IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 4, APRIL 2018

2755

MU-MIMO Communications With MIMO Radar:
From Co-Existence to Joint Transmission

Fan Liu™, Student Member, IEEE, Christos Masouros, Senior Member, IEEE, Ang Li*™, Student Member, IEEE,
Huafei Sun, and Lajos Hanzo™, Fellow, IEEE

Abstract— Beamforming techniques are proposed for a
joint multi-input-multi-output (MIMO) radar-communication
(RadCom) system, where a single device acts as radar and a com-
munication base station (BS) by simultaneously communicating
with downlink users and detecting radar targets. Two operational
options are considered, where we first split the antennas into two
groups, one for radar and the other for communication. Under
this deployment, the radar signal is designed to fall into the null-
space of the downlink channel. The communication beamformer
is optimized such that the beampattern obtained matches the
radar’s beampattern while satisfying the communication perfor-
mance requirements. To reduce the optimizations’ constraints,
we consider a second operational option, where all the antennas
transmit a joint waveform that is shared by both radar and com-
munications. In this case, we formulate an appropriate probing
beampattern, while guaranteeing the performance of the down-
link communications. By incorporating the SINR constraints into
objective functions as penalty terms, we further simplify the
original beamforming designs to weighted optimizations, and
solve them by efficient manifold algorithms. Numerical results
show that the shared deployment outperforms the separated case
significantly, and the proposed weighted optimizations achieve a
similar performance to the original optimizations, despite their
significantly lower computational complexity.

Index Terms—MU-MISO downlink, radar-communication
co-existence, beampattern design, beamforming, Riemannian
manifold.

I. INTRODUCTION

REE frequency spectrum has become a valuable asset.
It has been reported that by 2020, the number of con-
nected devices will exceed 20 billion, which requires extra
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spectrum resources. Below 10GHz, the S-band (2-4GHz) and
C-band (4-8GHz) are occupied by a variety of radar applica-
tions at the time of writing, and it is envisaged that these can
be shared with communication systems in the future [1]—[3].
While policy and regulations may delay the practical applica-
tion of such solutions, research efforts are well under way
to address the practical implementation of communication
and radar spectrum sharing (CRSS). Existing contributions on
CRSS mainly focus on two aspects: 1) co-existence of existing
radar and communication devices and 2) co-design for dual-
functional systems. Below we review the related literature in
both cases.

A. Co-Existence of Radar and Communications Systems

As a straightforward way to support the co-existence, oppor-
tunistic spectrum sharing between rotating radar and cellular
systems has been considered in [4], where the communication
system transmits its signals, when the space and frequency
spectra are not occupied by radar. While such a scheme
seems easy to realize, it does not allow the radar and com-
munication to work simultaneously. Recognizing this fact,
the pioneering work of Sodagari et al. [5] proposes a null-
space projection (NSP) method to support the co-existence of
MIMO radar and BS, in which a MIMO radar beamformer
is designed to project the radar signals onto the null-space
of the interference channels between the radar and BS, thus
zero-forcing the interference imposing on the communication
link. However, such a beamformer may result in performance
loss for the radar. Further contributions [6]-[8] investigate
different trade-offs between the performance of radar and
communications by relaxing the zero-forcing precoder as the
projection matrix generated by the singular vectors, whose
singular values are less than certain thresholds, and therefore
imposes controllable interference levels on the communication
systems.

Recent treatises [9]-[14] have employed sophisticated opti-
mization techniques to solve the problem. In [9], the radar
beamformer and communication covariance matrix are jointly
designed to maximize the radar’s SINR subject to spe-
cific capacity and power constraints. Similar work has
been done in [10], [11] for the co-existence between the
MIMO matrix completion (MIMO-MC) radar and point-
to-point (P2P) MIMO communications, where the radar
sub-sampling matrix is further introduced as a variable in
the optimizations. To address the co-existence of MIMO
radar and multi-user MIMO (MU-MIMO) communications,
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Liu et al. [13] considers the issues of robust beamforming
design for the BS with imperfect channel state informa-
tion (CSI), where the radar detection probability is maximized
subject to satisfying the SINR requirements of downlink users
and the power budget of the BS. As a further step, a novel
CRSS beamforming optimization is proposed by Liu et al. [14]
by exploiting the multi-user interference (MUI) as a use-
ful source of transmission power, which leads to significant
power-saving compared to the conventional methods.

B. Co-Design of Dual-Functional RadCom Systems

It is worth noting that for supporting co-existence, radar
and communication devices are typically required to exchange
side-information for achieving a beneficial cooperation, such
as the CSI, radar probing waveforms, communication mod-
ulation format and frame structure. For instance in [11],
the authors assume that an all-in-one control center is con-
nected to both systems via a wireless link or a backhaul chan-
nel, which coordinates the cooperation. In practical scenarios,
however, such a control center imposes extra complexity on
the system, and is also a challenge to implement. In contrast to
the conventional License Shared Access (LSA) based spectrum
sharing schemes [12], a more favorable approach for CRSS is
to design a novel dual-functional system supporting both radar
and communications [15], where the above problem does not
exist. Note that such methods are distinctly different from the
classic LSA techniques, as they require the use of specific
radar constraints and designs.

Aiming for finding the fundamental performance bounds of
a joint RadCom system, an information theoretical framework
has been presented in [16] and [17] to unify radar and
communications with the help of rate distortion theory. Similar
efforts have been made by Guerci et al. [18], where the concept
of radar information rate has been defined for ensuring that
the performance of the two functions can be discussed under
similar metrics. In addition, waveform design is also consid-
ered as an enabling solution. Unlike the passive radar system,
where the signals from cellular and television stations are
used by a radar receiver to perform target detection [19]-[21],
the dual-functional waveform is designed for supporting simul-
taneous cellular communication and target detection on a sin-
gle platform. Existing contributions on single-antenna systems
study the feasibility of time-division (TD) waveforms [22],
the combination of the communication symbols with the chirp
carrier [23], and the use of orthogonal frequency division
modulated (OFDM) waveforms for radar detection [24]. More
recently, waveform design considered for MIMO systems has
drawn much attention from researchers, where the informa-
tion bits are modulated by controlling the sidelobe levels of
the transmit beampattern of the MIMO radar [25], or by
Phase Shift Keying (PSK) modulation via waveform diver-
sity [26]. It should be highlighted that in the above MIMO
schemes, each communication symbol is typically represented
by one or several radar pulses, which unfortunately leads to
a low date rate on the order of the radar pulse repetition
frequency (PRF), e.g. kbits per second.
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C. The Contribution of Our Work

In this paper, we develop a series of optimization-based
transmit beamforming approaches for a joint MIMO RadCom
system, which is defined as a dual-functional platform that can
simultaneously transmit probing signals to radar targets and
serve multiple downlink users. Such a system realizes both
functions within the same frequency band, with significant
practical applications. Unlike the conventional joint MIMO
waveform design approaches using sidelobe control or wave-
form diversity, the proposed methods focus on spatial signal
processing by considering the beamforming matrices rather
than the waveforms. Such a design will not affect the original
modulation scheme of the communication. Hence, the data rate
remains unchanged. We note that for such systems, the designs
of the radar receiver as well as of the uplink communications
are also challenging problems. Moreover, the mixed spatial-
temporal processing is expected to achieve an improved perfor-
mance. Due to the limited space, and following the approaches
of [25] and [26], we only focus our attention on the joint
transmission of the RadCom system in this paper, and set aside
the receiver designs as well as the temporal techniques for our
future work.

Inspired by the NSP method in [5]-[8], we firstly con-
sider a separated antenna deployment, where the antennas
are partitioned into radar and communication antennas. The
interference imposed by the radar signals on the users are
eliminated by zero-forcing, and the communication covariance
matrix is designed to formulate an appropriate beampattern
that matches the radar beampattern, while satisfying the
communication performance requirements. The zero-forcing
beamforming problem is non-convex, but can be solved by
the classic semidefinite relaxation (SDR) technique.

To alleviate the optimization constraints imposed by the
above mentioned separated design, we further propose a shared
deployment, where all the antennas are shared for both radar
detection and downlink communications. This implies that the
communication signals are also used as radar probing wave-
forms. Aiming for designing an appropriate radar beampattern,
while satisfying the downlink power and SINR constraints,
a non-convex joint optimization problem is formulated, which
can be also solved via SDR.

To further simplify the problem, we design the correspond-
ing weighted optimizations by incorporating SINR constraints
as penalty terms in the objective functions. We consider a pair
of different penalty terms as well as two power constraints, i.e.
the sum-squared SINR error penalty, the max SINR penalty,
the total power constraint and the per-antenna power con-
straint. By doing so, the feasible regions of the weighted prob-
lems are viewed as Riemannian manifolds [27], and therefore
can be solved by manifold optimization algorithms [28]. It has
been shown that these algorithms are more computationally
efficient for the non-convex precoding optimizations with
equality constraints than conventional methods, and yield near-
optimal solutions without approximations [29]-[31]. Recent
treatises also investigate the application of such algorithms on
control theory [32], [33], where a fast convergence rate can
be achieved. Finally, the computational complexities of the
proposed algorithms are analyzed in terms of floating-point
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Fig. 1.

operations (flops). For clarity, we list the contributions of this
paper as follows:

« We propose both separated and shared antenna deploy-
ments for the joint RadCom system, and consider the
corresponding beamforming design problems.

o We design a number of weighted beamforming optimiza-
tions for the shared antenna deployment in conjunction
with different constraints and penalty terms.

o We reformulate the weighted optimization problems as
manifold optimizations, which achieve an identical per-
formance to that of the original optimization by using
low-complexity manifold solvers.

o We derive the computational complexity analytically in
terms of the number of the flops when using the proposed
algorithm to solve weighted optimizations.

The remainder of this paper is organized as follows,
Section II introduces the system model, Section III formulates
the optimization problems, Section I'V solves the beamforming
problems using manifold based algorithms, Section V analyzes
the computational complexity of the proposed algorithms,
Section VI provides numerical results, and Section VII con-
cludes the paper.

Notations: Unless otherwise specified, matrices are denoted
by bold uppercase letters (i.e., H), bold lowercase letters are
used for vectors (i.e., &), scalars are denoted by normal font
(i.e., yi), subscripts indicate the columns of a matrix (i.e., h;
is the i-th column of H), tr (-) stands for the trace of the
argument, (-)7, ()* and (-)¥ stand for transpose, complex
conjugate and Hermitian transpose respectively, Re(-) denotes
the real part of the argument, diag(-) stands for the vector
composed by the diagonal entries of a matrix, ddiag(-) sets all
off-diagonal entries of a matrix to zero, ||-|| and ||-|| denote
the /> norm and the Frobenius norm respectively.
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II. SYSTEM MODEL

We consider a joint MIMO RadCom system, which can
simultaneously transmit probing signals to the targets located
at the angles of interest and communication symbols to
downlink users. The joint system is equipped with a uniform
linear array (ULA) of N antennas, serving K single-antenna
users in the downlink while detecting targets at the same time.
Below we present the signal models for the pair of operations
considered in this paper, namely the separated deployment and
the shared deployment.

A. Separated Deployment

As shown in Fig. 1 (a), the separated deployment involves
splitting the antenna array into two groups: one for radar
and one for the downlink communications. In this case,
the received signal of the i-th user is given by

K
xilll =gl D widil1 + ] s + ex[l], Vi, (0
k=1

where g; € CNex1 f; € CVN&*1 are the channel vectors from
communication antennas and radar antennas to the i-th user,
Nc and Ny are the number of antennas dedicated to commu-
nication and radar respectively, d;[I] and w;[I] ~ CN (0, No)
stand for the communication symbol and the received noise
of the i-th user at the time index I, w; € CNc*! denotes the
beamforming vector of the i-th user, and finally s; € CVe*!
is the [-th snapshot across the radar antennas. The sample

L
. . . . . 1 H _
covariance matrix of the radar signal is given as lzi sis;t =

R; € CNr*Nr  with L being the length of the signal on the
fast-time axis. We rely on the following standard assumptions:
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1) The communication signals are statistically independent
of the radar signals;

2) The channel between the RadCom system and users
is flat Rayleigh fading, which is given by H =
[hi,hy,...,hg] , where h; = [fi;g;] € CV*1. It is
assumed that the channel is perfectly estimated by pilot
symbols.

Note that the separated deployment allows arbitrary radar
signals to be used.

By letting Wy, = wkwfcq , the communication transmit power

is given as

K K
Pr="well> =D tr (Wy). )
k=1 k=1

Based on (1), the received SINR of the i-th user is thus
given by

2
|8/ wi

fi =

K

zl ol wi|” + £TR£* + No
s

tr (el Wi)

3)

K

tr|grg! > Wi |+t (£ Ry) + No
k=1
ki

The covariance matrix for the precoded communication sym-
bols can be obtained by

C; :ZWk. )

B. Shared Deployment

In this case, all the N antennas are shared for both radar
detection and downlink communication. This concept is shown
in Fig. 1 (b). The received signal at the i-th user is given as

K
Yilll = ] > tedill]+ nill], Vi, ()
k=1
where t; € CM*! and n;[I] ~ CN (0, Ny) denote the
beamforming vector and the received noise of the i-th user,
respectively. We make the following assumptions:

1) The RadCom system employs the communication signal
as the radar probing waveform;

2) As above, the channel H between the RadCom system
and the users is Rayleigh flat fading and it is also
perfectly estimated.

At first glance, it seems that there are no degrees of free-
dom (DoF) in designing the radar signal, since the commu-
nication signal is employed as a dual-functional waveform
in the shared deployment. Nevertheless, we will show in the
following sections that this is indeed an affordable constraint,
given the resultant benefits. Similarly, the transmit power is
given by

K K
Py = lltl® =D r (T, (6)
k=1 k=1
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where T, = tkt,f’ . The received SINR of the i-th user is
given by

2
[hfti| tr (hfh{ T;)
= = NG
h’t,|” + N K
k;' N hih? > Ty |+ No
k#i k=1

k£i
Note that in (7) no radar interference is imposed on the users.
The covariance matrix of the precoded symbols is given by

K
C= T ®)
k=1

III. PROBLEM FORMULATION

In the proposed scenario, an appropriate beamformer has to
be designed to meet the following requirements:
o To generate a close match to the desired beampattern for
radar detection;
o To guarantee the SINR level required for the downlink
users;
o To satisfy the transmit power budget.
In this section, we first recall the beampattern designs for
the colocated MIMO radar only, and then combine them with
communication constraints for ensuring that the beamformer
obtained can indeed meet the above criteria. We note that,
as the radar find its way into more commercial applications,
the low peak-to-average power ratio (PAPR) property becomes
more important for the waveform design, potentially enabling
the use of low-cost non-linear amplifiers. Nevertheless, we will
not include this as a metric in our beamforming designs, as our
approach is not a symbol-level/waveform-level optimization.

A. MIMO Radar Beampattern Design

It is widely exploited that by employing uncorrelated wave-
forms, MIMO radar has higher DoFs than the traditional
phased-array radar [34]-[36]. The existing literature indicates
that the design of such a beampattern is equivalent to designing
the covariance matrix of the probing signals, where convex
optimization can be employed. In [37], a constrained least-
squares problem is formulated to approach an ideal beampat-
tern. Here we recapture it as follows

M
~ 2
min 3" |aPy 0) —a” G Ra @] O

m=1
. Pyl
s.t. diag(R) = —, (9b)
Ny
R > 0,R =R, (9¢)
a >0, (9d)
where {6,,1}”"14:1 is defined as a fine angular grid that cov-

ers the detection angle range of [—=x/2,7/2], a(6,) =
[1’ e2mASnGn) o 2m(Ni—1)A sin(@,,,)]T e CNx! is the
steering vector of the transmit antenna array with A being
the spacing between adjacent elements normalized by the
wavelength, N; is the number of antennas of the array, Py (0,)
is the desired ideal beampattern gain at 8,,, R is the waveform
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covariance matrix, Py is the power budget, « is a scaling factor,
and 1is defined as 1 =[1,1,..., 117 € R¥*! The constraint
(9b) is imposed to guarantee that the waveform transmitted by
different antennas has the same average power.

Aiming for generating a beampattern with a desired 3dB
main-beam width, another optimization problem has been
proposed by Stoica et al. [35], which is given by

i
s.t. afl (0p) Ra (6p) — a’? (6,,)) Ra (0,,) =1, V0, € Q,
a (0))Ra (0)) = a” (0y) Ra (6) /2,
a’ (62)Ra (6,) = a" (6o) Ra (00) /2.

R>0,R=R",
diag R) = 2L (10)
ia = —,
g N,

where 6 is the location of the main-beam, (6> — 6;) deter-
mines the 3dB main-beam width, and € denotes the sidelobe
region. Note that the above two problems are convex, and thus
can be efficiently solved by numerical tools.

B. Zero-Forcing Beamforming for Separated Deployment

We first consider the beamforming design of the separated
deployment. Motivated by the NSP method, which has been
widely applied to radar and communication co-existence sce-
narios [5]-[8], we force the radar signals to fall into the null-
space of the channel between the radar antennas and downlink
users to eliminate the interference. This can be equivalently
written as

2
E Mffs, H ]:fiTIE{slslH} ff =u (F7R) =0, vi. (D)

By introducing the above constraint in (9) and (10), and using
Ny antennas for radar detection, an Ny X Ng covariance matrix
R; can be obtained. Accordingly, the zero-forcing version for
(9) and (10) are given by

M
~ 2
min Zl (Pa On) — 2™ @) Ria O)
m=

Pr1

.t. diag(Ry) = —,
s.t. diag (Ry) N

Rl i O, Rl = R{—I’

o >0,

tr (f;"fiTRl) =0, Vi, (12)
min — ¢
t,Ry

s.t. all Qo) Riay (o) —all @) Riay On) =1, Y0, € Q,
afl (0))Rya; (61) = all (Go) Ria; (Bo) /2,
a{’ (0,) Ria; (62) = a{’ (6o) Ria1 (o) /2,
R; = 0,R; =R{,
, Prl
diag (Ry) = ——
iag (Ry) N

tr (fi*fiTRl) =0, Vi, (13)
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respectively, where a (6,) = [a; (Oy); a2 (0y)],Vm, and
a; (6,,) € CVex1 a5 (6,,) € CNc*! Vm, Pg is the transmis-
sion power for radar.

Since we assume that the transmitted signals for radar and
communication are statistically independent, by recalling (4),
it can be easily proven that the overall covariance matrix can
be written as

) R0 R, . 0
Cz[o C1i|= 0 kgwk (14)
The beampattern gain at 6,, can be obte;ined as
Py O) = a" (0n) Ca (O) .
= af’ @) Riar On)+a3" On) D" Wiaz 0). (15)
k=1

If the shape of the overall beampattern perfectly matches the
radar-only beampattern obtained by (12) and (13), we have

K
al (On) > Wiay 0n) = caf @) Riai 0n), Ym, (16)
k=1
where ¢ > 0 is a scaling factor. Hence, by introducing the
notations

A=T[a(@),...,a@u)]eC"M,
A =[a1(01),...,a1 Omn)] € CVRXM,
Ay =[a2 (1), ..., (Oy)] € CNM,

(16) becomes equivalent to

K
diag (Ag ZW,-Az) = o diag (Af’ R1A1) . (8)

i=1

A7)

and the downlink beamforming optimization can thus be

formulated as
2

K
diag(Ag’ > WiA; - o—Af’RlAl)
s.t. Bi > T, Vi: 1

P) < Pc,

o >0,

W, = 0,W; = W/,

rank (W;) =1, Vi, (19)

where T'; is the SINR threshold of the i-th user, P; and pS;
are defined by (2) and (3) while Pc is the power budget for
downlink communication. Note that by the above zero-forcing
design, problem (19) employs only part of the antenna array,
and hence it is computationally efficient in general. It is clear
that (19) is non-convex. Nonetheless, a suboptimal solution
can be obtained by the classic SDR technique. By omitting
the rank-1 constraints, (19) becomes a standard semidefinite
program (SDP), which can be efficiently solved. For non-
rank-1 solutions, an approximated solution is obtained by
standard rank-1 approximation techniques, such as eigenvalue
decomposition or Gaussian randomization [38].

The proposed zero-forcing optimization can be summarized
by the following Algorithm 1.

min
o,W;
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Algorithm 1 Zero-Forcing Beamforming for Separated
Deployment

Input: H,I', Py, beampattern requirement;

Output: W;,Vi;
1. Solve (12) or (13) to obtain the radar covariance matrix
R1 c (CNR xNR;
2. Substitute R; into (19), solve the SDP problem by
omitting the rank-1 constraints;
3. Obtain the approximated solution by eigenvalue decom-
position or Gaussian randomization.

C. Beamforming for Shared Deployment

Although the separated deployment allows flexibility in
the design of the radar signal, the need for cancelling its
interference inflicted upon the downlink users imposes extra
constraints in the radar beampattern design problems, which
may result in poor performance. One may also trade-off the
radar interference received by users by changing the strict
zero-forcing equality constraints to inequalities. However,
there are still extra constraints in such problems.

By using the shared deployment, the radar’s targets of inter-
est can be viewed as virtual downlink users located in a line-
of-sight (LoS) channel. The beamforming design thus becomes
a power sharing problem between the virtual users in the LoS
channel and the real users in the fading channel. The difference
is that we meet the requirements of the former by using a
specific beampattern, and that of the latter by enforcing their
SINR constraints. Therefore, the optimization for the shared
deployment is to firstly formulate a radar beampattern by
solving (9) or (10) with N; = N, then substitute the covariance
matrix obtained in the communication beamforming problem,
which is

K 2
n%i’_n ZTi -R (20a)
i=1 F
sty =Ty, Vi, (20b)
K
. Pyl
diag (; T,-) = (20¢c)
T, = 0,T; = T/ rank (T;)) = 1, Vi, (20d)

where Rj is obtained by solving (9) or (10), P> and y; are
defined as (6) and (7) respectively. Note that the SINR y; for
the i-th user in this case is different from f; for the separated
deployment above, and that in contrast to (19), all the transmit
power is exploited in the above optimization. Here we also
employ the equality constraint (20c) for the power budget,
since the radar is often required to transmit at the maximum
available power in practice [35].

For problem (20), the following observations can be made:

Observation 1: While the problem (20) is expected to
facilitate a better performance for the system, its dimension is
larger than that of (19), which results in higher computational
costs.

Observation 2: Similar to (19), the problem (20) can
be relaxed as SDP by omitting the rank-1 constraints.
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However, it is difficult to employ eigenvalue decomposi-
tion or Gaussian randomization to yield a solution that satisfies
the strict equality of per-antenna power constraint. Hence,
the relaxed solution cannot take full advantage of the available
power budget.

Observation 3: When the number of users becomes large,
the DoFs may be insufficient to satisfy the specific constraints.
Our results show that for a K-user downlink with K €
[N —2, N], (20) becomes infeasible with a high probability.

To avoid these drawbacks, we attempt to simplify (20)
as weighted optimizations in conjunction with penalty terms,
which can be solved by manifold algorithms.

D. SINR Penalty Terms

In order to simplify the problem in (20) and to improve the
feasibility probability for beamforming optimization, we incor-
porate the SINR constraints in the objective function as a
penalty term. Note that a similar approach can also be devel-
oped for the zero-forcing optimization of (19). For notational
simplicity, we use P and R instead of P, and R in the
remainder of this paper, unless otherwise specified.

1) Sum-Square Penalty: A simple penalty term is the sum-
mation of the squared error between the actual values and the
thresholds. Therefore, the SINR penalty term can be written as

K
T =2 (i-T)*=ly —T|?, 1)
i=1
where y = [yl,yz,...,yK]T e REXI'T = [I},
I, ..., [g]T e REXL Upon recalling the definition for y;
in (7), we have
tr (B; T;
yi —Ti = fOT) v @
K
tr | B; > Tk | +No
i

where B; = h;.khl.T , and T; is defined in (6). Based on above,
(21) is equivalent to

K

A(@) = (¢ —TiNo)> = lla — NoT >, (23)
i=1

Logll e REXL and o; is

where we have a = [a,an, ..
given by

K
oi = (1+T)trB;T;)—Ttr (Bi ZTk). (24)
k=1
2) Max Penalty: To ensure fairness between the downlink
users, we can also maximize the minimum SINR of the
downlink users. This is formulated as

max min ;. (25)

T; i
In order to transform (25) into a minimization problem, note
that

argmax min y; = argmin max — y;, (26)
T; i T; i
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Fig. 2.

Riemannian conjugate gradient algorithm.

which yields the following penalty term

[ (@) = max (—ai, —a2,...,—0K). 27

By incorporating (23) and (27) as part of the objective func-
tion, the beamforming problem is always feasible. Instead
of using the classic SDR approach, we propose to directly
solve the non-convex problem by employing manifold-based
algorithms, which can ensure that the resultant solution sat-
isfies the equality constraints, and are more computationally
efficient than the SDR. The related optimization problems are
formulated and solved in the following section.

IV. BEAMFORMING OPTIMIZATION ON THE MANIFOLD
A. Preliminaries on Riemannian Manifold Optimization

First, let us briefly commence by revisiting the essential
concepts of the Riemannian manifold [27] that will be useful
for the derivation of our algorithms. A manifold S is a set
of points endowed with a locally Euclidean structure near
each point. More precisely, each point of an N-dimensional
manifold has a neighbourhood that is homeomorphic to the
Euclidean space of dimension N [27]. Given a point p on S,
a tangent vector at p is defined as the vector that is tangential
to any smooth curves on S through p. As can be seen from
Fig. 2, the set of all such vectors at p forms the tangent space,
denoted by T, S, which is a Euclidean space.

If the tangent spaces of a manifold are equipped with a
smoothly varying inner product, the manifold is a Riemannian
manifold. Accordingly, the associated inner procuct is called
a Riemannian metric. For instance, RN is a Riemannian
manifold with the normal vector inner product being the
Riemannian metric. It leads to the existence of rich geometric
structures on the manifold, namely geodesic distances, curva-
tures, and gradients of functions.

Given a smooth function defined on S, denoted by f (p),
the Riemannian gradient is defined as the tangent vector
belonging to 7,S that indicates the steepest ascent direction
of f (p). In particular, if S is a Riemannian submanifold of a
Euclidean space, the Riemannian gradient can be computed
as the orthogonal projection of the conventional Euclidean
gradient V f (p) onto the tangent space, where f is a smooth
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function defined on the Euclidean space with f being its
restriction on S. This is given as [28]

grad f (p) = Proj,V f (p).

For simplicity, we will not distinguish between f and f in
the rest of this paper.

To find the minimum of f, a descent direction is com-
puted based on the Riemannian gradient. For the Riemannian
steepest descent (RSD) algorithm, the descent direction is
chosen as the negative counterpart of the Riemannian gradient.
For the Riemannian conjugate gradient (RCG) algorithm,
the descent direction is chosen as a nonlinear combination
of the Riemannian gradient of the current iteration and the
descent direction of the previous iteration. It is important to
note that all the descent directions departing from the point p
should belong to the corresponding tangent space 7,M.

Once a descent direction is given, the update point for the
next iteration is obtained by a specific mapping named as
retraction, which maps a point on 7,S§ to S, with a local
rigidity condition that preserves the gradients at p [28], and
is given as

(28)

Rp&)=pes, (29)

where £ € T),S.

Based on the above concepts, below we derive the weighted
optimizations related to the original problems of Section III.
We will firstly relax the per-antenna power constraint into a
total power constraint, i.e. to replace the diagonal constraint
with the norm constraint, which is easier to handle by mapping
the feasible region onto a hypersphere. This is expected to
yield a better solution according to our numerical results. Then
we deal with the per-antenna power constraint by solving the
problem on an oblique manifold.

B. Beamforming Under Total Power Constraint

Let us denote the beamforming matrix as T =
[t;,t,...,tx] € CV*K_ The total power constraint of the
problem is thus given by

~ 12 ~ o~
p= HTHF —tr (TTH) =P (30)
Note that the diagonal constraints in both (9) and (10) are also
replaced by tr (R) = Py for this case.

1) Problem Reformulation: The weighted optimization

incorporating the sum-square SINR penalty term is given as

s 2
min pj HTTH — RH . + pal (@)
T

i1 = v,

where R is the covariance matrix related to the desired
beampattern, 1 (a) is defined by (23), and p = [p1, p2] is
a weighting vector representing the weights for radar and
communication in the dual-functional system, respectively.
In contrast to the problem (20), there is no rank-1 constraint in
the above optimization, where the power constraint is the only
constraint. This implies that the feasible set of the problem
is a complex hypersphere with the dimension of NK — 1.

€1V
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Hence, (31) can be reformulated as an unconstrained problem,
which is

~ o 2
min f; (T) — o HTT” - RH ¥ i (@),
TeS F

(32)

where § = {TE(CNXK ’HTHF :«/Po} is the complex

hypersphere manifold with the radius of +/Py. Similarly,
the max SINR penalty problem can be reformulated as:
~ [~ ~~ 2
min /> (T) = o[ TT7 —R| + i@, (3
TeS F
where [ (a) is defined by (27). Instead of employing the
conventional SDR solver, we propose a Riemannian conjugate
gradient algorithm to solve the two non-convex problems by
finding the near-global local minima.

2) Riemannian Gradients: We first compute the Euclidean

gradient of f} (’i‘) which is given by
- ofi o
v/ (T) ofi on
oty oty

Here we directly give the analytic expression of the gradient,
which is

on } (34)

> E

Vi (T) — 4py (TTH - R) T+4p, i aiGi,  (35)
i=1

where o; is defined by (24), and can be rewritten as

ai =+ (Bitt!) - e (BTTY), (o)
while G; is given by
G =B; ((1 + T tel — riT) . (37)

In (37), ¢; € CK %I has all-zero entries except for its i-th entry,
which is equal to 1. For a complex hypersphere, the tangent
space is given by [39]

735 = [F e VK |Re (i (T7F)) =0}

The Riemannian gradient is obtained by projecting the
Euclidean gradient onto TTS, which is [39]

grad fi (T) = Proj; (v fi (T))
— VS (T) ~Re (tr (T”v fi (T))) T. (39)

For the max SINR penalty, unfortunately, the gradient does
not exist due to the non-smooth max function. Thus we employ
the well-known log-sum-exp upper-bound I (a), which is a
smooth function, and is given by [40]

l(a)<l(a)—slog(Zexp( ))<l(a)+810g(K)

i=1
(40)

(38)

where ¢ is a small positive number. The approximated max
penalty problem is then given as

- o~ 2 ~
min f (T) — o1 HTTH - RH + ool @).
TeS

(41)
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The Euclidean gradient of f> (’i‘) can be computed as

™M=

exp () G;

I
-

v/ (T) — 4p, (TTH —R)T 25t § o
exp
- (42)

Accordingly, the Riemannian gradient for f> is given by

grad f (T) —V) (T) —Re (tr (TH Y (T))) T. 43)

3) Riemannian Conjugate Gradient Algorithm: Since (32)
and (41) are of a similar structure, we can use the RCG
to solve both optimizations, where the relevant gradients are
given by (35) and (42), respectively. For simplicity, we use f
to represent fi or f>. Let us recall the conventional conjugate
gradient (CG) algorithm [41] in the Euclidean space. At step
i+1, we update the beamforming matrix by [41]

Tit1 =Ti + 611, (44)
where the stepsize J; is computed by line search algorithms,
such as the Armijo rule [41]. The descent direction is obtained
as the weighted summation of the current gradient and the
descent direction of the last iteration, which is given by

I = -V (1) + wlliey, (45)
where u; is given by the Polak-Ribiere formula [41]
(1) s (1) wr ()

Hi = <Vf (Ti,l),vf (Ti*‘)>

Here, (-,-) denotes the usual Euclidean inner product on
CN*K  which is

(X,Y) = Re (tr (X”Y)) .

For the RCG method, as mentioned previously, the beamform-
ing matrix to be updated at step i + 1 is obtained by the
retraction on the complex hypersphere, which is

v Po (Ti + (5i1'li)
To compute u;, we note that for the RCG method, grad f (’i‘,)

and grad f (’i‘,- 1) belong to the different tangent spaces
T3 S and T S hence they cannot be simply added as in
(46) Followmg [42], we use vector transport to perform the
nonlinear combination, by mapping a vector from a tangent
space to the vector on another tangent space. For the complex
hypersphere, we simply define the projector used in (39) as the
(S T’i‘ S

n—1

). @9

(47)

Tip1 = Ry, (6iT) =

(48)

vector transport. Hence, to transport grad f (T,
to T’I‘nS is to project it onto TTnS, which is

1)) = ProjTi (gradf (Ti,

T, (gradf (Ti,
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Then it follows that

Hi
s () (5) -5, o ()
<gradf (TH) ,grad f (Ti’1)>R

>

(50)

where (-, -) g is the Riemannian metric, which is chosen as the
metric induced from the Euclidean space, i.e., the same inner
product defined in (47). Similarly, II; is obtained as

II; = —grad f (Ti) +uily, | i),

In Fig. 2, we show the procedure of the RCG algorithm for a
single iteration, which is also summarized by Algorithm 2.

D

Algorithm 2 RCG Algorithm for Solving (32) and (41)
Input: R,~H,1",p = [p1, p21, Po, A > 0,ipax > 0
Output: T; 3

1. Initialize randomly Ty € S,

set Iy = —grad f ’i‘o),i =0.

while i < i,,,, and ‘gradf ('i‘,)” > A do
2i=i+l. g
3. Compute stepsize d;—; by Armijo rule, and set T; by
the retraction (48).
4. Compute u; by (50).
5. Compute II; by (51).
end while

Remark: In contrast to the SDR method, which searches
the solution in the positive semidefinite cone and per-
forms a rank-1 approximation afterwards, the proposed
Algorithm 2 searches directly on the hypersphere without
approximation, and therefore it is more efficient. Additionally,
if the solution obtained by the SDP has a rank higher than 1,
the approximated rank-1 solution may not satisfy the strict
equality power constraint. By contrast, the proposed RCG
algorithm guarantees to satisfy the power constraint.

C. Beamforming Under Per-Antenna Power Constraint

We now use the RCG algorithm to solve problems under
per-antenna power constraints. Upon letting X = T#, it fol-
lows that

-~ 2 2
[T - R[ = [x"x R[] .
F F
diag (TT” ) — diag (X” X) . (52)

Note that here the original covariance matrix R is obtained by
solving the MIMO radar beamforming problem of (9) or (10)
under diagonal constraints. The sum-square SINR penalty
problem is then reformulated as

2
' XHX — RH A
min i H TP (@)
Pol
s.t. diag (XHX) - % (53)
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In this case, a; can be rewritten as
a; = (1+Ti)tr (B,-XH G, )X (G, :)) “Tiw (B,-XHX) ,
(54)

where X (i, :) denotes the i-th row of X. The feasible region
of (53) can be viewed as a complex oblique manifold, which
is formulated as

M= [X e CHNI(xHx),, =

oy (55)
N 9 n b

where (X#X),,, is the n-th diagonal entry of (XX). By the
above definition, the penalty problems can be equivalently
written as

2
i X) = HXHX—RH i@, (56
nin 3 X) = p1 F+pz (@) (56)
2
. _ H _ ~
min 2 (X) = p) XX -R| +pi@. &

Therefore, (56) and (57) can also be regarded as unconstrained
problems defined on a Riemannian manifold M. Similar to the
case of total power constraints, we first compute the Euclidean
gradient for f3 (X) and fi (X) as

K
V£ (X) = 4p1X (x”x - R) +4p> wGH,

(53)
i=1
K
> exp(—%) Gff
Vi (X) = 4pX (XX - R) —2p0 =L . (59)
El exp (—%)

where G; is defined by (37) and can be simply transformed
as a function of X.

Accordingly, the Riemannian gradients corresponding to the
Euclidean gradients (58) and (59) are given by projection on
the tangent space of M, which is [39]

XM = {F e CKxN ’Re ((X”F) ) -0, Vn} . (60)
The Riemannian gradients are thus given as [39]
grad f3 (X) = Projx V f3 (X)
= V3 (X) — X ddiag (Re (X” v f3 (X))) ,
grad /3 (X) = ProjV f3 (X)
— V /2 (X) — X ddiag (Re (XH Y (X))). 61)

Following a similar procedure to that of Algorithm 2, we cal-
culate the (i+1)-st update by the following retraction
Xit1 = Rx, (n:di)

Xi + 7iJin Xi + n:Ji)n

:\/E , (62)
N | X+ nido)s Xi +n:Ji)y |

where the stepsize #; is obtained by Armijo rule, the descent
direction J; is computed by

o]

Ji=—grad f Xi) + 0 7x,_, Ji-1), (63)
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where f represents both f3 and fi. By defining the vector
transport on M as

7x,_, (grad f (Xi—1)) = Projy, (grad f (Xi-1)),
7; can be obtained by

(grad f (X), grad f (X;) — Tx,_, (grad f (Xi-1))),
(grad f (Xi—1), grad f (X;—1))g '

(64)

P =

(65)

We summarize the above procedure in Algorithm 3.

Algorithm 3 RCG Algorithm for Solving (56) and (57)
Input: R,H, T, p = [p1, p21, Po, A > 0, ijax > 0
Output: X;
1. Initialize randomly Xg € M,
set Jo = —grad f (Xo),i = 0.
while i < i, and |grad f (X;)|lz > A do
2.i=1i+ 1.
3. Compute stepsize 7;—; by Armijo rule, and set X; by
the retraction (62).
4. Compute 7; by (65).
5. Compute J; by (63).
end while

V. COMPLEXITY ANALYSIS

In this section, we study the computational complexity of
using the RCG algorithm to solve the proposed optimization
problems in terms of flops. We note that since there are no
closed-form complexity expressions for the SDR algorithms,
we cannot analytically compare the two families. Hence a
simulation based comparison is presented in the numerical
results, which highlights the complexity savings of the RCG
algorithms.

Following the concept of [43], a flop is defined as one addi-
tion, subtraction, multiplication, or division of two floating-
point numbers. With this definition, one complex addition and
one complex multiplication can be viewed as 2 and 6 flops,
respectively. One addition between two M x N complex matri-
ces includes 2M N flops, and one multiplication between a
M x N and a N x P complex matrix needs 8 M N P flops. Since
the number of iterations is difficult to predict, we consider the
complexity per iteration, and study the convergence of the
algorithms in terms of iterations numerically in our results.
In all the computations, we only consider the highest-order
terms and omit the low-order ones. For clarity, we list the
complexity per iteration for both algorithms in TABLE I by
each operation.

A. Complexity of Beamforming Problems Under
Total Power Constraint

We first consider the complexity of solving (32). For the
retraction of line 3 in Algorithm 2, which is computed by
(48), the total number of flops needed is 14N K. For line 4,
the costs of computing the Euclidean and Riemannian gradient
using (35) and (39) are 23N2K + 12NK? and 12NK flops.
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TABLE I
COMPUTATIONAL COMPLEXITY PER ITERATION FOR ALGORITHM 2 AND 3

Operation Flops
Retraction 14ANK
Euclidean Gradient 23N?K + 12N K?
Riemannian Gradient 12NK
Vector Transport 12NK
Inner Product SNK

Total 23N2K + 12N K?

The vector transport (49) and the inner product (47) need
12NK and 8NK flops, respectively. Hence, the costs for line
4 are 23N?K + 12NK? 4+ 42NK flops. For line 5, the costs
are 16 NK flops, which lead to a total of 23N2K + 12NK?
flops for each iteration.

For problem (41), we employ the log-sum-exp approxima-
tion, and therefore the only difference w.r.t. (32) is to compute
the Euclidean gradient. Here we take the exponential of a
floating-point number as an operation imposing a constant
number of flops, which leads to the same order of complexity
as a simple addition or multiplication. Hence, by omitting the
lower-order terms, the costs for computing the gradient (42)
are the same as those of (35), which means that the total costs
for solving (41) are also 23N?K + 12N K? flops per iteration.

B. Complexity of Beamforming Problems Under
Per-Antenna Power Constraint

For solving (56) and (57), the costs of retraction (62)
are also 14N K flops. The costs for Euclidean gradients are
the same as those of (35) and (42), respectively. Noting that
the operators ddiag (XY) and tr (XY) involve a complexity
of the same order, the costs needed for computing the cor-
responding Riemannian gradient, the vector transport and the
inner product are the same as those of the optimizations under
total power constrains. Therefore, the overall costs of solving
(56) and (57) are also 23N2K +12NK? flops in each iteration.

It can be seen from the above discussions that the compu-
tational complexities for solving both beamforming problems
are O (NZK + NKZ) in each iteration.

VI. NUMERICAL RESULTS

In this section, numerical results based on Monte Carlo
simulations are provided for validating the efficiency of the
proposed beamforming approaches. In all the simulations,
we set Pp = 20dBm, N = 20, Ny = 0dBm, and employ a
ULA with half-wavelength spacing between adjacent antennas.
We also assume that each entry of the channel matrix H obeys
the i.i.d. standard complex Gaussian distribution. We solve the
constrained beamforming optimizations of Section III-B and
C by the classic SDR technique using the CVX toolbox [44],
and the penalty problems of Section IV-B and C by the RCG
algorithm. From Fig. 3 to Fig. 5, we denote the beampatterns
obtained for radar and RadCom joint transmission by ‘Radar-
Only’ and ‘RadCom’, respectively. In the rest of the figures,
where the performance of different beamforming methods is
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Fig. 3.  Multi-beam beampatterns comparisons for I' = 10dB, K = 4.

(a) Separated deployment; (b) Shared deployment.

compared for the shared deployment, we use ‘Constrainted’ to
denote the constrained optimization (20), ‘RCG’ and ‘SDR’
for the algorithm that is employed, i.e. the Riemannian conju-
gate gradient algorithm and the semidefinite relaxation, ‘Total’
and ‘Per-Ant’ for the total power constraint and per-antenna
power constraint, ‘Max’ and ‘Sum-Squ’ for the max SINR
and sum-square SINR penalty terms used in the weighted
optimizations.

A. Comparison Between the Separated and
Shared Deployments

In order to evaluate the performance of the two proposed
antenna deployments, we compare the beampatterns obtained
by the zero-forcing beamforming and by the shared beam-
forming. Fig 3 (a) and (b) show the beampatterns with
multi-beams, which are originally obtained by solving the
problems of (12) and (9) for the radar-only beamforming,
and are then formulated by solving (19) and (20) for the two
RadCom cases, respectively. The locations of the 5 beams
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Fig. 4. 3dB beampatterns comparisons for I' = 10dB, K = 4. (a) Separated
deployment; (b) Shared deployment.

are [—60°, —36°,0°,36°, 60°]. The total transmit power,
the required SINR for each user and the number of users are
setas I' = 10dB, K = 4. For the separated deployment, we set
Ng = 14, Nc = 6, PR = Pc = Py/2. It can be seen that the
separated deployment provides a poor beampattern with low
peaks at each beam owing to its lower DoF, while the shared
deployment achieves a far better one, with even higher peaks
than the radar-only beampattern. In Fig. 4(a) and (b), we inves-
tigate the performance of the two deployments in the case
of their 3dB beampattern formulations, which are originally
obtained by solving problems (13) and (10) for radar only and
are then formulated by solving (19) and (20) for the RadCom
cases, where the main-beam is centered at 0° with a 3dB width
of 10°. All other parameters remain the same as in Fig. 3.
Note that the zero-forcing beamforming formulates a Rad-
Com beampattern with a peak-sidelobe-ratio (PSLR) of 7dB,
while the shared beamforming achieves a PSLR of 15dB.
We note that in practice an improved PSLR performance can
be obtained compared to both results, by employing a more
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Fig. 6. Feasibility probability comparison between constrained problems and
penalty problems, I' = 10dB.

advanced radar beamforming design than the one in (10). It is
intuitive that our proposed solutions would approach any given
radar-only beampattern to provide arbitrary PSLR. However,
to avoid digression from our focus on joint beamforming
design, we exploit the classic approach (10) as our radar-only
reference beampattern design for simplicity.

We also show in Fig. 5 the trade-off between PSLR
and SINR for the resultant 3dB beampattern designs of the
two deployments, where other parameters are the same as
in Fig. 3 and Fig. 4. Once again, we see that for a fixed SINR
level, the shared deployment outperforms the separated case
leading to a substantial 8dB gain in PSLR.

B. Feasibility Comparison Between Constrained
Problems and Penalty Problems

In Fig. 6, we show the feasibility probability of the con-
strained problems and weighted problems with K ranging
from 17 to 20, where I' = 10dB. Note that the feasibility
probability of the problem (20) decreases with the increase of
the number of users due to the reduction of DoFs. For the
case that the number of users equals to the number of the
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Fig. 8. Trade-off between MSE and SINR for different methods, K = 10.

BS antennas, the feasibility probability is less than 5%. For
the zero-forcing beamforming of the separated deployment,
the optimization is generally infeasible for large numbers
of users. Nevertheless, all the weighted optimizations are
always feasible, since they are unconstrained problems on the
manifolds.

C. Performance of Beamforming Methods
for Shared Deployment

Figures 7 and 8 investigate the performance trade-off
between radar and communications for different beamforming
methods with the shared deployment. In both figures, an orig-
inal 3dB beampattern of the same shape as in Fig. 4 (b) is
generated, while SDR and RCG algorithms are used to solve
the corresponding constrained and weighted optimizations.
We fix the number of users at K = 10, and represent the
beamforming approaches under total power and per-antenna
power constraints by solid and dashed lines, respectively. The
weighting vectors of the different weighted optimizations are
given in TABLE II. Fig. 7 presents the trade-off between the
PSLR of the RadCom beampattern and the average SINR of
the downlink users. Based on this two observations can be
made: 1) As expected, the beamforming methods under total
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TABLE II

WEIGHTING VECTORS FOR WEIGHTED OPTIMIZATIONS
OF FIG. 7,8, 11 AND 12

Total Constraint Per-Ant Constraint

[p1, p2] [p1, p2]
Sum Square Penalty [10,1] [3,1]
Max Penalty [10,1] [1,2]
TABLE III

WEIGHTING VECTORS FOR WEIGHTED OPTIMIZATIONS OF FIG. 9

Total Constraint Per-Ant Constraint

[p1, p2] [p1, p2]
Sum Square Penalty [10,1] [7,1]
Max Penalty [58,1] [3,1]

power constraints outperform the methods that employ per-
antenna power constraints with a 1.7dB SINR gain; 2) The
weighted optimizations achieve nearly the same performance
as the constrained optimizations, which indicates that the
performance loss of penalty problems against the constrained
problems is negligible. In Fig. 8, the trade-offs between
the mean squared error (MSE) of beampatterns and the
average downlink SINR are characterized. Here the squared

M
error is defined as > (Pradar (9n) — PradCom (Gm))z, where

Pradar (0,) and PRa'Zc_olm (6yn) denote the beampatterns for
radar-only and RadCom cases, respectively. Unsurprisingly,
we see the similar trends to those in Fig. 7. It is also worth
noting that for beamforming methods under total power con-
straints, the weighted optimization with the max SINR penalty
term performs even better than the constrained optimization.

We further note that, in contrast to the constrained opti-
mizations, the SINR obtained for weighted optimizations is
not explicitly constrained. To evaluate the impact of this,
in Fig. 9 we look at the probability distribution of the
instantaneous SINR based on the actual transmitted symbols
for the different methods in conjunction with K = 4 and
I' = 18dB. The weighting vectors of TABLE III are employed
for achieving the target SINR. It can be observed that the
instantaneous SINR ranges from 14dB to 22dB for both
constrained and weighted optimizations. This highlights that
even under explicit SINR constraints, which impose an average
SINR threshold, the instantaneous SINR obtained may indeed
vary. Still, it can be seen that although the overall variation
in the SINR obtained is similar for both weighted and con-
strained optimizations, and that the sum-square SINR penalty
problem associated with the total power constraint achieves the
equivalent variance of the corresponding constrained version,
the distributions of the constrained optimizations are in general
closer to the mean value than for the weighted optimizations.
Nevertheless, we will show in the following that this variation
is affordable in the light of the significant reduction of the
computational complexity.
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D. Computational Complexity

In Fig. 10, we explore the convergence speed of the man-
ifold algorithms. We compare the value of cost functions for
different weighted optimizations obtained in each iteration in
conjunction with K = 6, " = 10dB, where two observations
can be made: 1) For the optimizations with the same penalty
terms, problems associated with total power constraints need
fewer iterations to converge to the minimum than those with
per-antenna power constraints; 2) For both power constraints,
although the max SINR penalty and sum-square SINR penalty
problems impose the same computational costs in each itera-
tion, the former has a faster convergence rate, which suggests
that the overall complexity of the max penalty problems is less
than the problems with sum square penalty terms. In Fig. 11,
we further characterize the overall complexity in terms of the
average execution time for I' = 10dB, since it is difficult to
specify the analytic complexity when using the CVX. The sim-
ulations are performed on an Intel Core 17-4790 3.6GHz CPU
32GB RAM computer. The execution time here represents the
time needed for solving the optimization for a single channel
realization. It can be seen that all the weighted optimizations
require much less time than the corresponding constrained
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problems, thanks to the low-complexity RCG algorithms.
Quantitatively, the complexity is reduced to 50% below for the
scenarios considered, and the max penalty problem associated
with total power constraint has the fastest convergence rate.
Similar trends appear in Fig. 12, where the trade-off between
execution time and the average SINR obtained have been
shown for different beamforming methods with the same
parameter configurations as in Fig. 7 and 8. Once again,
we observe that the weighted optimizations provide up to
an order of magnitude complexity reduction compared to the
constrained optimizations, and the optimizations with max
penalty terms achieve the best performance among all the
beamforming methods.

VII. CONCLUSION

A novel framework is proposed for the transmit beam-
forming of the joint RadCom system, where the beamform-
ing schemes are designed to formulate an appropriate radar
beampattern, while guaranteeing the SINR and power budget
of the communication applications. We have considered both
the separated radar and communications deployment, as well
as the shared deployment. To further simplify the problem,
we have considered weighted optimizations for the shared
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deployment that include the SINR constraints as the penalty
terms in the objective function, which can be efficiently solved
by manifold algorithms. Our numerical results show that
the shared deployment has the far better performance than the
separated deployment in terms of the trade-off between the
quality of the beampattern and the downlink SINR. The pro-
posed weighted optimizations obtain a similar performance to
the original beamforming design at a much lower complexity,
and therefore they offer a favorable performance-complexity
trade-off.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

FCC. (2010). Connecting America: The National Broadband Plan.
[Online]. Available: https://www.fcc.gov/general/national-broadband-
plan

DARPA. (2016). Shared Spectrum Access for Radar and Communi-
cations (SSPARC). [Online]. Available: http://www.darpa.mil/program/
shared-spectrum-access-for-radar-and-commu%nications
NSFE. (2016). Spectrum Efficiency, Energy Efficiency,
rity (SpecEES): Enabling Spectrum for All. [Online].
https://www.nsf.gov/pubs/2016/nsf16616/nsf16616.htm

R. Saruthirathanaworakun, J. M. Peha, and L. M. Correia, “Opportunistic
sharing between rotating radar and cellular,” IEEE J. Sel. Areas Com-
mun., vol. 30, no. 10, pp. 1900-1910, Nov. 2012.

S. Sodagari, A. Khawar, T. C. Clancy, and R. McGwier, “A projection
based approach for radar and telecommunication systems coexistence,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2012,
pp- 5010-5014.

J. A. Mahal, A. Khawar, A. Abdelhadi, and T. C. Clancy, “Spectral
coexistence of MIMO radar and MIMO cellular system,” IEEE Trans.
Aerosp. Electron. Syst., vol. 53, no. 2, pp. 655-668, Apr. 2017.

A. Khawar, A. Abdelhadi, and C. Clancy, “Target detection performance
of spectrum sharing MIMO radars,” IEEE Sensors J., vol. 15, no. 9,
pp. 4928-4940, Sep. 2015.

A. Khawar, A. Abdelhadi, and T. C. Clancy, “Coexistence analysis
between radar and cellular system in LoS channel,” IEEE Antennas
Wireless Propag. Lett., vol. 15, pp. 972-975, 2016.

B. Li and A. Petropulu, “MIMO radar and communication spec-
trum sharing with clutter mitigation,” in Proc. IEEE Radar
Conf. (RadarConf), May 2016, pp. 1-6.

B. Li, A. P. Petropulu, and W. Trappe, “Optimum co-design for spectrum
sharing between matrix completion based MIMO radars and a MIMO
communication system,” IEEE Trans. Signal Process., vol. 64, no. 17,
pp. 4562-4575, Sep. 2016.

B. Li and A. P. Petropulu, “Joint transmit designs for coexistence of
MIMO wireless communications and sparse sensing radars in clutter,”
IEEE Trans. Aerosp. Electron. Syst., vol. 53, no. 6, pp. 2846-2864,
Dec. 2017.

E. H. G. Yousif, M. C. Filippou, F. Khan, T. Ratnarajah, and
M. Sellathurai, “A new LSA-based approach for spectral coexistence
of MIMO radar and wireless communications systems,” in Proc. [EEE
Int. Conf. Commun. (ICC), May 2016, pp. 1-6.

F. Liu, C. Masouros, A. Li, and T. Ratnarajah, “Robust MIMO beam-
forming for cellular and radar coexistence,” IEEE Wireless Commun.
Lett., vol. 6, no. 3, pp. 374-377, Jun. 2017.

F. Liu, C. Masouros, A. Li, T. Ratnarajah, and J. Zhou. (2017).
“Interference exploitation for radar and cellular coexistence: The power-
efficient approach.” [Online]. Available: https://arxiv.org/abs/1704.08920
B. Paul, A. R. Chiriyath, and D. W. Bliss, “Survey of RF com-
munications and sensing convergence research,” IEEE Access, vol. 5,
pp. 252-270, 2017.

A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds
on performance of radar and communications co-existence,” IEEE Trans.
Signal Process., vol. 64, no. 2, pp. 464-474, Jan. 2016.

A. R. Chiriyath, B. Paul, and D. W. Bliss, “Radar-communications
convergence: Coexistence, cooperation, and co-design,” IEEE Trans.
Cogn. Commun. Netw., vol. 3, no. 1, pp. 1-12, Mar. 2017.

J. R. Guerci, R. M. Guerci, A. Lackpour, and D. Moskowitz, “Joint
design and operation of shared spectrum access for radar and com-
munications,” in Proc. IEEE Radar Conf. (RadarCon), May 2015,
pp- 0761-0766.

and Secu-
Available:



LIU et al.: MU-MIMO COMMUNICATIONS WITH MIMO RADAR: FROM CO-EXISTENCE TO JOINT TRANSMISSION

[19] D. E. Hack, L. K. Patton, B. Himed, and M. A. Saville, “Centralized
passive MIMO radar detection without direct-path reference signals,”
IEEE Trans. Signal Process., vol. 62, no. 11, pp. 3013-3023, Jun. 2014.

[20] D. E. Hack, L. K. Patton, B. Himed, and M. A. Saville, “Detection in
passive MIMO radar networks,” IEEE Trans. Signal Process., vol. 62,
no. 11, pp. 2999-3012, Jun. 2014.

[21] B. K. Chalise, M. G. Amin, and B. Himed, “Performance tradeoff in a
unified passive radar and communications system,” IEEE Signal Process.
Lett., vol. 24, no. 9, pp. 1275-1279, Sep. 2017.

[22] J. Moghaddasi and K. Wu, “Multifunctional transceiver for future radar
sensing and radio communicating data-fusion platform,” IEEE Access,
vol. 4, pp. 818-838, 2016.

[23] G. N. Saddik, R. S. Singh, and E. R. Brown, “Ultra-wideband multi-
functional communications/radar system,” IEEE Trans. Microw. Theory
Techn., vol. 55, no. 7, pp. 1431-1437, Jul. 2007.

[24] C. Sturm and W. Wiesbeck, “Waveform design and signal processing
aspects for fusion of wireless communications and radar sensing,” Proc.
IEEE, vol. 99, no. 7, pp. 1236-1259, Jul. 2011.

[25] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Dual-function
radar-communications: Information embedding using sidelobe control
and waveform diversity,” IEEE Trans. Signal Process., vol. 64, no. 8,
pp. 2168-2181, Apr. 2016.

[26] A. Hassanien, M. G. Amin, Y. D. Zhang, and F. Ahmad, “Phase-
modulation based dual-function radar-communications,” IET Radar,
Sonar Navigat., vol. 10, no. 8, pp. 1411-1421, 2016.

[27] P. Petersen, S. Axler, and K. A. Ribet, Riemannian Geometry, vol. 171.
New York, NY, USA: Springer, 2006.

[28] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on
Matrix Manifolds. Princeton, NJ, USA: Princeton Univ. Press, 2009.

[29] L. Zhou, L. Zheng, X. Wang, W. Jiang, and W. Luo, “Coordinated
multicell multicast beamforming based on manifold optimization,” IEEE
Commun. Lett., vol. 21, no. 7, pp. 1673-1676, Jul. 2017.

[30] J. C. Chen, “Low-PAPR precoding design for massive multiuser MIMO
systems via riemannian manifold optimization,” IEEE Commun. Lett.,
vol. 21, no. 4, pp. 945-948, Apr. 2017.

[31] E. Liu, C. Masouros, P. V. Amadori, and H. Sun, “An efficient man-
ifold algorithm for constructive interference based constant envelope
precoding,” IEEE Signal Process. Lett., vol. 24, no. 10, pp. 1542-1546,
Oct. 2017.

[32] X. Duan, H. Sun, L. Peng, and X. Zhao, “A natural gradient descent
algorithm for the solution of discrete algebraic Lyapunov equations
based on the geodesic distance,” Appl. Math. Comput., vol. 219, no. 19,
pp- 9899-9905, 2013.

[33] C. Li, E. Zhang, L. Jiu, and H. Sun, “Optimal control on special
Euclidean group via natural gradient algorithm,” Sci. China Inf., vol. 59,
no. 11, p. 112203, 2016.

[34] J. Li and P. Stoica, MIMO Radar Signal Process. Hoboken, NJ, USA:
Wiley, 2009.

[35] P. Stoica, J. Li, and Y. Xie, “On probing signal design for MIMO radar,”
IEEE Trans. Signal Process., vol. 55, no. 8, pp. 4151-4161, Aug. 2007.

[36] J.Li and P. Stoica, “MIMO radar with colocated antennas,” IEEE Signal
Process. Mag., vol. 24, no. 5, pp. 106-114, Sep. 2007.

[37] D. R. Fuhrmann and G. S. Antonio, “Transmit beamforming for MIMO
radar systems using signal cross-correlation,” [EEE Trans. Aerosp.
Electron. Syst., vol. 44, no. 1, pp. 171-186, Jan. 2008.

[38] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite
relaxation of quadratic optimization problems,” IEEE Signal Process.
Mag., vol. 27, no. 3, pp. 20-34, May 2010.

[39] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a
MATLAB toolbox for optimization on manifolds,” J. Mach. Learn. Res.,
vol. 15, pp. 1455-1459, Aug. 2014.

[40] FE. Nielsen and K. Sun, “Guaranteed bounds on the Kullback-Leibler
divergence of univariate mixtures,” IEEE Signal Process. Lett., vol. 23,
no. 11, pp. 1543-1546, Nov. 2016.

[41] J. Nocedal and S. J. Wright, Numerical Optimization. New York, NY,
USA: Springer, 2006.

[42] N. Boumal, “Optimization and estimation on manifolds,” Ph.D. disser-
tation, Dept. Math. Eng., Univ. Catholique Louvain, Louvain-la-Neuve,
Belgium, Feb. 2014.

[43] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[44] M. Grant and S. Boyd. (2017). CVX: MATLAB Software for
Disciplined Convex Programming, Version 2.1. [Online]. Available:
http://cvxr.com/cvx/

2769

Fan Liu (S’16) received the bachelor’s degree in
information engineering from the Beijing Institute of
Technology in 2013, where he is currently pursuing
the Ph.D. degree with the School of Information
and Electronics. Since 2016, he has been a visiting
student with the Communications and Information
Systems Research Group, Department of Electrical
and Electronic Engineering, University College Lon-
don. His research interests include precoding designs
for MIMO systems, signal detection and estimation,
and convex optimization.

Christos Masouros (M’06-SM’14) received the
Diploma degree in electrical and computer engineer-
ing from the University of Patras, Greece, in 2004,
and the M.Sc. by research and Ph.D. in electrical
and electronic engineering from the University of
Manchester, U.K., in 2006 and 2009, respectively.
In 2008, he was a Research Intern with the Philips
Research Laboratories, U.K. From 2009 to 2010,
he was a Research Associate with the University
of Manchester and from 2010 to 2012, a Research
Fellow with Queen’s University Belfast. He has held
a Royal Academy of Engineering Research Fellowship from 2011 to 2016.

He is currently an Associate Professor with the Communications and
Information Systems Research Group, Department of Electrical and Electronic
Engineering, University College London. His research interests lie in the field
of wireless communications and signal processing with particular focus on
green communications, large scale antenna systems, cognitive radio, inter-
ference mitigation techniques for MIMO, and multicarrier communications.
He was a recipient of the Best Paper Award in the IEEE GLOBECOM
Conference 2015, and has been recognized as an Exemplary Editor for
the IEEE COMMUNICATIONS LETTERS, and as an Exemplary Reviewer
for the IEEE TRANSACTIONS ON COMMUNICATIONS. He is an Editor
for IEEE TRANSACTIONS ON COMMUNICATIONS, an Associate Editor for
IEEE COMMUNICATIONS LETTERS, and was a Guest Editor for IEEE
JOURNAL ON SELECTED TOPICS IN SIGNAL PROCESSING issues “Exploiting
Interference towards Energy Efficient and Secure Wireless Communications”
and “Hybrid Analog/Digital Signal Processing for Hardware-Efficient Large
Scale Antenna Arrays.”

Ang Li (S’14) received the bachelor’s and master’s
degrees in electronic and information engineering
from Xi’an Jiaotong University, in 2011 and 2014,
respectively. He is currently pursuing the Ph.D.
degree with the Communications and Information
Systems Research Group, Department of Electrical
and Electronic Engineering, University College Lon-
don. His research interests lie in the field of wireless
communications with focus on beamforming designs
for MIMO systems and mm-wave communications.

Huafei Sun received the Ph.D. degree from Tokyo
Metropolitan University, under the supervision of
Prof. K. Ogiue, in 1999. From 1999 to 2001, he was
with Kumamoto University and Kyushu University
as a Research Fellow of the Japan Science Promotion
Society. Since 2002, he has been a Professor with
School of Mathematics and Statistics, Beijing Insti-
tute of Technology. His research interests lie in the
field of information geometry and its applications.



2770

Lajos Hanzo (F’04) received the D.Sc. degree in
electronics in 1976 and the Ph.D. degree in 1983.
During his 40-year career in telecommunications,
he has held various research and academic posts in
Hungary, Germany, and the U.K. Since 1986, he has
been with the School of Electronics and Computer
Science, University of Southampton, U.K. He is
currently directing a 60-strong academic research
team, working on a range of research projects in
the field of wireless multimedia communications
sponsored by industry, the Engineering and Physical
Sciences Research Council, U.K., the European Research Council’s Advanced
Fellow Grant, and the Royal Society’s Wolfson Research Merit Award. He is
an enthusiastic supporter of industrial and academic liaison and he offers

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 17, NO. 4, APRIL 2018

a range of industrial courses. He has successfully supervised 111 Ph.D.
students, co-authored 18 John Wiley/IEEE Press books on mobile radio com-
munications totaling in excess of 10 000 pages, and published 1701 research
contributions on IEEE Xplore. He has over 30 000 citations and an H-index
of 73. He was a FREng, FIET, and Fellow of the EURASIP. He received an
Honorary Doctorate from the Technical University of Budapest in 2009 and
The University of Edinburgh in 2015. In 2016, he was admitted to the
Hungarian Academy of Science. He is a Governor of the IEEE ComSoc
and the IEEE VTS. He has served as the TPC chair and the general
chair of the IEEE conferences, presented keynote lectures and has received
a number of distinctions. He is the Chair in Telecommunications with
the University of Southampton. From 2008 to 2012, he was an Editor-in-
Chief of the IEEE Press and a Chaired Professor at Tsinghua University,
Beijing.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


