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MIMO and Massive MIMO Transmitter Crosstalk
Peter Händel , Senior Member, IEEE, and Daniel Rönnow , Member, IEEE

Abstract— The effects of hardware-induced crosstalk in MIMO
transmitters, subject to nonlinear power amplifier distortion, are
considered in this paper. A methodology that provides tractable
results and a clear understanding of the effects of crosstalk on
transmitter performance is introduced and applied to different
transmitter models. In particular, a physically motivated 2 × 2
MIMO transmitter model, which is subjected to input and output
crosstalk, is studied in detail, as well as a behavior motivated
transmitter model, which is subjected to linear crosstalk. For
the latter structure, asymptotic results, when the number of
transmitters tends to infinity, are derived. These results provide
insight into different 1D and 2D transmitter structures in the
massive MIMO scenario. The methodology provides tractable
analytical results of the performance of the transmitter. It is
shown that the transmitter crosstalk degrades the performance
in terms of normalized mean squared error with 3 dB going
from a 2 × 2 set-up to a 1D array of a massive amount of
transmitters, and an additional 3 dB loss going from a 1D
to 2D transmitter structure. Transmitter input power back-off
optimization is further studied, with back-off determination that
takes the effects of MIMO crosstalk into account in order to
increase the energy efficiency of the transmitter.

Index Terms— Orthogonal frequency division multiplexing
(OFDM), input back-off, massive MIMO, power amplifier, trans-
mitter hardware imperfections.

I. INTRODUCTION

AN IDEAL radio frequency transmitter modulates and
amplifies its input baseband signal without introduc-

ing any nonlinear distortion or memory effects. This holds
true both for single-input-single-output (SISO) as well as
M × M multiple-input-multiple-output (MIMO) transmitters.
However, there is no such thing as ideal radio frequency
transmitters because they suffer from hardware imperfections
that influence their performance. Practical MIMO transmitters
have recently entered the scene. Compared to traditional SISO
transmitters, they allow both for a reduction of the size
of the transmitter and improved price-performance metrics.
Besides the in-channel dynamic effects and nonlinearities
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Fig. 1. Schematic illustration of transmitter structures. 1D (top figure) with
M = 7 transmitters, and 2D (bottom figure) with M = 35. The centrum
transmitter is indicated by the solid filled circle, and its nearest neighbours
are shaded. The parameter ξ determines the crosstalk.

present in a practical SISO transmitter, the MIMO transmitter
adds additional artifacts, for instance, leakage between the
transmitter branches or antennas, or so called crosstalk, that
negatively influence its performance [1]. The crosstalk may
originate from a plurality of sources, including circuit board
couplings [1]. Currently, the MIMO transmitters are typically
2 × 2 structures, e.g. for IEEE 802.11 [2], [3], LTE [4], and
79 GHz radar [5], with tailored 2 × 2 MIMO approaches for
digital error correction [6]. In particular, the crosstalk was
identified as a key issue for the 5-GHz 108-Mb/s 2×2 MIMO
WLAN transceiver in [2]. Work on M×M MIMO transmitters
for M > 2 include the effects of housing the transmitters
on a fixed physical space [7] and system identification and
measurements on 3 × 3 MIMO set-ups [8], [9].

With the massive MIMO trend [10], [11], large-M transmit-
ter structures can be expected, and they will have imperfections
included. Understanding these new transmitter structures as
illustrated in Fig. 1 is one of the main motivations for this
paper. This paper studies the behavior and performance of
M × M MIMO transmitters based on a methodology that
dates back to the classical work of Bussgang [12]. Early results
on the performance of SISO systems under different kinds of
nonlinearities include the work of [13], [14]. The methodology
has recently gained renewed popularity and has been used
to analyze the performance of orthogonal frequency domain
multiplexing (OFDM) excited transmitters, spanning from the
SISO case in [15]–[18], 2 × 2 MIMO transmitters in [19],
to multi user massive MIMO scenarios including quantized
precoding [20], 1-bit ADCs in uplink [21], [22], and precoding
and quantization in the downlink [23].
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In this paper, this traditional methodology is employed to
the analysis of MIMO transmitters with crosstalk and nonlin-
ear distortion. It provides tractable analytical results that pro-
vide a clear understanding of the transmitter behavior, without
relying on laboratory experiments or numerical simulations,
such as the behavior modeling work [6], [24]. Behavior mod-
els can be used in digital predistortion design [6], [25] and in
numerical system simulations [26], whereas analytical expres-
sions for the nonlinear distortion noise can be used in decoding
algorithms [27]. The focus of the present work is on details
of the transmitter’s hardware impairments, namely crosstalk
before and after the amplifiers and amplifier nonlinear distor-
tion; previous work on hardware impairments in MIMO [28]
and massive MIMO transmitters and systems [29]–[31] focus
on system performance but are less detailed on the specific
impairments - crosstalk and nonlinear distortion combined - in
this paper. In [32] the effect of crosstalk before the amplifier
in 2 × 2 transmitters on bit error rate was investigated.

A methodology to analyze the performance of nonlinear
MIMO systems is presented, where the contributions are
focused on a flexible, yet compact model-based description
of the imperfections of the transmitter, using common quality
measures for hardware impairments like nonlinear distortion
and crosstalk. Although the presented methodology is generic,
here it is applied to M × M MIMO baseband behavior
models of radio frequency transmitters. Results are included
for both 2 × 2 MIMO transmitters, to transmitters with an
arbitrary amount of M branches. As a special case, asymptotic
transmitter performance when M → ∞ is included which
provides insight for the effects of nonlinear distortion for the
massive MIMO set-up. The approach provides the researcher
and practitioner with a methodology to understand the nonlin-
ear behavior of a MIMO transmitter, including the nonlinear
distortion, the effects of crosstalk, and how the performance
depends on the correlation of the input streams that can be
a result of digital beamforming or precoding. It is, thus,
useful for transmitters in applications such as point-to-point
and massive MIMO. The performance of entire communica-
tion systems is, however, not analyzed. Such analyses would
include also channel and receiver models.

The paper it motivated by its contributions to the under-
standing of dirty radio MIMO transmitters [33]:

• Generic methodology for nonlinear systems: The paper
provides a generic approach using a matrix-based
methodology to analyze static nonlinear MIMO systems
which are subject to Gaussian input excitation. The
methodology is well suited to analyze the behavior of
radio frequency transmitters which are subject to OFDM
input streams. The strength of the methodology is first
illustrated by considering a model of a 2 × 2 MIMO
radio frequency transmitter which is subject to input- and
output crosstalk [19]. This transmitter model relies on
the physical properties of co-located transmitters. This is
illustrated in Fig. 2. It is shown that the methodology is
able to derive results that conform with the recent theoret-
ical and experimental work on the provided structure [19],
[34], which both used a direct and accordingly cumber-
some analytical approach to analyze the performance of

Fig. 2. A behavioral model of a 0 dB gain 2×2 MIMO transmitter with third
order polynomial nonlinearities f�(·) with compression parameter ο, subject
to input crosstalk via δ; output crosstalk via μ; and thermal noise ñ�. Here
the inputs x� are jointly uncorrelated with common variance σ2 leading to
the correlated transmitter internal signals u1 and u2.

the transmitter. First, this physically motivated transmitter
model is analyzed, followed by the introduction of an
alternative model that grasps the main behavior of the
original model even though it is not physically motivated.
The alternative model simplifies the analysis of M × M
transmitters for M ≥ 2, which is the main focus of the
present work.

• Crosstalk in dirty MIMO transmitters: It is shown that
the dominant behavior of a contemporary 2 × 2 MIMO
radio frequency transmitter which is subject to input
and output crosstalk can be accurately described by an
alternative model containing, so called, linear crosstalk.
The linear crosstalk models the leakage from a transmitter
branch to its neighbor branches linearly, and thus is
a mathematical simplification of the physical crosstalk
that appear both before and after the nonlinearity. To
analyze M × M transmitters for an arbitrary number
of branches, this is an important finding, due to the
reduced mathematical complexity that provides expositive
performance expressions in closed form. With this finding
in mind, a M × M transmitter is analyzed in detail
with the proposed methodology, concluding with a closed
form expression for the normalized mean squared error
(NMSE) for finite values of M , as well as limiting values
when M → ∞. The NMSE is the employed quality
measure of the transmitter [19].

• 1D and 2D physical spaces for dirty massive MIMO
transmitters: Increasing the number of M branches asks
for understanding of the dirty radio effects, when different
1D and 2D physical spaces are proposed by the designers.
A linear array of transmitters and a 2D rectangular design
are both illustrated in Fig. 1. In particular, 2D grid
placements have been identified as a key technology for
5G New Radio [35]. The performance of dirty MIMO
transmitters subject to their 1D or 2D physical space
is investigated, with respect to the inherent transmitter
crosstalk. The derived results on transmitter NMSE are
used to study the transmitter performance under different
constraints on the transmitter layout.

The paper is organized as follows. In Sec. II, the applied
methodology is presented, and closed form results are derived
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for the Bussgang gain matrix, the properties of the nonlinear
distortion error, and the total error of the considered transmitter
system. In Sec. III, the derived methodology is applied to an
established 2×2 MIMO transmitter model, verifying the work
in [19]. Based on the obtained results, an alternative behavior
model structure is suggested that grasps the dominant behavior
of the original model. The alternative model is suitable for the
analysis of M × M MIMO transmitter models for M > 2 in
different 1D and 2D structures. Sec. IV provides an analysis of
the M×M MIMO transmitter set-up, including the asymptotic
massive MIMO case when M → ∞. Sec. V provides the
conclusions of the work.

II. ANALYZING NONLINEAR MIMO SYSTEMS

We present the theory i some detail. Parts of
Sections II.A and II.B have been presented earlier [20].
We develop a formalism for treating nonlinearities with a
linear and a nonlinear part, suitable for RF transmitters.

A. Signal Model

Consider a static and linear M ×M MIMO system excited
by the vector input u, that is

ro = Ho u, (1)

where the M×M matrix Ho ∈ C contains the weights for the
desired linear relations. Equation (1) describes an ideal M×M
MIMO power amplifier with gain ho when the matrix Ho =
ho I, where ho is the common gain in the different branches,
and I is the unity matrix of proper dimension. It should be
noted that the model (1) is static, and thus the time index is
not explicitly shown.

Considering OFDM, the input M -vector u is modeled as
zero-mean complex-Gaussian with covariance matrix [36]

U
�
= E[uuH ], (2)

where superscript H denotes Hermitian transpose, and E[·]
denotes statistical expectation. The covariance matrix U
describes both the input crosstalk and the possible correlation
of the input streams due to linear precoding or beamform-
ing. In this work, only crosstalk is considered because it
is known that on average linear precoding or beamforming
do not influence the NMSE of the transmitter [19]. With
reference to Fig. 2, the signal u (exciting the nonlinearities)
is, in general, an internal transmitter signal; however, in this
work, it is typically used to refer to the input signal (exciting
the nonlinearity). The practical MIMO system is subject to
nonlinear distortion and inter-channel crosstalk. To capture
these effects, the practical M -vector output r is modeled by

r = Hu + Gf(u), (3)

where the M × M matrix H ∈ C contains the weights for
the linear relations, that is, the desired small signal gain and
the input linear crosstalk. Furthermore, G ∈ C is a weighting
M × N matrix and f(u) ∈ C denotes the N -column vector
with, for the application, relevant nonlinear terms up to a given
polynomial order.

Let y denote the baseband model of the observable trans-
mitter output, that is

y = Pr + n, (4)

where the M×M matrix P ∈ C in (4) handles possible output
crosstalk, and n is the zero-mean complex-valued Gaussian
thermal noise, independent of the input u. The covariance of
the thermal noise is denoted by N, that is

N
�
= E[nnH ]. (5)

B. Bussgang Gain of Nonlinear System

To perform the analysis, the MIMO system signal r after
the nonlinearity (3) is expressed as an attenuated version of
the input u, and a distortion noise v. Here, the distortion noise
v is uncorrelated to both the input u and the thermal noise n.
Accordingly, by construction, the output r in (3) should fulfill

r = s + v, (6)

where s in (6) is a linearly transformed version of the input
u, that is

s = AHu. (7)

In (7), the M ×M matrix A ∈ C is called the Bussgang gain
to honor the initial work [12]. An expression for A is derived
next.

It is clear from (7) that the covariance of s reads

S
�
= E[s sH ] = AHUHHAH . (8)

For the distortion noise v in (6) to be uncorrelated with the
input u it is required that

E[v uH ]
�
= 0, (9)

where 0 is the zero matrix of appropriate size. With the
requirement (9), define

W
�
= E[ruH ], (10)

as the output-input cross correlation matrix. It follows directly
from the original signal model (3) that W defined in (10) can
be expressed as

W = HU + GU. (11)

In (11), the N × M matrix U contains the higher order
moments of u, and is defined by

U
�
= E[f(u)uH ]. (12)

Now, starting with the model (6) that introduces the distortion
noise, the correlation matrix W in (10) can alternatively be
expressed as

W = E[s uH ] + E[v uH ] = AHU, (13)

where (7) and (9) were used in the second equality. Assuming
that the involved matrix inverses exist, the Bussgang gain A
follows from (13) as

A = WU−1 H−1 = I + GUU−1H−1︸ ︷︷ ︸
AΔ

, (14)
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where the second equality follows from (11). In (14), the Buss-
gang matrix AΔ is defined as a part of the Bussgang gain A,
that is A = I + AΔ. Note that the Bussgang gain A is a
function of the system matrices H and G, and the moment
properties of the input signal u via U and U. For a linear
system, G = 0 in (3) and accordingly A = I, as expected.

C. Distortion Noise Properties

The model (6)-(7) describes the output from the nonlinear
function in terms of a linearly attenuated replica of the input
u, and a distortion noise v. The properties of the latter term
is as follows. From (6), the distortion noise reads

v = r − s. (15)

The distortion noise covariance V is defined by

V
�
= E[v vH ] = R − S, (16)

where R
�
= E[r rH ] and S is defined in (8). The second

equality in (16) follows since s and v are uncorrelated.
In order to calculate R in (16), note from the original signal

model in (3) that

R = E[(Hu + Gf(u))(Hu + Gf(u))H ]

= HUHH + 2� [GUHH
]
+ GUGH , (17)

where �[z] denotes the real part of z ∈ C, and the higher
order moment matrix U of size N × N is introduced as

U
�
= E[f(u) f(u)H ]. (18)

In a similar vein, first note that S in (16) is given in (8).
Now, inserting the Bussgang gain derived in (14) into (8)
yields

S = (I + GUU−1H−1)HUHH(I + GUU−1H−1)H

= HUHH + 2� [GU HH
]
+ GUU−1 UGH . (19)

Now, inserting the results (17) for R and (19) for S into the
expression (16) for the error covariance V, a straightforward
calculation yields

V = G (U − UU−1 U
H

)GH . (20)

The covariance V of the distortion error v is a function of
the system matrix G, and the moment properties of the input
signal u via U−1, U and U.

D. Properties of the Transmitter Output Error

Using (6)-(7), the observable transmitter output y in (4)
reads

y = PAHu + Pv + n. (21)

The model (21) contains three uncorrelated stochastic terms,
and is equivalent to the model (4), subject to the condition
(9). It is worth noting that u and v are uncorrelated by
construction, as given in (9). However, they are clearly not
statistically independent, as v is a result of a nonlinearity
affecting u. Accordingly, v is typically not Gaussian, even
though u is Gaussian by assumption.

With the observable baseband output y in (21), and the ideal
output ro according to (1), the error signal e is given by

e
�
= y − ro = (PAH − Ho)u︸ ︷︷ ︸

ũ

+ Pu︸︷︷︸
ṽ

+n. (22)

The introduced signal ũ captures the (linear part of the) error
due to crosstalk and Bussgang attenuation, ṽ is the nonlinear
distortion noise, and n the thermal noise. From (3, (7) and (15)
we get

ṽ = P(I − A)u︸ ︷︷ ︸
ṽL

+PGf(u)︸ ︷︷ ︸
ṽNL

, (23)

where ṽL is linear and ṽNL nonlinear in u. The three terms
in (22) are jointly uncorrelated. Accordingly, the error covari-

ance E
�
= E[e eH ] reads

E = Ũ + PVPH + N, (24)

where Ũ
�
= E[ũ ũH ] is to be decided, V is given by (20), and

N is the thermal noise covariance (5). From (22), it follows
that the covariance matrix Ũ that is eminent in (24) is given
by

Ũ = (PAH − Ho)U (PAH − Ho)H . (25)

The result Ũ in (25), V in (20), and (14) for the Bussgang
gain A are the main results of the paper. The methodology
and results of the analysis of the NMSE of different MIMO
transmitters are presented later in the paper. The NMSE is
defined in the next section of the paper.

E. Transmitter Figures of Merit

Since the focus of the paper is on the behavior and perfor-
mance of the transmitter only, figures of merit reflecting the
quality and performance of the communication link are not
considered. Such figures require channel and receiver models.
We refer to e.g. [37], [38] for such studies. Accordingly,
the NMSE is adopted as the main figure of merit, where it
is defined for the �:th branch by (that is, � = 1, . . . , M )

NMSE�
�
=

[E ]�, �

γ2
�

, (26)

where [·]�, � denotes the (�, �):th element of the matrix within
the brackets, and where the normalization γ2

� is with respect
to the average input power and the ideal gain. With an
ideal gain ho and input variance σ2 in all the M branches,
the normalization reads

γ2
� = h2

o σ2, � = 1, . . . , M. (27)

If it is assumed that the channel and receiver impairments are
perfectly known and compensated for, the terms linear in u in
(22) and (23) can be neglected and the NSME becomes iden-
tical to the error vector magnitude (EVM) [29]. To analyze the
cross-branch properties of the transmitter, additional figures of
merit, such as the normalized error covariance (NEC) can be
defined in a similar vein as the NMSE [19], but is beyond the
scope of this paper.
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As a complement to the NMSE we use a measure of the
out-of-band error, which only is affected by the transmitter’s
nonlinear properties. The out-of-band error of channel � is
conventionally measured by the adjacent channel power ratio
(ACPR) (also called adjacent channel error power ratio) [6]

ACPR�
�
=

∫
adj.ch. E�(ω)dω∫

ch. Y�(ω)dω
, (28)

where E�(ω) is the power spectral density (PSD) of the error
signal and Y�(ω) is the signal’s PSD. Notice that in (28)
the numerator is integrated over the adjacent channel and the
denominator of the channel itself. The channel limits are given
by the spectrum masks of the telecommunication standard in
question. The terms in (22) and (23) that will contribute to
the error signal in the adjacent channel are ṽNL and n, and,
hence, in (28)

E�(ω) = VNL,�(ω) + N�(ω), (29)

where VNL,�(ω) and N�(ω) are the PSD of the �:th branch
of ṽNL and n, respectively. With the approximation that the
linear gain is the same as the ideal gain and that the power
of the nonlinear distortion is small compared to the power of
the signal y�, we get for the denominator in (28)∫

ch.

Y�(ω)dω ≈ h0σ
2 +

∫
ch.

N�(ω)dω. (30)

III. 2 × 2 MIMO WITH INPUT AND OUTPUT CROSSTALK

The presented methodology is applied to the frequently used
2×2 transmitter model in Fig. 2 and verifies some of the results
from the literature. The main result is an analytical expression
for the NMSE as a function of parameters for the crosstalk,
nonlinearity, and thermal noise. For experimental validations
of the model, we refer to [34]. Based on the obtained results,
an alternative behavior model is proposed. The alternative
model accurately grasps the dominating behavior of the trans-
mitter and neglects the less dominant terms.

A. Signal Model

With reference to Fig. 2, let the power amplifier output be
described by

r1 = u1 + ρ u1 |u1|2, (31)

r2 = u2 + ρ u2 |u2|2. (32)

In (31)-(32), the compression parameter ρ is assumed real-
valued, and ρ ≤ 0. A quasi-static performance analysis is
possible by letting ρ and other transmitter parameters (as
defined below) be complex-valued [19]. However, such analy-
sis will not, except for the specific case, provide additional
information worth the extra effort required. For the considered
2 × 2 behavior model, the reader is referred to [19] for
such an analysis. We restrict the analysis to third order
nonlinearities. Polynomial models with higher order terms,
ρn u |u|n−1, where n = 3, 5, . . ., could, however, be used.
The third order terms are typically dominating and can be
estimated from quality measures for amplifiers such as the
1 dB compression point or third order intercept point [39].

Nonlinear functions other than polynomials could be analyzed,
in which case the calculation of U and U would be different.
For example, experimentally determined amplitude (AM/AM)
and phase (AM/PM) distortion data could be used and U and
U calculated numerically.

Using the matrix formulation, (31)-(32) is rephrased as

r =
(

1 0
0 1

)
︸ ︷︷ ︸
H = I

u + ρ

(
1 0
0 1

)
︸ ︷︷ ︸
G = ρ I

(
u1 |u1|2
u2 |u2|2

)
︸ ︷︷ ︸

f(u)

. (33)

The input u is subject to crosstalk, that is the covariance matrix
U reads

U = σ2 QQH , (34)

where

Q =
(

1 δ
δ 1

)
, (35)

where δ ∈ R models the input crosstalk, and σ2 is the joint
power of the uncorrelated inputs before the crosstalk, aka x1

and x2 in Fig. 2. The crosstalk is typically caused by circuit
board couplings and is therefore modeled as a static linear
reciprocal network [39]. Explicitly, combining (34) and (35),
the covariance matrix U reads

U = σ2

(
1 + δ2 2δ

2δ 1 + δ2

)
. (36)

To calculate the NMSE, the crosstalk induced correlation
has to be compensated for. Accordingly, the ideal system Ho-
matrix in (1) is given by

Ho = Q−1 =
1

1 − δ2

(
1 −δ
−δ 1

)
, (37)

where the second equality directly follows from (35).
The components of the transmitter output y read

y1 = r1 + ñ1 + μ (r2 + ñ2), (38)

y2 = r2 + ñ2 + μ (r1 + ñ1), (39)

where ñ1 and ñ2 are jointly uncorrelated thermal noises with
common variance σ2

n, and where μ ∈ R denotes the output
crosstalk. Using the matrix formulation, (38)-(39) is expressed
as

y =
(

1 μ
μ 1

)
︸ ︷︷ ︸

P

r + n, (40)

where the covariance N of the equivalent thermal noise n =
(n1 n2)

T due to the crosstalk reads

N = σ2
n

(
1 + μ2 2μ

2μ 1 + μ2

)
. (41)
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B. Bussgang Matrix and NMSE

For the considered 2 × 2 transmitter model, it is shown in
Appendix V-A that the Bussgang gain in (14) reads

A = I + 2ρ σ2 (1 + δ2)︸ ︷︷ ︸
= aΔ

I, (42)

that is, AΔ = aΔ I with reference to (14). As further shown
in Appendix V-A, the covariance V of the distortion noise v
in (15) reads

V = 2ρ2 σ6

(
(1 + δ2)3 8δ3

8δ3 (1 + δ2)3

)
. (43)

Due to symmetry, the NMSE is equal in both branches, that
is NMSE� = NMSE for � = 1, 2. The terms in the NMSE
are derived in Appendix V-A, and the result is given in (44),
shown at the bottom of this page.

In (44), a = 1+aΔ is the scalar Bussgang gain given by the
diagonal elements of A, with aΔ = 2ρ (1+δ2)σ2 according to
(42). The NMSE shown in (44) is known from [19], where it
was based on a cumbersome direct calculation of the NMSE.
Accordingly, the proposed methodology provides a flexible
tool for analytical and numerical evaluations of this class of
models, which was not provided in [19].

In a first order approximation, the NMSE in (44) is given
by

NMSE 	 6ρ2 σ4 + (δ + μ)2︸ ︷︷ ︸
ξ2

+
σ2

n

σ2
, (45)

where 	 denotes an approximate expression where only the
dominant terms are retained. The derivation is outlined in
Appendix V-A. In (45), the linear crosstalk parameter ξ = δ+μ
was introduced, which is a parameter that will be frequently
used in the sequel.

To get an approximate expression for the ACPR we use that
for the output crosstalk μ 
 1 in (23), (31), and (31), and get
that vNL,� = ρu�|u�|2. The PSD of the nonlinear distortion,
VNL,�(ω) is obtained from frequency domain convolutions of
the Fourier Transform of vNL,�. The bandwidth of vNL,� is
three times that of the u� (the channel bandwidth). We use that
the adjacent channels bandwidth is the same as the channel’s
bandwidth and use no guardbands. From (28), (29) and (30)
we then get

ACPR� ≈ 0.5ρ2σ6 + 0.3σ2
n

h0σ2 + 0.3σ2
n

, (46)

C. An Alternative MIMO Transmitter Model

As is evident from the full expression of the NMSE
in (44) and its approximation in (45), the performance is
determined by the dominant terms. Consider the alternative
behavior model in Fig. 3, which is a 2 × 2 MIMO system

Fig. 3. A behavioral model of a 0 dB gain 2×2 MIMO transmitter with third
order polynomial nonlinearities f�(·) with compression parameter ο, subject
to linear crosstalk via ξ = δ + μ, and thermal noise n�.

with uncorrelated inputs, that is U = σ2 I and the system
description given by

r =
(

1 ξ
ξ 1

)
︸ ︷︷ ︸

H

u + ρ

(
1 0
0 1

)
︸ ︷︷ ︸
G = ρ I

(
u1 |u1|2
u2 |u2|2

)
︸ ︷︷ ︸

f(u)

, (47)

where ξ = δ + μ. Furthermore, there is no direct output
crosstalk, that is P = I and N = σ2

n I, or

y = r + n. (48)

With U = σ2 I, it directly follows that U in (12) reads U =
2σ4 I, and U in (18) reads U = 6σ6 I, respectively. Using
(14), a direct calculation provides us with the Bussgang matrix,
that is AΔ = 2ρ σ2 H−1. To calculate the error covariance
E in (24), both V in (20) and Ũ in (25) are required. An
expression for the covariance V directly follows as

V = 2ρ2 σ6 I. (49)

The covariance matrix of the linear distortion Ũ in (25) is
derived in Appendix V-B, that is

Ũ = σ2

(
4ρ2 σ4 + ξ2 4ρ ξ σ2

4ρ ξ σ2 4ρ2 σ4 + ξ2

)
. (50)

The error covariance E in (24) now follows by summing
up (49), (50) with the thermal noise covariance N =
σ2

n I, or restricting the summation to the diagonal terms

[E]�, � = 4ρ2 σ6 + ξ2 σ2 + 2ρ2 σ6 + σ2
n. (51)

Accordingly, the NMSE for a 0 dB gain transmitter, which is
equal in the two branches due to the symmetry of the problem,
reads

NMSE = 6ρ2 σ4 + ξ2 +
σ2

n

σ2
. (52)

In Fig. 4, the NMSE (44) and (52) (and, accordingly, also
the approximative expression (45) that coincides with (52))

NMSE = (aΔ + a μ δ)2 + 2ρ2 (1 + μ2) (1 + δ2)3 σ4 + 32ρ2 μ δ3 σ4 + a2(δ + μ)2 +
(1 + μ2)σ2

n

σ2
. (44)
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Fig. 4. NMSE (44) (black solid line) and the NMSE (52) for the alternative
model (blue dashed line) versus average input power σ2 at −25 dB crosstalk.
The vertical (green) dashed line indicates the optimal input back-off for the
alternative model according to (60). The three (blue) dotted lines show the
three terms in (52) separately, indicating that the minimum NMSE is well
described by the crosstalk term ξ2 = (δ + μ)2 in (52). A line (red dotted)
indicates the contribution from terms of nonlinear order 5 ( ∝ σ6 ).

are displayed for a crosstalk of 20 log10 δ = −25 [dB] and
with δ = μ. The power amplifier compression parameter is
given by ρ = −0.05. Thermal noise variance is given by
σ2

n = 10−4, or −10 [dBm]. From the figure, it is clear that the
NMSE of the model with linear crosstalk closely resembles
the behavior of the physical 2 × 2 MIMO transmitter model.

Using polynomials of higher order than three gives terms
∝ ρ3ρ5σ

6 (and higher orders in σ2) in the expressions for
NMSE vs. σ2. Such terms affect the NMSE at high input
powers. In Fig. 4 a line ∝ σ6 is shown to illustrate the
behavior and for comparison with the term due to third order
nonlinearities (∝ σ4).

The derivation and expression for the ACPR is the same
for the alternative model, Fig. 3, as for the model in Fig. 2,
i.e. as in (46). In Fig. 5 the ACPR is shown as obtained
from (46) with the same parameters as for the NMSE shown
in Fig. 4. Notice that the scale of the x-axis in Fig. 5 is
different from that in Fig. 4. In Fig. 5 three regions I, II, and III
are indicated. In region I, the ACPR describes the nonlinear
distortion. In region II, the out-of-band error is dominated by
the thermal noise; in the channel the thermal noise is small.
In region III, which is of little practical interest, the thermal
noise dominates in the channel and out-of-band.

Using other numerical values for the noise variance, σ2
n,

compression parameter, ρ, and crosstalk, ξ = δ + μ, gives
qualitatively the same behavior of the NMSE and ACPR as
in Figs. 4 and 5 with the main behavior given by the straight
lines.

In summary, the input crosstalk determined by δ and the out-
put crosstalk determined by μ can approximately be replaced
with a linear crosstalk from the adjacent branch to the output
of the branch, with gain ξ = δ + μ. This observation is used
to study general M × M MIMO transmitters below.

IV. M × M MIMO WITH LINEAR CROSSTALK

In this section, a M × M transmitter with linear crosstalk
is considered, where M can be large (that is, as M → ∞).

Fig. 5. ACPR (46) (blue dashed line) versus average input power σ2.
In region I, the ACPR depends on the σ6 term in the numerator and the
σ2 term in the denominator in (46). In region II the numerator is dominated
by the σ2

n term and the denominator by the σ2 term and in region III the
numerator and denominator are both dominated by the respective σ2

n term.
The black dotted lines show the linear approximations for regions I, II, and
III, respectively.

A. Signal Model and its Properties

Consider a M ×M MIMO transmitter with linear crosstalk
from the neighboring branches. That is, consider the signal
model (3) with

f(u) =

⎛⎜⎜⎜⎝
u1 |u1|2
u2 |u2|2

...
uM |uM |2

⎞⎟⎟⎟⎠. (53)

The M transmitter branches obey the individual compression
factors ρ� (with ρ� real-valued and negative), or the diagonal
matrix G in (3) is given by

G =

⎛⎜⎝ ρ1 0
. . .

0 ρM

⎞⎟⎠. (54)

A generic description of the system matrix H in (3), taking
into account the symmetry between the branches is

H = Toeplitz(1, h1, h2, . . . , hM−1), (55)

with entries h� ∈ C (with |h�| ≤ 1). H is assumed to be
invertible.

The covariance matrix of the transmitter input u reads U =
σ2 I. Furthermore, the matrix P in (4) reads P = I, so that
the observable transmitter output reads

y = r + n, (56)

where the covariance of the thermal noise n is given by N =
σ2

n I.
For the given covariance matrix U and the nonlinearity f(·)

in (53), it is shown in Appendix V-C that U = 2σ4 I and
U = 6σ6 I. Then, the Bussgang matrix AΔ according to (14)
directly follows as

AΔ = 2 σ2 GH−1. (57)

Further, the covariance matrix V in (20) of the distortion
noise v reduces to

V = 2σ6 G2. (58)
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Finally, Ũ is required, which is derived in Appendix V-C.
All the required information is now available to calculate the
error covariance E in (24). In (58), V is diagonal, i.e., the
distortion noise of the different branches is uncorrelated, which
is in agreement with [29], [37]. Notice that for the model
in Fig. 2, V in (43) has off-diagonal elements, indicating partly
correlated distortion noise. However, the off diagonal elements
are ∝ δ3 and the diagonal elements are ≈ 1 and typically
δ 
 1. For the model in Fig. 3, V in (49) becomes identical
to (39) if δ is neglected. Below the NMSE corresponding to
(58) in (24) is studied.

B. NMSE and Input Back-off for NMSE Minimization

The NMSE for the �:th branch reads

NMSE� = 6ρ2
� σ4 +

M−�∑
m=1

|hm|2 +
�−1∑
m=1

|hm|2 +
σ2

n

σ2
. (59)

In (59) the elements of H, hm, that contain the crosstalk, are
arbitrary, and hence, different physical models for the cross
talk and transmitters of arbitrary geometry can be studied if
the corresponding hm are known. Before analyzing the NMSE
in (59) in detail for specific H, corresponding to the 1D and
2D cases in Fig. 11, note that although the NMSE depends on
H, its minimization with respect to the average input power σ2

does not. The minimum NMSE is obtained in the �:th branch
with the average input power σ2

� given by

σ2
� = argmin

σ2
[ NMSE� ] = 3

√
σ2

n

12 ρ2
�

, (60)

where min[·] denotes the minima of the function within the
brackets. It should be noted that the optimal input power back-
off (60) only depends on the properties of the considered
branch via the compression parameter ρ� and the power of the
the thermal noise σ2

n. In particular, the average input power
minimizing the NMSE is independent of the actual crosstalk,
the nonlinear properties of the other branches, and the actual
number of M branches. Inserting the numerical values that
were used to generate the plots in Fig. 4 into (60) result in an
optimal (that is, minimizing NMSE) average input power σ2

�

of 21.7 [dBm], which also is displayed in Fig. 4. The small
shift to the right in the minimum of the NMSE from (44) to
(45) seen in Fig. 4, is negligible in practical cases. The larger
the crosstalk, the larger the shift will be. The minimum of the
NMSE of (45) will always be shifted to the right in the figure,
for physically realistic values of the crosstalk.

The assumptions made when deriving the approximate
expression for the ACPR in (46) are valid also in the M ×M
case. Thus, (46) can be used and the behavior will be the same
as in Fig. 5, also for M × M transmitters.

C. NMSE for 1D Transmitter Layouts

A natural extension of the 2×2 MIMO case to its M × M
counterpart considers a linear placement of the individual
transmitters according to Fig. 1, that is the system matrix H
is Toeplitz and given by

H = Toeplitz(1, ξ, ξ2, . . . , ξM−1). (61)

In (61), ξ ∈ R is the parameter of the linear crosstalk, that
is ξ = δ + μ, and given in dB as 20 log10 ξ/2 [dB] to be
consistent with the set-up in Sec. III. The direct coupling of
non-adjacent channels soon becomes small and we therefore
neglect it. However, direct coupling of non-adjacent channels
could be modelled by ξn, where n is smaller than two. More
complicated models or experimental values for the crosstalk
could be modelled by hm in (59).

Now, the asymptotic NMSE for a given branch �, when the
number M of transmitters tends to infinity can be calculated,
that is

NMSE� = lim
M→∞

NMSE�. (62)

From (59), it follows that for the 1D structure in Fig 1,
the asymptotic NMSE reads

NMSE� = 6ρ2
� σ4 + C� ξ2 +

σ2
n

σ2
, (63)

where

C� =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
1 − ξ2

� = 1

2 − ξ2

1 − ξ2
� = 2

...

2
1 − ξ2

� = M/2.

(64)

In (64), M/2 should be read as the centrally located transmitter
in the 1D array, and C� values for � > M/2 follow by symme-
try, that is CM−� = C�, etc. The C�-values are explicitly given
in Appendix V-C, but are observed to monotonically increase
from � = 1 to � = M/2. Since |ξ| 
 1, in practice C� in (64)
equals the number of nearest neighbours, that is

C� 	
{

1 � = 1, M

2 � = 2, . . . , M − 1
. (65)

Accordingly, there is approximately a 3 [dB] drop in NMSE
performance in the non-boarder branches compared with the
two boarder branches when the transmitter is operating under
optimal input power back-off. The result (63) indicates that the
reduction in performance over the 2×2 set-up due to a massive
amount of 1D-distributed transmitters is 3 [dB], excluding the
two branches at the boarders. In fact, the minimum NMSE for
a system with non-negligible crosstalk is well approximated
at optimal input back-off (60) by

min[ NMSE� ] 	
{

ξ2 boarder branches

2ξ2 non-boarder branches.
(66)

The underlying exact result leading to (66) is rather unaffected
by the actual number of M branches, e.g. for the numerical
values used to generate Fig. 4, the loss in performance in a
non-boarder branch going from M = 3 to M → ∞ is in the
order of a tenth of a dB.

As crosstalk has already been identified as a key issue for
2 × 2 transmitters, additional efforts are required to handle it
for M > 2. For all non-boarder branches, there will be an
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Fig. 6. Non-boarder branch NMSE for MIMO transmitters with −25 [dB]
crosstalk, versus average input power σ2 . NMSE (52) for a 2× 2 transmitter
(blue dashed line), M × M MIMO transmitter NMSE (63) corresponding
to the 1D structure (red solid line), and M × M transmitter NMSE (67)
corresponding to the 2D structure (black dotted line), when the number of
transmitters M → ∞. NMSE for the corresponding SISO transmitter (no
crosstalk) is indicated by the dashed-dotted magenta line. The vertical (green)
dashed line indicates the optimal input back-off according to (60), and the
solid (black) line indicates the sub-optimal input back-off (70) when 0.5 [dB]
loss in NMMSE is accepted.

additional 3 dB loss of NMSE-performance, or alternatively
they will require a means to reduce the crosstalk to acceptable
levels

On the one hand, with a fixed distance between the transmit-
ters, the physical length of the MIMO transmitter is infinite
when M → ∞. On the other hand, it can be assumed that
a given 1D array length, determined by the radio frequency
properties, and a crosstalk parameter ξ̃ increases with an
increasing number of transmitters due to the reduced distance
between them. In the limit M → ∞ there is an infinite
number of transmitters distributed over the given length, and
accordingly the NMSE increases without bound.

D. NMSE for 2D Transmitter Grid

Now consider the 2D structure in Fig. 1. With reference to
Appendix V-C, the asymptotic NMSE reads

NMSE� = 6ρ2
� σ4 + C� ξ2 +

σ2
n

σ2
, (67)

where C� 	 4 for non-boarder branches, C� 	 3 for edge
branches, and C� 	 2 for the four corner branches, given
the assumed properties of the crosstalk. For transmitter grids
with non-negligible crosstalk, the minimum NMSE for a 2D
structure is described by

min[ NMSE� ] 	

⎧⎪⎨⎪⎩
2ξ2 corner branches

3ξ2 edge branches

4ξ2 non-boarder branches,

(68)

which provides a typical (for the non-boarder branches) dete-
rioration of the NMSE of around 3 [dB] compared with
the 1D structure, and 6 [dB] compared with the NMSE of a
2 × 2 transmitter. The results are illustrated in Fig. 6. In the
figure, the broad minima should be noted, especially for the

2D structure. This observation motivates sub-optimal schemes
for input back-off optimization, which is studied next.

E. Transmitter Input Power Optimization

To increase the energy efficiency of the transmitter, a sub-
optimal scheme, where an increased average input power is
determined, should be considered. This is subject to a slight
degradation in NMSE. Such an approach was introduced for
a dirty 2 × 2 transmitter in [19], and is here refined for
the problem at hand. Let Δ be a user selected parameter
which determines the allowable loss in performance, that is
the determined average input power, for which

NMSE� = (1 + Δ2) min[ NMSE� ], (69)

where the minimum possible NMSE is determined by the
set up, see (66) and (68) for the 1D and 2D scenario,
respectively. For example, Δ = 1 (or, Δ 	 0.35) allows
for a 3 [dB] (or, 0.5 [dB]) degradation of the NMSE. Then,
the average input power σ2

� that fulfills (69) follows as

σ2
� =

Δ ξ

|ρ�|

√
C�

6
, (70)

where C� denotes the number of neighbouring transmitter
branches. For the example displayed in Fig. 6, an increased
average input power of around 6 [dB] for the 2D scenario,
given a 0.5 [dB] loss in NMSE, should be noted.

V. CONCLUSION

The contributions of the paper include a tool for analyzing
the behavior of MIMO transmitters in terms of NMSE. The
methodology has been applied to two different transmitter
models: one physically motivated with crosstalk both before
and after the nonlinearity introduced by the power amplifier,
and one simplified model with linear crosstalk approximating
the main behavior of the former model.

Simple analytical expressions make it straightforward to
analyze the NMSE and ACPR for different values of the
parameters describing the hardware impairments. It is con-
cluded that crosstalk degrades the performance of a MIMO
transmitter. Under tuned average input power conditions,
the MIMO transmitter NMSE is determined by the crosstalk,
with additional 3 dB loss in NMSE going from 2× 2 MIMO
to a large 1D structure of transmitters, and an additional 3dB
loss in NMSE for large 2D structures.

It is further shown that SISO-based methodologies for
power amplifier back-off determination are valid for a M ×M
MIMO transmitter subject to crosstalk. However, schemes tak-
ing the crosstalk into account may be favorable because they
allow for the operation of the transmitter with increased energy
efficiency, subject to a predefined small loss in performance.

APPENDIX

A. 2× 2 MIMO Transmitter With Input and Output Crosstalk

1) Noise Properties: The noise covariance U is given by
(36). Furthermore, the matrix U in (12) reads

U = E

[(
u1 |u1|2
u2 |u2|2

)
(u∗

1 u∗
2)
]

= 2σ4 (1 + δ2)
(

1 + δ2 2δ
2δ 1 + δ2

)
, (71)
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where E[u� u∗
k |uk|2] = 2 E[uk u∗

k] E[u� u∗
k] was used [40].

Note from (36) and (71) that U can be expressed in terms
of U, that is

U = 2σ2 (1 + δ2)U. (72)

Finally, the matrix U in (18) is here given by

U = E

[(
u1 |u1|2
u2 |u2|2

)
(u∗

1 |u1|2 u∗
2 |u2|2)

]
. (73)

In order to resolve (73), note that for integer � it holds
for the diagonal elements that E[(u� u∗

�)
3] = 6(1 + δ2)3 σ6,

which follows from (36) and the general result E[(u� u∗
� )

n] =
n! E[u� u∗

� ]
n [40]. The off-diagonal elements of U are of the

form

E[u1 |u1|2 u∗
2 |u2|2] = E[(u1 u∗

2)
2 (u1 u∗

2)
∗]

= 4E[u1 u∗
2] E[u1 u∗

1] E[u2 u∗
2]

+ 2E[u1 u∗
2]

2
E[u1 u∗

2]
∗, (74)

using the result in Appendix V-D. Accordingly, the off-
diagonal elements of U read

E[u1 |u1|2 u∗
2 |u2|2] = 8δ (1 + δ2)2 σ6 + 16δ3 σ6. (75)

In summary, U explicitly reads

U = 2σ6

(
3(1 + δ2)3 4δ(1 + δ2)2 + 8δ3

4δ(1 + δ2)2 + 8δ3 3(1 + δ2)3

)
. (76)

2) Bussgang Gain A: With H = I, G = ρ I, and the
relation (72) between U and U, it directly follows that A
in (14) is given by (42).

3) Distortion Noise Properties V: With G = ρ I and the
relationship (72) between U and U, the expression for the
covariance V of the distortion noise (20) reduces to

V = ρ2 (U − 4σ4 (1 + δ2)2 U), (77)

where U given by (36) and U by (76). Now, a straightforward
calculation yields V in (43).

4) Linear Distortion Ũ: To calculate Ũ in (25), let

X
�
= PAH − Ho. (78)

From (42), one note that A is diagonal, that is A = a I with
a = 1 + 2ρ σ2 (1 + δ2). Furthermore, H = I according to
(33), and Ho = Q−1 according to (37), respectively. In other
words, X = aP− Q−1, or

Ũ = XUXH = (aP − Q−1)U (aP − Q−1)H

= a2 PUPH − 2a� [PUQ−1
]
+ Q−1 UQ−H . (79)

When U = σ2 QQH according to (34), the result in (79)
simplifies to

Ũ = a2 PUPH − 2a σ2� [PQ] + σ2 I. (80)

Furthermore, when U is given by (36) and P by (40),
the diagonal elements of PUPH in (80) read (for, � = 1, 2)

[PUPH ]�, � = (1 + δ2) (1 + μ2)σ2 + 4μ δ σ2.

For the second term in (80), a straightforward calculation
yields

PQ =
(

1 + μ δ δ + μ
δ + μ 1 + μ δ

)
. (81)

Accordingly, the linear distortion described by (80) summa-
rizes to

[Ũ]�, �

σ2
= a2(1 + δ2) (1 + μ2) + 4a2 μ δ − 2a (1 + μ δ) + 1.

(82)

5) Nonlinear Distortion PVPH : The term PVPH cor-
responding to the nonlinear distortion in (24) follows from a
straightforward calculation. The matrix P is given by (40),
and V is diagonal and given by (43). Let

V =
(

V1 V2

V2 V1

)
, (83)

the diagonal elements of PVPH read

[PVPH ]�, � = V1(1 + μ2) + 2μ V2. (84)

Inserting the elements of V given by (43) into (84) yields

[PVPH ]�, �

σ2
= 2ρ2 (1 + μ2) (1 + δ2)3 σ4 + 32ρ2 μ δ3 σ4.

(85)

6) NMSE and its Approximation: To calculate the NMSE
(26)-(27), first note that for the 0 dB transmitter gain γ2

� in
(27) for � = 1, 2 reads γ2

� = σ2. Now, the NMSE requires a
normalized version of E in (24). Summing up the terms (82)
and (85), and adding the diagonal element of the N in (41)
(normalized with σ2), a straightforward but tedious calculation
results in the closed form NMSE, which is presented in (44).

One can note that (aΔ + a μ δ)2 	 a2
Δ 	 4ρ2 σ4, 2ρ2 (1 +

μ2) (1 + δ2)3 σ4 	 2ρ2 σ4, 32ρ2 μ δ3 σ4 	 0, a2(δ + μ)2 	
(δ +μ)2, and (1+μ2)σ2

n 	 σ2
n, which inserted in (44) results

in the approximate expression (45).

B. 2 × 2 MIMO Transmitter With Linear Crosstalk

To calculate Ũ in (25), we first note that U = σ2 I, P = I,
A = I + 2ρ σ2 H−1, Ho = I. Thus,

Ũ=σ2(H− (1 − 2ρ σ2)I)2 =σ2

(
2ρ σ2 ξ

ξ 2ρ σ2

)2

. (86)

Calculating the square in (86) results in (50).

C. M × M MIMO Transmitter With Linear Crosstalk

1) Noise Properties: First note that the matrix U in (12)
reads

U = E

⎡⎢⎢⎢⎣
⎛⎜⎜⎜⎝

u1 |u1|2
u2 |u2|2

...
uM |uM |2

⎞⎟⎟⎟⎠ (u∗
1 u∗

2 · · ·u∗
M )

⎤⎥⎥⎥⎦ = 2σ4 I. (87)

With U = σ2 I, it is observed from (87) that

UU−1 = 2U = 2σ2 I. (88)
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In a similar vein, U reads

U = E

⎡⎢⎣
⎛⎜⎝ u1 |u1|2

...
uM |uM |2

⎞⎟⎠ (u∗
1 |u1|2 · · · u∗

M |uM |2)

⎤⎥⎦ = 6σ6 I.

(89)

From (87) and (89) it is observed that

U = 3σ2 U. (90)

2) Bussgang Gain and Distortion Properties: By the obser-
vation (88), it directly follows that the Bussgang gain A
according to (14) reads as in (57). Through this observation
(90), the error covariance V defined in (20) reads as in (58).
To calculate Ũ in (25), note that the equality reduces to

Ũ = σ2 (H + AΔ H− I) (H + AΔ H− I)H

= σ2 (H + 2σ2 G − I) (H + 2σ2 G− I)H , (91)

where (57) was used in the second equality. Let

X = H + 2σ2 G− I. (92)

Then, Ũ = σ2 XXH with X given by

X =

⎛⎜⎜⎜⎜⎜⎝
2ρ1 σ2 h1 h2 · · · hM−1

h∗
1 2ρ2 σ2 h1

. . .
. . .

. . .
h∗

1 2ρM−1 σ2 h1

h∗
M−1 h∗

1 2ρM σ2

⎞⎟⎟⎟⎟⎟⎠.

(93)

Now, the diagonal elements of Ũ follow from a straightfor-
ward calculation, with the �:th element given by

[ Ũ ]�, �

σ2
= 4ρ2

� σ4 + σ2
M−�∑
m=1

|hm|2 + σ2
�−1∑
m=1

|hm|2. (94)

3) 1D Transmitter Layout: Here, hm = ξm. Let,

SM, �
�
=

M−�∑
m=1

ξ2m +
�−1∑
m=1

ξ2m, (95)

and let S̄� = limSM, � as M → ∞. Then, as for � ≤ M/2

S̄� = lim
M→∞

M−�∑
m=1

ξ2m +
�−1∑
m=1

ξ2m =
ξ2

1 − ξ2
+

�−1∑
m=1

ξ2m

=
ξ2

1 − ξ2
+

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 � = 1
ξ2 � = 2
...

ξ2

1 − ξ2
� =

M

2
, M → ∞.

(96)

4) 2D Transmitter Layout: For simplicity, the analysis is
given for the centrally located transmitter. With reference to
Fig. 1 it follows

S̄c = 4ξ2 + 12ξ4 + 28ξ6 . . . 	 4ξ2, (97)

where c indicates that the transmitter is centrally located.
With similar arguments, the results for the boarder and corner
transmitters follow.

D. A Useful Result for Complex-Valued Gaussian Variables

The required result for the 6th order moment
E[(u� u∗

k)2(u� u∗
k)∗] of Gaussian variables is as follows.

Consider E[z1 z2 z3 z∗4 z∗5 z∗6 ] =
∑6

t=1 Tt, where [40]

T1 = E[z1 z∗4 ] E[z2 z∗5 ] E[z3 z∗6 ],
T2 = E[z1 z∗5 ] E[z2 z∗6 ] E[z3 z∗4 ],
T3 = E[z1 z∗6 ] E[z2 z∗4 ] E[z3 z∗5 ],
T4 = E[z1 z∗4 ] E[z2 z∗6 ] E[z3 z∗5 ],
T5 = E[z1 z∗5 ] E[z2 z∗4 ] E[z3 z∗6 ],
T6 = E[z1 z∗6 ] E[z2 z∗5 ] E[z3 z∗4 ].

Let z1 = u�, z2 = u�, z3 = uk, z4 = uk, z5 = uk, and
z6 = u�, then T1 = T5 = E[u� u∗

k]2 E[u� u∗
k]∗, and T2 =

T3 = T4 = T6 = E[u� u∗
k] E[u� u∗

� ] E[uk u∗
k]. Accordingly,

E[(u� u∗
k)2(u� u∗

k)∗] = 4 T2 + 2 T1, or

E[(u� u∗
k)2(u� u∗

k)∗] = 4E[u� u∗
k] E[u� u∗

� ] E[uk u∗
k]

+ 2E[u� u∗
k]2 E[u� u∗

k]∗. (98)
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