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First-Order Algorithm for Content-Centric Sparse
Multicast Beamforming in Large-Scale C-RAN
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Abstract— In multimedia-rich communication scenarios, pop-
ular contents are requested by many users. This calls for
the communication system design perspective transferring from
user-centric to content-centric. To realize the content-centric
paradigm, one of the dominant approaches is the multi-group
multicast transmission. However, different content groups may
cause interference with each other, and the quality of service
is difficult to be guaranteed without coordination. Fortunately,
a cloud radio access network (C-RAN) perfectly fills this gap
as all the computations in the network are off-loaded to the
computation center, making the central coordination possible.
But a major challenge that C-RAN faces is that the resul-
tant problem size could be extremely large, invalidating many
existing second-order algorithms. In this paper, content-centric
sparse multicast beamforming in a large-scale C-RAN is studied.
In addition to the large-scale nature, this problem is further
complicated by the discontinuity and non-convexity of the cost
function and constraints. Despite the challenges, a first-order
algorithm is proposed. Not only is the proposed algorithm
guaranteed to converge to a critical point, but its complexity
order is only linear with respect to the problem size. This is in
sharp contrast to the cubic order of an existing solution, making
the proposed algorithm indispensable for large-scale C-RAN with
hundreds or thousands of users.

Index Terms— Firsr-order algorithm, large-scale cloud radio
access network (C-RAN), content-centric, sparse multicast beam-
forming, caching.

I. INTRODUCTION

WHILE modern wireless data traffic is dominated by
videos and other multimedia data, a prominent feature

is that many users may be requesting the same content.
To fully exploit the broadcast nature of the wireless medium,
content-centric multicast transmission [1]–[3], in which users
requesting the same content are served in the same multicast
group, is a viable solution. On the other hand, to effectively
manage the interference among different multicast groups,
cloud radio access network (C-RAN) [4], where all the base
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stations (BSs) are connected to a computation center via
high speed backhaul links and multi-BS cooperative beam-
forming design [5]–[11] is performed on the computation
center, is a promising architecture for next-generation wireless
systems.

However, putting multicast transmission and C-RAN
together requires the joint design of BS clustering and mul-
ticast beamforming (also known as sparse multicast beam-
forming [12]). By BS clustering [13]–[17], each user is
assigned to a subset of BSs instead of all the BSs to alleviate
the backhaul burden of the network [18]–[21]. By multicast
beamforming [22]–[27], a single beamformer is designed to
serve each group of users requesting the same content. While
BS clustering involves combinatorial optimization and is chal-
lenging by itself, adding multicast beamforming design further
complicates the problem as it may involve nonconvex quality
of service (QoS) constraints. Worse still, the optimization
problem to be solved is usually in very large scale, making
the task even more formidable.

For small/medium-scale C-RAN with no more than dozens
of users, a classical flow for solving this problem [12], [24],
[26] is to approximate and transform the original problem
to a sequence of second-order cone programming (SOCP)
subproblems, and then solve each subproblem by the interior-
point method. Nevertheless, since the complexity order of
the interior-point method is O(N3) where N is the problem
size [28], such a paradigm is not scalable as N is larger
than 104. For instance, for a large-scale C-RAN with 50
multicast groups and 100 four-antenna BSs, the dimension
of beamforming variables is N = 2 × 104, and hence the
complexity of the interior-point method to such a problem is
about 8 × 1012.

To solve a large-scale optimization problem, a basic princi-
ple is to decompose the problem by recognizing its structures
and then build first-order algorithms for parallel implementa-
tions [29], [30]. Drawing on this principle, algorithms based on
alternating direction method of multipliers (ADMM) [31] have
been developed for different applications in large-scale net-
works [32]–[34]. While ADMM has been frequently applied
and its convergence guarantee only depends on mild conditions
for convex optimization problems [35], [36], it is not directly
applicable to the problem of joint BS clustering and multi-
cast beamforming design in C-RAN, since the combinatorial
backhaul cost is discontinuous and nonconvex, and the QoS
constraints are nonconvex [12]. To tackle the non-convexity,
a recent trend is to first relax or approximate the problem
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into a convex form, and then apply ADMM by exploiting the
structures in the transformed problem [37]–[39].

Instead, in this paper, we directly tackle the joint design
of BS clustering and multicast beamforming in large-scale
C-RAN without relaxing the problem into a convex form.
In particular, we observe that each component of the discon-
tinuous nonconvex term is only determined by an individual
beamforming vector, thus the discontinuous nonconvex term
is block fully separable. Moreover, each component of the
discontinuous nonconvex term is discontinuous only at a single
point. Based on these two structures, we first decouple the
discontinuous nonconvex cost function and the nonconvex
constraints by introducing auxiliary variables. Then based
on alternating minimization (AM), the nonconvex constraints
and the discontinuous nonconvex cost function are handled
separately. For the subproblem involving the non-convex con-
straints, the strong duality is exploited to obtain the closed-
form optimal solution. On the other hand, for the subprob-
lem involving the discontinuous nonconvex cost function, by
exploiting the block separability and single-point discontinuity
property, a majorization-minimization (MM) [40] based algo-
rithm is proposed. Due to the judicious decomposition based
on the problem structures, the overall algorithm only involves
first-order differentiation, making its complexity order linear
with respect to the problem size. Furthermore, it is proved that
the overall algorithm is guaranteed to converge to a critical
point,1 which is important for the considered discontinuous
nonconvex problem, since without such theoretical guarantee,
AM based algorithms may find some point of no interest.
Finally, simulation results are presented to show that in
medium-scale networks, the proposed algorithm achieves the
same performance as an existing second-order based approach,
but with much shorter computation time. As the network
size increases, the proposed algorithm becomes indispensable,
as second-order algorithms (with cubic complexity order) are
too complicated to run on a computer, while the proposed
algorithm still returns a solution within reasonable time.

The rest of the paper is organized as follows. In Section II,
we introduce the system model and the problem formulation.
In Section III, a first-order algorithm is proposed to solve the
large-scale discontinuous nonconvex problem. In Section IV,
the proposed algorithm is proved to converge to a critical
point. Simulation results are presented in Section V. Finally,
Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a C-RAN, where K single-antenna users are
served by N L-antenna BSs, each with a local cache of limited
size. Through backhaul links, the N BSs are connected to
a computation center, which also has access to a database
containing all the contents potentially required by the users.
To effectively utilize the broadcast nature of the wireless
medium, we consider multi-group multicast services in which

1For general nonconvex nonsmooth functions, the points with limiting
subdifferential (see Appendix C) containing zero are called critical points [41].
If the function is differentiable, critical point is the same as stationary
point whose gradient equals to zero, since the limiting subdifferential of a
differentiable function is just its gradient.

users desiring the same content are served in the same multi-
cast group [1]–[3].

In particular, let M = {1, 2, . . . , M} be the set of multicast
groups, with each group requesting the same content from
the content set F = {1, 2, . . . , F}. Moreover, it is assumed
that each user requests one content at a time and hence
belongs to at most one group at any time [12], [26], i.e., there
exists a many-to-one mapping from user k ∈ {1, 2, . . . , K}
to group mk ∈ M. Denoting the aggregate network-wide
multicast beamforming vector from all the BSs to the m-th
group as wm =

[
wH

m,1,w
H
m,2, . . . ,w

H
m,N

]H ∈ C
NL×1, where

wm,n ∈ C
L×1 is the beamforming vector from the n-th BS to

the m-th group, the received signal at user k can be expressed
as

yk =hH
k wmk

xmk
+
∑

m �=mk

hH
k wmxm + nk, ∀k=1, 2, . . . , K,

(1)

where hk ∈ CNL×1 is the network-wide channel vector from
all the BSs to user k, xmk

∈ C is the data symbol sent to
the group mk with E

[|xmk
|2] = 1, and nk ∼ CN (0, σ2

k

)

is the additive white Gaussian noise. In (1), the first term
is the desired signal and the second term is the inter-group
interference due to the multi-group multicast transmission.
Consequently, the received signal-to-interference-plus-noise
ratio (SINR) of user k is

SINRk =
|hH

k wmk
|2

∑
m �=mk

|hH
k wm|2 + σ2

k

, ∀k = 1, 2, . . . , K.

(2)

In C-RAN, a central issue is to alleviate the backhaul burden
by clustering the BSs to serve different multicast groups so
that each group is only served by a subset of BSs. In this
way, the computation center only distributes the required data
of each group to its serving BSs instead of all the BSs. Such a
BS clustering can be achieved by imposing a sparse structure
to the aggregate network-wide beamformer wm. Furthermore,
in modern content-centric communications, highly popular
contents are cached in the BSs to further reduce the traffic
in the backhaul links. If the content requested by the m-th
group fm ∈ F is cached in BS n, we define a caching status
cfm,n = 1 (otherwise cfm,n = 0). Consequently, the amount of
traffic on a particular backhaul link can be categorized into the
following three cases. If BS n does not serve group m, the cor-
responding backhaul traffic is 0. If BS n serves group m and
has stored the required content fm on its local cache, the cor-
responding backhaul traffic is also 0. Only when BS n serves
group m but has not stored the required fm, it is necessary to
fetch fm from the database to BS n at a required transmission
rate Rm. Combining the three cases yields the total back-
haul cost

∑M
m=1

∑N
n=1

∥
∥
∥�wm,n�2

2

∥
∥
∥

0
(1 − cfm,n)Rm, where

∥
∥∥�wm,n�2

2

∥
∥∥

0
takes either 1 or 0 depending on whether BS n

serves group m (wm,n �= 0) or not.
In multicast transmission, to decode the message suc-

cessfully for the users in the group mk, we need
SINRk ≥ γmk

, where γmk
is the target SINR such that
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Rmk
= B log2 (1 + γmk

) and B is the available bandwidth.
With the SINR requirement satisfied, we should minimize
both the backhaul cost and the transmit power, giving the
optimization problem as

min
W

M∑

m=1

N∑

n=1

∥
∥
∥�wm,n�2

2

∥
∥
∥

0
(1 − cfm,n)Rm

︸ ︷︷ ︸
backhaul cost

+ δ
M∑

m=1

N∑

n=1

�wm,n�2
2

︸ ︷︷ ︸
transmit power cost

, (3a)

s.t.
|hH

k wmk
|2

∑
m �=mk

|hH
k wm|2 + σ2

k

≥ γmk
, ∀k = 1, 2, . . . , K,

(3b)

where W = {wm,n|m ∈ M, n = 1, 2, . . . , N} is the set of
all the beamformers and δ is a positive weighting parameter
reflecting the trade-off between the backhaul cost and the
transmit power cost. Since the caching status cfm,n depends
on a specific caching placement that happens in a much
larger timescale than scheduling and transmission [42]–[45],
we assume that the caching status cfm,n is given and
fixed during the design of BS clustering and multicast
beamforming [12], [26]. The channel state information and
user requests are also assumed to be available at the com-
putation center.

The challenges in solving problem (3) lie in the
discontinuity/non-convexity of the cost function and the non-
convexity of the constraints. Worse still, the challenges in the
cost function and the K constraints are coupled as they all
depend on the same variable set W . A partial solution [12] is
to approximate the discontinuous cost function by a smooth
function and then apply convex-concave procedure (CCP) [46]
to solve a sequence of non-trivial SOCP subproblems with
the interior-point method. However, such an approach does
not decouple the cost function and the constraints, making its
complexity order cubic with respect to the problem size. For
a large-scale C-RAN with huge variable dimension, such a
method would incur prohibitive computational burden to the
computation center.

To overcome the challenges mentioned above,
we strive to decouple the cost function and the
K constraints by introducing auxiliary variables
V =

{
vk,m|vk,m = hH

k wm, m ∈ M, k = 1, 2, . . . , K
}

such that problem (3) becomes

min
W,V

M∑

m=1

N∑

n=1

∥
∥
∥�wm,n�2

2

∥
∥
∥

0
αm,n + δ

M∑

m=1

N∑

n=1

�wm,n�2
2

+ ρ
M∑

m=1

K∑

k=1

∣
∣vk,m − hH

k wm

∣
∣2 , (4a)

s.t. γmk

⎛

⎝
∑

m �=mk

|vk,m|2 + σ2
k

⎞

⎠− |vk,mk
|2 ≤ 0,

∀k = 1, 2, . . . , K, (4b)

where αm,n � (1 − cfm,n)Rm and ρ is a penalty parameter to
control the degree of matching between the original variables
and the auxiliary variables. When ρ tends to infinity, the solu-
tion of problem (4) converges to that of problem (3) [47].
For practical implementation, ρ is usually either set as a large
value or increased with continuation.

With the constraints decoupled in (4), it is tempting to
introduce a set of dual variables to make problem (4) resemble
the ADMM formulation. However, even if we take the trouble
to introduce the dual variables, ADMM cannot guarantee its
convergence due to the discontinuity/non-convexity of the cost
function and the non-convexity of the constraints. In contrast,
we develop a novel first-order algorithm in Section III, with its
guarantee to converge to a critical point proved in Section IV.

Remark 1: While the general formulation of the problem
provides flexibility of all BSs serving a single group, due to
path loss, the channels from far-away BSs would be much
weaker than those of nearby BSs. Correspondingly, the solu-
tion of the optimization problem would automatically down-
play the importance of the beamforming vectors corresponding
to weak channels, meaning that we can treat the channels of
those far-away BSs as zero without sacrificing the performance
of the system. This results in a network with channel spatial
sparsity, and hence compressed sensing based methods can be
used to achieve good CSI estimation performance with limited
training resources [48]–[50]. Similarly, efficient synchroniza-
tion can be achieved by exploiting the sparse connection of
the large-scale wireless network [51].

III. PROPOSED FIRST-ORDER ALGORITHM

Since the cost function and the constraints in (4) are
decoupled when either W or V is fixed, AM is a suitable
framework in solving (4). However, each subproblem under
the AM framework is still challenging. In particular, when W
is fixed, the subproblem over V is a nonconvex quadratically
constrained quadratic programming (QCQP) problem. Preva-
lent techniques for solving nonconvex QCQP problems include
semi-definite relaxation [22] and CCP [46], which however
lead to squaring the number of variables or iteratively solving a
sequence of non-trivial convex optimization problems. On the
other hand, when V is fixed, the subproblem over W is
combinatorial due to the discontinuous nonconvex term, which
requires exhaustively enumerating all 2NM possibilities and
solving a convex optimization problem with dimension NL in
each possible configuration. Below, we will propose a closed-
form solution for updating V when W is fixed, and a first-
order algorithm for updating W when V is fixed, rendering
the overall algorithm first-order under the AM framework.

A. Updating V: Tackling the Nonconvex Constraints

When W is fixed, problem (4) becomes a nonconvex QCQP
problem, which can be decomposed into K subproblems, with
the k-th subproblem written as

min
{vk,m}M

m=1

M∑

m=1

∣
∣vk,m − hH

k wm

∣
∣2 , (5a)
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TABLE I

ALGORITHM 1 - COMPUTING CLOSED-FORM OPTIMAL SOLUTION OF (5)

s.t. γmk

⎛

⎝
∑

m �=mk

|vk,m|2 + σ2
k

⎞

⎠− |vk,mk
|2 ≤ 0. (5b)

Since the resulting subproblem (5) has only one constraint,
it is a QCQP-1 (QCQP with only one constraint) problem.
Consequently, the strong duality of (5) holds despite the
non-convexity of the constraint and hence it can be solved
optimally [52], [53]. Further coupled with the fact that the
dual variable of a QCQP-1 is a scalar, the optimal solution
of (5) can be efficiently found by analyzing its Karush-
Kuhn-Tucker (KKT) conditions. As shown in Appendix A,
by working with the dual variable in the KKT conditions,
the closed-form optimal solution of (5) can be obtained, and
the resultant algorithm is shown in Table I.

B. Updating W: Tackling the Discontinuous Nonconvex
Cost Function

When V is fixed, and due to the fact that all terms in the
cost function (4a) contain a summation on m, problem (4)
reduces to M subproblems, with each subproblem given by

min
wm

N∑

n=1

∥
∥
∥�wm,n�2

2

∥
∥
∥

0
αm,n + δ

N∑

n=1

�wm,n�2
2

+ρ

K∑

k=1

∣
∣vk,m − hH

k wm

∣
∣2 . (6)

Inherited from (4), the challenges in solving (6) is the discon-
tinuity and the non-convexity of the first term. In the sequel,
we strive to solve such a discontinuous nonconvex problem (6)
by exploiting two particular structures. Firstly, notice that
each component

∥∥
∥�wm,n�2

2

∥∥
∥

0
αm,n is only determined by an

individual beamforming vector wm,n, thus the discontinuous
nonconvex term in (6) is block fully separable. Secondly,
each component

∥
∥∥�wm,n�2

2

∥
∥∥

0
αm,n is discontinuous only at

a single point wm,n = 0. These two structures imply that if
we can further decompose the problem (6) into N smaller-
scale subproblems, with each subproblem only depending on
a single wm,n, exhaustive combinatorial enumeration can be
avoided when dealing with the first term of (6).

To achieve further decomposition to problem (6), we con-
struct a separable upper bound of the cost function in (6),
where each component of the upper bound depends on a single
wm,n. To be specific, given any w̃m ∈ CNL×1, the second
order Taylor expansion of the last term in (6) around w̃m is

K∑

k=1

∣
∣vk,m − hH

k wm

∣
∣2

=
K∑

k=1

∣
∣vk,m − hH

k w̃m

∣
∣2

+2	
⎧
⎨

⎩

(
K∑

k=1

hk

(
hH

k w̃m − vk,m

)
)H

(wm − w̃m)

⎫
⎬

⎭

+ (wm − w̃m)H

(
K∑

k=1

hkhH
k

)

(wm − w̃m) , (7)

where higher order terms are zero since (7) is a quadratic
function over wm. Let Hmax denote the maximum eigenvalue
of the matrix H �

∑K
k=1 hkhH

k in (7) and define H = Hmax+
δ for any δ > 0. Then we have H 
 HmaxINL 
 HINL,
which means that HmaxINL − H and HINL − HmaxINL are
positive semi-definite. This implies

(wm − w̃m)H H (wm − w̃m) ≤ Hmax �wm − w̃m�2
2

≤ H �wm − w̃m�2
2 , (8)

with the equalities holding at wm = w̃m. Substituting (8)
into (7), we can obtain the following inequalities:

K∑

k=1

∣
∣vk,m − hH

k wm

∣
∣2

�
K∑

k=1

∣
∣vk,m − hH

k w̃m

∣
∣2

+2	
⎧
⎨

⎩

(
K∑

k=1

hk

(
hH

k w̃m − vk,m

)
)H

(wm − w̃m)

⎫
⎬

⎭

+H �wm − w̃m�2
2 (9)

= H �wm − um�2
2 + C, (10)

where C �
∑K

k=1

∣
∣vk,m − hH

k w̃m

∣
∣2 −

1
H

∥
∥
∥
∑K

k=1 hk

(
hH

k w̃m − vk,m

)∥∥
∥

2

2
is a constant and

um � w̃m− 1
H

∑K
k=1 hk

(
hH

k w̃m − vk,m

)
is also independent

of wm. Based on (10), an upper bound of the cost function
in (6) can be constructed as

N∑

n=1

{∥
∥
∥�wm,n�2

2

∥
∥
∥

0
αm,n + δ �wm,n�2

2

+ρH �wm,n − um,n�2
2 +

ρC

N

}
, (11)

which can be split into N parts, with each component only
depending on a single wm,n as shown inside the brace in (11)
and um,n ∈ CL×1 being the n-th segment of um, i.e., um =[
uH

m,1,u
H
m,2, . . . ,u

H
m,N

]H
.
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With the constructed separable upper bound (11), we can
minimize (6) in the MM framework [40], in which a sequence
of upper bounds expanded around the solution in the last
iteration is successively minimized. In this way, a sequence of
solutions decreasing the cost function in (6) can be obtained.
Specifically, in the t-th (t ≥ 1) iteration, we need to solve N
smaller-scale subproblems in parallel, with each written as

w(t+1)
m,n = arg min

wm,n

∥
∥
∥�wm,n�2

2

∥
∥
∥

0
αm,n + δ �wm,n�2

2

+ρH
∥
∥
∥wm,n − u(t)

m,n

∥
∥
∥

2

2
, (12)

where u(t)
m,n is the corresponding um,n with the expansion

point being the solution in the last iteration w̃m = w(t)
m .

Note that each subproblem (12) involves only one discon-
tinuous term

∥∥
∥�wm,n�2

2

∥∥
∥

0
αm,n, which only takes the value

either 0 or αm,n depending on whether the variable wm,n =
0 or not. Therefore, we consider two cases:

1) If wm,n = 0, the corresponding cost function value

of (12) is ρH
∥∥
∥u(t)

m,n

∥∥
∥

2

2
.

2) If wm,n �= 0, the first term of the cost function in (12)
is a constant αm,n and hence subproblem (12) can be
rewritten as

min
wm,n

δ �wm,n�2
2 + ρH

∥
∥
∥wm,n − u(t)

m,n

∥
∥
∥

2

2
, (13)

which is a convex quadratic programming problem
whose optimal solution can be found by differentiat-
ing the cost function in (13) and setting it to zero:
δwm,n + ρH

(
wm,n − u(t)

m,n

)
= 0, which gives the

optimal closed-form solution as wm,n = ρH
η+ρH u(t)

m,n. By
substituting it into (12), we can obtain the corresponding

cost function value as αm,n + ηρH
η+ρH

∥
∥
∥u(t)

m,n

∥
∥
∥

2

2
.

By comparing the resultant cost function values in the above
two cases, the closed-form optimal solution to subprob-
lem (12) can be obtained as

w(t+1)
m,n =

⎧
⎪⎪⎨

⎪⎪⎩

0, if
∥∥
∥u(t)

m,n

∥∥
∥

2
≤
√

αm,n (δ + ρH)
ρH

,

ρH

δ + ρH
u(t)

m,n, if
∥
∥
∥u(t)

m,n

∥
∥
∥

2
>

√
αm,n (δ + ρH)

ρH
.

(14)

To sum up, the above MM procedure for solving prob-
lem (6) is given in Table II. Since in each iteration, only
the first-order differentiation is involved, Algorithm 2 belongs
to the class of first-order algorithms. Notice that when the
cost function is continuous, the convergence property of MM
based algorithms has been analyzed in [54]. However, the cost
function in (6) is discontinuous and hence it requires further
analysis to establish its convergence property, which is shown
in the following theorem.

Theorem 1: Using Algorithm 2, the cost function of prob-
lem (6) is monotonic decreasing as the iteration number t
increases. In particular, as t tends to infinity, it can be guaran-
teed to converge to at least a local minimum of problem (6).

Proof: See Appendix B.

TABLE II

ALGORITHM 2 - FINDING LOCAL OPTIMAL SOLUTION OF (6)

TABLE III

ALGORITHM 3 - THE OVERALL AM BASED FIRST-ORDER ALGORITHM

C. Overall Algorithm and Parallel Implementation

With the updates of V and W given by Algorithms 1 and
2 respectively, the overall algorithm for solving problem (4)
is to alternatively execute the two algorithms under the AM
framework (see Algorithm 3 in Table III). The computation
of the overall Algorithm 3 is dominated by the calculation of
∑K

k=1 hk

(
hH

k w(t)
m − vk,m

)
, ∀m ∈ M, thus its complexity

order is O(KMNL). Since both Algorithms 1 and 2 only
involve first-order differentiation, the overall Algorithm 3 is
a first-order algorithm. Furthermore, since each update of
V or W leads to a monotonic decrease in the cost function (4a)
which is also bounded below by 0, Algorithm 3 can guarantee
the convergence of the cost function values of problem (4).
Notice that due to Theorem 1, when updating W , any number
of iterations T in Algorithm 2 induces a monotonic decrease
in the cost function in (6) as well as in (4a), therefore T can
be chosen as any positive integer in the implementation.

A closer look at Algorithm 3 reveals that updating V
consists of K parallel subproblems, with each in the form
of (5). On the other hand, updating W consists of M parallel
subproblems, and each subproblem can be further decomposed
into N smaller-scale subproblems in the form of (12). This
revelation suggests that the overall Algorithm 3 can be imple-
mented in a parallel manner as in Fig. 1. In particular, the
k-th node on the left computes {vk,m}M

m=1 (corresponding to

Algorithm 1) after receiving
{
hH

k wm

}M

m=1
from the M nodes

in the middle. The result of vk,m will be sent to the m-th node
in the middle. On the other hand, after receiving {vk,m}K

k=1,
the m-th node in the middle computes u(1)

m (corresponding to
step 1 of Algorithm 2). Then u(1)

m is split into N segments
and its n-th segment u(1)

m,n is sent to the (m, n)-th node
on the right. Once u(1)

m,n is received at the (m, n)-th node
on the right, w(2)

m,n is computed (corresponding to step 2 of
Algorithm 2). Then w(2)

m,n will be returned to the nodes in
the middle to construct w(2)

m . Algorithm 2 will be executed
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Fig. 1. Parallel architecture of Algorithm 3.

for T iterations before returning to Algorithm 1. The whole
procedure is repeated until the AM converges. Notice that
the computations in the K nodes on the left can be carried
out in parallel, while the computations in the M nodes in
the middle can also be carried out in parallel. Furthermore,
within Algorithm 2, the step 2 can also be executed in parallel
for the N subproblems on the right. Therefore, the proposed
algorithm has the potential of leveraging the modern multi-
thread and multi-core computing architecture for speeding up
the computation.

IV. CONVERGENCE GUARANTEE TO CRITICAL POINT

As shown in Section III-C, the cost function values of
problem (4) can be guaranteed to converge using Algorithm 3.
If the cost function is continuously differentiable and under
certain additional assumptions, we can further conclude that
the resulting sequence of solutions has limit points and every
limit point is a critical point [55]–[57]. Recently, the conver-
gence analysis is extended to a more general setting, where the
cost function is a sum of a differentiable part and a nonsmooth
convex part [58]. However, all the above analyses cannot be
applied to problem (4), since the nonsmooth term in the cost
function (4a) is neither convex nor continuous. Consequently,
it is necessary to answer the question of whether the sequence
of solutions would converge, and if so where it converges?
In this section, we prove that, despite the discontinuity and
non-convexity of problem (4), the sequence of solutions can
still be guaranteed to converge to a critical point.

To begin with, we define (Vi,Wi) as the solution generated
by Algorithm 3 at the i-th iteration, with the corresponding
cost function value (4a) denoted as g(Vi,Wi). First, we show
that the sequence of solutions {Vi,Wi}i∈N

generated by
Algorithm 3 has convergent subsequences

{Vij ,Wij

}
j∈N

with
the index sequence {ij}j∈N

⊆ N satisfying ij < ij+1, ∀j ∈ N.

Theorem 2: (Existence of Convergent Subsequences) The
sequence of solutions {Vi,Wi}i∈N

generated by Algo-
rithm 3 has convergent subsequences, i.e., there must exist
a subsequence

{Vij ,Wij

}
j∈N

converging to a limit point
(V∗,W∗) as j tends to infinity.

Proof: Since the cost function in (4a) monotonically
decreases as iteration number increases, we have

g (Vi−1,Wi−1)≥g (Vi,Wi−1)≥g (Vi,Wi) , ∀i ∈ {1, 2, . . .} .

(15)

It follows that

g (Vi,Wi) ≤ g (V0,W0) , ∀i ∈ {1, 2, . . .} , (16)

where g (V0,W0) is any finite initial value of the cost function.
Now we prove the boundedness of {Vi,Wi}i∈N

by contradic-
tion. Suppose that there exists an unbounded (Vi,Wi). Due
to the quadratic terms with respect to V and W in (4a),
this hypothesis will lead to an infinite g (Vi,Wi), which
is contradictory to (16). Thus, the sequence {Vi,Wi}i∈N

is
bounded.

With the boundedness of {Vi,Wi}i∈N
, we can directly

establish the existence of convergent subsequences [59]. Con-
sequently, there must exist a subsequence

{Vij ,Wij

}
j∈N

converging to a limit point (V∗,W∗) as j tends to
infinity.

Up to now, we have shown that {Vi,Wi}i∈N
has convergent

subsequences. To investigate the property of the corresponding
limit point (V∗,W∗), we need two more properties given
below. To facilitate the discussion, we define W(t+1)

i as the W
after the t-th iteration of Algorithm 2 within the i-th iteration
of Algorithm 3. Furthermore, since Algorithm 2 is executed
T iterations within each iteration of Algorithm 3, we have
W(T+1)

i = W(1)
i+1 = Wi.

Lemma 1: (Sufficient Decrease) Using Algorithm 3,
the cost function g (V ,W) has a sufficient decrease property:

g (Vi−1,Wi−1) − g (Vi,Wi) ≥
T∑

t=1

ρδ
∥
∥∥W(t)

i −W(t+1)
i

∥
∥∥

2

2
,

∀i ∈ {1, 2, . . .} , (17)

where ρ is defined in (4a) and δ = H − Hmax is defined
before (8).

Proof: Define

gβ

(
V ,W ; W̃

)

=
M∑

m=1

N∑

n=1

∥
∥
∥�wm,n�2

2

∥
∥
∥

0
αm,n + δ

M∑

m=1

N∑

n=1

�wm,n�2
2

+ρ
M∑

m=1

K∑

k=1

∣
∣vk,m − hH

k w̃m

∣
∣2

+2ρ
M∑

m=1

	
⎧
⎨

⎩

(
K∑

k=1

hk

(
hH

k w̃m − vk,m

)
)H

(wm − w̃m)

⎫
⎬

⎭

+ρβ

M∑

m=1

�wm − w̃m�2
2 , (18)
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with β being a parameter. Applying (8) to gβ

(
Vi,W ;W(t)

i

)
,

we have

g (Vi,W)≤gHmax

(
Vi,W ;W(t)

i

)
≤gH

(
Vi,W ;W(t)

i

)
, ∀W ,

(19)

with the equalities holding at W = W(t)
i . It follows that

g
(
Vi,W(t)

i

)
− g
(
Vi,W(t+1)

i

)

≥ g
(
Vi,W(t)

i

)
− gHmax

(
Vi,W(t+1)

i ;W(t)
i

)

= gH

(
Vi,W(t)

i ;W(t)
i

)
− gHmax

(
Vi,W(t+1)

i ;W(t)
i

)

≥ gH

(
Vi,W(t+1)

i ;W(t)
i

)
− gHmax

(
Vi,W(t+1)

i ;W(t)
i

)

= ρδ
∥
∥
∥W(t)

i −W(t+1)
i

∥
∥
∥

2

2
, (20)

where the second last step is due to the fact that with V
fixed at Vi, the component of W(t+1)

i is the minimizer of
subproblem (12) or equivalently W(t+1)

i is the minimizer of

gH

(
Vi,W ;W(t)

i

)
, and the last equality is due to the definition

in (18). Consequently,

g (Vi,Wi−1) − g (Vi,Wi) = g
(
Vi,W(1)

i

)
− g
(
Vi,W(T+1)

i

)

≥
T∑

t=1

ρδ
∥
∥
∥W(t)

i −W(t+1)
i

∥
∥
∥

2

2
.

(21)

Applying (15) to the left hand side of (21) yields (17).
Lemma 1 reveals how much the cost function g (V ,W)

decreases as iteration number increases. Based on this, we can
further establish the square summability of {Vi,Wi}i∈N

with
the following lemma.

Lemma 2: (Square Summability) Using Algorithm 3,
the sequence

{
W(t)

i

}

i∈N

satisfies

∞∑

i=1

T∑

t=1

∥∥
∥W(t)

i −W(t+1)
i

∥∥
∥

2

2
< ∞, (22)

which implies

lim
i→∞

∥
∥
∥W(t)

i −W(t+1)
i

∥
∥
∥

2
= lim

i→∞
�Wi −Wi+1�2

= lim
i→∞

�Vi − Vi+1�2 = 0, ∀t = 1, 2, . . . , T. (23)

Proof: According to the sufficient decrease property of
Lemma 1, we have

g (V0,W0) − g (VI ,WI) ≥
I∑

i=1

T∑

t=1

ρδ
∥
∥
∥W(t)

i −W(t+1)
i

∥
∥
∥

2

2
,

(24)

where I is any positive integer. Letting I → ∞, we have

∞∑

i=1

T∑

t=1

∥
∥∥W(t)

i −W(t+1)
i

∥
∥∥

2

2

≤ lim
I→∞

1
ρδ

(g (V0,W0) − g (VI ,WI))

≤ 1
ρδ

g (V0,W0) < ∞, (25)

where the second inequality follows from the fact that
g (V ,W) is bounded below by 0.

Furthermore, due to the square summability (25),

we have limi→∞
∑T

t=1

∥
∥
∥W(t)

i −W(t+1)
i

∥
∥
∥

2

2
= 0 and hence

limi→∞
∥
∥∥W(t)

i −W(t+1)
i

∥
∥∥

2
= 0, ∀t = 1, 2, . . . , T [59]. On

the other hand, notice that

�Wi −Wi+1�2 =
∥∥
∥W(1)

i+1 −W(T+1)
i+1

∥∥
∥

2

=

∥∥
∥
∥
∥

T∑

t=1

(
W(t)

i+1 −W(t+1)
i+1

)
∥∥
∥
∥
∥

2

≤
T∑

t=1

∥
∥
∥W(t)

i+1 −W(t+1)
i+1

∥
∥
∥

2
, (26)

thus we have limi→∞ �Wi −Wi+1�2 =
limi→∞

∥
∥
∥W(t)

i −W(t+1)
i

∥
∥
∥

2
= 0, i.e., Wi → Wi+1 as

i → ∞. Notice that the closed-form solution of V is
continuous over W , thus we have Vi+1 → Vi+2 as
Wi → Wi+1 and hence (23) holds.

Lemma 2 reveals that the difference between Wi and Wi+1

(also Vi and Vi+1 ) goes to zero as the iteration number goes to
infinity. Based on this lemma, we can investigate the property
of the limit points of {Vi,Wi}i∈N

in the following theorem.
Theorem 3: (Subsequence Converges to Critical

Point) Using Algorithm 3, any convergent subsequence{Vij ,Wij

}
j∈N

is guaranteed to converge to a critical point
of (4), i.e., the limit point (V∗,W∗) satisfies the first-order
optimality condition of (4).

Proof: To begin with, we show that the limit point
(V∗,W∗) satisfies the first-order optimality condition of (4)
over W . As shown after (20), W(t+1)

i is the minimizer of

gH

(
Vi,W ;W(t)

i

)
, thus we have

gH

(
Vij ,W ;W(T )

ij

)
≥ gH

(
Vij ,W(T+1)

ij
;W(T )

ij

)
, ∀W .

(27)

Notice that as j → ∞, W(T+1)
ij

= Wij → W∗, and from (23)

of Lemma 2 we also have W(T )
ij

→ W(T+1)
ij

, therefore

W(T )
ij

→ W∗ and hence (27) leads to

gH (V∗,W ;W∗) = lim inf
j→∞

gH

(
Vij ,W ;W(T )

ij

)

≥ lim inf
j→∞

gH

(
Vij ,W(T+1)

ij
;W(T )

ij

)

≥ gH (V∗,W∗;W∗) , ∀W , (28)

where the first and third steps are due to the fact that
gH

(
V ,W ; W̃

)
is continuous over V and W̃ , and lower semi-

continuous over W . From (28), it follows that W∗ is the min-
imizer of gH (V∗,W ;W∗). Thus, the limiting subdifferential2

of gH (V∗,W ;W∗) satisfies

0 ∈ ∂WgH (V∗,W ;W∗)|W=W∗ . (29)

2The limiting subdifferential of a nonsmooth nonconvex function is defined
in Appendix C.
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On the other hand, by substituting (7) into (4a), it can be
proved that

g (V ,W) = gH

(
V ,W ; W̃

)

+ρ

M∑

m=1

(wm − w̃m)H (H− HINL) (wm − w̃m) . (30)

Notice that the gradient of the last term in (30) over W
is zero at W = W̃ . Therefore, applying the limiting sub-
differentiation over W on both sides of (30) and putting
W = W̃ = W∗, we have

∂Wg (V ,W)|W=W∗ = ∂WgH (V ,W ;W∗)|W=W∗ . (31)

Putting V = V∗ in (31) and comparing with (29) yield the
first-order optimality condition of (4) over W :

0 ∈ ∂Wg (V∗,W)|W=W∗ . (32)

Next we show that (V∗,W∗) satisfies the first-order
optimality condition of (4) over V . To deal with the
constraints in (4b), we define an indicator function
as

φ (V) =

{
0, if V satisfies (4b),

∞, else,
(33)

which is lower semi-continuous over V since (4b) represents
a closed constraint set. With (33), the constrained problem (4)
can be equivalently written as an unconstrained form, with the
cost function expressed as

g (V ,W) + φ (V) = gNS (W) + gS (V ,W) + φ (V) , (34)

where gNS (W) =
∑M

m=1

∑N
n=1

∥
∥
∥�wm,n�2

2

∥
∥
∥

0
αm,n is the

nonsmooth part of g (V ,W) in (4a) and gS (V ,W) =
g (V ,W) − gNS (W) is the smooth part. With W fixed at
Wij−1, the component of Vij is the minimizer of subprob-
lem (5) and equivalently Vij is the minimizer of problem (4),
thus we have

gNS
(Wij−1

)
+ gS

(V ,Wij−1

)
+ φ (V)

≥ gNS
(Wij−1

)
+ gS

(Vij ,Wij−1

)
+ φ
(Vij

)
, ∀V . (35)

Notice that as j → ∞, Wij → W∗, and from (23) of Lemma 2
we also have Wij−1 → Wij , therefore Wij−1 → W∗ and
hence (35) leads to

gS (V ,W∗) + φ (V) = lim inf
j→∞

gS
(V ,Wij−1

)
+ φ (V)

≥ lim inf
j→∞

(
gS
(Vij ,Wij−1

)
+ φ
(Vij

))

≥ gS (V∗,W∗) + φ (V∗) , ∀V , (36)

where the first and third steps are due to the fact
that gS (V ,W) is continuous over both V and W , and
φ (V) is lower semi-continuous over V . From (36), it fol-
lows that V∗ is the minimizer of gS (V ,W∗) + φ (V).
Therefore, we can obtain 0 ∈ ∇VgS (V ,W∗)

∣
∣
V=V∗ +

∂Vφ (V)|V=V∗ . Together with the fact that gNS (W) does
not depend on V and hence ∇VgNS (W∗)

∣
∣
V=V∗ is zero,

we finally obtain the first-order optimality condition of (4)
over V :

0 ∈ ∇VgNS (W∗)
∣
∣
V=V∗ + ∇VgS (V ,W∗)

∣
∣
V=V∗

+ ∂Vφ (V)|V=V∗ . (37)

Combining (32) and (37), the proof is completed.
Theorem 3 establishes the convergence property of the

subsequence
{Vij ,Wij

}
j∈N

. However, it is still not suffi-
cient to guarantee the convergence of the whole sequence
{Vi,Wi}i∈N

. For example, if there exist two different sub-
sequences that converge to different critical points of prob-
lem (4), the whole sequence {Vi,Wi}i∈N

would still diverge.
In the following, by further examining the critical points
of (4), we can establish the convergence property of the whole
sequence {Vi,Wi}i∈N

.
Theorem 4: (Whole Sequence Converges to Critical Point)

Using Algorithm 3, the whole sequence {Vi,Wi}i∈N
can be

guaranteed to converge to a critical point (V∗,W∗). Moreover,
the sequence of the cost function values {g (Vi,Wi)}i∈N

converges to g (V∗,W∗).
Proof: We begin by showing that the number of limit

points of {Vi,Wi}i∈N
is finite. From the optimality con-

dition (32), any limit point satisfies 0 ∈ ∂WgNS (W) +
∇WgS (V ,W), or equivalently

0 ∈ ∂wm,ngNS (W) + ∇wm,ngS (V ,W) ,

∀m ∈ M, ∀n = 1, 2, . . . , N. (38)

By noticing gNS (W) =
∑M

m=1

∑N
n=1

∥
∥∥�wm,n�2

2

∥
∥∥

0
αm,n, it

is proved in Appendix C that the limiting subdifferential of
gNS (W) over wm,n is

∂wm,ngNS (W) =

{
C

L×1, if wm,n = 0 and αm,n > 0,

{0} , if wm,n �= 0 or αm,n = 0,

∀m ∈ M, ∀n = 1, 2, . . . , N. (39)

For the first case of (39), since the limiting subdifferential
∂wm,ngNS (W)

∣
∣
wm,n=0

is the set of all vectors in CL×1,
wm,n = 0 always makes (38) hold regardless of gradient
∇wm,ngS (V ,W)

∣
∣
wm,n=0

. For the second case of (39), since

∂wm,ngNS (W) = {0}, (38) reduces to ∇wm,ngS (V ,W) = 0.
Combining the two cases, it follows that the component of any
limit point satisfies either wm,n = 0 or ∇wm,ngS (V ,W) = 0.
For the MN components in W , there are no more than 2MN

configurations depending on each wm,n = 0 or not. Putting
a particular configuration into (38), the optimality condition
reduces to

∇wm,ngS (V ,W) = 0 for those (m, n)
with wm,n �= 0 or αm,n = 0. (40)

Since gS (V ,W) is in a positive definite quadratic form over
W as shown in (4a), there is at most one W satisfying (40).
Therefore, considering all the configurations, the number of
limit points of {Wi}i∈N

is finite. On the other hand, since
Algorithm 1 generates a unique Vi given Wi−1, for any limit
point of {Wi}i∈N

there is a unique corresponding limit point
of {Vi}i∈N

. Thus, we can conclude that the number of limit
points of {Vi,Wi}i∈N

is finite.
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Then we show the convergence of the whole sequence
{Vi,Wi}i∈N

by contradiction. Suppose that the whole
sequence {Vi,Wi}i∈N

does not converge. From Theorem 3,
we know that there exists a subsequence

{Vij ,Wij

}
j∈N

converging to a critical point (V∗,W∗). Together with the
boundedness of {Vi,Wi}i∈N

(proved below (16)), there must
exist another subsequence

{Vij+Δj ,Wij+Δj

}
j∈N

converging
to another critical point other than (V∗,W∗), where Δj is a
finite positive integer satisfying ij + Δj < ij+1 + Δj+1, ∀j ∈
N. Since there are a finite number of limit points, we can
define the minimum distance between any two limit points as
3� > 0. Then there exists a J1 > 0 such that
√∥
∥Vij+Δj − V∗∥∥2

2
+
∥
∥Wij+Δj −W∗∥∥2

2
> 2�, ∀j � J1.

(41)

From (41), if we choose a particular Δj , ∀j � J1 as

Δj = min
{

l :
√∥∥Vij+l − V∗∥∥2

2
+
∥∥Wij+l −W∗∥∥2

2
> 2�,

l = 1, 2, . . .

}
, (42)

it is proved in Appendix D that the subsequence{Vij+Δj−1,Wij+Δj−1

}
j∈N

must converge to (V∗,W∗) and
hence there exists a J2 > 0 such that
√∥
∥Vij+Δj−1−V∗∥∥2

2
+
∥
∥Wij+Δj−1 −W∗∥∥2

2
≤ �, ∀j �J2.

(43)

Subtracting (43) from (41), and applying the reverse triangle
inequality, we have
√∥
∥Vij+Δj − Vij+Δj−1

∥
∥2

2
+
∥
∥Wij+Δj −Wij+Δj−1

∥
∥2

2
> �,

∀j � max {J1, J2} , (44)

which is contradictory to Lemma 2. Thus, the whole sequence
{Vi,Wi}i∈N

converges to a critical point (V∗,W∗).
Finally, we show that the limit value of g (Vi,Wi) is

g (V∗,W∗). Notice that if g (V ,W) is continuous, it imme-
diately holds that g (Vi,Wi) → g (V∗,W∗) as (Vi,Wi) →
(V∗,W∗). However, g (V ,W) in (4a) is discontinuous, thus
the limit value of the cost function needs to be further
investigated. Since gNS (W) is lower semi-continuous over W ,
we have

lim inf
i→∞

gNS (Wi) ≥ gNS (W∗) . (45)

On the other hand, as shown after (20), W(t+1)
i is

the minimizer of gH

(
Vi,W ;W(t)

i

)
, thus we have

gH

(
Vi,W(T+1)

i ;W(T )
i

)
≤ gH

(
Vi,W∗;W(T )

i

)
. Letting

i → ∞ yields

lim sup
i→∞

gH

(
Vi,W(T+1)

i ;W(T )
i

)

≤ lim sup
i→∞

gH

(
Vi,W∗;W(T )

i

)
. (46)

Notice that (Vi,Wi) → (V∗,W∗) as i → ∞, thus the contin-
uous parts of both sides of (46) are equal. After subtracting

the continuous parts from both sides of (46), it reduces to

lim sup
i→∞

gNS (Wi) ≤ gNS (W∗) . (47)

Combining (45) and (47) yields limi→∞ gNS (Wi) =
gNS (W∗), and hence

lim
i→∞

g (Vi,Wi) = lim
i→∞

gNS (Wi) + lim
i→∞

gS (Vi,Wi)

= gNS (W∗) + gS (V∗,W∗)
= g (V∗,W∗) . (48)

V. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
first-order algorithm through simulations. For comparison,
the simulation results of G-CCP [12] and G-CCP-1 which per-
forms G-CCP for one iteration only, are provided as baselines.
All simulations are performed on MATLAB R2014a running
on a Windows x64 machine with 2.4 GHz CPU and 8 GB
RAM.

The simulation set-up is as follows. The large-scale C-RAN
consists N = 20 BSs [36], [60] each with L = 8 antennas, and
K = 40 to 200 users. The BSs and the users are independently
and uniformly distributed in the region [−1, 1] × [−1, 1] in
km [36]. The path loss at distance d km follows PL =
148.1 + 37.6 log10(d) in dB [12], [14], [26]. The log-normal
shadowing is 8 dB and the small-scale channel is subject to
Rayleigh fading. The transmit antenna power gain at each BS
is 10 dBi. The bandwidth is 10 MHz and the noise power
spectral density is −172 dBm/Hz. Each user requests a content
independently from a database of F = 100 contents [12], [26],
where the most popular content is requested with probability
0.5 and the rest 99 contents follows a Zipf distribution with
parameter 1 [12]. Each BS stores 10 most popular contents.
The target SINR for each multicast group is set as 10 dB.
All the simulation results are obtained by averaging over 100
simulation trials, with independent BSs’ and users’ locations,
channel and noise realizations, and content requests in each
trial. Unless otherwise specified, this set-up will be used for
the following simulations.

The parameters regarding to the proposed algorithm are set
as follows. Since the convergence of the overall algorithm
is valid for any inner iteration number T when updating W
(Algorithm 2), without loss of generality, we set T = 1. The
iteration of the overall algorithm terminates when the relative
change of the cost function in (4a) is less than 10−4. In
principle, ρ should be chosen as a very large number to make
problems (3) and (4) to be equivalent. To retain a relatively
large ρ regardless of the variation of δ, we set ρ = δ

√
K. In

the case that ρ = δ
√

K is not large enough to obtain a feasible
solution of (3), inspired by the continuation method [47],
we can increase ρ by a factor of 10.

Notice that when the SINR requirement is too strin-
gent or the channels of users in different multicast groups
are highly correlated, problem (3) can be infeasible [61].
In this paper, we focus on solving the problem when it is
feasible [12]. If the problem is infeasible, admission control
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Fig. 2. Convergence behavior of the proposed algorithm with η = 1.

can be considered [24], [62], [63], but this is not the focus
of this paper. For fair comparison, all the approaches in the
simulations are initialized with the same feasible point of (3)
obtained by [53].

First, we show the convergence behavior of the proposed
algorithm under a single simulation trial in Fig. 2. For illus-
tration purpose, the weighting parameter δ is fixed as 1 and the
user number is set as 40, 80, and 120, respectively. It can be
seen that the total network cost is monotonic decreasing and
convergent as the iteration number increases under different
numbers of users. Notice that in Fig. 2, the convergence
behavior is observed under a single simulation trial. Due to the
randomness of BSs’ and users’ locations, channel and noise
realizations, and content requests, the cost with K = 80 may
saturate to a lower level than that of K = 40. However, if
the result is averaged over 100 simulation trials, the cost with
K = 80 would be higher than that of K = 40 (e.g., see
Fig. 3(a) below).

Next, the performance in terms of the total network cost
and the simulation time of different approaches versus user
number are shown in Fig. 3(a) and Fig. 3(b), respectively.
From Fig. 3(a) we can see that the proposed algorithm and
G-CCP achieve nearly the same performance in terms of the
total network cost, and they are much better than G-CCP-1.
However, it can be seen from Fig. 3(b) that the simulation time
of the proposed algorithm is about 30 times shorter than that
of G-CCP and 2 times shorter than that of G-CCP-1 when
the user number K = 160. Furthermore, it is obvious that
the larger the number of users, the larger the gap between
the simulation time of the proposed algorithm and that of
G-CCP/G-CCP-1. In fact, due to the extremely long running
time, the simulation results of G-CCP for K > 160 are
not obtained in reasonable time, thus they are omitted in the
figures. This demonstrates that the proposed algorithm is more
suitable to large-scale C-RAN with hundreds or thousands of
users. Notice that the simulation time is measured based on
MATLAB implementation. This is for fair comparison in com-
putational complexity with existing algorithms. In commer-
cial/industrial implementation, more efficient programming
languages such as C/C++ or Python would be adopted and the

Fig. 3. (a) Total network cost (b) simulation running time (c) active number
of backhaul links versus user number with η = 1.

codes would also be optimized to achieve even more efficient
execution. Furthermore, thanks to the parallel architecture of
the proposed algorithm as shown in Fig. 1, its running time
can be further reduced by leveraging the modern multi-core
computing architecture.
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Fig. 4. (a) Total network cost and (b) simulation running time (c) active
number of backhaul links versus weighting parameter.

In addition to the superiority of the simulation time,
the solution obtained from the proposed algorithm is also more
sparse compared to that obtained from G-CCP. This is evi-
denced from Fig. 3(c). Moreover, as the user number increases,
the sparsity gap between the two approaches increases, which
means that the proposed algorithm can better preserve the
sparsity of the solutions especially when the number of users
is large.

Fig. 5. (a) Total network cost and (b) simulation running time versus cache
size under different target SINRs, with η = 10−3 and K = 100.

Fig. 4 shows the corresponding simulation results versus the
parameter δ. From Fig. 4(a), it can be seen that no matter how
we set the weighting of the transmit power term with respect
to that of the backhaul cost term, the resulting total network
cost of the proposed algorithm is close to that of G-CCP, and
lower than that of G-CCP-1. On the other hand, as shown
in Fig. 4(b) and Fig. 4(c), compared to G-CCP, the proposed
algorithm is much faster and the resulting solution is more
sparse.

Finally, to demonstrate the impacts of different cache sizes
and target SINRs, the total network cost and simulation
time with δ = 10−3 and K = 100 are shown in Fig. 5.
As shown in Fig. 5(a), as the cache size increases, the resulting
total network cost becomes lower. This is because caching
a larger number of contents at BSs would help to reduce
the backhaul cost on content delivery from the computation
center. Moreover, the total network cost becomes higher as
the target SINR increases. This increase is due to two reasons:
1) higher transmit power is needed to satisfy the higher SINR
requirement, 2) higher target SINR means higher target rate
which in turn requires more backhaul resource. On the other
hand, as shown in Fig. 5(b), the simulation times do not change
much since the complexity order depends on the problem
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size, which remains unchanged under different cache sizes and
target SINRs.

VI. CONCLUSIONS

A first-order algorithm for content-centric sparse multicast
beamforming in large-scale C-RAN was proposed in this
paper. The proposed algorithm has linear complexity order
with respect to the problem size, and was proved to con-
verge to a critical point. Simulation results were presented to
demonstrate that the proposed algorithm performs identically
to an existing second-order based approach in terms of the
total network cost, but requires much shorter running time,
making the proposed algorithm indispensable in truly large-
scale networks.

APPENDIX A

Subproblem (5) is strictly feasible, since the strict inequality
in (5b) holds when vk,m = 0, ∀m �= mk, and vk,mk

=√
γmk

σk + εk, ∀εk > 0. Together with the fact that (5) is
a QCQP-1 problem, its strong duality holds [52], [53]. Then
we can find its optimal solution by analyzing the following
KKT conditions:
{

vk,m − hH
k wm + μkγmk

vk,m = 0, ∀m �= mk, m ∈ M,

vk,mk
− hH

k wmk
− μkvk,mk

= 0,

(A.1)

γmk

⎛

⎝
∑

m �=mk

|vk,m|2 + σ2
k

⎞

⎠− |vk,mk
|2 ≤ 0, (A.2)

μk ≥ 0, (A.3)

μk

⎛

⎝γmk

⎛

⎝
∑

m �=mk

|vk,m|2 + σ2
k

⎞

⎠− |vk,mk
|2
⎞

⎠ = 0, (A.4)

where μk is the dual variable. By working with the dual
variable in (A.3), we divide the discussion into μk = 0 or μk >
0.

If μk = 0, (A.3) and (A.4) always hold. Putting μk = 0
into (A.1), we have vk,m = hH

k wm, ∀m ∈ M. Furthermore,
putting vk,m = hH

k wm into (A.2), we obtain a simplified

condition γmk

(∑
m �=mk

|hH
k wm|2 + σ2

k

)
− |hH

k wmk
|2 ≤ 0

for checking whether vk,m = hH
k wm is the optimal solution

of (5). If this condition is satisfied, it means that vk,m =
hH

k wm, ∀m ∈ M is the optimal solution. Otherwise, it cannot
be the optimal solution, and we need to consider the other case
that μk > 0.

If μk > 0, it can be proved that there exists one and only
one μk with A0 + μkA1 � 0 satisfied, where A0 and A1 are
the matrices of the quadratic terms in the cost function and
the constraint of (5), respectively [52]. From (5), A0 = IM

and A1 is a diagonal matrix whose mk-th diagonal element is
−1, thus we can derive that 1−μk ≥ 0 and hence (A.2)-(A.4)
reduce to the following two conditions:

γmk

⎛

⎝
∑

m �=mk

|vk,m|2 + σ2
k

⎞

⎠− |vk,mk
|2 = 0, (A.5)

0 < μk ≤ 1. (A.6)

Below, we further divide the discussion into two subcases:

1) If hH
k wmk

= 0, the second line of (A.1) leads to
μk = 1 and hence (A.6) is satisfied. Substituting μk = 1
into (A.1) and (A.5), we can obtain
⎧
⎪⎪⎨

⎪⎪⎩

vk,m =
hH

k wm

1 + γmk

, ∀m �= mk, m ∈ M,

vk,mk
=
√

γmk

(∑
m �=mk

|vk,m|2 + σ2
k

)
ejθk ,

(A.7)

where θk ∈ [0, 2π] is arbitrary. Without loss of general-
ity, we set θk = 0.

2) On the other hand, if hH
k wmk

�= 0, the second line
of (A.1) leads to μk �= 1, and hence from (A.1) we
have
⎧
⎪⎪⎨

⎪⎪⎩

vk,m =
hH

k wm

1 + μkγmk

, ∀m �= mk, m ∈ M,

vk,mk
=

hH
k wmk

1 − μk
.

(A.8)

Substituting (A.8) into (A.5), we obtain a condition that
μk needs to satisfy:

f(μk) �
γmk

∑
m �=mk

|hH
k wm|2

(1 + μkγmk
)2

− |hH
k wmk

|2
(1 − μk)2

+γmk
σ2

k

= 0. (A.9)

For finding μk, notice that

f ′(μk) =
−2γ2

mk

∑
m �=mk

|hH
k wm|2

(1 + μkγmk
)3

− 2|hH
k wmk

|2
(1 − μk)3

.

(A.10)

Combining μk �= 1 with (A.6) yields 0 < μk < 1.
Putting this into (A.10), we have f ′(μk) < 0 and
hence f(μk) is monotonic decreasing in the region
0 < μk < 1. Thus, μk can be found by the bisection
method [52].

APPENDIX B

We begin by showing that the cost function of problem (6)
is monotonic decreasing as iteration number t increases. For
notational simplicity, we denote Fm (wm) and Um (wm; w̃m)
as the functions in (6) and (11), respectively, i.e.,

Fm (wm) �
N∑

n=1

∥∥
∥�wm,n�2

2

∥∥
∥

0
αm,n

︸ ︷︷ ︸
Gm(wm)

+ δ

N∑

n=1

�wm,n�2
2 + ρ

K∑

k=1

∣∣vk,m − hH
k wm

∣∣2

︸ ︷︷ ︸
F̃m(wm)

,

(B.1)

Um (wm; w̃m) �
N∑

n=1

∥
∥
∥�wm,n�2

2

∥
∥
∥

0
αm,n

︸ ︷︷ ︸
Gm(wm)



LI et al.: FIRST-ORDER ALGORITHM FOR CONTENT-CENTRIC SPARSE MULTICAST BEAMFORMING IN LARGE-SCALE C-RAN 5971

+ δ
N∑

n=1

�wm,n�2
2 + ρH

N∑

n=1

�wm,n − um,n�2
2 + ρC

︸ ︷︷ ︸
Ũm(wm;w̃m)

,

(B.2)

where Gm (wm) is the discontinuous part, and F̃m (wm)
and Ũm (wm; w̃m) are the continuous parts of Fm (wm) and
Um (wm; w̃m), respectively. Applying (9) to (B.1) and putting
the definition of C (defined below (10)) into (B.2), we can
establish that Fm (wm) ≤ Um

(
wm;w(t)

m

)
, ∀wm, with the

equality holding at wm = w(t)
m . It follows that

Fm

(
w(t+1)

m

)
≤ Um

(
w(t+1)

m ;w(t)
m

)

≤ Um

(
w(t)

m ;w(t)
m

)
= Fm

(
w(t)

m

)
, (B.3)

where the second step is due to the fact that w(t+1)
m is the

minimizer of Um

(
wm;w(t)

m

)
. From (B.3), we can conclude

that Fm

(
w(t)

m

)
is monotonic decreasing as t increases.

Next we show that
{
Fm

(
w(t)

m

)}

t∈N

converges to

Fm (w∗
m) as t → ∞, where w∗

m is any limit point

of
{
w(t)

m

}

t∈N

. Notice that, by using a similar argument

under (16), it can be proved that the sequence
{
w(t)

m

}

t∈N

is bounded, thus there exists a subsequence
{
w(tj)

m

}

j∈N

con-

verging to w∗
m [59], where tj ∈ N satisfies tj+1 > tj , ∀j ∈ N.

From (B.1) and (B.2), it can be noticed that Gm (wm) is lower
semi-continuous over wm, therefore

lim inf
j→∞

Gm

(
w(tj)

m

)
≥ Gm (w∗

m) . (B.4)

On the other hand, noticing that tj ∈ N satisfies tj+1 >
tj , ∀j ∈ N, we have tj+1 ≥ tj + 1. Combining with (B.3)
yields

Um

(
w(tj+1)

m ;w(tj+1)
m

)
= Fm

(
w(tj+1)

m

)

≤ Fm

(
w(tj+1)

m

)

≤ Um

(
w(tj+1)

m ;w(tj)
m

)

≤ Um

(
wm;w(tj)

m

)
, ∀wm, (B.5)

where the second step is due to the monotonic decreasing
of Fm

(
w(t)

m

)
, and the last step follows from the fact that

w(tj+1)
m is the minimizer of Um

(
wm;w(tj)

m

)
. Putting wm =

w∗
m into (B.5) and focusing on the left-most and the right-most

terms yield

lim sup
j→∞

Um

(
w(tj+1)

m ;w(tj+1)
m

)
≤ lim sup

j→∞
Um

(
w∗

m;w(tj)
m

)
.

(B.6)

Notice that w(tj)
m → w∗

m as j → ∞, thus the continuous
parts of both sides of (B.6) are equal to Ũm (w∗

m;w∗
m). After

subtracting Ũm (w∗
m;w∗

m) from both sides of (B.6), it reduces
to

lim sup
j→∞

Gm

(
w(tj+1)

m

)
≤ Gm (w∗

m) . (B.7)

Combining (B.4) and (B.7) yields

lim
j→∞

Gm

(
w(tj)

m

)
= Gm (w∗

m) . (B.8)

Consequently, (B.1) yields limj→∞ Fm

(
w(tj)

m

)
=

limj→∞ Gm

(
w(tj)

m

)
+ limj→∞ F̃m

(
w(tj)

m

)
=

Gm (w∗
m) + F̃m (w∗

m) = Fm (w∗
m), which means Fm (w∗

m)
is the limit point of

{
Fm

(
w(tj)

m

)}

j∈N

. Together with the fact

that Fm

(
w(t)

m

)
is monotonic decreasing and bounded below

by 0, we can conclude that Fm (w∗
m) is the unique limit point

of
{
Fm

(
w(t)

m

)}

t∈N

, i.e., limt→∞ Fm

(
w(t)

m

)
= Fm (w∗

m).

Then we prove that Fm (w∗
m) is at least a local minimum of

Fm (wm). For this purpose, we first establish that w∗
m is the

minimizer of Um (wm;w∗
m). From (B.2), it can be noticed that

the continuous part Ũm

(
w(tj+1)

m ;w(tj+1)
m

)
→ Ũm (w∗

m;w∗
m)

as w(tj)
m → w∗

m. Adding this result to (B.8), we obtain

lim
j→∞

Um

(
w(tj+1)

m ;w(tj+1)
m

)
= Um (w∗

m;w∗
m) . (B.9)

On the other hand, from (B.5) we have

lim
j→∞

Um

(
w(tj+1)

m ;w(tj+1)
m

)
≤ lim

j→∞
Um

(
wm;w(tj)

m

)

= Um (wm;w∗
m) , ∀wm,

(B.10)

where the last equality follows from (B.9). Compar-
ing (B.9) with (B.10), we obtain Um (w∗

m;w∗
m) ≤

Um (wm;w∗
m) , ∀wm, which means that w∗

m is the minimizer
of Um (wm;w∗

m).
With w∗

m being the minimizer of Um (wm;w∗
m), we need to

further establish the local optimality of w∗
m in its neighbour-

hood. Specifically, for any εm → 0 and εm �= 0, using (B.2)
we have

Um (w∗
m + εm;w∗

m) − Um (w∗
m;w∗

m)

=
N∑

n=1

αm,n

(∥∥
∥
∥
∥w∗

m,n + εm,n

∥
∥2

2

∥
∥
∥

0
−
∥
∥
∥
∥
∥w∗

m,n

∥
∥2

2

∥
∥
∥

0

)

+δ

N∑

n=1

(∥
∥w∗

m,n + εm,n

∥
∥2

2
− ∥∥w∗

m,n

∥
∥2

2

)

+ρH

N∑

n=1

(
�εm,n�2

2 + 2	
{(

w∗
m,n − u∗

m,n

)H
εm,n

})

�
N∑

n=1

ϕm,n, (B.11)

where εm,n is the n-th segment of εm, i.e., εm =[
εH

m,1, ε
H
m,2, . . . , ε

H
m,N

]H
. When εm,n = 0, from (B.11) we

have ϕm,n = 0. On the other hand, when εm,n �= 0, since
w∗

m is the minimizer of Um (wm;w∗
m), or equivalently w∗

m,n

is the minimizer of (12), by using (14) we can divide the
discussion into two cases:

1) If
∥
∥u∗

m,n

∥
∥

2
≤

√
αm,n(η+ρH)

ρH , we have w∗
m,n = 0, and

consequently
∥∥
∥
∥
∥w∗

m,n + εm,n

∥
∥2

2

∥∥
∥

0
−
∥∥
∥
∥
∥w∗

m,n

∥
∥2

2

∥∥
∥

0
= 1.
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Thus, from (B.11) we have

ϕm,n = αm,n + (δ + ρH) �εm,n�2
2

−2ρH	
{(

u∗
m,n

)H
εm,n

}

≥ αm,n + (δ + ρH) �εm,n�2
2

−2
√

αm,n (δ + ρH) �εm,n�2

≥ (δ + ρH) �εm,n�2
2 , (B.12)

where the second step is due to
∥
∥u∗

m,n

∥
∥

2
≤√

αm,n(η+ρH)

ρH , and the last inequality holds as long

as αm,n − 2
√

αm,n (δ + ρH) �εm,n�2 ≥ 0, which
obviously holds when �εm,n�2 is small enough.

2) If
∥
∥u∗

m,n

∥
∥

2
>

√
αm,n(η+ρH)

ρH , we have w∗
m,n =

ρH
η+ρH u∗

m,n �= 0. Putting this into (B.11), and noticing

that
∥
∥
∥
∥
∥w∗

m,n + εm,n

∥
∥2

2

∥
∥
∥

0
=
∥
∥
∥
∥
∥w∗

m,n

∥
∥2

2

∥
∥
∥

0
= 1 as

long as �εm,n�2 is small enough, we have ϕm,n =
(δ + ρH) �εm,n�2

2.

Therefore, no matter εm,n �= 0 or εm,n = 0, we have

Um (w∗
m + εm;w∗

m) − Um (w∗
m;w∗

m) ≥ (δ + ρH) �εm�2
2 .

(B.13)

On the other hand, by substituting (7) into (B.1) and comparing
with (B.2), it can be proved that

Um (w∗
m + εm;w∗

m)
= Fm (w∗

m + εm) + ρεH
m (HINL − H)εm. (B.14)

Finally, putting (B.14) into the first term of (B.13) and noticing
Um (w∗

m;w∗
m) = Fm (w∗

m) yield

Fm (w∗
m + εm) − Fm (w∗

m) ≥ δ �εm�2
2 + ρεH

mHεm ≥ 0,

(B.15)

which means that Fm (w∗
m) is at least a local minimum of

Fm (wm).

APPENDIX C

For x ∈ domf , the Fréchet subdifferential of f(x) is defined
as [41]

∂̂f(x) =
{

u : lim inf
y→x,y �=x

f(y) − f(x) − �u, y − x�
�y − x�2

≥ 0
}

,

and the limiting subdifferential is ∂f(x) ={
u : ∃xk → x, f(xk) → f(x) and uk ∈ ∂̂f(xk) → u

}
.

Rewriting gNS (W) =
∑M

m=1

∑N
n=1

∥∥
∥�wm,n�2

2

∥∥
∥

0
αm,n as

gNS (W) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
m′ �=m

∑
n′ �=n

∥
∥
∥�wm′,n′�2

2

∥
∥
∥

0
αm′,n′ ,

if wm,n = 0,
∑

m′ �=m

∑
n′ �=n

∥
∥
∥�wm′,n′�2

2

∥
∥
∥

0
αm′,n′ + αm,n,

if wm,n �= 0,

we can obtain its Fréchet subdifferential as

∂̂wm,ngNS (W)

=

{

p : lim inf
εm,n→0,εm,n �=0

�m,n −	{pHεm,n

}

�εm,n�2
≥ 0

}

, (C.1)

where

�m,n �
{

αm,n, if wm,n = 0 and αm,n > 0,

0, if wm,n �= 0 or αm,n = 0.
(C.2)

Notice that for the first case of (C.2), the inequality in (C.1)
holds ∀p ∈ CL×1. Furthermore, for the second case of (C.2),
only p = 0 makes the inequality in (C.1) hold. Thus we have

∂̂wm,ngNS (W) =

{
C

L×1, if wm,n = 0 and αm,n > 0,

{0} , if wm,n �= 0 or αm,n = 0.

(C.3)

Taking the limit, we have ∂wm,ngNS (W) = ∂̂wm,ngNS (W) as
shown in (C.3).

APPENDIX D

With Δj chosen as (42), suppose that{Vij+Δj−1,Wij+Δj−1

}
j∈N

does not converge to (V∗,W∗).
As the sequence {Vi,Wi}i∈N

is bounded, there exists a
subsequence of

{Vij+Δj−1,Wij+Δj−1

}
j∈N

converging
to a limit point other than (V∗,W∗) [59]. Thus, there
must exist a j > J1 with Δj − 1 > 0 such that√∥
∥Vij+Δj−1 − V∗∥∥2

2
+
∥
∥Wij+Δj−1 −W∗∥∥2

2
> 2�.

Therefore, we find an l which is smaller than Δj but makes the
inequality in (42) satisfied. This contradicts with the definition
of Δj , and by contradiction,

{Vij+Δj−1,Wij+Δj−1

}
j∈N

converges to (V∗,W∗).
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