(n)Γn
2 (b − b(n))+b2(n)

(Γ2−Γ(n)
2 )
)
. (33)

Similar to the constraint in (23b), the constraint in (28b)
can be cast as the following SOC constraint:

b ≥ 1√
ε0
||
[
||w1||2 ||w2||2 · · · ||wK ||2

√
Pl

]T
||2. (34)

To this end, the non-convex constraint in (19e) is replaced
with the following convex constraints:

(19e) ⇔
{

(30), (31), (32), (35a)

(33), (34). (35b)

Next, the non-convexity of the constraint in (19d) is handled
by replacing each term in the inequality by a linear term using
the first-order Taylor series expansion, such that

|hH
k wi|2 ≥ ||

[
�
(
hH

k w(n)
i

)
�(hH

k w(n)
i )
]T

||2

+ 2
[
�(hH

k w(n)
i ) �(hH

k w(n)
i )
]

[
(�(hH

k wi) −�(hH
k w(n)

i ))(�(hH
k wi)

−�(hH
k w(n)

i ))
]T

. (36)

Note that the right-hand side of the inequality in (36) is linear
in terms of wi. Hence, each term in the constraint in (19d)
is replaced by the right-side of (36). Finally, we consider
the constraint in (19c) with the following equivalent SINR
constraint:

|hH
k wi|2∑i−1

j=1 |hH
k wj |2 + σ2

k

≥ ηth
i , ∀i ∈ K, k ≤ i, (37)

where ηth
i = 2Rth

i −1. Furthermore, the constraint in (37) can
be reformulated as the following SOC constraint:

1√
ηth

i

�(hH
k wi) ≥ || [hH

k w1 · · ·hH
k wi−1 σk

]T ||2,
∀i ∈ K, k ≤ i. (38)

Based on these approximations, the original non-convex opti-

mization problem
∼

OP can be reformulated as
∼=

OP : Maximize
Ψ

Γ1 + Γ2 (39a)

subject to (19d)1, (22b), (32), (39b)

(25), (26), (30), (31), (38), (39c)

(19b), (22a), (33), (34), (39d)

where Ψ consists of all the variables involved in this design,
which can be expressed as

Ψ = {wi, ri, b, Γ1, Γ2, zi, ξi,k, ai,k, ρi}K
i=1.

Note that the relationship between SE and EE basically
shows two different trends with the available power. In the first
trend, both SE and EE increase with the available power and
this trend continues until the available power reaches the green
power. Once the available power exceeds the green power,
both SE and EE show the conflicting nature with the available
power, which leads to the second trend. In order to shed more
light on these trends, we provide the following lemma:

1Replace (36) instead of each term in the inequality.
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Lemma 1: The SE-EE optimization problem
∼

OP provides
the same solution with different weight factors {αl}2

l=1 when
the available power Pava is less than the green power
(i.e., Pava ≤ green power).

Proof: Please refer to Appendix B. �
It is worth mentioning that the solution of

∼=
OP requires

an appropriate selection of the initial parameters (i.e., Ψ(0)).
As this is an iterative approach, it is important to provide
discussion on the initial conditions and the convergence of
the proposed algorithm, which are presented in the following
subsection.

C. Initial Conditions, Convergence Analysis, Performance
Evaluation, and Complexity Analysis

1) Initial Conditions: Firstly, it is crucial to choose an
appropriate set Ψ(0) to ensure the feasibility of the problem in
the first iteration of the algorithm. In particular, we choose
a set of feasible beamforming vectors which can satisfy

all the constraints in the approximated problem
∼=

OP . Then,

we determine all required slack variables in
∼=

OP based on
chosen initial beamforming vectors. The proposed algorithm
to solve the original OP is summarized in Algorithm 1.

Algorithm 1: SE-EE Trade-Off Maximization Using SCA

Step 1: Check the feasibility of the problem
Step 2: Initialization of Ψ(0)

Step 3: Repeat

1) Solve the optimization problem in (39)
2) Update Ψ(n+1)

Step 4: Until required accuracy is achieved.

2) Convergence Analysis: By making use of the analysis
presented in [49], we provide the convergence analysis for the
proposed algorithm. Let us first indicate that the optimization
parameters at the nth iteration (i.e., Ψ(n)) are updated based
on the solution obtained by solving the approximated opti-
mization problem in (39). To ensure the convergence of this
algorithm, three key conditions have to be satisfied. Firstly,
appropriate initial conditions are chosen to ensure the feasi-

bility of the approximated problem
∼=

OP at the first iteration
of Algorithm 1. This provides a feasible solution to update
the parameters in the next iteration. It is worth mentioning
that the feasible solution to the approximated problem can
always ensure the original constraint. In order to provide an
additional insight into this feasibility issue, we include the
following lemma:

Lemma 2: Suppose that the feasible solution set of the
optimization problem OP is denoted by χ; then, the feasible
region of the approximated convex optimization problem Ψn

falls within the same feasible region of the original non-convex
problem, i.e., Ψn ⊆ χ, ∀n.

Proof: To prove this lemma, we firstly point out that the

approximated optimization problem
∼=

OP is solved iteratively.

As such, at each iteration, the solution of
≈

OP is provided for
the given set of convex constraints in (39). Using the first-order
Taylor series expansion, these constraints in the original
problem OP are approximated with their lower bounds. This
implies that the solution also lies within the same feasible
region Ψn and satisfies all the constraints in the original
problem [49], i.e., Ψn ⊆ χ, which completes the proof of
Lemma 2. �

Secondly, we present a new lemma to support that the

objective function in
∼=

OP is non-decreasing with each iteration.

Lemma 3: The objective function in
∼=

OP is non-decreasing
in terms of Ψn, i.e., Υ(Ψ(n+1)) ≥ Υ(Ψ(n)), where Υ(Ψ(n)) =
Γ1(Ψ(n)) + Γ2(Ψ(n)).

Proof: To prove this lemma, we point out that the solution

of
∼=

OP at the nth iteration is a feasible solution to
∼=

OP in the
next iteration. This inherently means that the objective function
value at the nth iteration, Υ(Ψ(n)), is less than or equal to that
obtained in the subsequent iteration, Υ(Ψ(n+1)), which means
that Υ(Ψ) is non-decreasing function [49]. This completes the
proof of Lemma 3. �

Therefore, the objective value at each iteration will either
increase or remain the same. Finally, the power constraint

in (14b) ensures that the objective function of
∼=

OP is upper
bounded due to the fact that Pava � ∞. In particular,
the satisfaction of these three conditions ensures that the
developed SCA technique converges to a solution with a finite
number of iterations.

3) Performance Evaluation: The solution of
∼

OP is obtained
by introducing multiple slack variables and iteratively solving
the problem with different approximations. Hence, the perfor-
mance evaluation of the proposed approach is important to
assess its effectiveness. As such, we compare the performance
of the proposed Algorithm 1 with a benchmark scheme.
In particular, we use the power minimization problem OPP

as a benchmark scheme by reformulating it as a semi-definite
programming (SDP) which provides the optimal solution [52].
In this SDP, we set the rates that are achieved through solving∼
OP as the minimum rate requirements for OPP and those
achieved rates are denoted by R∗

i , ∀i ∈ K. Then, we set
these rates as minimum rate targets for OPP . Without loss
of generality, with introducing new rank-one matrices Wi =
wH

i wi and exploiting semi-definite relaxation, the SDP form
of OPP can be formulated with minimum rate constraints as
follows [53]:

∼
OPP : minimize

{Wi}K
i=1

K∑
i=1

Tr[Wi] (40a)

subject to Tr[HkWi] − η∗
i

i−1∑
j=1

Tr[HkWj ]

≥ η∗
i σ2

k, ∀i ∈ K, k ≤ i, (40b)

Tr[HiW1] ≤ Tr[HiW2]

≤ · · · ≤ Tr[HiWK ], ∀i ∈ K, (40c)

Wi = WH
i , Wi � 0, ∀i ∈ K, (40d)
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where η∗
i = 2R∗

i − 1, while Hi = hihH
i . The solutions (i.e.,

the beamforming vectors) achieved through solving
∼

OPP are
optimal and will also be the solutions to the original problem
OPP provided that they are rank-one matrices [42], [52].
Note that the beamforming vectors are determined through
extracting the eigenvectors corresponding to the maximum
eigenvalues of these rank-one matrices [54]. In particular,
we demonstrate in the simulation results that the proposed

SCA technique to solve
∼

OP provides approximately similar

performance of
∼

OPP .
4) Complexity Analysis of the Proposed SCA Technique:

Considering the fact that an iterative SCA algorithm is adopted
to solve the original problem OP , it is crucial to define the
computational complexity of the proposed algorithm. This can
be achieved through determining the complexity associated
with solving the approximated convex optimization problem∼=
OP at each iteration of this algorithm. In particular, at each
iteration, a linear objective function (i.e., Γ1 + Γ2) is opti-
mized with a set of SOC and linear constraints, where the
interior-point method is employed to obtain the solution at
each iteration [55], [56]. Therefore, the computational com-
plexity at each iteration is primarily defined considering the
complexity of obtaining the solution of such second-order cone
programme (SOCP). In general, the work required to solve an
SOCP problem is at most O(B2V) [56], where B and V denote
the number of optimization variables and the total dimensions
of the SOCP optimization problem, respectively. Furthermore,
an iterative algorithm converges to a solution with an upper
bound given as O(

√C log(1
ε )), where C and ε are the total

number of constraints at each iteration and the required
accuracy, respectively. Now, with the developed SCA in hand,
B and V are estimated as (1.5K2 + 4.5K + 2NK + 3 + c)
and (5.5K2 + 5K + 2NK + 4 + c), respectively, where c
is a constant related to the number of constraints that arise
due to the relaxation of the exponential constraints in the
interior-point method [57]. Furthermore, the total number of

constraints C in
∼=

OP is found to be (2.5K2 + 6.5K + 6 + c).

IV. SIMULATION RESULTS

In this section, we provide simulation results to support the
effectiveness of the proposed SE-EE trade-off beamforming
design of a downlink MISO-NOMA system over the con-
ventional designs. In particular, we study the impact of the
trade-off between the achieved EE and SE. In these simula-
tions, we consider a base station equipped with three transmit
antennas (i.e., N = 3), which simultaneously transmits to
five single-antenna users that are located at a distance of 1,
2, 3, 4, and 50 meters from the base station, respectively.
The small-scale fading is chosen to be Rayleigh fading,
while the path loss exponent κ and the noise variance of
all users σ2 are both set to be 1. In addition, the mini-
mum SINR thresholds are set to be 10−2 for all the users,
i.e., ηth = 10−2. The amplifiers’ gain ε0 is set to 0.65,
whereas the power losses at the base station are assumed to
be 40 dBm (i.e., Pl = 40 dBm). Furthermore, we define the
available power at the base station by TX-SNR in dB, such

Fig. 1. Achieved EE and sum rate against TX-SNR with different weight
factors α.

Fig. 2. Achieved EE and sum rate with different weight factors α.

that TX-SNR (dB) = 10 log10
Pava

σ2 . In addition, the available
bandwidth of transmission is assumed to be 1 MHz, i.e., Bw =
1 MHz. Furthermore, the algorithm terminates when the
difference between two consequent outputs is less than 0.001
(i.e., ε ≤ 0.01). Finally, we define the achieved sum rate of
the cell as

sum rate = BwSE.

Fig. 1 illustrates the achieved EE and sum rate versus
different TX-SNR and for different weight factors α. As seen

in Fig. 1, the SE-EE trade-off design considered in
∼

OP turns

out to be SE-Max with α = 0. Furthermore,
∼

OP keeps
maximizing the sum rate as TX-SNR increases at the cost of
EE degradation. This is due to the fact that the GEE (i.e.,
EE) has been assigned with zero weight (i.e., α = 0) in
the MOO problem. However, with α = 1, the problem is
transformed into a GEE-Max design; as a result, the maximum
EE is achieved with certain power threshold, referred as green
power in the literature. Beyond this green power, no further
enhancement is achieved either in the EE or in the sum rate.
Furthermore, this design has the flexibility to strike a good
balance between EE and the sum rate by setting the weight
factor α between 0 and 1. For example, when α = 0.5,
an increment in the sum rate is attained compared to that
obtained with α = 1, as seen in Fig. 1. However, this sum
rate enhancement is attained at the cost of EE degradation.

Fig. 2 presents the achieved EE and sum rate with dif-
ferent weight factors for 5 and 25 dB TX-SNR thresholds.
In particular, Fig. 2 shows two different behaviors. First, both
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Fig. 3. The EE and sum-rate performance of the proposed design versus TX-SNR, with different weight factors. (a) The achieved EE, (b) the achieved sum
rate.

performance metrics (i.e., sum rate and EE) remain constant
with the available power lower than the green power for
different weight factors α, which supports the validation of
Lemma 1. However, as TX-SNR exceeds the green power, for
example with TX-SNR = 25 dB, the trade-off between EE
and sum rate can be realized by varying the weight factor.
In particular, at this TX-SNR threshold, the achieved rate
and EE show a performance in the range of 10-3.5 Mbps
and 0.02-0.2 Mbits/Joule, respectively. This performance range
is achieved with different weight factors α, as presented in
Fig. 2. Note that the base station in the proposed SE-EE trade-
off design offers a wide-range of SE-EE trade-off through
a possibility of simply tuning the weigh factor α. In fact,
this flexibility is beneficial for different practical applications
where the transmission techniques can be adaptive according
to the available power resources.

Furthermore, Figs. 3a and 3b show the achieved EE and
sum rate versus TX-SNR for different weight factors α,
respectively. It can be clearly understood the impacts of the
weight factors on the achieved EE and sum rate of the system.
For example, at TX-SNR = 20 dB, EE declines from 2.2×105

bits/Joule to 0.5×105 bits/Joule by changing the weight factor
from α = 1 to α = 0. However, the sum rate (i.e., SE) shows
a different behavior. With TX-SNR = 20 dB, this decreases
from 8.2 × 106 bps to 3.6 × 106 bps by changing the weight
factor α from 0 to 1. Therefore, the proposed EE-SE trade-
off design offers the flexibility to the base station to choose
an appropriate weight factor based on the favorable conditions
and system requirements to determine the desired performance
metric.

Furthermore, Fig. 4 demonstrates the impact of the mini-
mum SINR threshold ηth on the performance of the proposed
design. In particular, with ηth = 2, the original optimiza-
tion problem becomes infeasible as the minimum required

Fig. 4. Achieved EE and sum rate for the proposed design versus weight
factors α, with different SINR thresholds ηth, TX-SNR = 20 dB.

transmit power P ∗ to achieve these minimum SINR require-
ments exceeds the available power Pava. Hence, an alterna-
tive design, namely the SE-Max is considered. As a result,
the achieved sum rate is maximized under the available power
constraint which provides constant sum rate and EE over the
different weight factors α. However, choosing lower value
of ηth ensures the feasibility of the design, which can be
observed with ηth = 0.2, in Fig. 4. These results indicate that
the base station has the flexibility to choose either EE or SE
performance metric based on the available energy resource by
selecting an appropriate weight factor α. Furthermore, the joint
SE-EE design problem boils down to an SRM and GEE-max
problem with α = 0 and α = 1, respectively.

In Table I, we show the performance of the proposed SCA
algorithm. The rates achieved by solving ÕP (i.e., R∗

i ) are
set as target SINR (i.e., η∗

i ) for ˜OPP , where η∗
i = 2R∗

i − 1.
Then, the baseline optimization problem ˜OPP is solved using
the SDR approach. In fact, through analysing the information
in Table I, we can confirm that the proposed SCA technique
achieves approximately similar solution to that of the bench-
mark, OPP .

To further understand the impact of the TX-SNR in the
feasibility of the optimization problem, and hence on the
EE-SE design, we provide the achieved sum rate and EE with
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TABLE I

PERFORMANCE COMPARISON BETWEEN THE PROPOSED SCA ALGORITHM TO SOLVE ÕP AND THE BENCHMARK SOLUTION
OBTAINED BY SOLVING OPP WITH ηth = 0.2 AND TX-SNR = 20 dB

TABLE II

ACHIEVED EE AND SUM RATE FOR THE PROPOSED DESIGN VERSUS DIFFERENT TX-SNR, WITH DIFFERENT WEIGHT FACTORS α, ηth = 1

Fig. 5. Pareto front of SE-EE trade-off-based design for TX-SNR = 24 dB.

different weight factors α in Table II. In particular, as observed
in Table II, the minimum SINR threshold ηth cannot be met
when TX-SNR = 5 dB, hence, the EE-SE trade-off-based
design becomes an SE-Max design. As such the sum rate is
maximized by solving OPSE . Note that changing the weight
factor α neither changes the sum rate nor the achieved EE.
However, with choosing TX-SNR = 25 dB, the minimum
SINR threshold can be attained for this TX-SNR. Hence,
the original optimization problem OP is worthy to solve,
and the achieved sum rate and EE for this case are presented
in Table II.

Finally, Fig. 5 presents the set of Pareto-optimal solutions
(i.e., Pareto-front) with TX-SNR = 24 dB. In particular,
this curve provides all best trade-off solutions (Pareto-optimal
solutions) for the original SE-EE optimization problem. Fur-
thermore, each point on this curve (sum rate and EE) cor-
responds to one of the best solutions that can be obtained

with the corresponding weight factor. In other words, any
improvement in either one of the performance metrics with
a given weight factor can be only achieved by the degradation
of the other performance metric.

V. CONCLUSION

In this paper, we proposed a beamforming design that
jointly considers the maximization of the conflicting per-
formance metrics EE and SE. In particular, we formulate
this challenging design problem through a weighted sum
approach based on the priori articulation. However, this orig-
inal problem is not convex due to non-convex multi-objective
function and constraints. To overcome these non-convexity
issues, we exploit the SCA technique to attain the solution.
Furthermore, we show that the proposed approach achieves a
Pareto-optimal solution. Simulation results have been provide
to validate the effectiveness of the proposed algorithm and the
performance is compared with a benchmark power minimiza-
tion approach.

APPENDIX A

PROOF OF THEOREM 1

First, we denote the beamforming vectors that provide an

optimal solution to
∼

OP as {w∗
i }K

i=1. Therefore,

fEE−SE({w∗
i }K

i=1) ≥ fEE−SE({wi}K
i=1), (41)

which can be rewritten as
2∑

l=1

αlf
Norm
l ({w∗

i }K
i=1) −

2∑
l=1

αlf
Norm
l ({wi}K

i=1) ≥ 0.

(42)

The inequality in (42) can be equivalently reformulated as

2∑
l=1

αl

f∗
l

(fl({w∗
i }K

i=1) − fl({wi}K
i=1)) ≥ 0. (43)
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In particular, we prove Theorem 1 by using a contradiction
argument, as follows. First, we assume that {w∗

i }K
i=1 is not a

Pareto-optimal solution to the original optimization problem
OP . This assumption implies that there exists another feasible
solution {w′

i}K
i=1 such that

f{w′
i}K

i=1 � f{w∗
i }K

i=1. (44)

The condition in (44) can be equivalently written as

(fl({w′
i}K

i=1) − fl({w∗
i }K

i=1)) > 0, ∀l ∈ 1, 2. (45)

Without loss of generality, each element in (45) can be scaled
by a positive constant (i.e., αl

f∗
l
, ∀l ∈ {1, 2}). Furthermore, both

of these inequalities can be added
2∑

l=1

αl

f∗
l

(fl({w′
i}K

i=1) − fl({w∗
i }K

i=1)) > 0, ∀l ∈ 1, 2. (46)

However, the inequality in (46) contradicts the fact that

{w∗
i }K

i=1 is the optimal solution of
∼

OP . Therefore, the opti-

mal solution of
∼

OP satisfies the Pareto-optimality condi-
tion, and hence, it gives the Pareto-solutions of the original
SE-EE trade-off OP problem. This completes the proof of
Theorem 1. �

APPENDIX B

PROOF OF LEMMA 1

Lemma 1 presents that fNorm
1 and fNorm

2 remain constant
with the different weight factors while the available power is
less than green power. This can be equivalently written as

{fNorm
1 (β1)}Pava=P1 = {fNorm

1 (β2)}Pava=P1 , (47a)

{fNorm
2 (β1)}Pava=P1 = {fNorm

2 (β2)}Pava=P1 , (47b)

where P1 is less than the green power, and β1, β2 ∈ [0, 1].
In order to prove this, we validate (47a) and (47b) with the
extreme conditions of β1 = 0 and β2 = 1. We start with

β1 = 0, in which case
∼

OP turns out to be an SE-Max problem,
and thus, the maximum SE is achieved. Therefore,

{fNorm
1 (β1 = 0)}Pava=P1 = 1. (48)

Furthermore, it has been already verified in [27] that both
SE-Max and GEE-Max problem provide the same optimal
beamforming vectors with an available power less than the
green power. This means that {f2(β1 = 0)}Pava=P1 = f∗

2 ,
therefore,

{fNorm
2 (β1 = 0)}Pava=P1 = 1. (49)

Similarly, we follow the same approach for the case with

β2 = 1, where
∼

OP becomes the GEE-Max problem. The
maximization of EE with an available power less than the
green power will simultaneously achieve the maximum sum
rate and the maximum EE. Hence,

{fNorm
1 (β2 = 1)}Pava=P1 = 1, (50a)

{fNorm
2 (β2 = 1)}Pava=P1 = 1. (50b)

It is can be easily noticed that (48), (49), (50a), and (50b)
validate the conditions provided in (47a), (47b). This com-
pletes the proof of Lemma 1. �
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