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Abstract— Despite the widespread popularity of stochastic
geometry analysis for cellular networks, most analytical results
lack the perspective of channel-adaptive user scheduling. This
study presents a stochastic geometry analysis of the SINR
distribution and scheduling gain of normalized SNR-based
scheduling in an uplink Poisson cellular network, in which
the per-user truncated fractional transmit power control is
performed. Because the effects of multi-user diversity depend
on the number of candidate users to be scheduled, which is
a random variable in a Poisson cellular network, the number
distribution of candidate users is a major factor in analyzing the
SINR distribution of user scheduling. However, the maximum
transmit power constraint of users complicates the distribution
of candidate users. This study provides the number distribution
of candidate users in a general form, which is obtained by
modeling the area of the existing range of candidate users using
a beta distribution. Based on this result, this study successfully
obtains the uplink SINR distribution under channel-adaptive user
scheduling, including cases in which edge users are both allowed
and not allowed to transmit at the maximum transmit power.
Numerical evaluations reveal that the scheduling gain varies
depending on the SNR and the fraction of edge users.

Index Terms— Stochastic geometry, uplink cellular networks,
user scheduling, power control, scheduling gain.

I. INTRODUCTION

THE methodology through which the performance analysis
of a wireless network is conducted has changed dramat-

ically during the past decade because of the emergence of
stochastic geometry [1]–[3]. This type of performance analysis
is conventionally conducted using Monte Carlo simulations,
which are often time-consuming, as when, for example,
an appropriate system parameter setting is sought. By contrast,
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stochastic geometry provides a direct and often tractable
mathematical expression of performance metrics (e.g., signal-
to-interference-plus-noise power ratio (SINR) distribution and
average rate) for different types of wireless networks [1]. More
specifically, the modeling of random topologies based on a
point process, typically a Poisson point process (PPP), results
in a simple and tractable form of SINR distribution.

Stochastic geometry analysis has been extensively applied
to downlink cellular networks [3], [4]. Andrews et al. [5]
proposed a basic framework for a downlink cellular analysis
and derived the SINR distribution P(SINR > θ) as a sim-
ple result, which is in good agreement with Monte Carlos
simulations. In addition, owing to the recent emergence
of symmetric traffic applications (e.g., video streaming and
cloud-based tasks [6]), analysis of uplink cellular networks
has become more important. Therefore, the framework of
downlink analysis has been extended to an uplink case [7], [8],
and their extensions have appeared in a wide variety of
scenarios [9]–[12].

A. Related Works: Commonalities and Differences

An uplink analysis fundamentally differs from a down-
link analysis in that the locations of the transmitters are
correlated and that per-user power control is performed [8].
Novlan et al. [7] derived the uplink coverage probability for
a randomly chosen user (i.e., a typical user) under fractional
power control by ignoring the correlation among active user
locations, which simplifies the calculation but maintains the
accuracy of the derived results. ElSawy and Hossain [8]
presented a tractable framework for an uplink cellular net-
work, in which they considered the channel inversion power
control of users and ignored edge users, who do not have
sufficient power to compensate completely for the exponential
decay path loss owing to the maximum power constraint.
These assumptions enabled the authors of [8] to drop the
marginalization with respect to the contact distance and to
derive tractable results. However, we would like to emphasize
that a channel-adaptive user scheduling was not considered in
any of the aforementioned studies. In other words, the results
includes only cases in which the transmitting user is selected
uniformly randomly in each cell. In modern cellular systems,
the transmitting user is not selected uniformly randomly but
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rather based on a specific channel-adaptive scheduling [13]
such as the proportional fair scheduler [14].

The authors of [15], [16] derived the complementary cumu-
lative distribution function (ccdf) of the SINR and the average
data rate of a channel-adaptive user scheduling in a downlink
cellular network. They assumed that the transmission of users
in each cell follows the normalized signal-to-noise power
ratio (SNR)-based scheduling [17], in which the scheduler
in the cell selects the user having the largest instantaneous
SNR normalized by the short-term average SNR. The authors
ensured that a stochastic geometry analysis was possible by
considering the largest order statistic [18] when modeling the
fading gain of the scheduled user. The analysis captures the
topological randomness in a cellular network, which was not
considered in other conventional analyses of channel-adaptive
scheduling [17], [19]–[22].

In this study, we derived the SINR ccdf and the average data
rate of a typical scheduled user under the normalized SNR-
based scheduling in an uplink Poisson cellular network with
truncated fractional power control. As previously discussed,
an uplink analysis essentially differs from a typical downlink
analysis [5] in that per-user power control is performed.
We thus consider truncated fractional power control as per-
user power control. Simultaneously, we consider the policy
regarding edge users in two ways: according to whether they
are allowed to transmit at the maximum transmit power, as in
[7], [23], or not allowed to transmit, as in [8]. Therefore, this
study considers a more general transmit power control that
includes those presented in [7] or [8]. In addition, we consider
the reduction of interference owing to the cells that include no
transmitting user, whereas in a typical uplink analysis [7], [8]
the locations of users are arranged such that each BS has at
least one scheduled user.

This study was presented in part at IEEE ICC 2018 [24].
In [24], we presented the SINR distribution of normalized
SNR-based scheduling in an uplink Poisson cellular network.
This study extends the contents of [24] in the following ways.

• This study employs truncated fractional power control
instead of the truncated channel inverse power control [8],
which was employed in [24]. As previously mentioned,
the truncated fractional power control is a generalization
of truncated channel inverse power control. Therefore,
this study provides an SINR distribution in a more general
form. In addition, this study considers not only cases in
which edge users are not allowed to transmit but also
those in which edge users are allowed to transmit at the
maximum transmit power. By contrast, [24] includes only
the first case.

• This study derives the number distribution of candidate
users in a more general form than that in [24], which
includes only the asymptotically exact distributions.

• This study considers not only the case where only one
user is supported in a single resource block but also that
where multiple users are supported in a single resource
block (Section IV-A), whereas [24] considers only the
first case.

• This study considers not only a perfect channel state
information (CSI) assumption but an imperfect CSI
assumption (Section IV-B), whereas [24] considers only
the first assumption.

B. Contributions

A noteworthy difference between uplink and downlink
scheduling analyses is the number distribution of candidate
users, which is the users that can potentially be assigned a
resource block in each cell. In the analysis of user scheduling,
the number of candidate users is a critical factor because the
multi-user diversity gain increases along with the number of
candidate users. Note that the number of candidate users is
a random variable because of the inherent randomness of
the positions of base stations (BSs) and users in Poisson
cellular networks. As discussed later in detail, the probability
mass function (pmf) of the number of candidate users in
an uplink network varies depending on the fraction of edge
users, whereas the pmf in a downlink network is unique [15]
given the BS and user densities. Therefore, to derive the
SINR distribution in a general form, we must develop a
pmf of the number of candidate users for uplink networks
that is applicable regardless of the fraction of edge users.
In Section III-B.1, this study first provides two pmfs for two
special cases: those in which all users in an entire cell are
candidate users and those in which the users near the cell
edges are not candidate users. The two pmfs are shown to
be asymptotically equal to the exact number distributions of
the candidate users. Then, in Section III-B.2 we provide the
general pmf using beta distribution fitting, which requires a
relatively high calculation cost and is yet applicable regardless
of the fraction of edge users.

The contributions of this study are as follows.
• For an uplink Poisson cellular network, we derive the

conditional SINR distribution of a typical scheduled user
given the number of candidate users. The conditional
SINR distribution is a component of the complete SINR
distribution, which is averaged over the pmf of the num-
ber of candidate users. In addition, this study considers
two ways of handling edge users, that is, according to
whether they are allowed to transmit at the maximum
transmit power or are not allowed to transmit at all.
We also show that the conditional SINR distribution
is simplified by assuming a perfect channel inversion
power control and by not allowing edge users to transmit.
Furthermore, we show that the analytical expression is
reduced to a closed-form expression for certain special
cases.

• We provide the pmf of the number of candidate users
in each cell in an uplink network, by which we then
derive the marginalized SINR distribution under uplink
user scheduling. This study clarifies that the pmf of the
number of candidate users depends on the BS density
and achievable range, which is the maximum contact
distance induced by the maximum power constraint, for
a case in which edge users are not allowed to transmit.
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We derive the pmf of the number of candidate users in a
general form using beta distribution fitting, including the
asymptotic case in which the BS density is sufficiently
large or small. Note that the number of candidate users is
a critical factor, not only for multi-user diversity but also
for other analyses that depend on the number of users,
such as the probability that a randomly chosen user is
assigned a resource block [25].

• The numerical evaluations of the derived analytical results
confirm that normalized SNR-based scheduling increases
the coverage probability because of multi-user diversity
gain. We show that the improvement in the SINR varies
depending on the ratio of edge users and the SNR of a
scheduled user. To investigate the degree of multi-user
diversity, we also evaluate the scheduling gain, which
is defined as the ratio of the average rate of a specific
scheduling to that of round-robin scheduling, and is thus
the performance metric of the specific scheduling. The
evaluation shows that the scheduling gain decreases as
the ratio of edge users increases.

If we do not consider a user scheduling (i.e., each BS selects
a user regardless of instantaneous fading gain), the resulting
performance metric is underestimated compared to the actual
value. The generalized analyses given in this study will be
useful for estimating the degree of multi-user diversity accord-
ing to a given situation, and will help in effectively operating
a user scheduler. In addition, the analytical results will help
in providing insight into the design of cell deployment when
considering the scheduling gain based on the number of
accommodated users in each cell, which will be a building
block for the guidelines of the cellular design.

Notation: E[·] denotes the expectation operator, fx(·) is
the probability density function (pdf) of a continuous ran-
dom variable x or the pmf of a discrete random variable
x, Lx(·) is the Laplace transform of the pdf of x, B(·, ·)
is a beta function, γ(·, ·) is a lower incomplete gamma
function, and 1 F1(·; ·; ·) or 2 F1(·, ·; ·; ·) is a hypergeometric
function.

II. SYSTEM MODEL

The uplink cellular network to be analyzed consists of BSs,
users, and schedulers. All of the following assumptions can
be found in representative studies in which uplink cellular
networks are analyzed [7], [8], except the assumptions that
truncated fractional power control per user [8], [23] and
channel-adaptive user scheduling [15], [17] are performed.

The locations of the BSs and users form independent PPPs
in R

2 with the respective intensities, λBS and λUE, as in
[25], [26]. The PPP assumption is widely accepted as the
baseline assumption for a cellular system analysis [3], [5].
Note that the performance gap between the PPP and actual
distribution can be found in [5]. Each user is associated with
the nearest BS, meaning that the cell of each BS comprises a
Voronoi tessellation on a plane.

We assume that a single resource block exists in the
frequency domain. Note that for the case of multiple resource
blocks in the frequency domain, the analysis for each resource

block reduces to an analysis with a single resource block by
assuming independence among the resource blocks.

We assume that the desired and interference signals experi-
ence a path loss with a path loss exponent η and quasi-static
Rayleigh fading (i.e., the channel gain is constant over a time
slot and is exponentially distributed with a mean of 1).

Although the system model presented in this paper for
uplink cellular networks is based on many aspects of that
presented in [8], two essential differences exist: we consider
the channel-adaptive user scheduling in which a transmitting
user is selected according to the aforementioned manner,
whereas a transmitting user is randomly chosen in [7], [8],
and we consider cells that include no transmitting user.
By contrast, in [8], the locations of users are arranged such
that each BS has at least one scheduled user. As a result, in this
study the density of interfering users is reduced.

A. Transmission Power Control

We assume that each user adjusts its transmit power accord-
ing to truncated fractional power control. In this system, each
user transmits according to the following two rules.

As the first rule, (P1), a user within Rd := (PM/ρo)1/ηε

from the serving BS transmits at transmit power rηερo, where
PM is the maximum transmit power, � ∈ [0, 1] is a power
control factor, r is a contact distance, and ρo is a constant. Note
that Rd is the distance over which a radio signal transmitted
at the maximum transmit power PM from a user decays to the
constant ρo on average. Note that the transmit power control in
this study is a generalization of that given in [7], [8], in which
uplink cellular networks were analyzed by means of stochastic
geometry. The case in which � = 1, namely, when the factor
relative to the contact distance r disappears from the product of
transmit power rηρo and distance attenuation r−η (i.e., perfect
channel inversion is achieved), was analyzed in [8], and the
case in which PM → ∞, namely, when no maximum power
constraint exists, was analyzed in [7].

The second rule is for the users outside the range of
Rd (hereinafter referred to as edge users for simplicity) in
each Voronoi cell. Note that the term “edge user” does not
necessarily mean a user with poor communication quality in
this context; this type of usage can also be found in [8].
We can consider how to treat edge users in two ways: (P2a),
where an edge user is not allowed to transmit, and (P2b),
where an edge user transmits at the maximum transmit power.
In previous studies, the rules (P2a) and (P2b) are used sep-
arately: (P2a) can be found in [8] and (P2b) in [7], [23],
[27], [28]. Note that, although rule (P2a) does not ensure
fairness among users, edge users transmitting at the maximum
transmit power can significantly increase the interference in the
system and thus degrade the network performance [8], which
motivated us to consider rule (P2a). We start by describing
the case with (P1) and (P2a) in Section III-A and then extend
it to the case with (P1) and (P2b) in Section III-D. Note that
considering the probability of no BS existing within Rd based
on the definition of PPP [2], the fraction of edge users is given
by e−πλBSR2

d , which is found in several parts of this paper,
including Sections III-B and III-D.
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Fig. 1. Red dots represent each type of user, the dashed circle represents
the achievable range (see Section III-B), purple triangles represent BSs, green
dots represent users, and blue circles represent edge users in a typical cell.

B. Normalized SNR-Based Scheduler

In our system model, a scheduler selects the user to transmit
in each time slot. Each BS is assumed to have knowledge
of the instantaneous SNRs of the candidate users according
to the channel estimation at the beginning of each time slot.
Note that we discuss the SINR analysis with perfect CSI in
Section III, and then discuss the SINR analysis with imperfect
CSI in Section IV. We consider the normalized SNR-based
scheduler [15], [17], which selects the user with the largest
instantaneous SNR normalized by the short-term average SNR
in each time slot. Given the fading gain hi, transmit power pi,
and distance to the serving BS (i.e., contact distance) ri of
user i, the normalized SNR of user i is obtained as follows.

SNRi

Ehi [SNRi]
=

hipir
−η
i /σ2

i

Ehi [hipir
−η
i /σ2

i ]
= hi

The short-term average SNR is the average value of the
instantaneous SNR over a period during which the variation in
the contact distance (as well as transmit power) is negligible.
Note that if the data rate is proportional to the SNR [20],
the normalized SNR-based scheduler is equivalent to the
proportional fair scheduler [14].

As shown in the previous equation, this scheduler selects
the user having the largest fading gain among all candidate
users [15], [16], whereas the round-robin scheduler selects a
user regardless of the channel conditions. A user currently
selected to transmit in each cell is referred to as a scheduled
user. Fig. 1 presents the definitions of candidate users and
scheduled users to clarify the difference between them. Note
that the authors of [15] considered a downlink analysis with
the same scheduler, whereas in the present study we address
an uplink analysis with truncated fractional power control.

III. SINR CCDF AND AVERAGE DATA RATE FOR PERFECT

CSI AND SINGLE-USER-SINGLE-RESOURCE-BLOCK CASE

In this section, we describe the acquisition of the SINR
ccdf and the average data rate for the uplink system. The SINR
ccdf of a typical scheduled user is the probability that the user
achieves a target value θ of the SINR when it is scheduled,
which is defined as F̄SINR(θ) := P(SINR > θ).

In this section, as a basic scenario, we assume that the
perfect CSI is available for schedulers and that at most one
user is allowed to transmit in each resource block (or time
slot). In this case, the scheduler always selects the user with
the largest fading gain to be scheduled and does not select the
other candidate users. We extend the framework to handle the
basic scenario in this section to the case of assigning a single
resource block to multiple users and the case of imperfect CSI
in Section IV.

We first introduce the SINR with truncated fractional power
control. Without loss of generality, we can assume that a
typical BS is located at the origin. The SINR relative to the
typical scheduled user is denoted by:

SINR =
max

i=1,2,...,n
hir

η(ε−1)ρo

σ2 + I
, (1)

where hi is the fading gain of candidate user i exponentially
distributed with a mean of 1, r is the contact distance of
a typical scheduled user, and n represents the number of
candidate users in the associated cell. The max operator
reflects the fact that the scheduler selects the user with the
largest fading gain. Note that the power control is assumed
to be performed in advance of the scheduling. The parameter
σ2 denotes the noise power, and the value I is the aggregate
interference power defined as:

I =
∑

u∈Φsu\{uo}
gupu‖u‖−η, (2)

where Φsu is a point process formed by the locations of
scheduled users, and uo is a typical scheduled user. The
parameters gu and pu represent the fading gain and the
transmit power relative to interfering user u ∈ Φsu \ {uo},
respectively.

In normalized SNR-based scheduling, the fading gain of a
typical scheduled user follows the distribution of the largest
order statistic [18] for the given fading gains of the involved
users in the corresponding cell [15]. The distribution is
given by:

P

(
max

i=1,2,...,n
hi ≤ x

)
= (1 − e−x)n. (3)

The aforementioned distribution also appears in the calculation
of the selection combiner output [29]. However, unlike in
selection combining, n is a random variable because of the
inherent randomness of the positions of the BSs and users in
Poisson cellular networks.

We now state the main results of this study. Before deriving
the SINR ccdf in a complete form, we can give the general
results by utilizing the fact that the multi-user diversity gain
increases with the number of candidate users in the corre-
sponding cell. Letting the number of candidate users be a
random variable n, we obtain:

F̄SINR(θ) = En[ P(SINR > θ |n) |n > 0 ]

=
∞∑

n=1

fn(n)
1 − fn(0)

P(SINR > θ |n), (4)

where P(SINR > θ |n) denotes the SINR ccdf conditional on
n and fn(n) is the pmf of the number of candidate users in
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each cell. Note that we do not focus on the cells that include no
candidate users because P(SINR |n = 0) is unreasonable, and
thus we average over the distribution conditioned on n > 0. To
simplify the notation of conditional expectation given n > 0,
we use the notation En>0[·] := En[ · |n > 0 ]. We first present
the derivation of P(SINR > θ |n) (see Lemma 1), as well as
some simpler expressions in Section III-A. We then discuss
the details of the number distribution of candidate users
in Section III-B.

A. Conditional SINR ccdf Given Number of Candidate Users

Before deriving the SINR ccdf, we make three approxima-
tions for analytical tractability. We assume that the number of
candidate users n and the contact distance r are independent,
the scheduled users form a PPP with intensity λBS, and the
transmit powers of the scheduled users are independent. The
first assumption was employed in [15], and the last two
approximations were employed in [8], each of which showed
that the approximations maintain the accuracy of the leading
results. The validation of the approximations is also shown
through a numerical evaluation described in Section V. Note
that the assumption that the PPP formed by all users (not
scheduled users) is independent of the PPP formed by BSs,
as given in Section II, is not used in deriving the conditional
SINR ccdf given the number of candidate users, but instead
contributes to obtaining the pmf of the number of candidate
users in each cell, as described in Section III-B.

As the maximum contact distance is thought to be Rd,
the contact distance follows the following truncated Rayleigh
distribution:

fr(r) = z−1
r re−πλBSr2

�{0≤r≤Rd}, (5)

where z−1
r is a normalizing constant and �{condition} is the

indicator function, which equals 1 if condition is true and
zero otherwise. Note that the unrestricted case (i.e., Rd → ∞)
corresponds to a Rayleigh distribution, which is the standard
assumption concerning the contact distance in a cellular analy-
sis [2], [5]. By considering the distribution of a transformed
variable p = rηερo, we derive the distribution of the transmit
powers of interfering users as:

fp(p) = z−1
p p

2
ηε−1e−πλBS( p

ρo )
2

ηε

�{0≤p≤PM}, (6)

where z−1
p is a normalizing constant.

Lemma 1: Suppose n and r are independent, Φsu is inde-
pendent of the PPP formed by BSs, and the transmit powers
of scheduled users are independent. P(SINR > θ |n) is
given by:

P(SINR > θ |n) =
n∑

k=1

(
n

k

)
(−1)k+1

Er

×
[
exp

(
− kθσ2

rη(ε−1)ρo
− 2πkθλBSr

2−ηε

(η − 2)/(1 − fn(0))
Ep

×
[
p 2 F1

(
1, 1 − 2

η
; 2 − 2

η
;− kθp

rηερo

)])]
. (7)

Proof: We have:

P(SINR > θ |n)

= Er,I [P(SINR > θ |n, r, I)]

= Er,I

⎡
⎣P

⎛
⎝ max

i=1,2,...,n
hir

η(ε−1)ρo

σ2 + I
> θ

∣∣∣∣∣∣ n, r, I

⎞
⎠
⎤
⎦

= Er,I

[
P

(
max

i=1,2,...,n
hi >

θ(σ2 + I)
rη(ε−1)ρo

∣∣∣∣ n, r, I

)]

= Er,I

[
1 −

(
1 − exp

(
−θ(σ2 + I)

rη(ε−1)ρo

))n]

= Er,I

[
n∑

k=1

(
n

k

)
(−1)k+1 exp

(
−kθ(σ2 + I)

rη(ε−1)ρo

)]
(8)

=
n∑

k=1

(
n

k

)
(−1)k+1

Er

[
e
− kθσ2

rη(ε−1)ρo EI

[
e
− kθI

rη(ε−1)ρo

]]

=
n∑

k=1

(
n

k

)
(−1)k+1

Er

[
e
− kθσ2

rη(ε−1)ρo LI

(
kθ

rη(ε−1)ρo

)]
.

(9)

Note that P(SINR > θ |n, r) is given based on the expectation
of the sum of the exponential functions of interference I
in (8) because the distribution of the fading gain of the
scheduled user (3) can be written as the sum of the exponential
functions according to the binomial theorem. Although this
property is true for the downlink analysis [15], the ele-
ment regarding the Laplace transform is different because
of the power control and the difference in the interference
sources.

The remainder of the proof is given in Appendix A. �
Considering p = rηερo, we can see that the average over p

is equivalent to that over r. The conditional SINR distribution
given that the number of candidate users is fixed at one,
i.e., P(SINR > θ |n = 1), corresponds to the analysis
given in [7], which does not consider channel-adaptive user
scheduling but rather round-robin scheduling.

For the interference-limited case (i.e., σ2 + I � I),
the first exponential function in (7) can be ignored.
When η = 4, the hypergeometric function reduces by
x 2 F1(1, 1/2; 3/2;−x) =

√
x arctan

√
x. The assumption of

the previous two conditions yields a simpler expression:

P(SINR > θ |n) =
n∑

k=1

(
n

k

)
(−1)k+1

×Er

[
exp

(
− πλBS(1 − fn(0))r2

Ep

×
[√

kθp

r4ερo
arctan

√
kθp

r4ερo

])]
.

Corollary 1: Suppose � = 1 (i.e., when perfect chan-
nel inversion is achieved), we can simplify the SINR ccdf
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conditional on n as:

P(SINR > θ |n) =
n∑

k=1

(
n

k

)
(−1)k+1 exp

(
−kθσ2

ρo

)

× exp

(
−2 kθγ

(
2, πλBSR

2
d

)
2 F1(1, 1 − 2

η ; 2 − 2
η ;−kθ)

(η − 2)
(
1 − e−πλBSR2

d
)
/(1 − fn(0))

)
.

(10)

Proof: See Appendix B. �
Note that P(SINR > θ |n = 1, � = 1) corresponds to the

same analysis given in [8] except that the density of interfering
users is reduced to (1 − fn(0))λBS because of the absence of
users in certain cells. It should also be noted that for � = 1,
we can drop the random variable r in the analysis, and thus we
no longer require the assumption of independence between n
and r, which is assumed in Lemma 1. Whereas the accuracy of
these approximations was validated in [8] for the case without
channel-adaptive scheduling, in Section V it is validated for a
case in which channel-adaptive scheduling is employed.

Simpler expressions can be derived for certain special
cases. For the interference-limited case, exp(−kθσ2/ρo) can
be ignored. When η = 4, the part related to the hyper-
geometric function reduces to the closed-form expression,√

kθ arctan(
√

kθ). In the case of PM → ∞ (equivalently
Rd → ∞), γ(2, πλBSR

2
d) reduces to 1 and 1−e−πλBSR2

d → 1.
The simplest form is obtained when the previous three condi-
tions are simultaneously satisfied, which leads to

P(SINR > θ |n)

=
n∑

k=1

(
n

k

)
(−1)k+1e−(1−fn(0))

√
kθ arctan

√
kθ . (11)

Note that the previous expression is a closed form and depends
only on a threshold θ. We should also note that allowing
the number of candidate users n to be 1 with probability 1
corresponds to the results of typical uplink analyses [7], [8],
and thus our results are a natural extension of them to a case
in which an active user is not randomly selected.

B. Number Distribution of Candidate Users

The derivation of the SINR ccdf is complete if we have
the number distribution of candidate users in each cell, fn(n).
In fact, the distribution depends on the existing range of a
scheduled user. To discuss the existing range, we define the
achievable region of the BS as the circle centered in a typical
BS with radius Rd. The users outside the achievable range of
the serving BS are not allowed to transmit frames owing to
the maximum power constraint.

In this section, we first provide the distribution for two
asymptotic cases, where the achievable range relative to the
typical BS includes the corresponding Voronoi cell, as shown
in Fig. 2(a), with a high probability, and where the typical
Voronoi cell includes the corresponding achievable range,
as shown in Fig. 2(c), with a high probability. Next, we give
a general distribution, which is more complicated than the
former two distributions but is correct regardless of the manner
in which a Voronoi cell and the corresponding achievable
range overlap.

Fig. 2. Existing range of scheduled user. The red region represents the
existing range, the dashed circle represents the achievable range with radius
Rd, and the purple triangles represent BSs.

With respect to a typical BS, the existing range corresponds
to the Voronoi cell, as shown in Fig. 2(a), with probability

g1(λBS, Rd) = 1 − e−πλBSR2
d , (12)

which is equivalent to the probability that at least one BS exists
within Rd of a certain user. By contrast, the existing range
corresponds to the achievable range, as shown in Fig. 2(c),
with probability

g2(λBS, Rd) = e−4πλBSR2
d , (13)

which is equivalent to the probability that no cell edges exist
within Rd from the BS, namely, the probability that no other
BS exists within the circle centered at the typical BS with
radius 2Rd. Therefore, the case shown in Fig. 2(b) occurs
with probability 1 − g1 − g2.

Given area a of the corresponding existing range in a typical
cell, the pmf of the number of involved users is given by:

fn | a(n | a) =
(λUEa)n

n!
e−λUEa, (14)

from the definition of PPP [2]. Therefore, if given the distri-
bution fa(a) of area a of the existing range in a typical cell,
we can obtain the number distribution of candidate users by

fn(n) =
∫ ∞

0

fn | a(n | a)fa(a) da. (15)

1) Asymptotic Cases: If g1(λBS, Rd) � 1, fa(a) corre-
sponds to the distribution of the area of the typical Voronoi
cell, and the corresponding distribution of the candidate users
is given, as in [25], we can obtain:

f (1)
n (n) =

(λUE/cλBS)n

cB(n + 1, c − 1)(λUE/cλBS + 1)n+c
, c = 3.5.

(16)

If g2(λBS, Rd) � 1, area a equals πR2
d with probability one,

and therefore the number distribution of candidate users is
given by:

f (2)
n (n) =

(λUEπR2
d)n

n!
e−λUEπR2

d . (17)

Substituting (7) and (16) or (17) into (4), we obtain (18),
shown at the bottom of the next page, and the following
proposition.

Proposition 1: The SINR ccdf F̄SINR(θ) of the normalized
SNR-based scheduling in uplink cellular networks is given by
(18), which is appropriate if gi(λBS, Rd) � 1 (i = 1, 2).
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Corollary 2: Suppose that � = 1 (i.e., perfect channel
inversion is performed). The SINR ccdf F̄SINR(θ) of the
normalized SNR-based scheduling in uplink cellular networks
is given by (19), shown at the bottom of this page, which is
appropriate if gi(λBS, Rd) � 1 (i = 1, 2).

2) General Case: In this section, we provide the pmf of
n, which is always applicable regardless of λBS and Rd.
To obtain the pmf of n, we consider two facts regarding the
area distribution fa(a). First, because of the restriction of the
achievable range, it is necessary that area a of the existing
range in a typical cell be distributed over [0, πR2

d]. Second,
an achievable range is included in the corresponding Voronoi
cell with probability g2(λBS, Rd), and thus, fa(πR2

d) =
g2(λBS, Rd)δ(a−πR2

d), where δ(a) is the Dirac delta function.
In this sense, g2(λBS, Rd) can be interpreted as the degree
to which the distribution is concentrated around a = πR2

d.
Because of its flexibility and boundedness [23], [30], we use
the beta distribution to model the distribution of the area of
the existing range in a typical cell over [0, πR2

d). As the beta
distribution is defined over [0, 1], considering the distribution
of the normalized area â = a/πR2

d, we have a parametric
model

fâ(a) = (1 − g2)
aα−1(1 − a)β−1

B(α, β)
+ g2δ(a − 1). (20)

Parameters α and β are determined as the functions of
λBS and Rd through the following two steps. First, we obtain
the fitted parameters for certain values of λBS through Monte
Carlo simulations, followed by the generalized representations
of the parameters as functions of λBS and Rd through a
piecewise linear approximation. Note that the derivation of
(16) requires the distribution of the area of a typical Voronoi
cell, which is also identified by parameter fitting through
Monte Carlo simulations [31]. Fig. 3 shows the parameter
estimates obtained by means of Monte Carlo simulations and
the corresponding fitted curves, which are given by:

log α =
{

1.3 log(λBSR
2
d) + 9.72, 5.36 × 10−2 < λBSR

2
d;

0.9, otherwise.

log β =
{−0.96 log(λBSR

2
d) − 7.74, 6.7 × 10−2 > λBSR

2
d;

−1.6, otherwise.

Fig. 3. Parameters of a beta distribution. The points represent fitted para-
meters through Monte Carlo simulations, and the lines represent generalized
representations of the parameters as functions of λBS (ρo = −70 dB).

Note that the parameters depend on λBS and Rd through
λBSR

2
d, because the degree to which the distribution is concen-

trated around a = πR2
d is determined based on g2(λBS, Rd)

and thus by λBSR
2
d.

Substituting (14) and (20) into (15), we obtain (21), shown
at the bottom of this page. Therefore, we can derive the
following proposition, which holds for any λBS and Rd.

Proposition 2: The SINR ccdf F̄SINR(θ) of the normalized
SNR-based scheduling in an uplink cellular network is given
by letting i = 3 in (18).

Corollary 3: Suppose that � = 1 (i.e., perfect channel
inversion is performed). The SINR ccdf F̄SINR(θ) of the nor-
malized SNR-based scheduling in an uplink cellular network
is given by letting i = 3 in (19).

C. Average Data Rate

Using the SINR ccdf, we can obtain the average data rate
τs(λBS, λUE) := E[ln(1 + SINR)], and therefore, the schedul-
ing gain [32] G(λBS, λUE) := τs(λBS, λUE)/τr(λBS), where
τr(λBS) is the average data rate of the round-robin scheduling,

F̄SINR(θ) =
∞∑

n=1

f
(i)
n (n)

1 − f
(i)
n (0)

n∑
k=1

(
n

k

)
(−1)k+1

Er

×
[
exp

(
− kθσ2

rη(ε−1)ρo
− 2πkθλBSr

2−ηε

(η − 2)/(1 − f
(i)
n (0))

Ep

[
p 2 F1

(
1, 1 − 2

η
; 2 − 2

η
;−kθp

rηε

)])]
. (18)

F̄SINR(θ) =
∞∑

n=1

f
(i)
n (n)

1 − f
(i)
n (0)

n∑
k=1

(
n

k

)
(−1)k+1 exp

(
−kθσ2

ρo
−

2 kθγ
(
2, πλBSR

2
d

)
2 F1(1, 1 − 2

η ; 2 − 2
η ;−kθ)

(η − 2)
(
1 − e−πλBSR2

d
)
/(1 − f

(i)
n (0))

)
, (19)

f (3)
n (n) =

∫ 1

0

(λUEπR2
d a)n

n!
e−λUEπR2

d afâ(a) da

= (1 − g2)
B(n + α, β)

B(α, β)
(λUEπR2

d)n

n!

∫ 1

0

an+α−1(1 − a)β−1

B(n + α, β)
e−λUEπR2

d ada + g2
(λUEπR2

d)n

n!
e−λUEπR2

d

= (1 − g2)
B(n + α, β)

B(α, β)
(λUEπR2

d)n

n! 1 F1(n + α; n + α + β;−λUEπR2
d) + g2

(λUEπRd2)n

n!
e−λUEπR2

d . (21)



2328 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 19, NO. 4, APRIL 2020

which is given as:

τr(λBS) =
∫ ∞

0

e−
xσ2
ρo

x + 1
LI

(
x

ρo

)
dx. (22)

Note that these average data rates are not defined for cells
in which no scheduled users exist. Also note that (22) differs
from that presented in [8] in that we consider BSs as having
no users to serve.

Corollary 4: The average data rate τs(λBS, λUE) of the
normalized SNR-based scheduling is given by:

En>0

⎡
⎣ n∑

k=1

(
n

k

)
(−1)k+1

Er

×
⎡
⎣∫ ∞

0

e
− kxσ2

ρorη(ε−1)

x + 1
LI

(
kx

ρorη(ε−1)

)
dx

⎤
⎦
⎤
⎦ . (23)

In particular, letting σ2 = 0, PM → ∞, η = 4, � = 1 yields a
simpler form:

En>0

[
n∑

k=1

(
n

k

)
(−1)k+1

∫ ∞

0

e−(1−f(i)
n (0))

√
kx arctan(

√
kx) dx

x+1

]
.

(24)

Proof: See Appendix C. �

D. Analysis with Edge Users

The aforementioned analyses were conducted by focusing
on users within an achievable range, where the edge users are
not allowed to transmit. We now consider the extension of the
aforementioned framework to the case in which edge users are
permitted to transmit at the maximum transmit power PM.

We introduce sin supposed on {0, 1} as a variable indi-
cating whether a typical scheduled user is located within an
achievable range. As the proportion of edge users is given by
1 − g1(λBS, Rd) in a Poisson cellular network, Here, sin = 1
means the user is inside the achievable range, whereas sin = 0
means the user is an edge user. we have P(sin = 1) =
g1(λBS, R) and P(sin = 0) = 1 − g1(λBS, Rd).

The SINR ccdf conditional on sin = 1 is the same as (9)
except for the distribution of transmit power of an interfering
user. Within the entire network, a fraction 1 − g1(λBS, R) of

users transmit according to the fractional power control, and a
fraction g1(λBS, R) transmits at the maximum transmit power.
Thus, the distribution of transmit power of an interfering user
is given as:

fp̂(p) = g1 z−1
p p

2
ηε−1e−πλBS( p

ρo )
2

ηε

�{0≤p<PM}
+(1 − g1)δ(p − PM)�{p=PM} . (25)

The SINR ccdf conditional on sin = 0 is given by replacing
rηερo with PM in (9):

P(SINR > θ | sin = 0)

= En>0

[
n∑

k=1

(
n

k

)
(−1)k+1

× Er̂

[
exp

(
− kθσ2

PMr̂−η

)
LI

(
kθ

PMr̂−η

)]]
,

(26)

where r′ is a contact distance of an edge user, which follows
the Rayleigh distribution truncated in (Rd,∞):

fr̂(r) = z−1
r̂ re−πλBSr2

�{r>Rd}, (27)

where z−1
r̂ is a normalizing constant.

Averaging out the random variable sin yields (28), shown at
the bottom of this page. In this case, because every user can
transmit, the number distribution of candidate users is given by
f

(1)
n (n), which is the number distribution of users in a typical

Voronoi cell. Consequently, we have the following proposition.
Proposition 3: When edge users are allowed to transmit at

the maximum transmit power, the SINR ccdf F̄SINR(θ) of
the normalized SNR-based scheduling in an uplink cellular
network is given by (28).

IV. EXTENSION FOR MULTIPLE

USER AND IMPERFECT CSI

In this section, we extend the aforementioned mentioned
framework in two ways, that is, we consider the case in which
multiple user are supported in a single resource block and the
case in which perfect CSI is not available for schedulers. The
two cases are related through the SINR analysis of a user with
the ith largest fading gain in a cell.

P(SINR > θ) =
∑

i∈{0,1}
P(SINR > θ | sin = i)P(sin = i)

= En>0

[
n∑

k=1

(
n

k

)
(−1)k+1

{
g1Er

[
e
− kθσ2

rη(ε−1)ρo LI

(
kθ

rη(ε−1)ρo

)]

+(1 − g1)Er̂

[
e
− kθσ2

PM r̂−η LI

(
kθ

PMr̂−η

)]}]

=
∞∑

n=1

f
(1)
n (n)

1 − f
(1)
n (0)

[
n∑

k=1

(
n

k

)
(−1)k+1

{
g1Er

[
e
− kθσ2

rη(ε−1)ρo LI

(
kθ

rη(ε−1)ρo

)]

+ (1 − g1)Er̂

[
e
− kθσ2

PM r̂−η LI

(
kθ

PMr̂−η

)]}]
. (28)
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A. Discussion on Multiple Users

Considering multiple orthogonal resource blocks in the
frequency domain, we can consider multiple users to be
scheduled in each time slot. In this case, the SINR analysis
in each resource block is reduced to the analysis under the
single-user-single-resource-block assumption.

On the other hand, multiple users can also be supported
in the same resource block by using space division multiple
access [29] or non-orthogonal multiple access [33]. In that
case, the normalized SNR-based scheduler selects a specified
number of users to be scheduled in order of their fading gains.

In this section, we mainly give the conditional SINR ccdf
relative to the user with the ith largest fading gain in a cell
given the number of candidate users n. After that, we briefly
explain the derivation of the SINR ccdf averaged over n and
the average data rate because the corresponding processes are
almost the same as in the single-user-single-resource block
case.

We assume that the perfect CSI is available for schedulers
in this subsection. Let h(i,n) be the ith largest of the fading
gains h1, h2, . . . , hn of candidate users (i.e., h(1,n) ≥ h(2,n) ≥
· · · ≥ h(n,n)). The distribution of the ith largest fading gain
h(i,n) is given by

P
(
h(i,n) ≤ x

)
=

n∑
j=n−i+1

(
n

j

)
(1 − e−x)j · (e−x)n−j

=
n∑

j=n−i+1

(
n

j

) j∑
k=0

(
j

k

)
(−1)ke−(n+k−j)x.

(29)

Letting the SINR relative to the users with fading gain h(i,n)

be denoted by SINR(i,n), we obtain

P(SINR(i,n) > θ |n)

= Er,I

[
P

(
h(i,n)r

η(ε−1)ρo

σ2 + I
> θ

∣∣∣∣∣ n, r, I

)]

= Er,I

[
P

(
h(i,n) >

θ(σ2 + I)
rη(ε−1)ρo

∣∣∣∣ n, r, I

)]

= Er,I

⎡
⎣1 −

n∑
j=n−i+1

(
n

j

) j∑
k=0

(
j

k

)
(−1)k·

exp
(
− (n + k − j)θ(σ2 + I)

rη(ε−1)ρo

)]

= 1 −
n∑

j=n−i+1

(
n

j

) j∑
k=0

(
j

k

)
(−1)k ·

Er

[
e
− (n+k−j)θσ2

rη(ε−1)ρo LI

(
(n + k − j)θ

rη(ε−1)ρo

)]
.

(30)

Noticing that the Laplace transform of I is given by (35) in
the same manner as Appendix A, we can obtain the analytical
expression for P(SINR(i,n) > θ |n). Note that when applying
the probability generation functional of PPP in the derivation
of the Laplace transform of I , we need the density of inter-
fering users, which is considered as (1 − fn(0))λBS in the
previous section. However, if multiple users simultaneously
transmit in a single resource block in each cell, the effective
density of interfering users would be more than (1−fn(0))λBS

depending on a multiple access scheme. However, a detailed
discussion on such an effective density is out of scope of this
paper, and hence we just present a theoretical result as a form
of lemma by letting the effective density of interfering users
in a considered system be denoted by λ(eff)

I .
Lemma 2: Under the same assumptions as Lemma 1,

the conditional SINR ccdf P(SINR(i,n) > θ |n) relative to the
user with the ith largest fading gain is given by (31), shown
at the bottom of this page.

Similar to the derivation of (11), letting σ2 = 0, PM → ∞,
η = 4, � = 1, we have a simpler form (32), shown at the
bottom of this page. The only essential difference between
(11) and (32) is that (32) includes one more finite summation
than (11).

Averaging P(SINR(i,n) > θ |n) with respect to the number
of candidate users n, we obtain the SINR ccdf P(SINR(i) > θ)
relative to the user with the ith largest fading gain. Also,
integrating P(SINR(i) > et − 1) with respect to t from
0 to ∞ as in the single-user-single-resource-block case under
the perfect CSI assumption, we obtain the average data rate.
The process of averaging for n and that of obtaining the
average data rate are the same as in Section III-B and in
Appendix C, respectively.

B. Discussion on Imperfect CSI

Thus far we have assumed that the perfect CSI is available
for schedulers. However, the perfect CSI is not necessarily
available in a practical system. In this section, we consider
the SINR distribution under the imperfect CSI assumption.

P(SINR(i,n) > θ |n) = 1 −
n∑

j=n−i+1

(
n

j

) j∑
k=0

(
j

k

)
(−1)k

×Er

[
exp

(
− (n + k − j)θσ2

rη(ε−1)ρo
− 2π(n + k − j)θλ(eff)

I r2−ηε

(η − 2)

×Ep

[
p 2 F1

(
1, 1 − 2

η
; 2 − 2

η
;− (n + k − j)θp

rηερo

)])]
. (31)

P(SINR(i,n) > θ |n) = 1 −
n∑

j=n−i+1

(
n

j

) j∑
k=0

(
j

k

)
(−1)k exp

(
−λ(eff)

I

λBS

√
(n + k − j)θ arctan

√
(n + k − j)θ

)
. (32)
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We consider the case in which a scheduler tries to assign a
resource block to the user who has the largest fading gain in
actual, as in Section III. Note that the case in which a scheduler
tries to assign the same resource block to the user with the ith
largest fading gain can be considered in the same manner as
in the previous section. Under the imperfect CSI assumption,
the scheduler observes the channel gains (equivalent to fading
gains) of candidate users with noise. Let the fading gain of user
i observed by the scheduler be denoted by h̃i. In this system,
a scheduler assigns a resource block to a user with fading
gain maxi=1,2,...,n h̃i in each time slot. Therefore, a user
with fading gain h(1,n) = maxi=1,2,...,n hi is not necessarily
scheduled in general.

We denote the probability that the scheduler assigns a
resource block to the user with fading gain h(i,n) by psche

(i,n),
which depends on the observation model of fading gains. Note
that under the perfect CSI assumption, psche

(i,n) = 1 for i = 1
and psche

(i,n) = 0 otherwise. Noticing that the SINR ccdf for
the user with fading gain h(i,n) is given in (31) or (32) (note
that λ(eff)

I is (1−fn(0))λBS for the single-user-single-resource-
block case), we obtain the SINR ccdf under the imperfect CSI
assumption as follows.

P(SINR > θ |n) =
n∑

i=1

psche
(i,n) · P(SINR(i,n) > θ |n). (33)

We can derive the SINR ccdf averaged over n and average data
rate in the same way as the single-user-single-resource-block
case under the perfect CSI assumption.

The performance degradation due to the imperfect CSI
condition is determined by two factors: the probabilities of
selecting users other than the user with the highest fading gain
and the gap between the SINRs of the user actually selected
and the user with hightest fading gain. Our results mainly
contribute to the analysis of the latter factor.

Note that even if the observation model of fading gains is
simple, the dependence of h(1,n), h(2,n), . . . , h(n,n) makes it
difficult to write psche

(i,n) (i = 1, 2, . . . , n) as a simple expression.
However, the Monte Carlo estimation of these probabilities
costs much less than the total evaluation of SINR distribution.
The actual evaluation is found in Section V-B.

V. NUMERICAL EVALUATIONS

A. Validation Through Simulations

First, we validate the analytical results of SINR ccdf through
simulations. Unless otherwise specified, we set the path loss
exponent η = 4, noise power σ2 = −90 dBm, maximum
transmit power PM = 23 dBm, BS density λBS = 2 BSs/km2,
power-related constant ρo = −70 dBm, power control factor
� = 1, and average number of users per BS λUE/λBS = 4. Each
simulation is repeated 10,000 times, and the corresponding
empirical ccdf is shown.

Fig. 4 shows the SINR ccdfs for the cases of λBS = 0.2,
2, 20 BSs/km2. In all cases, the figures also include three
analytical results (19) for i = 1, 2, 3. Note that the achievable
range Rd varies depending on ρo as Rd = (PM/ρo)1/η.
We can see that for i = 1, 2, the analytical results aver-
aged over f

(i)
n (n) coincide with the simulation results when

Fig. 4. SINR ccdfs F̄SINR(θ) obtained through a theoretical analysis and
simulation (orange, green, and blue lines correspond to ρo = −90,−70,−50,
respectively).

gi(λBS, Rd) is large. For example, g1 = 0.940 for λBS =
20 BSs/km2, ρo = −70 dBm and g2 = 0.894 for λBS =
0.2 BSs/km2, ρo = −70 dBm, which explains the good agree-
ment between the simulation and analytical results averaged
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TABLE I

PARAMETER SETTINGS IN THE NUMERICAL EVALUATION
(WITH DEFAULT VALUES INDICATED IN BOLD)

over f
(1)
n (n) or f

(2)
n (n). By contrast, neither of the two ana-

lytical results explains all simulation results simultaneously.
We would like to emphasize that the analytical result using
f

(3)
n (n) accounts for the simulation results regardless of the

BS density λBS and ρo.
Each figure also shows the multi-user diversity gain, which

means that the SINR of the normalized SNR-based scheduling
is superior to that of the round-robin scheduling, particularly
within a low SINR region. Note that some of the results show
a subtle improvement in the SINR, which derives from the fact
that an insufficient number of candidate users exist to obtain
multi-user diversity gain.

B. Validation Under Imperfect CSI Assumption

This section is devoted to the evaluation under the incom-
plete CSI assumption, which is discussed in Section IV-B,
and we validate the analytical result (33) through a compar-
ison with the Monte Carlo simulations. In this evaluation,
we use f

(3)
n (n) for the number distribution of candidate users,

which shows a good agreement with simulation results for
any λBS. To show the degradation of multi-user diversity
clearly, we evaluate the SINR ccdf for the case of λBS =
20 BSs/km2. This is the case in which the gap between
normalized SNR-based scheduling and round-robin scheduling
is clear, as shown in Fig. 4.

In this evaluation, we estimate psche
(i,n) (i = 1, 2, . . . , n)

under the assumption that the scheduler observes fading gains
contaminated with additive i.i.d. Gaussian noise, which is used
to evaluate (33). We assume that the observation model is a
mapping from hi to h̃i = |√hi + zi|2, where zi is an i.i.d.
complex Gaussian random variable [34] with zero mean and
variance of 1/4.1 The value of the variance is determined such
that some, but not too many, errors occur with user selection
(i.e., psche

(1,n) � 1/n and psche
(1,n) � 1). Fig. 5 shows the estimated

psche
(i,n), n = 2, 3, 4, 5 for reference, which is obtained through

100, 000-times simulations for each n.
Fig. 6 shows both the theoretical and simulation results

under the imperfect CSI assumption, with the simulation
results under the perfect CSI assumption given for reference.

1The mapping is obtained in detail as follows. As discussed in [34], the noisy
channel estimate of user i in the complex signal space is given as

√
hiejθ+zi,

where j is a imaginary unit, θ is a phase constant, and zi is an i.i.d. circularly-
symmetric complex Gaussian noise. Note that hi is used to denote a channel
power gain in this paper. Therefore, the estimated channel power gain is
given by h̃i = |√hie

jθ + zi|2 = |√hi + zie
−jθ|2 = |√hi + z′i|2, where

z′i = zie−jθ . Considering the circular symmetry of zi, z′i can be seen as an
i.i.d. circularly-symmetric complex Gaussian random variable.

Fig. 5. Results of Monte Carlo estimation of (psche
(1,n)

, psche
(2,n)

, . . . ,

psche
(n,n)

), n = 2, 3, 4, 5, each of which is the probability that the user with
the ith largest fading gain h(i,n) is scheduled.

Fig. 6. SINR ccdfs F̄SINR(θ) obtained through a theoretical analysis and that
of simulations under the imperfect CSI assumption for λBS = 20 BSs/km2

(orange, green, and blue lines correspond to ρo = −90,−70,−50,
respectively).

Fig. 7. SINR ccdfs when outage users are allowed and are not allowed to
transmit (orange, green, and blue lines correspond to ρo = −90,−70,−50,
respectively).

The results under the imperfect CSI assumption is, as a matter
of course, inferior to the results under the perfect CSI assump-
tion, and we can see that the theoretical results demonstrate
the SINR degradation caused by the imperfect CSI.

C. SINR Distribution for General Power Control Policy

Fig. 7 shows the SINR ccdfs with edge users, who transmit
at the maximum transmit power. We can also find that the
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Fig. 8. SINR ccdfs when changing the value of ε (i.e., channel inversion
is partially achieved) with σ2 = 0 mW. The dashed lines represent the
corresponding curves under round-robin scheduling.

SINR of the normalized SNR-based scheduling is superior to
that of the round-robin scheduling. In addition, we can see
that the SINR with edge users is inferior to that without edge
users, particularly when ρo is large (i.e., the fraction of edge
users g1(λBS, Rd) is large).

Fig. 8 shows the SINR ccdfs as a function of the frac-
tional power control factor �. We can also find the multi-
user diversity gain. Note that the value of the fraction of
edge users g1(λBS, Rd) varies depending on the value of �
(i.e., g1(λBS, Rd) = 0, 0, 0, 4.7 × 10−5, 0.76 for � =
0, 0.25, 0.5, 0.75, 1, respectively). We can see that the SINR
ccdf for � = 1 exhibits a special behavior as compared to
the other ccdfs. This result will contribute to determining the
appropriate � based on the system requirements.

D. Scheduling Gain Analysis

In this section, we evaluate the theoretical scheduling gain
G(λBS, λUE) to investigate concrete numerical values and to
review an example of how the gain changes with parameters.

Fig. 9 shows the scheduling gains G(λBS, λUE) as the
number of users per BS varies. Each figure shows that the
scheduling gain grows along with the number of users per
BS, which explains the multi-user diversity. We can see that
as the value of ρo, which represents the required signal power
for � = 1, decreases, the scheduling gain increases. Note
that the function log x increases more sharply for a smaller
argument. Therefore, a user with a low SNR tends to obtain
more scheduling gain than a user with a high SNR.

Fig. 9(b) shows the scheduling gains when edge users are
allowed to transmit at the maximum transmit power. Compared
to Fig. 9(a) (i.e., a case in which edge users are not allowed
to transmit), in this figure we can see that the scheduling gain
increases for any ρo and λBS. This is because of the increase
in the number of candidate users and in the number of users
with low required signal powers. Note that when the edge
users are not allowed to transmit, these users do not contribute
to the scheduling gain because they are not considered to be
scheduled and the derived data rate is the average data rate of
the scheduled users.

Fig. 9(c) shows the scheduling gains for different values
of �. We can see that the scheduling gain varies depending

Fig. 9. Scheduling gain analyses (orange, green, and blue lines correspond
to ρo = −90,−70,−50, respectively.)

on the value of �. Therefore, we should consider the effect of
the scheduling gain, in addition to the traditional consideration
found in studies such as [7].

In all cases, we can also observe a performance gap between
the round-robin scheduling and the normalized SNR-based
scheduling. We can conclude that the analytical results derived
from this study successfully capture the multi-user diversity.

VI. CONCLUSION

This study presented a new framework for analyzing the
SINR distribution of a typical scheduled user in an uplink
cellular network. In particular, the SINR distribution with
a normalized SNR-based scheduler was obtained using sto-
chastic geometry. One of the main observations was that the
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multi-user diversity gain depends on the number of candidate
users. Therefore, this study provided the averaged SINR distri-
bution by considering the conditional SINR distribution given
the number of candidate users and the number distribution
of the candidate users in order. The number of candidate
users in a typical cell was obtained in a general form by
modeling the area of the existing range of candidate users
with a beta distribution. The analytical SINR ccdfs were in
good agreement with the simulation results regardless of the
transmit power control policy.

Numerical evaluations showed that the analytical results
were in good agreement with the simulation results and
highlighted the gap of the SINR ccdf between round-robin
scheduling and normalized SNR-based scheduling. We also
observed that the resulting scheduling gain varies depending
on the transmit power control policy and the number of accom-
modated users in each cell. In this sense, the given analytical
framework provides a unified design method for estimating
multi-user diversity for uplink cellular networks, enabling a
performance evaluation that avoids underestimation that occurs
when channel-adaptive user scheduling is not considered.

APPENDIX A
REST OF PROOF OF LEMMA 1

Considering that the scheduled users constitute a homo-
geneous PPP with intensity (1 − fn(0))λBS, and that their
transmit powers are independent random values, we obtain

LI(s) = E[e−sI ] = EΦsu,{gu},{pu}

×
[
e−s
�

u∈Φsu\{uo} pugu‖u‖−η
]

= EΦsu,{gu},{pu}

[ ∏
u∈Φsu

e−s�{‖u‖>r} pugu‖u‖−η

]

= EΦsu

[ ∏
u∈Φsu

Eg,p

[
e−s�{‖u‖>r} pg‖u‖−η

]]
(34)

(a)= exp
(
−c

∫ ∞

0

Ep

[
1 − Eg

[
e−s�{x>r} pgx−η

]]
xdx

)

= exp
(
−c · Ep

[∫ ∞

r

(
1 − Eg

[
e−spgx−η

])
xdx

])

= exp
(
−c · Ep

[∫ ∞

r

(
1 − 1

1 + spx−η

)
xdx

])

= exp
(
−csr2−η

η−2
Ep

[
p 2F1

(
1, 1− 2

η
; 2− 2

η
;−spr−η

)])
,

(35)

where c := 2π(1 − fn(0))λBS, and (a) follows from the
probability generation functional of PPP [2]. Substituting s =
kθ/rη(ε−1)ρo into LI(s), we obtain the result of the lemma.

APPENDIX B
PROOF OF COROLLARY 1

Substituting � = 1 into (9) yields

P(SINR>θ |n)=
n∑

k=1

(
n

k

)
(−1)k+1

Er

[
e−

kθσ2
ρo LI

(
kθ

ρo

)]
.

(36)

Note that LI(s) depends on r, which is found in (34).
Notice that we can remove uo from the summation by
�{pu‖u‖−η<ρo} or equivalently �{‖u‖>(pu/ρo)1/η} instead of
�{‖u‖>r}. Then, we can obtain the Laplace transform of I ,
which is independent of r:

LI(s) = EΦsu,{gu},{pu}

[ ∏
u∈Φsu

e−s�{‖u‖>(pu/ρo)1/η} pugu‖u‖−η

]

= EΦsu

[ ∏
u∈Φsu

Eg,p

[
e−s�{‖u‖>(p/ρo)1/η} pg‖u‖−η

]]

(37)

= exp

(
−c · Ep

[∫ ∞

(p/ρo)1/η

(
1 − 1

1 + spx−η

)
xdx

])

(a)= exp

(
−cs2/η

Ep[p2/η]
∫ ∞

(sρo)−1/η

y

yη + 1
dy

)
. (38)

Here (a) is followed by y = x/(sp)1/η . Such an approach can
be found in [8]. In addition, Ep[p2/η] was obtained in [8] as:

Ep[p2/η] =
ρ
2/η
o γ

(
2, πλBSR

2
d

)
πλBS

(
1 − e−πλBSR2

d
) , (39)

which is averaged over the distribution of the transmit power
(6) with � = 1. Substituting s = kθ/ρo into (38) yields

LI

(
kθ

ρo

)
=exp

⎛
⎝−2(kθ)2/ηγ

(
2, πλBSR

2
d
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(kθ)

−1
η

y
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d
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⎞
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= exp

(
−

2kθγ
(
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2
d
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2 F1(1, 1 − 2

η ; 2 − 2
η ;−kθ)

(η − 2)
(
1 − e−πλBSR2

d
)
/(1 − fn(0))

)
.

(40)

Finally, substituting (40) into (36) and averaging with respect
to r yield (10).

APPENDIX C
PROOF OF COROLLARY 4

We have

τs(λBS, λUE) =
∫ ∞

0

P(ln(1 + SINR) > t) dt

=
∫ ∞

0

P(SINR > et − 1) dt

=
∫ ∞

0

F̄SINR(et − 1) dt

=
∫ ∞

0

F̄SINR(x)
x + 1

dx

= En>0

[
n∑

k=1

(
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)
(−1)k+1

Er

×
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e
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(
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⎤
⎦
⎤
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(41)

The simplification is given by considering (11).
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