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Abstract— In this paper, we perform a systematic investigation
of the statistics associated with the product of two independent
and non-identically distributed κ–μ random variables. More
specifically, we develop novel analytical formulations for many
of the fundamental statistics of interest, namely, the proba-
bility density function, cumulative distribution function, and
moment-generating function. Using these new results, closed-
form expressions are obtained for the higher order moments,
amount of fading and channel quality estimation index, while
analytical formulations are obtained for the outage probability,
average channel capacity, average symbol error probability, and
average bit error probability. These general expressions can be
reduced to a number of fading scenarios, such as the double
Rayleigh, double Rice, double Nakagami-m, κ–μ/Nakagami-m,
and Rice/Nakagami-m, which all occur as special cases. Addition-
ally, as a byproduct of the work performed here, formulations
for the κ–μ/κ–μ composite fading model can also be deduced.
To illustrate the efficacy of the novel expressions proposed here,
we provide useful insights into the outage probability of a dual-
hop system used in body area networks, and demonstrate the
suitability of the κ–μ/κ–μ composite fading for characterizing
shadowed fading in device-to-device channels.

Index Terms— composite fading channels, device-to-device
channels, κ-μ fading, multi-hop relay, multipath fading, product
distribution, shadowing.

I. INTRODUCTION

THE product of random variables (RVs) is of great impor-
tance as it finds application in a broad range of wireless

communication systems. For instance, in cascaded fading
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channels and keyhole channels of multiple-input-multiple-
output (MIMO) systems [1], where the received signal is
treated as a product of random variables (RVs). Another
application area is that of backscatter communications such as
those found in radio frequency identification (RFID) systems.
Here, the channel from the reader to the tag, and the tag
to the reader can be viewed as a product of RVs [2]–[5].
These channels were modeled using the product of Rayleigh
RVs in [2] and [3]. Furthermore, [4] studied point-to-point
backscatter communications where the wireless channel was
treated as a product of two Rician RVs (also known as dyadic
Rician fading channel), while the work in [5] considered a
multiuser setting where the channel from each tag to the reader
was modeled as a product of Nakagami-m RVs (also known
as dyadic Nakagami-m fading channel).

Likewise, in dual-hop wireless systems [6] the channel from
a source to a destination may be obtained as the product
of the RVs that describe each individual hop. Traditionally,
the simplest way of modeling such channels is to use the
double Rayleigh [7] or the double Rician fading model [8].
For these cases, analytical expressions have been obtained for
the main statistical properties such as the probability density
function (PDF), cumulative distribution function (CDF), mean
and variance in [7] and [8]. Previous work on the charac-
terization of keyhole channels in MIMO systems using the
double Rayeigh fading model was conducted in [9]. This work
was later extended to consider the double Nakagami-m model
in [10].

The double fading model also represents worse than
Rayleigh fading statistics as can be seen in [11]. As well
as this, it has been used to characterise atmospheric
turbulence in wireless optical communications, where it
was shown to provide an excellent fit with the mea-
sured data [12], [13]. Hence, the application of the
double fading model goes well beyond characterizing
RF wireless channels. More general approaches have been
considered where the received signal is formed from the prod-
uct of N cascaded fading channels. Specifically, [14] and [15]
provided theoretical results for the case of N×Rayleigh
and N×Nakagami-m channels, respectively. More recently,
exact closed-form expressions were presented in [16] for
the PDF and CDF of the product of an arbitrary number
of α-μ RVs.
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Another key use of the product of RVs is in the com-
putation of composite fading statistics which can be found
as a particular case of their statistics [16]. It is well known
that wireless communication channels can undergo simulta-
neous small-scale fading and shadowing [17]. Small-scale
fading results from multipath scattering, whereas shadow-
ing is introduced by the topographical elements and objects
obstructing the signal path. To model these propagation mech-
anisms, several statistical distributions have been proposed.
For example, popular small-scale fading models include the
Rayleigh, Rice, Nakagami-m, Hoyt and Weibull distributions.
More recently, generalized statistical distributions such as
the κ-μ and η-μ [18] fading models have been considered
due to their versatility and the fact that they include the
majority of the aforementioned small-scale fading distributions
as special cases. On the other hand, shadowing is often
modeled using the lognormal [19] or gamma [20] distributions.
To encapsulate the concurrent effects of both small-scale
fading and shadowing, which are known to occur in wireless
applications such as body area networks (BANs) [21], device-
to-device (D2D) [22] and vehicle-to-vehicle (V2V) communi-
cations [11], several new composite fading models have been
proposed [23]. Different from the more established composite
fading models such as the K -distribution [24] and generalized
K -distribution [25], these models assume that the small-
scale fading follows either κ-μ [18] or η-μ [18] distribution
while the shadowing is characterized by the inverse gamma
distribution.

In this study, we focus our attention on the κ-μ dis-
tribution [18] which has been developed to describe chan-
nels that may admit the clustering of scattered multipath
waves in addition to dominant components. It is described
by two physical fading parameters, namely κ and μ. Here,
κ represents the ratio of the total power of the dominant
components to the total power of the scattered waves whilst
μ represents the number of multipath clusters. It is a very
general model and contains other important distributions such
as the Rice (κ = K , μ = 1), Nakagami-m (κ → 0, μ = m),
Rayleigh (κ → 0, μ = 1) and One-Sided Gaussian (κ → 0,
μ = 0.5) as special cases. As a result of its flexibility, it is
unsurprising that it yields a very good fit to many practical
wireless channels of interest [26].

Motivated by this, in this paper we analyze the product
of two independent and non-identically distributed (i.n.i.d)
κ-μ RVs. Novel analytical expressions for the PDF, CDF
and moment-generating function (MGF) are derived. These
results are then used to obtain new closed-form expressions
for the moments, amount of fading (AF) and channel quality
estimation index (CQEI). As well as this, analytical formula-
tions are derived for the outage probability, average channel
capacity, average symbol error probability, and average bit
error probability of the double κ-μ fading channel. It is
worth remarking that these expressions are very flexible and
encompass a number of other fading scenarios such as the
double Rayleigh, double Rice, double Nakagami-m, double
One-Sided Gaussian and product mixtures of these fading
models as special cases. Since the composite fading sta-
tistics can be found as a special case of the statistics of

the product of RVs, the results derived here can also be
used to describe κ-μ/κ-μ composite fading conditions. Here,
the small-scale fading is described by a κ-μ distribution whose
mean (i.e. the shadowing) follows another κ-μ distribution.
Thus, the expressions presented here also encompass a number
of other composite fading scenarios as special cases. Some
examples include κ-μ/Nakagami-m, Rice/Nakagami-m, and
Rayleigh/Nakagami-m. Finally, we illustrate the utility of these
new results by estimating the outage probability of a dual-
hop body area network (BAN) system, and then applying
the κ-μ/κ-μ composite fading model to some D2D channel
measurements.

It should be noted that the product of two κ-μ variates has
also been addressed in [27]. However, the solutions in both
works drastically differ from each other in several aspects.
The approach taken here makes use of the sum of gamma
variates, whereas in [27] the inverse Melin transform is used.
The final expressions in both, obviously leading to the same
numerical results, are given in very different functional forms.
In addition, whereas in [27] the difference of the μ parameters
cannot be an integer number (although the limit exists and can
be determined), here no such restriction exists. Furthermore,
several different applications are exercised in the present paper,
including two involving field measurements.

The remainder of this paper is organized as follows.
Section II presents the definition of the κ-μ fading model
whilst Section III discusses the product distribution and pro-
vides the statistical characteristics of the double κ-μ fading
model. Section IV discuss some performance measures whilst
Section V presents some special cases and numerical results.
Section VI presents some applications of the formulations
presented in this paper and lastly, Section VII finishes the
paper with some concluding remarks.

II. DEFINITION

Let us consider two independent κ-μ distributed RVs, each
with PDF

fRi (r) = 2μi (1 + κi )
μi +1

2 rμi

κ
μi −1

2
i eμiκi r̂i

μi +1
e

−μi (1+κi )r2

r̂2
i

× Iμi−1

(
2μi

√
κi (1 + κi )

r

r̂i

)
(1)

where i = 1, 2; κi > 0 is the ratio of the total power of
the dominant components to the total power of the scattered
waves, μi > 0 is related to the number of multipath clusters,
Iν(·) is the modified Bessel function of the first kind and
order ν [28, 8.406] and r̂i is the root-mean square (rms) value
of the received signal envelope, Ri . From [18],

r̂i �
√
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) ,

(2)

E[Rk
i ] = r̂ k

i �
(
μi + k

2

)
e−κiμi

� (μi ) [(1 + κi ) μi ]
k
2

1 F1

(
μi + k

2
; μi ; κiμi

)
(3)

where r̄i = E[Ri ], with E[·] denoting the expectation oper-
ator, E[Rk

i ] represents the kth moment of Ri , �(·) is the
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TABLE I

COMMON PARAMETERS

gamma function and 1 F1 (a; b; z) denotes the confluent hyper-
geometric function [28, 9.210.1].

Now, letting γi represent the instantaneous signal-to-noise-
ratio (SNR) of a κ-μ fading channel, the PDF of its instanta-
neous SNR, fγi(γ ), can be obtained from the envelope PDF

given in (1) via a transformation of variables

(
r =

√
γ r̂2

i /γ̄i

)
as

fγi (γ ) = μi (1 + κi )
μi +1

2 γ
μi −1

2

κi
μi −1

2 eμiκi γ̄i
μi +1

2

e
−μi (1+κi )γ

γ̄i

× Iμi−1

(
2μi

√
κi (1 + κi ) γ

γ̄i

)
(4)

where γ̄i = E[γi ]. Substituting for the modified Bessel
function of the first kind from [29, eq. 9.6.16] as Iν(p) =∑∞

a�=0
1

a�! �(a�+ν+1)

( p
2

)2a�+ν
and defining θi = μi (1+κi )

γ̄i
,

(4) can be re-written as

fγi (γ ) = 1

eμi κi

∞∑
a�=0

(μiκi )
a�

a�!

×
[

θ
a�+μi
i

�(a� + μi )
γ a�+μi −1 exp (−γ θi)

]

= 1

eμi κi
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a�=0

(μiκi )
a�

a�! gamma
(
a� + μi , θi

)
, (5)

where a� = m, n; i = 1, 2 and gamma(βi, λi ) denotes the
PDF of the gamma distribution shown in (6).

f Źi

(
ź
) = λ

βi
i

� (βi )
źβi−1e−źλi (6)

where βi denotes the shape parameter and λi denotes the rate
parameter (i.e, an inverse scale parameter). The notations used
in this paper are summarized in Table I.

III. FORMULATIONS

Following a similar approach to the one presented
in [15] and [30], in this section we derive the product dis-
tribution of X = γ1γ2, of the double κ-μ faded channel.

A. PDF and CDF of the Double κ-μ Fading Model

Since the PDF of γ1 and γ2 are linear combinations of the
gamma distribution, the PDF of the product term, X = γ1γ2,
can be readily evaluated from [30, Lemma 2] as follows

fX (x)= θ1θ2

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m G2,0
0,2(xθ1θ2|m+μ1−1, n+μ2−1) (7)

where Gm�n�
p�q � (z | . . .) is the Meijer G-function,1 ρ1,2 =

eμ1κ1+μ2κ2 and cn,m � (κ1μ1)
m(κ2μ2)n

m!n!�(m+μ1)�(n+μ2)
. Now, substituting

Y 2 = X followed by a transformation of variable in (7),
we obtain the envelope PDF of the product term, Y = R1 R2,
as follows

fY (y)= 2yφ1φ2

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m G2,0
0,2

(
y2φ1φ2

∣∣∣m+μ1−1, n+μ2−1
)

(8)

1The Meijer G-function is now a standard built-in function in well-known
mathematical software packages, such as Mathematica and Matlab. As well
as this, it can be expressed in terms of the more familiar generalized
hypergeometric functions [31]. Nonetheless, where possible, in this work we
provide alternative expressions in non-Meijer G form.
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fX (x) = 2

xρ1,2
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. (9)
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√
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. (10)

where φi = μi (1+κi )

r̂i
2 , ρ1,2 and cn,m are as defined

previously.
Performing some mathematical manipulations on (7), the

PDF of the product distribution simplifies to (9), as shown
at the top of this page. Here, K1 = 1/θ1, K2 = 1/θ2,
ζ1 = xκ1κ2μ1μ2

K1K2
, ξ3 = j + μ1 + μ2, Kφ(·) is the φth-order

modified Bessel function of the second kind [28, 8.432]
and p F̃q

({a1, a2 · · · aq}; {b1, b2 · · · bq}; z
)

is the regularized
Hypergeometric function [32]. The proof of (9) is shown
in Appendix A. Of course, substituting Y 2 = X followed by
a transformation of variable in (9), we obtain the envelope
PDF of the product term, as shown in (10) at the top of this
page. Here, P1 = 1/φ1, P2 = 1/φ2, ξ3 = j + μ1 + μ2 and
ζ2 = y2κ1κ2μ1μ2

P1P2
.

In a similar manner, the CDF of the product of two κ-μ
RVs can be obtained from [30, Lemma 2] as

FX (x) = 1

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m G2,1
1,3

(
xθ1θ2| 1

m+μ1, n+μ2, 0
)
,

(11)

where ρ1,2 and cn,m are as defined previously. The CDF of its
signal envelope Y is given by

FY (y) = FX (y2)

= 1

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m G2,1
1,3

(
y2φ1φ2

∣∣∣ 1
m+μ1, n+μ2, 0

)
.

(12)

In the following, we derive analytical and closed-form expres-
sions for the MGF and higher order moments of the product
distribution, X = γ1γ2 using (7) and (9).

B. Moment Generating Function

The moment generating function of the product distribution,
X = γ1γ2, is given by

MX (−s) � E

[
e−sX

]
=

∫ ∞

0
e−sx fX (x) dx . (13)

Substituting (7) in (13), followed by the mathematical manip-
ulations shown in Appendix B, we obtain the MGF of the

double κ-μ fading channel as

E

[
es X

]
= 1

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m G1,2
2,1

(
s

θ1θ2

∣∣∣∣1−m−μ1, 1−n−μ2
0

)

=
∞∑

m=0

∞∑
n=0

(κ1μ1)
m (κ2μ2)

n

ρ1,2m!n!
(

θ1θ2

s

)m+μ1

×U

(
m + μ1, 1 − n + m + μ1 − μ2,

θ1θ2

s

)
(14)

where ρ1,2 and cn,m are as defined previously, and U(·, ·, ·) is
the confluent Tricomi hypergeometric function [29, eq. 13.1.3].

C. Higher Order Moments

The q-th order moment of the product distribution is defined
as E

[
Xq

]
�

∫ ∞
0 xq fX (x) dx . It is worth remarking that since

we consider two statistically independent κ-μ distributed RVs,
the q-th order moment of the product distribution is the prod-
uct of the individual moments i.e., E

[
Xq

] = E
[
γ

q
1

]
E

[
γ

q
2

]
.

Using the relationship E
[
Rq

i

] = E

[
γ

q
2

i

]
and substituting for

E
[
Rq

i

]
from (3), we obtain

E
[
Xq] = (μ1)q (μ2)q

ρ1,2 θ
q
1 θ

q
2

× 1 F1(q+ μ1; μ1; κ1μ1) 1 F1 (q+ μ2; μ2; κ2μ2)

(15)

where ρ1,2 is as defined previously and (τ1)τ2 = �(τ1+τ2)
�(τ1)

is
the Pochhammer symbol.

D. κ-μ/κ-μ Composite Fading Statistics

To obtain the κ-μ/κ-μ composite fading statistics we con-
sider that the small-scale fading is described by a κ-μ RV
with parameters {κ1, μ1, r̄1}. Additionally, we assume that
the mean of this RV follows another κ-μ distribution, with
parameters {κ2, μ2, r̄2}, that describes the shadowing. It is
noteworthy that the composite fading statistics can be found
as a particular case of the statistics of the product of RVs.
According to [16], the composite fading statistics can be
obtained from the product of two RVs by assuming that the
mean value of one of the RVs is equal to one. Therefore,
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the envelope PDF and CDF of the κ-μ/κ-μ composite fading
model can be obtained by first setting r̄1 = 1 in (2) and then
substituting the resultant r̂1 in (10) and (12), respectively.

IV. PERFORMANCE ANALYSIS AND

APPROXIMATE EXPRESSIONS

In this section, we derive closed-form expressions for the
amount of fading and channel quality estimation index, whilst
analytical formulations are obtained for the outage probability,
average channel capacity, average symbol error probability and
average bit error probability of the double κ-μ fading channel.
Additionally, we obtain approximate closed-form expressions
for the PDF, CDF and MGF of the product of two κ-μ RVs.

A. Amount of Fading

The amount of fading is often used to quantify the severity
of fading experienced during transmission over fading chan-
nels. It is defined by [17, eq. 1] as

AF � V[X]
E[X]2 = E

[
X2

] − E[X]2

E[X]2 = E
[
X2

]
E[X]2 − 1 (16)

where V[·] denotes the variance operator. Substituting for
E[X] and E

[
X2

]
from (15), followed by some algebraic

manipulations a closed-form expression for the AF of the
product distribution is obtained as

AF =
(

1 + 2κ1 + 1

μ1(1 + κ1)2

) (
1 + 2κ2 + 1

μ2(1 + κ2)2

)
− 1. (17)

The proof of (17) can be found in Appendix C.

B. Channel Quality Estimation Index

For a given fading distribution, the channel quality esti-
mation index is defined as the ratio of the variance of the
instantaneous received SNR to the cubed mean of the received
SNR and is directly related to the system’s average error
rate [33] i.e,

CQEI = V [X]

[E (X)]3 = AF

E [X]
. (18)

Substituting for AF and E[X] from (17) and (36) respectively,
a closed-form expression for the CQEI of the product distrib-
ution can be obtained as follows

CQEI = 1

γ̄1γ̄2

[(
1+ 2κ1+1

μ1(1 + κ1)2

) (
1+ 2κ2+1

μ2(1 + κ2)2

)
− 1

]
.

(19)

C. Outage Probability

The outage probability of a communication system is
defined as the probability that the instantaneous SNR drops
below a given threshold, γth. Using (11), this probability can
be obtained as

POP(γth)= 1

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m G2,1
1,3

(
γthθ1θ2| 1

m+μ1, n+μ2, 0
)

(20)

where ρ1,2 and cn,m are as defined previously.

D. Average Channel Capacity

The bandwidth normalized average channel capacity (ACC)
is defined as [34]

C

W
�

∫ ∞

0
log2 (1 + x) fX (x) dx (21)

where W is the fading channel bandwidth, C its ACC and
fX (·) denotes the PDF. Substituting (7) in (21), followed
by the mathematical manipulations shown in Appendix D,
we obtain the ACC of the double κ-μ fading channel as

C

W
= 1

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m G4,1
2,4

(
θ1θ2| −1, 0

−1, −1, m+μ1−1, n+μ2−1

)

(22)

where ρ1,2 and cn,m are as defined previously.

E. Average Symbol and Bit Error Probability

The MGF can be used to evaluate the average symbol error
probability (SEP) and average bit error probability (BEP) for
several different modulation schemes. For example, the MGF
based average BEP for a differential phase shift keying
(DPSK) modulation scheme can be expressed as [35, eq. 6.70]

P̄b = c1 MX (−c2) (23)

where MX (·) denotes the MGF, c1 and c2 represent con-
stants that depend on the chosen modulation scheme. For the
DPSK modulation scheme, c1 = 0.5 and c2 = 1 [35].

The average SEP of a communication system for an
M-ary phase shift keying (MPSK) modulation scheme can be
expressed as [35, eq. 6.75]

P̄s = 1

π

∫ (M−1)π
M

0
MX

(
− g

Sin2φ

)
dφ (24)

where MX (·) denotes the MGF and g = Sin2(π/M) depends
on the size of the MPSK constellation. For example, M = 2 for
a BPSK modulation scheme, and M = 4 for a QPSK modula-
tion scheme. Thus, the average BEP and SEP for the double
κ-μ fading channel can be obtained by substituting (14) in (23)
and (24), respectively.

F. Approximate Closed-Form Expressions

The series representation of the modified Bessel function
of the first kind used in this study, although relatively simple,
has an infinite form which raises the need for approximate
asymptotic solutions [36]. To this end, [36] derives a useful
approximation for Iν(p) which retains high accuracy and
simple algebraic form of the original series representation. The
approximate series form is given by [36, eq. 19]

Iν(p)�
b�∑

a�=0

�
(
b�+a�)

� (a�+1) � (b� − a� + 1) � (a� + ν + 1)

( p

2

)2a�+ν

(25)

and is valid for 0 < p < 2b�. When b� → ∞, the above
expression is equivalent to the original infinite series repre-
sentation of Iν(p), [36].
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TABLE II

SPECIAL CASES OF THE DOUBLE κ -μ FADING MODEL∗

Now, substituting (25) in (4) and following a similar
mathematical approach to that given in Section III.A and B,
approximate closed-form expressions for the PDF, CDF and
MGF of the double κ-μ distribution are obtained as

fX (x) = θ1θ2

ρ1,2

P∑
m=0

Q∑
n=0

Gcn,m

× G2,0
0,2 ( x θ1θ2| m+μ1−1, n+μ2−1 ) , (26)

FX (x) = 1

ρ1,2

P∑
m=0

Q∑
n=0

Gcn,m

× G2,1
1,3

(
x θ1θ2| 1

m+μ1, n+μ2, 0
)
, (27)

E

[
es X

]
=

P∑
m=0

Q∑
n=0

G (κ1μ1)
m (κ2μ2)

n

ρ1,2m!n!
(

θ1θ2

s

)m+μ1

×U

(
m + μ1, 1 − n + m + μ1 − μ2,

θ1θ2

s

)
.

(28)

Here, G = �(m+P)�(n+Q)P1−2m Q1−2n

�(P−m+1)�(Q−n+1) , cn,m and ρ1,2 are as
defined before.

V. SPECIAL CASES AND NUMERICAL RESULTS

A. Some Special Cases

The PDFs given in (7) and (8) represent an extremely
versatile set of fading conditions as they contain the double
Rayleigh, double Rician, double Nakagami-m and double One-
Sided Gaussian fading models as special cases. For instance,
using [38, 07.34.03.0605.01], and substituting κi = Ki and
μi = 1 in (8), we obtain the PDF of the product of two
Rician RVs, such as that presented in [37].

Of course, allowing κi → 0 and μi = 1, we obtain the PDF
of the double Rayleigh fading model [7]. Now substituting
[38, 07.34.03.0605.01], κi → 0 and μi = mi in (8) we obtain
the PDF of the product of two Nakagami-m RVs, equivalent to
the result presented in [15, eq. 6]. It is worth highlighting that
the double Rayleigh and double Nakagami-m fading models
were used to characterize keyhole channels in MIMO systems
in [9] and [10], respectively. Furthermore, the product of
Nakagami-m RVs, and One-Sided Gaussian RVs were used
to study the performance metrics of cascaded fading channels
in [15] and [16], respectively. The product distribution also
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Fig. 1. The PDF of the product of two κ-μ RVs. {μ1, μ2} = {1,2}, {2,1};
{κ1, κ2} = {7.5,9.0}, {2.3,0.9} and γ̄1 = γ̄2 = 0 dB. Lines represent the
analytical results and circle markers represent simulation results.

finds application in the computation of the composite fading
statistics which is obtained as a particular case of the product
of two RVs (see Section III-D).

The double κ-μ PDF also encompasses product mix-
tures of the Rayleigh, Rice, Nakagami-m and One-Sided
Gaussian RVs as special cases. For example, the PDFs of the
product of κ-μ/Rice, κ-μ/Rayleigh, Rayleigh/Nakagami-m,
One-sided Gaussian/Nakagami-m can be obtained from (8)
by first using [38, 07.34.03.0605.01], followed by appropriate
substitutions for the κi and μi parameters. Table II summarizes
some special cases of the double κ-μ distribution along with
their PDFs, where �1 = K1+1

r̂2
1

and �2 = K2+1
r̂2

2
. For the sake

of clarity, the double κ-μ parameters have been underlined
and where possible, closed-form expressions for the special
case results have been deduced.

B. Numerical Results

Plots for the PDF of the double κ-μ distribution for different
values of κ , μ and γ̄ are shown in Figs. 1, 2 and 3. Over the
three figures, the values of the parameters are chosen to illus-
trate the wide range of shapes that the product distribution can
exhibit. Fig. 1 shows the PDF of the double κ-μ distribution
for two sets of {μ1, μ2} i.e, {μ1, μ2} = {1, 2}, {2, 1}, with
{κ1, κ2} = {7.5, 9.0}, {2.3, 0.9} and γ̄1 = γ̄2 = 0 dB. The
number of terms in the series required for a given accuracy
varies with the parameters. However, for the PDF plots shown
here, P and Q were chosen to be 50. Furthermore, in all cases,
the analytical results agree with the Monte-Carlo simulations.
Fig. 2 shows the PDF of the double κ-μ distribution for a
wide range of {κ1, κ2}, with {μ1, μ2} = {1.1, 1.3} and γ̄1 =
γ̄2 = 0 dB. It can be seen that the approximate closed-form
expression agrees well with the analytical results. From all
three figures, we observe that lower values of the κ and μ
parameters shift the curves closer to the y-axis whilst higher
values shift the curves closer to γ̄1γ̄2 or r̄1r̄2. Fig 4 shows the
double κ-μ CDF for a wide range of {κ1, κ2}, with {μ1, μ2} =
{1.1, 1.3} and γ̄1 = γ̄2 = 0 dB. A maximum of 100 terms

Fig. 2. The PDF of the product of two κ-μ RVs for a wide range of
{κ1, κ2}, with {μ1, μ2} = {1.1,1.3} and γ̄1 = γ̄2 = 0 dB. Lines represent
the analytical results and square markers represents the approximate closed-
form expression.

Fig. 3. κ-μ/κ-μ composite fading PDF for a wide range of {μ1, μ2}, with
{κ1, κ2} = {4.1,2.0} and r̄2 = 1.

were used (i.e, P = Q = 100) to implement the approximate
CDF expression. There exists a difference in the number of
terms chosen for the approximate PDF and CDF expressions
due to the different Meijer-G term found in (27). Again, it can
be seen that the approximate expression agrees well with the
analytical results.

Fig. 5 illustrates the effect of the AF experienced in double
κ-μ fading channels for a range of κ1, κ2, μ1 and μ2. It can
clearly be seen that the greatest AF occurs for low values of
the κ and μ parameters indicating that the channel is subject
to severe multipath fading. On the other hand the value of
the AF approaches 0 as the κ1, κ2, μ1 and μ2 parameters
become large. Moreover, the case when the AF experienced
by double κ-μ model coincides with the AF of the double
Rician model is also indicated in Fig. 5. Depending on the
μ1 and μ2 parameters, the AF experienced in double κ-μ
fading channels can be greater or lower than that experienced
in double Rician fading channels.
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Fig. 4. The CDF of the product of two κ-μ RVs for a wide range of
{κ1, κ2}, with {μ1, μ2} = {1.1,1.3} and γ̄1 = γ̄2 = 0 dB. Lines represent
the analytical results and square markers represent the approximate closed-
form expression.

Fig. 5. The AF in double κ-μ fading channels for a range of κ1 and κ2
when {μ1, μ2} = {0.5, 0.6} and {2.5, 1.9}. The AF of the double Rician
fading model where {μ1, μ2} = {1 1}, is shown as a special case and is
indicated by the burgundy lined mesh.

Fig. 6 depicts the OP versus γ̄1 when γth = 0 dB, and
for two sets of {μ1, μ2} and {κ1, κ2} i.e, {μ1, μ2} = {1.1,
2.5}, {3.0, 0.8}; {κ1, κ2} = {2.3, 0.9}, {7.5, 9.0}, with
γ̄2 = 1 and 5 dB. We observe that the rate at which the
outage probability decreases depends on the κ and μ para-
meters. For instance, the rate at which the outage probability
decreases is slower when {κ1, κ2} = {2.3, 0.9} compared to
{κ1, κ2} = {7.5, 9.0}.

Fig. 7 shows the ACC of a double κ-μ fading channel as a
function of γ̄1 for a range of {μ1, μ2} when{κ1, κ2} = {1.1,
3.0}. Note that as μ1 and μ2 increase, the system capacity
also increases. Similar performance improvement is observed
as κ1 and κ2 increase. The figure also shows the ACC of a
double Nakagami-m fading channel as a function of γ̄1 for a

Fig. 6. Outage probability versus γ̄1 for different values of κ1, κ2, μ1 and μ2.
Here, γth = 0 dB and γ̄2 = 1, 5 dB.

Fig. 7. ACC versus γ̄1 of the double κ-μ fading channel compared with the
ACC of the double Nakagami-m fading model. Here, γ̄2 = 1 dB. Continuous
lines represent the ACC of the double κ-μ fading model whilst dashed lines
represent the ACC of the double Nakagami-m fading model.

range of {m1, m2} when γ̄2 = 1 dB. It can be seen that the
ACC of the double κ-μ fading channel is higher compared to
the ACC of the double Nakagami-m fading channel.

Figs. 8 and 9 depict the average BEP versus γ̄1 for a
DPSK modulation scheme, and the average SEP versus γ̄1
for a BPSK modulation scheme when {κ1, κ2} = {1.5, 0.9}
and for different values of μ1 and μ2. The square markers
in Fig. 8 represent the average BEP obtained using the
approximate MGF expression. For the approximate closed-
form expression, P and Q were chosen to be 50. We observe
that the average BEP and the average SEP increase for lower
values of μ1 and μ2, indicating that the system’s performance
will be degraded in environments that undergo a greater fading
severity. Moreover, the rate at which the average BEP and the
average SEP decrease is dominated by the μ parameters. For
instance, the average BEP for {μ1, μ2} = {2.5, 3.2} is lower
compared to {μ1, μ2} = {0.5, 0.7}.
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Fig. 8. Average BEP versus γ̄1 for a DPSK modulation scheme and for
different values of μ1 and μ2. Here, γ̄2 = 1, 5 dB, and {κ1, κ2} = {1.5, 0.9}.
Red lines indicate γ̄2 = 5 dB whilst black lines indicate γ̄2 = 1 dB. Square
markers represent average BEP obtained using approximate MGF expression.

Fig. 9. Average SEP versus γ̄1 for a BPSK modulation scheme and for
different values of μ1 and μ2. Here, γ̄2 = 1, 5 dB, and {κ1, κ2} = {1.5,
0.9}. Red lines indicate γ̄2 = 5 dB whilst black lines indicate γ̄2 = 1 dB.

VI. APPLICATIONS

A. BAN Communications

To illustrate the utility of the new equations proposed here,
we now analyze the outage probability for a dual-hop BAN
system when each link undergoes κ-μ fading using channel
data obtained from field trials. Exact details of the mea-
surement setup, experiments, and data analysis can be found
in [39]. Specifically, we consider the experiments that were
performed in the reverberation chamber, and the scenario when
both test subjects exhibited random movements within a circle
of radius 0.5 m from their starting positions (see Fig. 10).

In [39], it was shown that the κ-μ PDF provided an excellent
fit to the measured BAN channels. In this study, we consider
the three node system shown in Fig. 10 to be representative
of a dual-hop relay network, where Node’s 1 and 2 are the
source and the relay, respectively and Node 3 is the destination.

Fig. 10. On-body transceivers on front-chest of person 1 (Node 1),
front-centre-waist of person 1 (Node 2) and front-centre-waist of person 2
(Node 3). N12 represents channel between the source node and the relay
whilst N23 represents the channel between the relay and the destination node.
In general, NXY represents the channel between transmitter X and receiver
Y. A and B denote the positions of the test subjects in the environment.

Fig. 11. Outage probability versus γ̄1 for BAN channel measurements in
the reverberation chamber. Here, γ̄th = 0 dB.

Utilizing the parameter estimates from [39, Table I] we now
provide some useful insights into the performance of BANs
that are subject to double κ-μ fading,2 as well as mak-
ing some important recommendations on the thresholds that
must be maintained to ensure adequate system performance.
We perform our analysis when γth = 0 dB, γ̄2 = 5 dB and
for POP(γth) = 0.01 (1% outage probability level) and 0.1
(10% outage probability level). Please note that these are
representative of very low and relatively low outage probability
levels.

Fig. 11 shows the outage probability versus γ̄1 in the rever-
beration chamber when both test subjects performed random
movements. With γ̄2 fixed at 5 dB, we find that increasing γ̄1
from −5 dB to 5 dB causes the outage probability to sig-
nificantly reduce from 0.65 to 0.12. Moreover, to ensure low
outage probability levels of 10% and 1% for the dual-hop
BAN system, we find that γ̄1 must always be greater than
6 dB and 18 dB, respectively.

2Since the channel from the source to the relay and relay to the destination
follows the κ-μ distribution, the channel from the source to the destination
can be viewed as a product of two κ-μ RVs.
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Fig. 12. Empirical (symbols) and theoretical (lines) PDFs of the κ-μ/κ-μ composite fading model fitted to the D2D channel measurements for (a) LOS
indoor environment (b) NLOS indoor environment (c) LOS outdoor environment and (d) NLOS outdoor environment.

B. D2D Communications
In this subsection, we demonstrate a practical application

of the κ-μ/κ-μ composite fading model by applying it to
some D2D channel measurements. Specific details of the
measurement hardware and experiments can be found in [40]
and [41], respectively. The field measurements were obtained
at 5.8 GHz within an indoor open office area and an out-
door open space environment. During the measurement trial
(see [41, Fig. 1]), both persons had the hypothetical user
equipment (UE) positioned at their heads. As well as this,
person B had the UE in the right-front pocket of his clothing.
The test subjects were initially stationary and then instructed
to walk around randomly within a circle of radius 0.5 m
from their starting position. Here, the head-to-head scenario
indicates the Line of Sight (LOS) channel condition whilst
the head-to-pocket scenario is representative of the non-line-
of-sight (NLOS) channel condition.

For the analysis, the global mean signal power was removed
from the D2D measurement data in order to obtain the
composite fading signal. A minimum of 138148 samples of the
received signal power were obtained and used for parameter
estimation. As an example of the model fitting process, Fig. 12
shows the PDF of the κ-μ/κ-μ composite fading model fitted
to the LOS and NLOS D2D channel measurements obtained

for the indoor and outdoor environments, respectively. All
parameter estimates were obtained using the lsqnonlin
function available in the optimization toolbox of Matlab along
with the κ-μ/κ-μ composite fading PDF. To compute the
estimates, a set of lower and upper bounds for the κ-μ/κ-μ
composite fading parameters are first defined, and then some
initial starting points for the parameters are chosen randomly
and input into the Matlab function. The function then uses the
Trust-Region-Reflective least squares algorithm [42], [43] to
obtain the optimal parameter estimates.

From Fig. 12, the utility of the κ-μ/κ-μ composite model
for modeling D2D channels which occur in both indoor and
outdoor environments can be clearly identified. In three of the
four cases considered (Figs. 12(a), (b) and (d)), the empirical
and theoretical PDFs are in very good agreement, with only a
slight disparity noticed at the upper tail of the PDFs given
in Figs. 12(a) and (d). In Fig. 12(c), while the theoretical
κ-μ/κ-μ composite PDF provided a good approximation of
the empirical data, there are a number of identifiable points
for which this approximation is less satisfactory. These can
be identified around the mode, median and upper tail of
the empirical PDF suggesting that in the case of LOS D2D
communications which occur in an outdoor environment, the
κ-μ/κ-μ composite model alone may not be sufficient to
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TABLE III

PARAMETER ESTIMATES FOR THE κ -μ/κ -μ COMPOSITE FADING
MODEL FITTED TO THE D2D MEASURED DATA

characterize the propagation mechanisms which are respon-
sible for shaping the fading that is observed. To allow the
reader to reproduce these plots, parameter estimates for all of
the D2D measurement scenarios are given in Table III.

From Table III, for the LOS channel condition we observe
that the parameter estimates for κ1 are larger than 1, indicating
that these channels are strongly influenced by dominant signal
components. However, this is not true for the NLOS channel
condition where κ1 < 1 were observed. For both environ-
ments, the κ2 estimates for the LOS channel condition were
observed to be quite low, suggesting that the LOS link was
subject to some shadowing. Partial obstruction of the dominant
signal components caused by test subjects performing random
movements was most likely responsible for this observation.
Furthermore, we observe that both the μ1 and μ2 estimates
are close to 1, suggesting that a single cluster of scattered
multipath contribute to the signals received in both the indoor
and outdoor environments.

VII. CONCLUSION

In this paper, novel analytical expressions are derived for the
PDF, CDF and MGF of the product of two κ-μ RVs. Specif-
ically, analytical expressions have been obtained for i.n.i.d
channel coefficients without any restrictions on the parame-
ters. Approximate closed-form expressions have also been
presented that agree well with the analytical expressions and
Monte-Carlo simulations. Utilizing these results, closed-form
formulations are obtained for the higher order moments, and
performance metrics such as the AF and CQEI. Additionally,
analytical expressions are obtained for the outage probability,
ACC, average SEP and average BEP for the double κ-μ fading
channel. These formulations are very flexible and include as
special cases a variety of double fading models currently
available in the literature. The utility of the new formulations
has been illustrated by investigating the outage probability
of a dual-hop BAN system when each link experiences κ-μ
fading using data obtained from real channel measurements.
The statistics of the κ-μ/κ-μ composite fading channel can be
obtained as a byproduct of the formulations presented here.
To this end, a practical application of the κ-μ/κ-μ composite
fading model has been demonstrated by applying it to D2D
channel measurements. Finally, we see that the analytical
results presented in this paper compute efficiently, and can
easily be evaluated in Mathematica.

APPENDIX A
PROOF OF EQUATION (9)

Substituting G2,0
0,2(z|b, c) = 2z

1
2 (b+c)Kb−c

(
2
√

z
)

[38,
07.34.03.0605.01] in (7), where Kφ(·) is the φth-order modi-
fied Bessel function of the second kind, we obtain

fX (x) = 2

ρ1,2

∞∑
m=0

∞∑
n=0

(κ1μ1)
m(κ2μ2)

n(θ1θ2)
ξ
2

m!n!�(m + μ1)�(n + μ2)

× x
1
2 (−2+ξ) Km−n+μ1−μ2

(
2

√
x

K1K2

)
(29)

where ρ1,2 =eμ1κ1+μ2κ2 , K1 = 1
θ1

, K2 = 1
θ2

and ξ = m + n +
μ1 + μ2. Now changing the order of summation, followed by
changing the index m to j + n we obtain

fX (x) = 2

ρ1,2

∞∑
n=0

∞∑
j=−n

(κ1μ1)
j+n(κ2μ2)

n(θ1θ2)
ξ1
2

n!( j + n)!�( j + n + μ1)�(n + μ2)

×x
1
2 (−2+ξ1)K j+μ1−μ2

(
2

√
x

K1K2

)
(30)

where ξ1 = j + 2n + μ1 + μ2.
Expressing the inner series in (30) as

∑∞
j=−n a j =∑−1

j=−n a j+∑∞
j=0 a j , we obtain (31), as shown on the top

of the next page. Now changing the index, j = j − n in the
first summation we have (32), as shown on the top of the next
page, where ξ2 = j + n + μ1 + μ2.

Rewriting the inner series in (32), as
∑n−1

j=0 a j =∑n
j=0 a j − an , followed by expressing the first and the last

sum in terms of the regularized Hypergeometric function [32],
we obtain (33), as shown on the top of the next page, where
ζ1 = xκ1κ2μ1μ2

K1K2
and ξ3 = j + μ1 + μ2.

Following a similar simplification approach as above for the
double summation in (33), as shown at the top of the next page,
changing the index n = n + j , summing over index n, and
finally performing some algebraic manipulations we obtain the
PDF of the double κ-μ fading channel shown in (9), which
completes the proof.

APPENDIX B
PROOF OF EQUATION (14)

Substituting (7) in (13), we obtain

E

[
e−s X

]
= θ1θ2

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m

×
∫ ∞

0
e−sx G2,0

0,2 ( x θ1θ2| m+μ1−1,n+μ2−1 ) dx
︸ ︷︷ ︸

�I1

(34)

where the integral I1 can be simplified by using
[28, eq. 7.811.4] and [38, 07.34.21.0011.01] as

I1 =
∫ ∞

0
G1,0

0,1 (sx | 0 ) G2,0
0,2 ( x θ1θ2| n+μ1−1, m+μ2−1 ) dx

= 1

θ1θ2
G1,2

2,1

(
s

θ1θ2

∣∣∣∣ 1−n−μ1, 1−m−μ2
0

)
. (35)
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fX (x) = 2

ρ1,2

∞∑
n=0

[ −1∑
j=−n

(κ1μ1)
j+n(κ2μ2)

n (θ1θ2)
ξ1
2

n! ( j + n)!�( j + n + μ1)�(n + μ2)
x

1
2 (−2+ξ1)K j+μ1−μ2

(
2

√
x

K1K2

)

+
∞∑
j=0

(κ1μ1)
j+n(κ2μ2)

n (θ1θ2)
ξ1
2

n!( j + n)!�( j + n + μ1)�(n + μ2)
x

1
2 (−2+ξ1)K j+μ1−μ2

(
2

√
x

K1K2

) ]
. (31)

fX (x) = 2

ρ1,2

∞∑
n=0

[n−1∑
j=0

(κ1μ1)
j (κ2μ2)

n(θ1θ2)
ξ2
2

n! j !�( j + μ1)�(n + μ2)
x

1
2 (−2+ξ2)K j−n+μ1−μ2

(
2

√
x

K1K2

)

+
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j=0

(κ1μ1)
j+n(κ2μ2)

n(θ1θ2)
ξ1
2

n!( j + n)!�( j + n + μ1)�(n + μ2)
x

1
2 (−2+ξ1)K j+μ1−μ2

(
2

√
x

K1K2

)]
. (32)

fX (x) = −2 (θ1θ2)
μ1
2 + μ2

2

ρ1,2
x−1+ μ1

2 + μ2
2 Kμ1−μ2

(
2

√
x

K1K2

)
0 F̃3 (; 1, μ1, μ2; ζ1)

+ 2

ρ1,2
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n=0

n∑
j=0

(κ1μ1)
j (κ2μ2)

n(θ1θ2)
ξ2
2

n! j !�( j + μ1)�(n + μ2)
x

1
2 (−2+ξ2)K j−n+μ1−μ2

(
2

√
x

K1K2

)

+ 2

ρ1,2
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j=0

(κ1μ1)
j (θ1θ2)

ξ3
2 x−1+ ξ3

2 K j+μ1−μ2

(
2

√
x

K1K2

)
0 F̃3 (; 1 + j, j + μ1, μ2; ζ1) . (33)

Now substituting (35) in (34) and using [38, 07.34.03.0392.01]
to rewrite the Meijer-G term in the form of confluent Tricomi
hypergeometric function we obtain (14), which completes the
proof.

APPENDIX C
PROOF OF EQUATION (17)

Substituting q = 1 and 2 in (15), followed by using
the transformation 1 F1 (a; b; z) = ez

1 F1 (b − a; b; −z)
[38, 07.20.16.0001.01] and replacing the confluent hyperge-
ometric function with its series form [38, 07.20.02.0001.01],
E [X] and E

[
X2

]
simplify to

E [X] = γ̄1γ̄2 (36)

and

E

[
X2

]
= μ1 (1 + μ1) μ2 (1 + μ2)

θ2
1 θ2

2

[
1 + κ1

(
2 + κ1μ1

1 + μ1

)]

×
[

1 + κ2

(
2 + κ2μ2

1 + μ2

)]
. (37)

Now substituting (36) and (37) in (16), followed by performing
some basic mathematical manipulations we obtain (17), which
completes the proof.

APPENDIX D
PROOF OF EQUATION (22)

Substituting (7) in (21), we obtain

C

W
= log2e θ1θ2

ρ1,2

∞∑
m=0

∞∑
n=0

cn,m

×
∫ ∞

0
loge(1 + x) G2,0

0,2 ( x θ1θ2| m+μ1−1,n+μ2−1 ) dx
︸ ︷︷ ︸

�I2

(38)

where the integral I2 can be simplified by using [38,
01.04.26.0003.01] and [28, eq. 7.811.1] as

I2 =
∫ ∞

0
G1,2

2,2

(
x | 1, 1

1, 0

)
G2,0

0,2 ( x θ1θ2| n+μ1−1, m+μ2−1 ) dx

= G4,1
2,4

(
θ1θ2| −1, 0

−1, −1, m+μ1−1, n+μ2−1

)
. (39)

Now substituting (39) in (38) we obtain (22), which completes
the proof.
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