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Unified Analytical Volume Distribution of
Poisson-Delaunay Simplex and Its Application

to Coordinated Multi-Point Transmission
Minghua Xia , Member, IEEE, and Sonia Aïssa , Senior Member, IEEE

Abstract— For Poisson-Delaunay triangulations in
d-dimensional Euclidean space R

d , a structured and
computationally efficient form of the probability density
function (PDF) of the volume of a typical cell is analytically
derived in this paper. In particular, the ensuing PDF and the
corresponding cumulative density function are exact and unified,
applicable to spaces of arbitrary dimension (d ≥ 1). Then, the
special cases and shape characteristics of the resulting PDF
are thoroughly examined. Finally, various applications of the
obtained distribution functions are outlined and, in particular,
a novel coordinated multi-point transmission scheme based on
Poisson-Delaunay triangulation is developed and the pertinent
void cell effect is precisely evaluated by using the obtained
distribution functions.

Index Terms— Meijer’s G-function, Poisson-Delaunay triangu-
lation, Poisson-Voronoi tessellation, stochastic geometry, void cell
effect, volume distribution.

I. INTRODUCTION

VORONOI tessellations and their corresponding cellular
structures in d-dimensional Euclidean space R

d, for all
d ≥ 1, are encountered in many scientific fields, e.g., astron-
omy, biology, crystallography and ecology [1]. The oldest
documented trace of their application dates back to Johannes
Kepler (1571–1630) in his study on the shapes of snowflakes
and the densest sphere packing problem [2]. In more recent
decades, Voronoi tessellations have become cornerstones of
modern disciplines such as computational geometry, algorithm
design, scientific computing, optimization, information theory
and wireless communications [3]. For instance, the operation
of the well-known maximum likelihood decoding is essentially
equivalent to defining the Voronoi tessellation of the set of
transmitted codewords and finding the Voronoi cell in which
each received codeword is located. Another similar example
pertains to vector quantization.

Among various Voronoi tessellation types, the one based
on homogeneous Poisson point processes (PPPs) is the most
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basic and useful. Such tessellations are termed Poisson-
Voronoi tessellations and their dual graphs are the so-called
Poisson-Delaunay triangulations. Compared with Poisson-
Voronoi tessellations, the probability distributions of the char-
acteristics of a typical cell of Poisson-Delaunay triangulations
(or equivalently a Poisson-Delaunay simplex) are mathemat-
ically more tractable and, thus, the properties and statistics
of a typical cell of the latter triangulations were exten-
sively studied and are well documented in the encyclopedic
monograph [1, Section 5.11]. However, as one of the funda-
mental features, knowledge of the exact probability distribu-
tions of the volume of a typical Poisson-Delaunay cell in R

d is
very limited so far. Specifically, in the seminal work by P. N.
Rathie [4] in 1992, although a general Mellin-Barne integral
representation for the probability density function (PDF) of the
volume of a typical cell was developed, it is too complex to
be further processed. Actually, only if in the particular cases
with d = 1 and d = 2, analytical expressions for the PDF
of the volume of a typical cell were obtained individually.
For the special case with d = 3, however, Rathie’s expression
is extremely complicated, due to three infinite series involved,
consisting of Gamma, Psi and Zeta functions. In the same con-
text, the other notable work is by L. Muche in 1996, where a
three-fold integral expression for the volume’s PDF of a typical
cell in the particular case of d = 3 was reported [5]. For higher
dimensional cases with d ≥ 4, no any analytical expression for
the distribution function of the volume was ever reported in the
open literature, which hinders further theoretical development
and practical applications of the powerful Poisson-Delaunay
triangulations. For the interested reader, the state-of-the-art on
the volume distribution of a typical cell of Poisson-Delaunay
triangulations can be found in the latest version of the classic
reference [3, Section 9.7.4].

In this contribution, analytical expressions for the PDF and
cumulative distribution function (CDF) of the volume of a
typical cell of Poisson-Delaunay triangulations are originally
developed. The resulting expressions are unified and can be
applied in arbitrary d-dimensional Euclidean space R

d with
d ≥ 1. In particular, the obtained distribution functions include
the aforementioned ones reported in the open literature as spe-
cial cases. Furthermore, since the major results are expressed
in terms of the Meijer’s G-function, they can be readily
computed in a numerical way by using built-in functions in
popular numerical softwares, such as the function MeijerG
in Mathematica� or meijerG in Matlab�. As an illustrating
application of the obtained mathematical results to wireless
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communications, a novel coordinated multi-point (CoMP)
transmission scheme based on Poisson-Delaunay triangulation
is designed, and its pertinent void cell effect is precisely
evaluated by using the obtained distribution functions.

The rest of this paper is organized as follows. Section II
starts with a rigorous definition of Poisson-Delaunay trian-
gulations and the moments of the volume of a typical cell.
The unified analytical volume distributions of a typical cell
are then developed in Section III. In Section IV, special cases
of the resulting unified distribution functions are discussed
and compared with previously reported results in the liter-
ature. Also, the shape characteristics of the resulting PDF
are examined. Afterwards, in Section V various applications
of the obtained results are outlined and, in particular, an
application to CoMP transmission in wireless communications
is elaborated. Finally, concluding remarks are provided in
Section VI.

II. MOMENTS OF THE TYPICAL

POISSON-DELAUNAY CELL

For completeness of mathematical exposition, we start with
the definition of Poisson-Delaunay triangulations. Let X be
a stationary Poisson point process with intensity ρ, in R

d.
Any d + 1 points {x0, · · · , xd} of X define almost surely a
unique open ball containing these points on its boundary. If the
interior of the ball contains no other point of X , the simplex
conv{x0, · · · , xd} is called a Poisson-Delaunay cell, where
the operator conv{·} means convex hull. The collection of all
cells obtained in this way, denoted Y , is called the Poisson-
Delaunay tessellation induced by X . Poisson-Delaunay tessel-
lation is also widely known as Poisson-Delaunay triangulation,
since its component cell is of a triangular form in the planar
case, i.e., when d = 2.

According to [6, Corollary 7.6], the kth-order moment of
the volume V of a typical Poisson-Delaunay cell in arbitrary
d-dimensional Euclidean space R

d, can be written as Eq. (1)
on the top of the next page, where the operator E{·} means
mathematical expectation and Γ(x) =

∫∞
0 tx−1 exp(−t)dt

denotes the Gamma function. Based on the moments shown
in (1), exact distribution functions of V (PDF and CDF),
applicable to any case with d ≥ 1, are explicitly derived in the
sequel, by using the methodology of inverse Mellin transform.
Before delving into the details of the derivations, however, the
uniqueness of the CDF of V has to be guaranteed since a
given set of moments does not necessarily determine a unique
distribution function. For instance, the lognormal distribution
is not determined by its moments [7].

It is noteworthy that the so-called ‘typical cell’ is not a
particular cell chosen from a given tessellation. In fact, it
can be seen as a generic cell sampled from the population
of all cells by random selection, whereby all cells have
the same chance to be chosen. For the interested reader, a
rigorous mathematical definition of a typical cell of random
tessellations can be found in [8, p. 450].

III. UNIFIED DISTRIBUTION FUNCTIONS OF THE VOLUME

In the following lemma, the uniqueness of the CDF of the
volume with the given set of moments shown in (1), shown
on the top of the next page is guaranteed.

Lemma 1: The given set of moments shown in (1) deter-
mines a CDF uniquely.

Proof: The main ingredient of the proof is
[9, Theorem 3.6.1], which states that the set of moments
shown in (1) determines a CDF uniquely if the series∑∞

k=0 E{V k
d } tk

k! converges for some real non-zero variable t.
Hence, the remaining task is to demonstrate the convergence
of the aforementioned series by using the standard ratio test,
which is detailed in [4].

In light of Lemma 1, the main result of this paper is
formulated in the following theorem.

Theorem 1: The PDF and CDF of the volume of a typ-
ical cell of Poisson-Delaunay triangulations in arbitrary
d-dimensional Euclidean space R

d, for all d ≥ 1, can be
analytically given by Eqs. (2) and (3), shown on the top of
the next page, respectively, where G[.|.] denotes the Meijer’s
G-function [10, Section 16.17], and

m = 2d, (4)

p = 2d − 2, (5)

q = 2d, (6)

A =
2d−1/2(d + 1)d2/2Γ

(
d2

2

)
Γd
(

d+1
2

)

πd(d2−1)/2Γ(d)Γ
(

d2+1
2

) d∏

i=2

Γ
(

i
2

)
, (7)

B =

[
2d−1π(d−1)/2dd/2Γ

(
d+1
2

)

(d + 1)(d+1)/2

]2

. (8)

Proof: In view of Lemma 1 and by recalling the unique-
ness of the inverse Mellin transform, the PDF of the volume
can be computed by

fV (x) =
1

j2πx

∫

L

x−sE{V s
d }ds, (9)

where j =
√−1 denotes the imaginary unit, L is a suitable

Meillin-Barnes contour for which fV (x) can be computed,
and E{V s

d } is similarly defined by (1) for complex values
of s.1 Then, substituting (1) into (9) and performing some
algebraic manipulations by use of the Legendre duplication
formula for the Gamma function, namely, 22x−1Γ(x)Γ(x +
1/2) =

√
πΓ(2x) [10, Eq. (5.5.5)], yields

fV (x)=
A

j2πx

∫

L

d∏

i=2

Γ
(

i
2 +s

) d∏

i=0

Γ
(

d2+1+2i
2(d+1) +s

)

d−1∏

i=1

Γ
(

d
2 + i

d +s
)
Γd−1

(
d+1
2 +s

)

(
Bx2

)−s
ds,

(10)

1As far as the Meillin-Barnes integral given by Eq. (9) is concerned, s is
a complex variable and the path of integration (L) is a straight line parallel
to the imaginary axis with indentations, if necessary, to avoid poles of the
integrand. In such a case, the variable k taking integer values in Eq. (1) must
be extended to take complex values and, accordingly, k is replaced by s.
Moreover, as per the path of integration, the value of the imaginary part
of s must approach infinity. By recalling the asymptotic expansion of the
Gamma function, i.e., lim|y|→∞ |Γ(x + jy)| exp

�
1
2
π|y|� y

1
2−x =

√
2π

[11, Eq. 1.18.(6)], where x and y take real values, Eq. (9) holds and its
convergence can be further investigated. For more details, the interested reader
is referred to [11, Section 1.19].
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E{V k
d } =

Γ(d + k)Γ
(

d2

2

)
Γ
(

d2+dk+k+1
2

)
Γd−k+1

(
d+1
2

)

(2dπ(d−1)/2ρ)kΓ(d)Γ
(

d2+1
2

)
Γ
(

d2+dk
2

)
Γd+1

(
d+k+1

2

)
d+1∏

i=2

Γ
(

k+i
2

)

Γ
(

i
2

) , k = 1, 2, 3, · · · (1)

fV (x) =
A

x
Gm,0

p,q

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bx2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

d

2
+

1
d
,
d

2
+

2
d
, · · · ,

d

2
+

d − 1
d︸ ︷︷ ︸

(d−1)terms

,
d + 1

2
,
d + 1

2
, · · · ,

d + 1
2︸ ︷︷ ︸

(d−1)terms

2
2
,
3
2
, · · · ,

d

2︸ ︷︷ ︸
(d−1)terms

,
d2 + 1

2(d + 1)
,

d2 + 3
2(d + 1)

, · · · ,
d2 + 2d + 1

2(d + 1)
︸ ︷︷ ︸

(d+1)terms

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (2)

FV (x) =
A

2
Gm,1

p+1,q+1

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bx2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1,
d

2
+

1
d
,
d

2
+

2
d
, · · · ,

d

2
+

d − 1
d︸ ︷︷ ︸

(d−1)terms

,
d + 1

2
,
d + 1

2
, · · · ,

d + 1
2︸ ︷︷ ︸

(d−1)terms

2
2
,
3
2
, · · · ,

d

2︸ ︷︷ ︸
(d−1)terms

,
d2 + 1

2(d + 1)
,

d2 + 3
2(d + 1)

, · · · ,
d2 + 2d + 1

2(d + 1)
︸ ︷︷ ︸

(d+1)terms

, 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3)

where constants A and B are defined by (7) and (8), respec-
tively.2 After careful observation, we recognize that (10)
is indeed an integral of a Mellin-Barnes type, involv-
ing the product and ratio of Gamma functions. This
type of integral can be expressed in terms of Meijer’s
G-functions. Then, by comparing (10) with the definition of
the Meijer’s G-function given by [12, Definition 2.1] or [10,
Section 16.17], i.e.,

Gm,n
p,q

[

x

∣
∣
∣
∣
a1, · · · , ap

b1, · · · , bq

]

=
1

j2π

∫

L

m∏

i=1

Γ (bi + s)
n∏

i=1

Γ (1 − ai − s)

q∏

i=m+1

Γ(1−bi−s)
p∏

i=n+1

Γ(ai+s)
x−sds, (11)

yields the intended (2).
Next, to derive (3), we reformulate the PDF shown in (2)

as

fV (x) =
ABx

Bx2
Gm,0

p,q

[

Bx2

∣
∣
∣
∣
(ap)
(bq)

]

(12)

= ABxGm,0
p,q

[

Bx2

∣
∣
∣
∣
(ap − 1)
(bq − 1)

]

, (13)

where sets (ap) and (bp) are used for short to denote
the corresponding parameters shown in (2), (ap − 1) and
(bp − 1) mean that each element of the corresponding set
is subtracted by unity, and where the scaling property of
the Meijer’s G-function [12, Eq. (2.2.1)] was exploited to
obtain (13).

Then, by definition and in view of (13),
the CDF of the volume can be computed

2It is noteworthy that the general integral expression given by Eq. (10) was
originally shown in Eq. (2.5) of [4]. In [4], the said expression was not further
processed due to its extremely high complexity, but only three particular cases
were discussed separately (cf. details in Section I).

as

FV (x) = AB

∫ x

0

tGm,0
p,q

[

Bt2
∣
∣
∣
∣
(ap − 1)
(bq − 1)

]

dt (14)

=
A

2

∫ Bx2

0

Gm,0
p,q

[

y

∣
∣
∣
∣
(ap − 1)
(bq − 1)

]

dy (15)

=
A

2
Gm,1

p+1,q+1

[

Bx2

∣
∣
∣
∣
1, (ap)
(bq), 0

]

, (16)

where the change of variable y = Bt2 was used to
reach (15) from (14), and [13, Eq. (14)] was exploited to
derive (16), which is finally given in an explicit way by the
desired (3).

It is observed from (2) that x = 0 is a singular point of the
PDF expression. In order to determine the value of the PDF
when x → 0, we have the following corollary.

Corollary 1: As x → 0, the limit of the PDF of the volume
of a typical cell of Poisson-Delaunay triangulations in R

d,
shown in (2), converges to a constant if d = 1, and to zero if
d ≥ 2, i.e.,

lim
x→0

fV (x) =

{
c, if d = 1;
0, if d ≥ 2.

(17)

Proof: For better clarity, the asymptotical equivalence of
the Meijier’s G-function related to our application is restated.
Specifically, as x → 0, we have [12, p. 146]

Gm,0
p,q

[

x

∣
∣
∣
∣
a1, · · · , ap

b1, · · · , bp

]

∼ |x|α, p ≤ q, (18)

where the Landau notation f(x) ∼ g(x) is defined as
limx→0 f(x)/g(x) = c < ∞, and α = min{bj} for j =
1, · · · , m. Then, by comparing (18) with (2), we have

α =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
, if d = 1;

5
6
, if d = 2;

1, if d ≥ 3.

(19)

Then, applying (18) and (19) to (2) yields the desired (17).
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TABLE I

VALUES OF PARAMETERS A AND B IN THEOREM 1,
COMPUTED AS PER (7) AND (8), RESPECTIVELY

Later in Section IV-A, the value of the constant c involved
in Corollary 1 will be shown to be unity.

Further, we note that Theorem 1 is dedicated to Poisson-
Delaunay triangulations with normalized intensity. For the
general case with intensity ρ �= 1, we have the following
corollary.

Corollary 2: For Poisson-Delaunay triangulations with
intensity ρ �= 1, the PDF and CDF of the volume of a typical
cell are given by

fρ
V (x) = ρfV (ρx) (20)

and

F ρ
V (x) = FV (ρx), (21)

where fV (x) and FV (x) are shown in (2) and (3), respectively.
Proof: Eqs. (20) and (21) can be readily obtained by

recalling the Mapping theorem [14, p. 18].

IV. SPECIAL CASES AND DISCUSSIONS

In order to illustrate the effectiveness of the main results
summarized in Theorem 1, in this section the general expres-
sions shown in (2) and (3) are applied in the particular
cases of d = 1, 2, 3 and d ≥ 4, and further compared with
results reported in the open literature. Afterwards, general
shape characteristics of the PDF are examined. To facilitate
subsequent computations, the values of A and B involved in
Theorem 1 are off-line computed and summarized in Table I.

A. Special Cases

1) Case I (d = 1): In this condition, according to Table I,
we have A = 2/

√
π and B = 1/4. Then, the general

PDF given by (2) reduces to

fV (x) =
2

x
√

π
G2,0

0,2

[
x2

4

∣
∣
∣
∣
∣
1
2
, 1

]

(22)

=
4

x
√

π

(
x2

4

)3/4

K− 1
2
(x) (23)

= exp(−x), (24)

where G2,0
0,2

[
x
∣
∣
∣b1,b2

]
= 2x(b1+b2)/2Kb1−b2(2z1/2)

[15, Eq. (6.5.8)] was used to derive (23) with
Kα(x) being the modified Bessel function of the
second kind, and where K− 1

2
(x) =

√
π
2x exp(−x)

[10, Eq. (10.39.2)] was exploited to reach (24).
This result is exactly the same as that reported
in [4, Eq. (3.1)]. Moreover, it is now evident that

limx→0 fV (x) = limx→0 exp(−x) = 1, such that the
constant c involved in Corollary 1 equals unity.
On the other hand, in the case of d = 1, the general
CDF given by (3) reduces to

FV (x) =
1√
π

G2,1
1,3

[
x2

4

∣
∣
∣
∣
∣

1
1
2
, 1, 0

]

(25)

=
(πx

2

) 1
2
[
I 1

2
(x) − L 1

2
(x)
]

(26)

= sinh(x) − cosh(x) + 1 (27)

= 1 − exp(−x), (28)

where G2,1
1,3

[
x
∣
∣
∣

a+1/2
a,a+1/2,b

]
= πx(a+b)/2[Ia−b(2x1/2) −

La−b(2x1/2)] [15, Eq. (6.5.35)] was exploited to
derive (26), with Iα(x) being the modified Bessel func-
tion of the first kind and Lα(x) denoting the modified
Struve function [10, Eq. (11.2.2)]. Then, I 1

2
(x) =

(
2

πx

)1/2 sinh(x) [10, Eq. (10.39.1)] and L 1
2
(x) =

(
2

πx

)1/2 (cosh(x)−1) [10, Eq. (11.4.7)] were employed
to reach (27). Finally, sinh(x) = 1

2 [exp(x) − exp(−x)]
[10, Eq. (4.28.1)] and cosh(x) = 1

2 [exp(x) + exp(−x)]
[10, Eq. (4.28.2)] were applied to get (28). Conse-
quently, it is clear that (28) is the CDF corresponding
to the PDF given by (24).

2) Case II (d = 2): In such a case, as per Table I, we get
A = 3/

√
π and B = 4π2/27. Accordingly, the general

PDF given by (2) simplifies to

fV (x) =
3

x
√

π
G4,0

2,4

⎡

⎢
⎣

4π2

27
x2

∣
∣
∣
∣
∣
∣
∣

3
2
,
3
2

1,
5
6
,
7
6
,
9
6

⎤

⎥
⎦ (29)

=
3

x
√

π
G3,0

1,3

⎡

⎢
⎣

4π2

27
x2

∣
∣
∣
∣
∣
∣
∣

3
2

1,
5
6
,
7
6

⎤

⎥
⎦ (30)

=
8
9
πxK2

1
6

(
2πx

3
√

3

)

, (31)

where the order reduction property of the Mer-
jer’s G-function [12, Eq. (2.2.3)] was employed to
derive (30) from (29), and G3,0

1,3

[
x
∣
∣
∣

a+1/2
a+b,a−b,a

]
=

2π−1/2xaK2
b (x1/2) [15, Eq. (6.5.36)] was exploited to

reach (31), which is in accordance with that reported in
[4, Eq. (3.2)].
On the other hand, in the case of d = 2, the general
CDF shown in (3) reduces to

FV (x) =
3

2
√

π
G4,1

3,5

⎡

⎢
⎣

4π2

27
x2

∣
∣
∣
∣
∣
∣
∣

1,
3
2
,
3
2

1,
5
6
,
7
6
,
9
6
, 0

⎤

⎥
⎦ (32)

=
3

2
√

π
G3,1

2,4

⎡

⎢
⎣

4π2

27
x2

∣
∣
∣
∣
∣
∣
∣

1,
3
2

1,
5
6
,
7
6
, 0

⎤

⎥
⎦, (33)

where the order reduction property of the Merjer’s
G-function [12, Eq. (2.2.3)] was used again to
derive (33) from (32).
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3) Case III (d = 3): Now, by virtue of Table I, we have
A = 560

√
2/(81π) and B = 27π2/16. Accordingly, the

general PDF given by (2) reduces to
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(35)

where the order reduction property of Merjer’s
G-function [12, Eq. (2.2.3)] was used again to
derive (35) from (34).
In the case of d = 3, an extremely complicated PDF
expression of the volume of a typical cell was derived
in [4, Eq. (3.4)], which involves three infinite series
consisting of Gamma, Psi and Zeta functions. Alter-
natively, a three-fold integral expression was reported
in [5], which, for comparison purposes, is reproduced in
Eq. (36), shown on the bottom of the next page, where
g(θ1, θ2) = 1/

(
sin θ1

2 sin θ2
2 sin θ1+θ2

2

)
.

Figure 1 compares the numerical results of (35)
and (36). It is seen that they agree perfectly with
each other. However, in comparison with the compli-
cated triple integration of (36) which converges very
slowly, computing (35) is very fast by using the built-in
Meijer’s G-funcion in popular numerical software like
Mathematica�. More importantly, the compact closed-
form expression (35) enables further mathematically
tractable processing. Finally, it is remarkable that, as pre-
viously pointed out in Corollary 1, since (35) is singular
at the particular point x = 0, the value of x = 10−6

was used to approach this singularity in the numerical
experiments. At the latter point, the numerical results
of (35) and (36) are identical, being 6.84884× 10−4.

4) Case IV (d ≥ 4): In the open literature, no probability
distribution of the volume of a typical cell of Poisson-
Delaunay triangulations was ever reported for the case
of d ≥ 4. In light of Theorem 1, however, we can easily
obtain the probability distribution in any case of d ≥ 4.
For example, the PDFs of the volume in the case of
d = 4 and d = 5 can be explicitly given by
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x
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and

fV (x)=
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Fig. 1. Numerical comparison of the PDFs given by the analytical for-
mula (35) obtained in this paper and by the integral expression (36) reported
in [5].

Fig. 2. PDF of the volume of a typical Poisson-Delaunay cell in Euclidean
space R

d, for d = 1, 2, 3.

respectively, where the values of constants A and B
pertaining to each case are available from Table I.

B. The Shape Characteristics of the PDF

Now, the PDF expressions obtained in (22), (29), (34), (37)
and (38) are applied to numerically generate the distribu-
tion functions of the volume of a typical cell of Poisson-
Delaunay triangulations in R

d, with d = 1, 2, 3, 4, 5, respec-
tively. For better clarity of illustration, the PDFs of the
volume in the cases of d = 1, 2, 3 are collectively shown
in Fig. 2 whereas the PDFs of the volume in the case of
d = 4, 5 are separately depicted in two subfigures of Fig. 3.
Notice that the scale of the horizontal axis of Figs. 2 and 3
becomes smaller and smaller whereas the scale of the vertical
axis turns larger and larger, although the shape of curves
looks similar to each other. On the other hand, the mean,
variance, skewness and kurtosis of the PDF pertaining to
each case under consideration are computed and summarized
in Table II.

It is observed from Figs. 2 and 3 that all PDF curves are
unimodal, highly skewed right, and leptokurtic. In particular,
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TABLE II

SHAPE CHARACTERISTICS OF THE PDF OF THE VOLUME OF A TYPICAL POISSON-DELAUNAY CELL

Fig. 3. PDF of the volume of a typical Poisson-Delaunay cell in Euclidean
space R

d, for d = 4, 5.

in the case of d = 1, the mode is at the leftmost endpoint
x = 0. In the case of d > 1, the mode is positive but shifts
from right to left as the value of d increases. It is noteworthy
that, given the moments computed by (1), the unimodality of
the corresponding PDF can be readily proven by using the
sufficient and necessary condition shown in [16, Theorem 3].

These visible shape characteristics of the PDF of the volume
are well supported by the statistics summarized in Table II.
More specifically, the value of skewness being larger than
unity means highly right skewness, and the value of kurtosis
being larger than 3 implies leptokurtic distribution.

V. APPLICATION

Delaunay triangulations find many applications in various
scientific fields. Here, we take three of its properties and
the corresponding applications as example. In particular, in
the planar case, i.e., d = 2, the Delaunay triangulation
has a striking advantage: among all possible triangulations
of a point set, the Delaunay triangulation maximizes the
minimum angle. In planar or any higher dimensional cases
and over all possible triangulations of a point set, the Delaunay
triangulation minimizes the maximum enclosing radius of any
simplex, where the enclosing radius of a simplex is defined
as the minimum radius of an enclosing sphere [17]. These
properties are widely applied for mesh generation in computer
graphics [18]. A third property of the Delaunay triangulation
is ray-shoot monotone, which is very useful in the area of
visibility and ordering multivariate data [1, Section 6.6]. Using
the analytical distribution functions of the volume of a typical
cell shown in Theorem 1, more statistics on these applications
become mathematically tractable even in spatial or higher
dimensional Euclidean space, which were usually obtained
by simulation experiments. For more information on various
applications of Delaunay triangulations, the interested reader
is referred to [1] and [3].

In the following, an application of Poisson-Delaunay
triangulation to CoMP transmission in 5G wireless commu-
nications is elaborated, and the pertinent void cell effect
is precisely evaluated by using the obtained distribution
functions.

A. A Novel CoMP Transmission Scheme Based on
Poisson-Delaunay Triangulation

In conventional cellular networks, each user equipment (UE)
is associated with its nearest base station (BS) and gets service
from this BS. Accordingly, the coverage area of a network

fV (x) =
35x

2

∫ 2π

0

∫ 2π−θ1

0

∫ π

0

sin θ3 exp
( −2πxg(θ1, θ2)

(1 + cos θ3) sin2 θ3

)

dθ3dθ2dθ1. (36)
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Fig. 4. An illustrative cellular network modeled by the Poisson-Voronoi
tessellation (the polygons with red dash boundaries) or by the dual Poisson-
Delaunay triangulation (the triangles with blue solid boundaries), where the
black circles (‘◦’) refer to the BSs and the cross marks (‘×’) denote the UEs,
with normalized coverage area of one squared kilometers.

is essentially divided into adjacent polygonal cells, as shown
with red dash boundaries in Fig. 4 where the BSs and UEs
are denoted by the ‘◦’ and ‘×’ marks, respectively. In theory,
this classic network structure can be effectively modelled by
means of Poisson-Voronoi tessellation in the field of stochastic
geometry [19]. To further improve the quality of service (QoS)
of wireless networks, CoMP transmission is universally recog-
nized as a promising technique for 5G wireless systems by
academic researchers and standard bodies as well [20]–[22].
For instance, CoMP transmission was widely applied to 5G
radio access design, like for dense networks in [23] or for
could-RANs (radio access networks) in [24]–[26]. By using
CoMP technique, multiple BSs are joined together to simul-
taneously serve a particular UE. To this end, a critical step to
implement CoMP technique in practice is to determine which
BSs should be coordinated for a specific UE. More formally,
a cooperation set of BSs must be constructed prior to data
transmission, e.g., by choosing the nearest one or more than
one BSs in the sense of Euclidean distance. The construc-
tion of cooperation set is generally CSI dependent and time
intensive.

Unlike the CoMP strategies in conventional Poisson-
Voronoi cells where a dynamic mechanism has to be relied
upon to determine and update the cooperation set of a UE,
in the following we propose a novel CoMP mechanism based
on Poisson-Delaunay triangulation, whereby the cooperation
set of a UE is fixed and uniquely determined by the geometric
locations of its nearby BSs. In principle, the Poisson-Delaunay
triangulation is the dual graph for a Poisson-Voronoi
tessellation. For instance, as illustrated in Fig. 4, the
Poisson-Delaunay triangulation dual to the Poisson-Voronoi
tessellation shown in red dash boundaries consists of the
triangles with blue solid boundaries. In practice, with the geo-
metric locations of BSs, the Poisson-Delaunay triangulation
dual to a Poisson-Voronoi tessellation is uniquely determined
and can be efficiently constructed by using, e.g., the radial

Fig. 5. Principles to determine the CoMP cooperation set at each UE with
respect to Poisson-Delaunay triangulation, where the black circles (‘◦’) and
cross marks (‘×’) refer to BSs and UEs, respectively.

sweep algorithm or divide-and-conquer algorithm [27, ch. 4].
Subsequently, for each UE, the CoMP cooperation set is
determined as follows.

As shown in Fig. 5-a), if a UE is located inside a
Poisson-Delaunay triangular cell, the three BSs at the vertices
of the triangle are chosen and form the CoMP cooperation
set. On the other hand, if a UE is exactly located on the edge
of a triangle shown in Fig. 5-b), there must be an adjacent
triangle which shares the same edge and they both form a
quadrilateral (incidentally, the edge effect of the whole cellular
network is ignored due to its large coverage area). Among the
four BSs at the vertices of the quadrilateral, the UE on the
edge chooses the two BSs at both ends of the edge and a
third BS which is closer to the UE between the remaining
two opposite BSs, so as to form the CoMP cooperation
set.

Compared with dynamic cooperation set, the proposed
CoMP scheme based on Poisson-Delaunay triangulation has
two main features: i) the cooperation BS set pertaining to
a particular UE is fixed and can be offline determined once
the geometric locations of BSs are known, and ii) the aver-
age coverage area of Poisson-Delaunay triangular cells is
only half of that of dual Poisson-Voronoi polygonal cells,
i.e., 1/(2λ) versus 1/λ with λ being the intensity of BSs
[1, Tables 5.5.1 and 5.11.1]. Clearly, the former feature
facilitates the implementation of CoMP technique yet at the
cost of coordination gain. The latter feature, on the other
hand, benefits improving the coverage probability and spectral
efficiency of wireless networks, like the technique known
as small cells [28]. For illustration purposes, Monte-Carlo
simulation experiments are performed to evaluate the coverage
probability of the proposed CoMP scheme. In particular, in
line with [29], the worst-case UEs at the vertices of con-
ventional Poisson-Voronoi tessellation (cf. Fig. 1 of [29]) is
chosen as the typical UE. As shown in Fig. 6, the coverage
probability of our proposed scheme outperforms that with
optimal point selection [29, Eq. (7)] or that without CoMP
[29, Eq. (6)].

In other words, compared with conventional CoMP strate-
gies based on Poisson-Voronoi tessellation, the proposed
scheme based on Poisson-Delaunay triangulation is more
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Fig. 6. Coverage probability versus signal-to-interference ratio (SIR)
threshold in the unit dB.

suitable for small cell networks. However, as the cell size
becomes smaller and smaller, the effect of void cell emerges,
as discussed below.

B. The Void Cell Effect

The void cell effect originates from the user-centric cell
association, e.g., each UE in a cellular network associates
with its nearest BS. As a toy example, we may consider
that there are m× n UEs uniformly distributed in a unit-area
network which is divided into n equal-sized cells covered by
BSs. For a particular cell, it is apparent that the probability
that this cell contains no any UE is given by

(
1 − 1

n

)mn
.

Moreover, as the cell size becomes smaller or, equivalently, as
the value of n becomes larger while m remains constant, we
have limn→∞

(
1 − 1

n

)mn = e−m. Clearly, when the value of
m, i.e., the ratio of the number of UEs to the number of BSs is
small, the probability of void cell, i.e., e−m, is not negligible.
For instance, the probability of void cell is e−3 ≈ 5% in the
case of m = 3.

Without accounting for the void cell effect, the analyses of
network performance metrics, like spectral efficiency, energy
efficiency, coverage probability and network throughput, are
inevitably underestimated since those BSs corresponding to
void cells do not introduce any interference to adjacent cells.
Despite the extreme importance of the void cell effect in
small cell networks or, equivalently, dense networks, there
are very few works in the literature that touch this issue and
almost all prior works based on the modelling of stochastic
geometry for wireless networks overlook this effect (see e.g.,
[30]–[33]), since exact evaluation is mathematically
intractable. In particular, since the distribution functions
of a typical cell of Poisson-Voronoi tessellation is still an
open problem [3, Section 9.7], exact evaluation of the void
cell effect pertaining to Poisson-Voronoi cells is not feasible
so far [34], [35].

By using the previously obtained mathematical results, the
void cell effect of the proposed CoMP based on Poisson-
Delaunay triangulation, can be accurately evaluated as follows.

Furthermore, a green power control strategy to exploit the void
cell effect is developed.

By definition, the exact void-cell probability (say, p) of the
CoMP scheme based on Poisson-Delaunay triangulation can
be computed as

p = EV

{
e−λUEV

}
=
∫ ∞

0

e−λUExfV (x)dx, (39)

where λUE denotes the intensity of UEs and V represents the
volume of a typical cell in the Poisson-Delaunay triangulation
created by BSs. By virtue of the mathematical results obtained
in this paper, including Theorem 1, Corollary 2 and (30),
Eq. (39) can be explicitly calculated such that
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where [36, Vol. 3, Eq. (2.24.3.1)] was exploited to derive
from (40) to (41), with λBS referring to the intensity of BSs.

By recalling the Jensen’s inequality, on the other hand, we
may obtain a lower bound on the void probability pertinent to
the CoMP transmission. That is,

p = EV

{
e−λUEV

} ≥ e−λUEEV {V } = exp
(

− λUE

2λBS

)

, (42)

where the fact that the average coverage area of a typical
triangular cell is EV {V } = 1/(2λBS) [1, Table 5.11.1], was
employed to reach the last equality in (42).

To demonstrate the effectiveness of preceding analysis,
Fig. 7 illustrates the void probability versus the intensity ratio
of UEs to BSs, i.e., λUE/λBS. In the pertaining simulation
experiments, the value of λUE/λBS ranges from 1 to 8, i.e., the
network become denser and denser. As seen from the figure,
the void probability is always greater than 0.1 in the region
of λUE/λBS of interest, which is evidently not negligible
in practice. For instance, when λUE/λBS = 5, the void
probability of is as large as 0.25. On the other hand, the void
cell probability decreases with larger λUE/λBS, as expected.
Moreover, Fig. 7 illustrates that the simulation results are in
full agreement with the numerical results computed according
to (41), whereas the lower bounds computed as per (42) are
not tight, owing to the impreciseness of the Jensen’s inequality.

To deal with such a high void probability caused by smaller
cell size, the so-called green power control can be applied
at BSs, whereby a BS may switch between ‘active mode’
with high power consumption (PA) and ‘sleeping mode’ with
very low power consumption (PS). In particular, the BSs
corresponding to void cells may operate according to the
‘sleeping mode’.3 This power-control strategy will yield at

3It is noteworthy that the ‘sleeping mode’ does not necessarily imply that
a whole BS goes into sleep, but that only the part of Tx antennas aiming at a
particular cell switches to ‘sleeping mode’. For instance, a large-scale antenna
array at a BS can form multiple directional beams and serve different cells
independently.
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Fig. 7. The void probability pertaining to the coordinated multi-point
transmission based on Poisson-Delaunay triangulation.

least two major advantages. One is lower inter-cell interfer-
ence, resulting in better network performance. The other is
lower average power consumption (denoted P̄ ) at a BS, which
can be characterized by

P̄ = (1 − p)PA + pPS ≈ (1 − p)PA, (43)

where p denotes the void probability given by (41). Eq. (43)
implies that the average power consumption at a BS is
proportional to the complementary void probability.

VI. CONCLUDING REMARKS

As a leading feature of a typical cell of Poisson-Delaunay
triangulations, the probability distributions of its volume were
developed in an analytical and unified way, and are applicable
to Euclidean spaces of arbitrary dimension. The main results
are compact and elegant, and can be efficiently computed in a
numerical way by using built-in functions of popular numerical
softwares. In particular, the shape characteristics of the prob-
ability density function of the volume were demonstrated to
be unimodal, highly skewed right, and leptokurtic. The results
obtained shed new light on the development of unified theory
on the characteristics of a typical cell, and enable further math-
ematically tractable processing for the application of Poisson-
Delaunay triangulations to various scientific disciplines, such
as coordinated multi-point transmission in wireless networks.
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